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In this paper we introduce an equation of state (EOS) of quark matter within the framework of Dyson-
Schwinger equations to study the structure of compact stars. The smooth crossover from hadronic matter to
quark matter in the hybrid star is studied. We compare different strategies to obtain crossover EOSs and find
a new way to construct two-solar-mass hybrid stars with even a relatively soft quark EOS, while earlier
works showed that the quark EOS should be stiff enough to support a massive hybrid star.
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I. INTRODUCTION

The equation of state (EOS) of quark matter is crucial for
the study of quark stars and compact stars. Once the EOS is
obtained, the radius and gravitational mass of a compact
star with a given central mass density can be calculated
by solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions. By changing the central density, we can draw the
mass-radius relationship curve that is compared with the
astronomical observations. Thus, the astronomical obser-
vations can be used to constrain the parameter sets of the
EOSs and even rule out some EOSs. However, on the one
hand, the perturbative QCD method fails in the low-energy
region, and it is very difficult to obtain a reliable EOS from
the first principles of QCD. Some approximate methods
that incorporate basic features of QCD are adopted to
calculate the EOS of quark matter, such as the MIT bag
model and the Nambu-Jona-Lasinio (NJL) model. But all
these models have their own weaknesses. The MIT bag
model violates chiral symmetry even in the limit of a
massless quark. Thus, some authors have developed
advanced bag models such as the so-called chiral MIT
bag model [1]. This model restores the chiral symmetry by
introducing the coupling of a pion and a quark. The NJL
model assumes that the interaction between quarks is point-
like, so this model is not renormalizable, and it cannot
incorporate quark confinement [2]. On the other hand,
the observational maximum mass of compact stars is
increasing. For example, the PSR J0348þ 0432 was
reported to have a mass of 2.01� 0.04 solar masses in
2013 [3]. Only very stiff EOSs can support such a large

maximum mass. Nonetheless, the EOS is often softened
when hyperon mixing, deconfined quark matter, or a
kaon condensate is taken into consideration in the core
of a compact star. Thus, Ozel even argued that con-
densates and unconfined quarks may not exist in the
centers of neutron stars [4].
To solve these problems, people tried to find stiffer EOSs

that can support massive quark stars and neutron stars. For
instance, in a pure hadronic framework, the introduction of
a “universal three-body force” acting on all the baryons or
an effective Lagrangian with quartic terms in the meson
fields can make hyperon-mixed neutron stars possible [5,6].
In the MIT bag model, some authors also introduced a
density-dependent bag parameter to get stiff EOSs [7].
Besides, the smooth crossover from hadronic matter to
quark matter has been recently used to construct hybrid
stars with high mass. Certainly, the order of the hadron-
quark phase transition at zero temperature is still an open
problem and the first-order phase transition (Maxwell or
Gibbs construction) has been widely adopted in some
recent works [8,9], and the existence of the so-called “mass
twins” in the mass-radius relationship for compact stars has
been presented as potential evidence of a first-order phase
transition [10]. However, we know that the radius of a
compact star is very difficult to determine exactly, so it is
not easy to find “mass twins,” and there are also some
arguments that the “mass twins” also exist in the smooth
phase transition case [11]. Besides, lattice QCD (LQCD)
studies show that the transition line for low net baryon is a
crossover [12–15], but the results for low temperature and
large baryon density are still model dependent. Many
people suppose the existence of a critical end point
(CEP), but others do not. Actually, on the theoretical side
there is still an ambiguity, not only for the location of a CEP
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but also for the existence of a CEP [16]. For example the
authors of Ref. [17] argued that if the vector interaction is
strong enough, the transition is a crossover in the whole
phase diagram. Furthermore, treating the point-like
hadron as an independent degree of freedom in the
Gibbs condition is not fully justified in the transition
region because all hadrons are extended objects com-
posed of quarks and gluons. The study of smooth phase
transitions in hybrid stars is thus also necessary. The
picture of a gradual onset of quark degrees of freedom in
dense matter associated with the percolation of finite-size
hadrons has been discussed in some seminal works such
as Refs. [18,19]. Recently, the smooth crossover from
hadronic matter to quark matter was used to construct
massive hybrid stars [20–22]. In these works, based on
the percolation picture, the authors utilized different
interpolation functions to do some phenomenological
studies on hybrid stars compatible with two solar mass.
Obviously, the strategies of interpolation are different,
but in each paper the authors concentrated on a certain
interpolation strategy.
The aim of this paper is to find a proper EOS of quark

