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We investigate the influence of a homogeneous and constant strong external magnetic field on the heavy-
meson spectrum. Quarkonium states cc̄ and bb̄ are described within a nonrelativistic framework and by
means of a suitable potential model based on the Cornell parametrization. In particular, in this work we
propose a model which takes into account the possible anisotropies emerging at the level of the static quark-
antiquark potential, as observed in recent lattice studies. The investigation is performed both with and
without taking into account the anisotropy of the static potential, in order to better clarify its effects.
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I. INTRODUCTION

In recent times there has been a great interest regarding
the physics of strongly interacting matter in the presence of
strong external magnetic fields, i.e. such that1 eB≃m2

π or
larger (see, e.g., Refs. [1,2] for recent reviews). This topic
could be relevant to the study of some dense astrophysical
objects, like magnetars [3], and for cosmology [4,5].
However, the main interest was triggered by the fact that
magnetic fields of this order of magnitude can be created in
a laboratory, in particular in heavy-ion collisions [6–10],
when two relativistic heavy ions collide with a nonzero
impact parameter, producing a huge field in the collision
region. For example, one can reach jejB≃ 0.2 − 0.3 GeV2

in Pbþ Pb collisions at the Large Hadron Collider (LHC).
Such huge magnetic fields are produced in the very early

stages of the collision. It is still not clear how long and to
what extent they survive the thermalization process of the
fireball created after the collision. Therefore, while various
theoretical investigations, based both on model studies and
on lattice QCD simulations (LQCD), have predicted many
interesting phenomena affecting the properties of strongly
interacting matter in the presence of strong magnetic
backgrounds, it is still uncertain to what extent such
phenomena will be detectable in heavy ion experiments.
In this perspective, effects regarding the physics of heavy

flavors are of particular interest, since they are more
sensitive to the conditions taking place in the early stages

of the collision. Various studies have approached the issue
of quarkonia spectra and production rates in the presence of
magnetic backgrounds [11–17]. Many interesting phenom-
ena have been predicted, including the emergence of
magnetic field induced mixings between different states
and of production anisotropies with respect to the colli-
sion plane.
The starting point for most of these investigations is the

coupling of the magnetic field with electric charges and
magnetic moments carried by the valence quarks. However,
the magnetic field is known to induce important modifi-
cations also at a nonperturbative level and in the gluon
sector: a natural question is whether that can change the
picture both quantitatively and qualitatively.
A very interesting phenomenon in this respect is the

magnetic field induced modification of the static quark-
antiquark (QQ̄) potential. This is a typical pure gauge
quantity (it is related to the expectation values of Wilson
loops) which represents the starting point for many
approaches to the study of heavy quarkonia, typically
within a nonrelativistic approximation. The static potential
is usually expressed in terms of the so-called Cornell
parametrization [18]:

VðrÞ ¼ −
α

r
þ σr: ð1Þ

where α is the Coulomb coupling and σ the string tension.
Such a nonrelativistic approach is reliable only for heavy

quark bound states, for which the interaction energy is not a
large fraction of the total mass, and for not too large
magnetic fields. As a rule of thumb one can use
eBℏ=ðm2c3Þ ≪ 1 (where m is the heavy quark mass) to
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corresponds to eB≃ 3.3m2
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estimate which magnetic fields can be explored in this
approach. In our worst case (charm quark and
jejB ¼ 0.3 GeV2) the previous ratio is about 0.18, a
numerical value which is roughly equal to the ratio
ðMJ=Ψ − 2mcÞ=MJ=Ψ, which gives an estimate of the
validity of the nonrelativistic approach also for B ¼ 0.
For bottomonia states eBℏ=ðm2c3Þ gets smaller by more
than one order of magnitude.
The magnetic background field breaks rotational invari-

ance, hence one may expect the emergence of anisotropies
in the potential, which is central otherwise. The issue is
clearly related to quark loop effects, since gluons are not
directly coupled to the magnetic field, and has been
investigated within various model studies [19–25]: the
Coulomb coupling has been predicted to change in the
transverse direction [19,22], in the longitudinal direction
[20,23] or in both [25]; regarding the string tension, while
string theory studies do not predict an influence of the
magnetic field on it [26–30], other approaches do (see, e.g.,
Refs. [21,25]).
Further insight into the question has been provided by a