matter to calculate the structure of compact stars and
discuss the possibility of a two-solar-mass hybrid star
based on the smooth phase transition between hadronic
matter and quark matter. So, we perform a model study on
the hybrid star from the point of view of the smooth
crossover. For the quark phase, we adopt the EOS with
strangeness based on the Dyson-Swinger equations
(DSEs), because the DSEs can simultaneously address
both confinement and dynamical chiral symmetry break-
ing [23,24], and it has been applied successfully to
hadron physics [25–30]. We discuss different interpola-
tion strategies to construct hybrid EOSs and compare
their influence on the final results, that is to say, the
maximum mass of the hybrid stars. We find a new way to
construct an EOS that is sufficiently stiff to include stable
hybrid stars compatible with two solar masses and our
conclusion is an excellent complement to the conclusion
in Ref. [20].
This paper is organized as follows. In Sec. II, we

introduce the EOS of quark matter. In Sec. III, we use
several methods to try to construct hybrid EOSs from the
point of view of the smooth crossover phase transition.
A new way to construct massive hybrid stars even with a
soft EOS of quark matter is proposed. Finally, a brief
discussion and conclusion is presented in Sec. V.

II. THE EOS OF QUARK MATTER AND THE DSEs

In this section, we briefly introduce our EOS of quark
matter based on the DSE approach. According to Ref. [31],
we start from the zero-temperature and zero-quark-
chemical-potential version of the quark propagator DSE
which reads

SðpÞ−1 ¼ Z2ðipþ ZmmÞ

þ g2Z1F

Z
q

λa

2
γμSðqÞΓa

νðp; qÞDμνðp − qÞ; ð1Þ

where SðpÞ is the dressed quark propagator, Z2 is the field-
strength renormalization constant, Zm is the mass renorm-
alization constant with current quark mass m, g is the
coupling constant, Z1F is the quark-gluon-vertex renorm-

alization constant,
R
q ¼

R d4q
ð2πÞ4 is a symbol that represents a

Poincaré-invariant regularization of the four-dimensional
Euclidean integral, λa are the Gell-Mann matrices, Γa

νðp; qÞ
is the quark-gluon vertex, and Dμνðp − qÞ is the dressed
gluon propagator. The general form of the quark propagator
at zero temperature and zero chemical potential reads

SðpÞ−1 ¼ ipAðp2Þ þ Bðp2Þ; ð2Þ
where Aðp2Þ and Bðp2Þ are scalar functions of p2.
The renormalization condition is

Aðζ2Þ ¼ 1; ð3Þ
Bðζ2Þ ¼ m ð4Þ

at sufficiently large space-like ζ2 [32,33]. We choose the
renormalization point to be ζ ¼ 19 GeV, as used in
Refs. [32,33]. Another popular choice is ξ ¼ 2 GeV which
has been used in recent studies (see, e.g., Ref. [34]).
Actually, DSEs make up a renormalizable theory, so the
choices of ζ do not affect the physical results. Equation (1)
is the exact result from the first principles of QCD, but
we cannot solve it directly unless concrete truncations are
performed. Rainbow truncation is used in this work, which
means a bare vertex is adopted,

Γa
νðp; qÞ ¼

λa

2
γυ; ð5Þ

and the Qin-Chang gluon propagator model [35] is speci-
fied by a choice of the effective interaction in Landau
gauge. Finally, one can obtain the following equations for
the two dressing functions Aðp2Þ and Bðp2Þ:

Aðp2Þ ¼ Z2 þ
4

3p2

Z
q

Gðk2Þ
k2

Aðq2Þ
q2A2ðq2Þ þ B2ðq2Þ

×

�
p · qþ 2

ðk · pÞðk · qÞ
k2

�
; ð6Þ

Bðp2Þ ¼ Z4mþ 4

Z
q

Gðk2Þ
k2

Bðq2Þ
q2A2ðq2Þ þ B2ðq2Þ : ð7Þ

The coupled Eqs. (6) and (7) can then be solved by direct
iteration. The DSE solution for the dressed quark propagator
can be well fitted with three pairs of complex-conjugate
poles with the representation [36]
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SðpÞ ¼
X3
n¼1