recent lattice QCD investigation [31]: the potential gets
steeper in the directions transverse to the magnetic field and
flatter in the longitudinal one. In particular one observes a
larger (smaller) string tension in the transverse (longi-
tudinal) direction, while the opposite happens for the
Coulomb coupling [31].
The purpose of this study is to reconsider the compu-

tation of the heavy quarkonia spectrum and mixings in the
presence of a magnetic field, in the light of the existing
anisotropy in the static quark-antiquark potential. Since
standard magnetic field effects decrease with the mass of
the valence quarks, while the static potential remains
unchanged, we might expect that corrections be relatively
more important for bottomonia than for charmonia.
We will follow the standard nonrelativistic two-body

approach (see, e.g., Refs. [32,33] for reviews on this
subject), which can be tackled using standard numerical
methods. In particular, our treatment will be close to that of
Ref. [13], apart from the presence of the anisotropy, which
will be included according to the lattice results of Ref. [31].
Since in Ref. [31] the potential has been studied only along
two directions (transverse and longitudinal), we shall adopt
the simplest possible parametrization which takes into
account generic angles.
The paper is organized as follows. In Sec. II we will

review the nonrelativistic approach to the two-body prob-
lem in an external magnetic field. In Sec. III we will discuss
the form of the static potential in a magnetic background
and our parametrization for its angular dependence. In
Sec. IV we will discuss our numerical approach to the
problem (more details and results from a test on the
harmonic oscillator are reported in the Appendix) and
present results for charmonia and bottomonia. Finally, in
Sec. V, we will draw our conclusions.

II. THE QUANTUM TWO-BODY PROBLEM
IN EXTERNAL MAGNETIC FIELD

The nonrelativistic Hamiltonian of two particles of
massesmi and charges qi (i ¼ 1; 2) in an external magnetic
field is

Ĥ ¼
X2
i¼1

1

2mi
½p̂i − qiAðxiÞ�2 þ Vðx1; x2Þ − ðμ1 þ μ2Þ · B;

ð2Þ

where μ1, μ2 are the magnetic moments of the two particles.
The presence of a vector potential AðxÞ makes the system
not invariant under translations, i.e. xi → xi þ α. Even in
the case of a uniform magnetic field, both the canonical and
the kinetic momentum P̂ ¼ P

2
i¼1ðp̂i − qiAðxiÞÞ do not

commute with the Hamiltonian in Eq. (2).
An invariance group of Ĥ is obtained by simultaneously

performing a coordinate translation and a gauge trans-
formation, i.e. by changing both xi and pi. The generator of
this transformation is the pseudomomentum operator (see
[34] for more details) and can be written in a particularly
simple form in the symmetric gauge2 AðxÞ ¼ 1

2
B × x,

where it is given by:

K̂ ¼
X2
i¼1

�
p̂i þ

1

2
qiB × xi

�
: ð3Þ

From this expression, it is not obvious that different
components of the pseudomomentum are commuting
observables, and in fact this is not in general true. This
is however what happens for globally neutral system (in
particular for the QQ̄ system to be studied in this paper),
since the following commutation relations hold

½K̂j; K̂l� ¼ −iðq1 þ q2ÞϵjlkBk: ð4Þ

From now on we will explicitly restrict to the case of a
particle-antiparticle system and we will adopt the notation
q≡ q1 ¼ −q2 for the electric charge and m for the particle
masses (see e.g. Ref. [13] for the general case). Written in
terms of the relative coordinate r ¼ x1 − x2, the pseudo-
momentum takes the form

K̂ ¼ p̂1 þ p̂2 þ
1

2
qB × r ¼ P̂þ qB × r; ð5Þ

From this expression it appears natural to adopt the
following ansatz for the eigenstate Φ of the two body
Hamiltonian:

2See [35] for the form of the pseudomomentum in a generic
gauge.
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ΦðR; r; σÞ ¼ exp

�
iðK −

1

2
qB × rÞ · R

�
Ψðr; σÞ; ð6Þ

where K denotes the eigenvalue of the operator K̂, R is the
coordinate of the center of mass and σ is a shorthand
for the spin variables. Using the expression Eq. (6), the
Hamiltonian in Eq. (2) can be rewritten in the form (acting
on the reduced wave function Ψ):

Ĥ ¼ K2

2M
−

q
M

ðK × BÞ · r −∇2

2μ

þ q2

2μ
ðB × rÞ2 þ VðrÞ − ðμ1 þ μ2Þ · B; ð7Þ

whereM ≡ 2m and μ≡m=2 are, respectively, the total and
the reduced mass of the two body system. Because of the
lack of translation invariance, in this Hamiltonian the center
of mass and the relative motion are not decoupled,
unless K × B ¼ 0.
Given this nontrivial dependence on the K value, one

needs a prescription to subtract the energy associated
with the center of mass motion. We will follow the idea
presented in Ref. [13]: given the eigenvalue E of Eq. (7), we

will consider E − hP̂i2
2M as the corrected binding energy, with

the kinetic momentum expectation value being computed
by using Eq. (5).
Finally, let us discuss the role of the spin interaction term

in Eq. (7). Quark magnetic moments may be expressed as
μi ¼ gμisi, where g ¼ 2 is the quark g-factor in the non-
relativistic approximation, μi ¼ qi=2mi is the quark mag-
neton and si ¼ σi=2 is its spin. Therefore, in the case of a
quark-antiquark pair

−ðμ1 þ μ2Þ · B ¼ −
gq
4m

ðσ1 − σ2Þ · B: ð8Þ

It can be verified that this term induces a mixing between
the singlet j00i and the triplet j10i spin states. Indeed, in the
presence of a magnetic field B ¼ Bẑ, the operator in Eq. (8)
has the only nonzero matrix element between spin states
given by

h00jðμ1 þ μ2Þ · Bj10i ¼ −
gqB
2m

: ð9Þ

Such a term increases the energy of the triplet state and
decreases that of the singlet. When Eq. (9) is used for a
noncentral potential, or when a spin-spin interaction is also
present, some caution is needed, since possible mixings
between different orbital states can be present (see
Appendix for more details).

III. THE QQ̄ POTENTIAL

It is well known that the main features of the quarkonium
spectrum can be understood by using a central potential
between the heavy quarks of the so-called Cornell form
reported in Eq. (1). This parametrization was introduced in
Ref. [18] on phenomenological bases, as the simplest form
of the potential that takes into account both the short
distance perturbative contribution and color confinement. It
was later realized that the form Eq. (1) of the potential
correctly describes the spin averaged potential between two
static (i.e. infinitely massive) quarks as estimated from the
first principles of QCD by its lattice formulation (see,
e.g., Ref. [32]).
To properly describe the fine structure of the quarkonium

spectrum further spin dependent terms have to be added to
the potential. All such corrections to the static quark
potential can in principle be obtained by an expansion in
the inverse quark mass (see Ref. [33]), however their
precise functional form is generally not well known and
difficult to extract from LQCD computations. Because of
this lack of precise theoretical information, several different
parametrizations of these terms exist, whose coefficients
are fixed by comparing with experimental results.
Since we are mainly interested in the lowest quarkonium

levels (see Table I), the most important contribution to be
added to the Cornell potential is the spin-spin interaction,
responsible, e.g., for the mass splitting between the
J=Ψ and ηc levels of charmonium. We will adopt the
parametrization

Vσσ ¼ ðσ1 · σ2Þγe−βr; ð10Þ

where β and γ are phenomenological constants, whose
values are reported in Table III. This form of the spin-spin

TABLE I. Lowest part of charmonium and bottomonium mass
spectrum. Data from [37].

QQ̄ State Name Mass [MeV]

cc̄ 11S0 ηc 2980.3� 1.2
· 13S1 J=ψ 3096.916� 0.011
· 13P0 χc0 3414.75� 0.31
· 13P1 χc1 3510.66� 0.07
· 13P2 χc2 3556.20� 0.09
· 11P1 hc 3525.38� 0.11
· 21S0 ηcð2SÞ 3639.4� 1.3
· 23S1 ψð2SÞ 3686.109� 0.02
bb̄ 11S0 ηb 9390.9� 2.8
· 13S1 ϒ 9460.30� 0.26
· 13P0 χb0 9859.44� 0.74
· 13P1 χb1 9892.78� 0.57
· 13P2 χb2 9912.21� 0.57
· 11P1 hb 9898.3� 1.1
· 21S0 ηbð2SÞ 9999.0� 3.5
· 23S1 ϒð2SÞ 10232.26� 0.31
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interaction is supported by the lattice result presented in
Ref. [36] and was previously used in Ref. [13] to study the
influence of a magnetic field on the meson spectrum.
While in previous studies the static Cornell potential in