� zn
ipþmn

þ z�n
ipþm�

n

�
: ð8Þ

We fit u, d, and s quarks, where the requirement that the
quark propagator in the ultraviolet region should tend to the
free-quark propagator is employed:

X3
k¼1

ðzk þ z�kÞ ¼ 1: ð9Þ

In this paper, we choose a new parameter set that not only
fits the propagator well but also leads to a stiff EOS.
The corresponding parameters for u and d quarks are

m1 ¼ 285þ 121i MeV; z1 ¼ 0.308þ 0.618i;

m2 ¼ −1120þ 59i MeV; z2 ¼ 0.111 − 0.193i;

m3 ¼ 1214þ 429i MeV; z3 ¼ 0.081; ð10Þ

and for the s quark,

m1 ¼ 509þ 236iMeV; z1 ¼ 0.327þ 0.449i;

m2 ¼−1166þ 616iMeV; z2 ¼ 0.101þ 0.00178i;

m3 ¼ 1572þ 660iMeV; z3 ¼ 0.072þ 0.017i: ð11Þ

If we compare these parameters with those in Ref. [31],
we will find that the smaller real parts of m1 and z1 make
the EOS stiffer. Then, the propagator at zero temperature
and zero chemical potential can be generalized to nonzero
temperature and chemical potential by the following
replacement [37]:

p4 → ~ωn ¼ ð2nþ 1ÞπTþ iμ; ð12Þ

which is widely used within the rainbow truncation
of DSEs in thermal and dense QCD, and ~ωn are the
Matsubara frequencies. Hence, the quark propagator at
nonzero T and μ is

Sðp⇀; ~ωnÞ ¼
X3
k¼1

�
zk

ipþ iγ4 ~ωn þmk
þ z�k
ipþ iγ4 ~ωn þm�

k

�
:

ð13Þ
Then, the well-known formula for the quark number
density is [37,38]

ρðμ; TÞ ¼ −NcNfT
Xþ∞

n¼−∞

Z
d3p

⇀

ð2πÞ3 tr½Sðp
⇀
; ~ωnÞγ4�: ð14Þ

After a series of calculations and taking the limit T → 0,
the final result for the quark number density at zero
temperature can be obtained:

ρðμ; T ¼ 0Þ ¼ NcNf

3π2
X3
k¼1

ðzk þ z�kÞθðμ − μ0kÞ

×
�
μ2 −

d2k
4μ2

− ck

�3
2

; ð15Þ

where μ0k ¼ jReðmkÞj and ck; dk are defined by m2
k ¼

ck þ dki. The quark number density dependence on μ at
T ¼ 0 for the s quark is displayed in Fig. 1, and from this
figure we can see that the quark number density of the s
quark becomes nonzero at μc ¼ 520 MeV, which is
smaller than in Ref. [31] because of our new parameter
set. So, this EOS is more appropriate for quark matter
with strangeness. Finally, we take the chemical equilibrium
and electric charge neutrality conditions into consideration to
constrain different quark chemical potentials. The conditions
read

μd ¼ μu þ μe; ð16Þ

μs ¼ μu þ μe; ð17Þ

2

3
ρu −

1

3
ρd −

1

3
ρs − ρe ¼ 0: ð18Þ

Then there is only one independent chemical potential
due to these constraints. We choose μu in this work. For a
definite quark chemical potential, the EOS of QCD at
T ¼ 0 reads [38,39]

PðμÞ ¼ Pðμ ¼ 0Þ þ
Z

μ

0

ρðμ0Þdμ0; ð19Þ

and the relation between the energy density and the pressure
of the corresponding system is [40,41]

ϵ ¼ −Pþ
X
i

μiρi; ð20Þ

where μi and ρi represent the chemical potential and the
particle number density for each component in the system.