Eq. (1) was assumed to be independent of the magnetic
field, in this work we will consider also the anisotropy
observed in Ref. [31]. However, since in Ref. [31] only the
values of the potential along the coordinate axes have been
investigated, we are forced to make an ansatz on the form
of the potential, with the constraint that it reproduces the
observed behavior on the axes. To this aim, we propose the
following anisotropic form of the static potential terms (B is
directed along the ẑ axis)

α

r
→

αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðαÞxy ðx2 þ y2Þ þ ϵðαÞz z2

q

σr → σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðσÞxy ðx2 þ y2Þ þ ϵðσÞz z2

q
ð11Þ

where the scaling parameters ϵxyðBÞ and ϵzðBÞ are func-
tions of the external magnetic field. Such a parametrization
is inspired by that of the electrostatic interaction in the
presence of an anisotropic dielectric constant (see Ref. [38],
Sec. 13). It is possible to rewrite the expression above in a
more usual fashion, by absorbing the angular and B
dependences into the α and σ parameters

Vðr; θ; BÞ ¼ −
αðθ; BÞ

r
þ σðθ; BÞr; ð12Þ

where θ is the spherical azimuthal angle and

αðθ; BÞ ¼ α

ϵðαÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵðαÞ2 ðBÞsin2ðθÞ

q

σðθ; BÞ ¼ σϵðσÞ1 ðBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵðσÞ2 ðBÞsin2ðθÞ

q
ð13Þ

with ϵðOÞ
i related to the scaling parameters previously

defined by setting ϵ1 ¼ ffiffiffiffi
ϵz

p
and ϵ2 ¼ ϵxy=ϵz − 1.

According to Ref. [31], when increasing the magnetic field
the string tension gets larger in the transverse directions,
while it decreases in the longitudinal ẑ direction; the
opposite behavior is observed for the coefficient α of the
Coulomb term. To reproduce such a behavior, the coef-

ficients ϵðOÞ
i must be positive. In particular, they are related

to the coefficients A;C estimated in Ref. [31] (see Table II)
by the relations

ϵðαÞ1 ðBÞ ¼ ð1þ AαzðjejBÞCαz Þ−1

ϵðαÞ2 ðBÞ ¼
�
1þ AαzðjejBÞCαz

1þ AαxyðjejBÞCαxy

�
2

− 1

ϵðσÞ1 ðBÞ ¼ ð1þ AσzðjejBÞCσz Þ

ϵðσÞ2 ðBÞ ¼
�
1þ AσxyðjejBÞCσxy

1þ AσzðjejBÞCσz

�
2

− 1: ð14Þ

A graphical representation of the anisotropic potential is
shown in Fig. 1.
Finally, let us briefly discuss the role of the spin-spin

interaction term (10) within the anisotropic potential
picture. In principle, both parameters, β and γ, may acquire
a dependence on the external magnetic field like that
observed for the string tension and the Coulomb coupling.
Such a dependence has not yet been investigated and no
ansatz is available. However, since this term represents a
spin-dependent relativistic correction of order m−2

[32,33,39,40], it is reasonable to expect that also the B-
dependence be of the same order in the quark mass m,
hence much weaker than that induced on the spin-
independent part of the potential. Therefore in the follow-
ing we will make use of the same values for β and γ adopted
in Ref. [13]. A similar attitude will be adopted with respect
to other relativistic corrections, like the spin-orbit term.

IV. COMPUTATION AND NUMERICAL RESULTS

In this section we report our results for the dependence
on the magnetic field of the masses of the 1S and 1P states
for both charmonium and bottomonium.

FIG. 1 (color online). Contour map of the potential in Eq. (12)
on the x − z plane for B ¼ 0.6 GeV2, with B directed along the ẑ
axis. Parameters used are the ones for charmonium (see Table III).
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To this purpose we used the Hamiltonian in Eq. (7), with
a magnetic field B ¼ Bẑ and pseudomomentum K ¼ Kx̂,
with the anisotropic potential parametrized as in Eq. (12),
together with the spin-spin interaction term Eq. (10). Values
of the parameters adopted are reported in Table III and have
been fixed according to Ref. [13], thus enabling a direct
comparison with the case in which the anisotropy of the
potential is neglected. Numerical values of the anisotropy
parameters, defined in Eq. (14), have been fixed by using
the coefficients shown in Table II. To take into account the
uncertainty associated with these parameters, several sim-
ulations were performed, corresponding to different com-
binations of these values.
In order to allow for a better physical comprehension of

the results, the mass spectrum will be shown as a function
of the mean kinetic momentum hPi, instead of using the
pseudomomentum K. To this purpose we solved the system
for several values of K, computed the value of the mean
kinetic momentum for each eigenstate and interpolated
these values to the desired point. Details of the numerical
algorithm used to extract eigenstates are reported in the
Appendix, together with a test of the algorithm in an
analytically solvable case.

A. Charmonium states

We start by studying the ηc and J=ψ states, which
correspond to the 1S states of the charmonium at vanishing
magnetic field. The experimental masses of these states are
well reproduced by using the potential parameter reported
in Table III and their behavior as a function of the external
magnetic field B is shown in Fig. 2. The spin components
sz ¼ �1 of the J=ψ stay degenerate also for B ≠ 0 but they
split from the sz ¼ 0 component, which mixes with the
ηc state.
In order to isolate the contribution of the anisotropy in

the potential, we reported in Fig. 2 also the masses
computed without taking into account the anisotropy
(i.e. with ϵðαÞ1 ¼ ϵðσÞ1 ¼ 1 and ϵðαÞ2 ¼ ϵðσÞ2 ¼ 0). It can be
seen that in all cases the masses are increased by taking into
account the anisotropy; as a consequence, for the ηc the

dependence of the mass on B gets milder, while the
opposite effect is observed for the J=ψ states. We note
that for the ηc and the sz ¼ �1 components of the J=ψ the
effect induced by the anisotropy is of the same order of
magnitude as the effect expected when no anisotropy is
present.

FIG. 2 (color online). Behavior of the masses of the charmo-
nium 1S states with respect to the magnetic field, both with and
without the magnetic anisotropy in the potential and for two
different values of hPi. Data points represent the mass extracted
making use of the central values of the parameters in Table II,
while shaded regions take into account uncertainties on the
parameters. (a) The ηc singlet state. (b) The sz ¼ �1 components
of the J=ψ state. (c) The sz ¼ 0 component of the J=ψ state.

TABLE III. Parameters used for the potential (same as in
Ref. [13]).

γ β α σ m

cc̄ 2.060 GeV 1.982 GeV 0.312 0.174 GeV2 1.29 GeV
bb̄ 0.318 GeV 1.982 GeV 0.421 0.210 GeV2 4.70 GeV

TABLE II. Coefficients A, C estimated in [31].

O AOxy COxy AOz COz

σ 0.29� 0.02 0.9� 0.1 −0.34� 0.01 1.5� 0.1
α −0.24� 0.04 0.7� 0.2 0.24� 0.03 1.7� 0.4
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A nonvanishing kinetic momentum has an effect analo-
gous to that of the anisotropy: it reduces the dependence on
B of the ηc mass while it increases that of the J=ψ states.
This effect is however quite small for the values of the
kinetic momenta explored and it is almost of the same
magnitude of the uncertainties associated with the anisot-
ropies. It cannot be excluded that this effect increases for
larger momenta, but to systematically explore this regime a
fully relativistic treatment would be required.
As previously noted, the magnetic field introduces a

mixing between the ηc state and the sz ¼ 0 component of
the J=ψ state. The behavior of this mixing with respect to
the magnetic field and the pseudomomentum K is shown in
Fig. 3 while the dependence on the magnetic field is quite
strong, the mixing turn out to be almost independent of the
value of the pseudomomentum. Moreover, contrary to what
happens for the masses, the mixing is almost insensitive to
the anisotropy of the potential.
We now present some preliminary data for the 1P states.