FIG. 1 (color online). The quark number density of the s quark.
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III. THE SMOOTH CROSSOVER AND THE
STRUCTURE OF HYBRID STARS

As usual, one can obtain the structure of a bare quark star
by directly integrating the TOVequations with the equation
of state:

dPðrÞ
dr

¼ −
Gðεþ PÞðM þ 4πr3PÞ

rðr − 2GMÞ ;

dMðrÞ
dr

¼ 4πr2ε: ð21Þ

However, in Eq. (19) we can see that Pðμ ¼ 0Þ is only a
μ-independent constant. It is the pressure of the vacuum.
Although a method to calculate Pðμ ¼ 0Þ self-consistently
is given in Ref. [37], there is actually no model-
independent way to reliably calculate Pðμ ¼ 0Þ from the
first principles of QCD. In this paper, analogous to the MIT
bag model, we reconsider the effect of this term and assume
that there is negative pressure at zero chemical potential in
the vacuum which manifests the confinement of QCD.
Namely, we identify Pðμ ¼ 0Þ with −B, where B is the
vacuum bag constant. In this paper we take it as a
phenomenological parameter only. Our EOS for nuclear
matter is the APR EOS with the A18þ δvþUIX�
interaction from Ref. [42]. This EOS is based on the
Argonne v18 two-body potential and the Urbana IX three-
body interaction, which includes charge neutrality and beta
equilibrium. The δv indicates the inclusion of relativistic
corrections. For simplicity, the APR model includes only
nucleonic degrees of freedom, and does not take hyperons
into account, whose interactions with nucleons and among
themselves are not well determined. Then, we choose B ¼
ð110 MeVÞ4 to ensure that the energy density of the quark
matter should always be higher than that of hadronic matter
in the low-density region. But with this value of B, the
maximum mass of a pure quark star is just about 1.65 solar
masses. If we choose a smaller B, the EOS will become
stiffer and the maximum mass will become larger, but such
a small B is unreasonable. Thus, we simply try to find a
way to construct massive hybrid stars from the point of
view of a smooth crossover phase transition with a soft
EOS for quark matter. In order to facilitate analysis and
compare with the first-order phase transition, the pressure
as a function of the baryon chemical potential of both the
quark matter and the hadronic matter is shown in Fig. 2.
From Fig. 2 we can see that the intersection in the P − μB
plane is just the first-order transition point. However, the
corresponding baryon number density at this point is over 5
times that of normal nuclear matter (ρ0 ¼ 0.17 fm−3). The
hadronic EOS is usually not reliable at such a high density.
Besides, the system must be strongly interacting in the
transition region, so that it can be described by neither an
extrapolation of the hadronic EOS from the low-density
side nor an extrapolation of the quark EOS from the

high-density side [43]. We should point that this is not a
special result in our hadronic and quark EOS, because
experiments show that even in a relatively large region of
chemical potential the quark-gluon plasma is still strongly
interacting, so the pressure of the quark EOS tends slowly
to the free-quark gas in the P − μB plane. This means that
the pressure increases slowly in the P − μB plane, and the
intersection between quark matter and hadronic matter
usually occurs at high chemical potential and high number
density if we choose a modern model to calculate the EOS
for quark matter rather than the MIT bag or a perturbative
model. Now, we start to construct an EOS for hybrid stars
from the point of view of the smooth crossover. From
Refs. [20–22] we can see that the strategy is not unique, but
it should meet the requirements of physics. As in the model
of Ref. [20]—the so-called “three window model”—we
construct the hybrid EOS from the P − ρB plane. The
pressure as a function of the baryon number density is
shown in the Fig. 3. The shaded region is the possible
crossover region that is between 2ρ0 and 4ρ0. We adopt the
interpolation function from Ref. [20] to make a smooth
connection between the two EOSs in the P − ρB plane:

P ¼ PH × f− þ PQ × fþ; ð22Þ

f� ¼ 1

2

�
1� tanh

�
ρ − ρ̄

Γ

��
; ð23Þ

where PH and PQ are the pressures in the hadronic matter
and the quark matter, respectively. The window ρ̄ − Γ≲
ρ≲ ρ̄þ Γ characterizes the crossover region in which both
hadrons and quarks are strongly interacting, so that neither
a pure hadronic EOS nor a pure quark EOS is reliable.
From the thermodynamical relation P ¼ ρ2∂ðϵ=ρÞ=∂ρ, we
obtain