In this case the fine spectrum of known 1P charmonium

levels is not correctly reproduced for B ¼ 0, a fact that is
likely due to the absence of the spin-orbit coupling and
other relativistic corrections in the used Hamiltonian. If we
assume that these relativistic terms do not depend on the
external magnetic field, the computed variation of the mass
ΔmðBÞ due to a nonvanishing B can be used to shift the
known B ¼ 0 values of the masses to obtain the spectrum at
B ≠ 0. It is clear that this is an approximate procedure and
that a more precise study will be required to quantify the
systematic error introduced in this way; nevertheless this

FIG. 4 (color online). Behavior of the masses of the charmo-
nium 1P excited states with respect to the magnetic field. We
report for simplicity only data obtained by using the anisotropic
form of the potential, the general features of this picture are
present also in the standard case of the central potential.

FIG. 5 (color online). Behavior of the masses of the bottomo-
nium 1S states with respect to the magnetic field, both with and
without the magnetic anisotropy in the potential and for several
values of hPi. (a) The ηb singlet state. (b) The sz ¼ �1
components of the ϒ state. (c) The sz ¼ 0 component ϒ state.

FIG. 3 (color online). Square modulus of the mixing between
the sz ¼ 0 component of the J=ψ state and the ηc state, both with
and without the magnetic anisotropy in the potential and for
several values of the pseudomomentum K.
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method is expected to give reliable information in the limit
of large quark mass m, since relativistic effects are sup-
pressed by inverse powers ofm. The results obtained in this
way are shown in Fig. 4 and the main difference with
respect to the 1S case is that in the 1P case several level
crossings happen by increasing the magnetic field. From
Figs. 4 and 2 it can be seen that the gap between the h states
and the J=ψ states is strongly reduced by increasing the
magnetic field, a fact that may have significant conse-
quences on branching ratios of the h meson.

B. Bottomonium states

The effect of the anisotropy in the potential on botto-
monium states is qualitatively similar to that on charmo-
nium states, however its quantitative relevance is much
larger, as can be seen from the spectrum of the 1S states in
Fig. 5 the mass shift due to the anisotropy is about one
order of magnitude larger than the one due to quark
magnetic momenta only. This is not unexpected, since
the effect of the anisotropy in the potential is independent
of the quark masses, while quark magnetic momenta go to
zero like 1=m. As a consequence the relative effect of the
anisotropy is much stronger for bottomonium than for
charmonium.
In Fig. 6 we show the behavior of the mixing between the

singlet state ηb and the sz ¼ 0 component of the ϒ as a
function of the magnetic field. Although the value of the
mixing is reduced by about a factor 3 (≈mb=mc) with
respect to the charmonium case, its value is still largely
independent on the anisotropy.
A preliminary analysis of the 1P states is shown in

Fig. 7 it is obtained by the same procedure adopted for the
charmonium, which for bottomonium is expected to be
more reliable. Also for bottomonium some level crossings
can be seen, however in this case the uncertainties, due to
the propagation of the error on the anisotropy, become quite
large with respect to the typical level separations.

V. SUMMARY AND CONCLUSIONS

The main purpose of this work has been the study of the
possible influence of strong external magnetic fields on the
heavy-meson mass spectrum. Following the approach of
Ref. [13], we used a nonrelativistic model to extract the
lowest lying cc̄ and bb̄ states and the magnetic field
induced mixings among them. As a new ingredient, we
considered the anisotropies induced by the magnetic field at
a nonperturbative level in the static quark-antiquark poten-
tial, as determined by a recent LQCD investigation [31].
Moreover, we extended our analysis to the first excited
1P states.
Various approximations are involved in our computation:

relativistic corrections were only partially included and
any possible dependence of their magnitude on B was
neglected. Moreover, the exact angular dependence of the
static potential was obtained by a suitable interpolation of
data reported in Ref. [31].
A first issue of phenomenological interest regards the

mixing between different states, since that should lead to a
modification of both decay patterns and production rates.
For instance, results suggest a contamination of the semi-
leptonic decay channels between the ηc and the J=ψ and
between the ηb and ϒ mesons. However, in this case such
mixings are observed even without taking into account the
potential anisotropy [13], and we have verified that its
inclusion does not lead to significant quantitative changes.
On the other hand, results suggest that the presence of the

anisotropy in the potential has significant effects on the
heavy-meson mass spectrum. An increase of the masses is
generally observed, with respect to the case in which the
anisotropy is not included, the increase being of the order of
30–40 MeV at the maximum magnetic field explored,
jejB≃ 0.3 GeV2. The effect is more dramatic for botto-
monium states, where it can even change, in some cases,
the sign of the dependence of the mass on B: the reason is
that standard magnetic interaction terms in the Hamiltonian
of the system [see Eq. (7)] are suppressed by the inverse of
the quark mass, while the nonperturbative effect on the

FIG. 6 (color online). Square modulus of the mixing between
the sz ¼ 0 component of the ϒ state and the ηb state, both with
and without the magnetic anisotropy in the potential and for
several values of the pseudomomentum K.

FIG. 7 (color online). Behavior of the masses of the bottomo-
nium 1P excited states with respect to the magnetic field.
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static potential is mass independent, hence it becomes
dominant for bottomonium.
Finally, a new effect pointed out by our study regards the

possible crossings of 1P states as a function of B. Such
crossings are observed even without taking into account the
anisotropy of the potential, however its presence makes
them clearer. We stress that our results for 1P states are still
preliminary: in particular, regarding the level crossings, we
assumed the experimentally observed spectrum at B ¼ 0,
which can be reproduced for such states only by taking into
account relativistic corrections like the spin-orbit one. On
the other hand, the spin-orbit term was not taken into
account to compute the B-dependence of the spectrum,
therefore a significant B-induced correction to this term
could change the scenario.
One should consider that present results are obtained

using the T ¼ 0 form of the potential and assuming a
constant and uniform magnetic field. The use of the T ¼ 0
potential is justified only for hard processes taking place in
the initial stages of noncentral collisions, before the
strongly interacting medium thermalizes. Future lattice
simulations could provide information on magnetic field
effects at finite T, which could be relevant to production
and decay rates of heavy quark states in the thermalized
medium; instead, it will be relatively more difficult to take
into account the possible effects of inhomogeneities or time
dependence of the magnetic field distribution. Further
improvement on present results could also be obtained
once lattice simulations provide information about the
exact angular dependence of the static potential (which
in the present study was partially based on an ansatz) and,
possibly, about the spin-dependent part of the potential.
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APPENDIX: THE NUMERICAL ALGORITHM

The algorithm used to numerically compute eigenvalues
and eigenfunctions of the reduced Hamiltonian (7) is the
finite difference time domain method (FDTD) described,
e.g., in [41,42]. The main idea of this approach is the
following: once the Schrödinger equation is Wick rotated to
imaginary time

� ∂
∂τ þ Ĥ

�
Ψðr; τÞ ¼ 0; ðA1Þ

the formal solution of the problem with initial condition
Ψðr; 0Þ ¼ ζðrÞ is

Ψðr; τÞ ¼
X
α

hΦαjζiΦαðrÞe−ϵατ; ðA2Þ

where ϵα and Φα are the eigenvalues and eigenfunctions
of the Hamiltonian. By looking at the large time behavior
of Ψðr; τÞ we can thus identify the lowest ϵα (and the
corresponding Φα) among those corresponding to states
such that hΦαjζi ≠ 0. By using an initial wave function ζðrÞ
with specific symmetries we can thus select the state we are
interested in and, in this work, hydrogen-like wave func-
tions were used to this purpose when B ¼ 0. States for
B ≠ 0 were extracted by adiabatically switching on the
magnetic field in an initial stage of the evolution. This
procedure turned out to work well for the low lying states,
however numerical instabilities emerge when applying this
technique to higher excited states.
From the numerical point of view the evolution is

performed by introducing a temporal and a spatial lattice
spacing (denoted by dτ and a, respectively) and by
approximating derivatives in Eq. (A1) with finite
differences. In this way variables at time τ þ dτ can be
written in term of the ones at time τ (see [41] for details).
After every time evolution step we get an estimate of the

bound state energy and of other properties of the state we
want to study; the process ends when the variation of these
quantities during a time interval τs goes below a fixed
threshold. The time interval τs was set to 1=M, whereM is a
rough estimate of the mass for the state we are interested in.
The precision of 1 MeV was used as a stopping criterion for
the energy determination (this value can be used as the
uncertainty in the energy computation).
The numerical algorithm just described concerns the

orbital part of the Hamiltonian and can be applied, once the
total spin is fixed, to the reduced Hamiltonian Eq. (7)
(without the μ · B terms) together with the Vσσ potential
defined by Eq. (10). By using these eigenstates we can then
evaluate the matrix elements of the operator ðμ1 þ μ2Þ · B
and diagonalize this matrix to extract the final eigenvalues
and eigenstates.
The operator ðμ1 þ μ2Þ · B has nonvanishing matrix

elements only between the spin states j00i and j10i (see
Ref. [13] for details), however some care is needed here
since, due to the specific form of Vσσ adopted, nothing
prevents a mixing between states with different orbital
momenta to occur (this problem is relevant also for B ¼ 0).
The effect of this mixing between different orbital
momenta, however, turns out to be rather small: in all
the studied cases the overlap hl ¼ 0jl ¼ 1i was compat-
ible with zero within machine precision and the overlap
hl ¼ 0jl ¼ 2i was at most of the percent level.
All the results presented in the main text were

obtained by using a lattice of physical spatial extent
V ¼ ð30 GeV−1Þ3 ≃ ð6 fmÞ3 and several values of the
lattice spacings, in order to extract the continuum
limit. The spatial lattice spacings used were
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a ¼ 0.250; 0.375; 0.500; 0.625 GeV−1 and the temporal
lattice spacing was fixed by the relation dτ ¼ ma2=20,
m being the quark mass.

1. Test of the algorithm

We report here the results of some tests performed to
verify the correctness of the algorithm implementation. As
a test bed, we used the case of the harmonic potential

VðrÞ ¼ 1

2
mωr2; ðA3Þ

which is analytically solvable (see Ref. [13,35]) and thus
allows for a direct check of the numerical data. Following
the notation of Ref. [13], eigenstates are classified by the
quantum numbers K; n⊥; nz;l; s and sz, where K is the
pseudomomentum defined in Eq. (5), s is the total spin of
the system, sz its projection on the z-axis and n⊥; nz;l are
quantum numbers specific for the harmonic potential. For
fixed spin s, the ground state will be denoted by Φð0;sÞ and

corresponds to the case n⊥ ¼ nz ¼ l ¼ 0 (the superscripts
� and 0 will be used to denote the sz components).
As a first test we verified that, for fixed physical

parameters, the same result is obtained by performing
the continuum limit in different ways: it is possible to
first extract the limit for a → 0 at fixed dτ and then send dτ
to zerol; alternatively, it is possible to exchange the order of
the limits or to perform both limits together. Since in our
implementation discretization errors are linear in dτ and
quadratic in a, it is convenient to perform the limit by using
a relation of the form dτ ∝ a2 with a fixed proportionality
factor.
The three possible ways to continuum extrapolate are

compared in Fig. 8 and they nicely agree with each other
within errors. In Fig. 9 the final results (i.e. continuum
extrapolated and taking into account spin mixing) for the
energies of the low lying states are compared with the
theoretical expectations, and in all cases a perfect agree-
ment is found.

FIG. 9 (color online). Behavior of the masses for the eigenstates
Φð0;sÞ with respect to the magnetic field. Dots correspond to
numerical data extrapolated to the continuum, dashed curves
represent the analytic expected behavior. (a) Data corresponding
to jKj ¼ 0. (b) Data corresponding to jKj ¼ 5 GeV, K ¼ jKjx̂.

FIG. 8 (color online). Test of the continuum limit for param-
eters ω ¼ 1.5 GeV, jejB ¼ 0.9 GeV2 and K ¼ 5.0 GeV. Data

correspond to the energy of the eigenstate Φð�Þ
ð0;1Þ, while dashed

lines are fit curves. (a) First dτ → 0 and then a → 0, the final
continuum value is Ea ¼ 9.3205ð13Þ GeV. (b) First a → 0 and
then dτ → 0, Eb ¼ 9.3206ð13Þ GeV. (c) a → 0 with a ∝ dτ2,
Ec ¼ 9.3201ð12Þ GeV.
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