FIG. 2 (color online). Pressure as a function of baryon chemical
potential. The dashed line is the EOS of hadronic matter, and the
solid line represents the EOS of quark matter. The vertical dashed
lines show the corresponding baryon number density of hadronic
matter. The baryon number density is scaled by the baryon
number density of normal nuclear matter ρ0 ¼ 0.17 fm−3.
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ϵðρÞ ¼ ϵHðρÞf−ðρÞ þ ϵQðρÞfþðρÞ þ Δϵ; ð24Þ

Δϵ ¼ ρ

Z
ρ

ρ̄
ðϵHðρ0Þ − ϵQðρ0ÞÞ

gðρ0Þ
ρ0

dρ0; ð25Þ

with gðρÞ ¼ 2
Γ ðeX þ e−XÞ−2 and X ¼ ρ−ρ̄

Γ . Here ϵHðϵQÞ is
the energy density obtained from the hadronic EOS and
quark EOS. Δϵ is an extra term which guarantees thermo-
dynamic consistency. Correspondingly, if we start from the
energy density and deduce the pressure (this is called ϵ
interpolation in Ref. [20]), there will be a ΔP term in the
expression of the pressure. But we find that the ΔP term
often leads to a fluctuation in the hybrid EOS and makes the

sound velocity (vs ¼
ffiffiffiffi
dP
dϵ

q
) become larger than that of light.

This is obviously unreasonable, so we do not try this. The
final result for this hybrid EOS is shown in Fig. 4,
compared with the quark EOS and hadronic EOS. From
Fig. 4 and the relation between the energy density and
pressure, we can evaluate the stiffness of the EOS easily.
The APR EOS has a well-known stiff tail in the large-
density region. So, in Fig. 4 we can see that when the

pressure and energy density are large, the slope of the APR
EOS becomes much lower than that of the DSE EOS, while
in the low-density region the quark EOS is often stiffer than
the hadronic EOS. The hybrid EOS based on a first-order
phase transition is equal to the hadronic EOS in the low-
density region, and in the large-density region it is equal to
the quark EOS. So, the hybrid EOS based on a first-order
phase transition is often softer than both the hadronic EOS
and the quark EOS. However, if we construct the hybrid
EOS from a smooth crossover, the EOS will be influenced
by the quark EOS in the low-density region and by the
hadronic EOS in the large-density region. So, the result will
be different. Unfortunately, our hybrid EOS is still very soft
if we utilize this interpolation strategy, because our quark
EOS is soft. This is in accordance with the conclusion in
Ref. [20] that the maximummass of hybrid stars can exceed
two solar masses only if the quark matter has a stiff
equation of state and the crossover takes place at around
3 times the normal nuclear matter density. However, we
find another way to construct two-solar-mass hybrid stars
with a soft quark EOS. We apply the same interpolation
function to the P − μB plane and then calculate the energy
density from thermodynamical relations. The pressure,
energy density, and EOS are shown in Figs. 5, 6, and 7.
The chemical potential in the crossover region is between
1.4 and 3.4 GeV because the first-order phase transition
point is around 2.4 GeV. In order to quantify the stiffness of
the EOSs, the sound velocities are shown in Figs. 8 and 9.
A comparison can be found in Ref. [20]. The EOS obtained
by the interpolation from the P − ρB plane is soft, while the
EOS obtained by the interpolation from the P − μB plane is
much stiffer. From Fig. 8 we can see that the sound velocity
is always smaller than 0.4 times of the velocity of light,
while the sound velocity in Fig. 9 is much larger.
In the P − μB plane, we can clearly find the difference

between the phase transition of a smooth crossover and the
Maxwell construction. Although the pressure tends to that
of quark matter in the high-chemical-potential region and
tends to that of hadronic matter in the low-chemical-potential

FIG. 3 (color online). The pressure as a function of the baryon
number density. The shaded region is a possible crossover region,
the solid line is the EOS of quark matter, and the dashed line is the
APR EOS. The x axis is the baryon number density scaled by the
nuclear number density and the y axis is the pressure.

FIG. 4 (color online). The interpolation EOS (green dotted line)
compared with the quark EOS (solid line) and hadronic EOS
(dashed line).

FIG. 5 (color online). The pressure as a function of the baryon
chemical potential. The green dotted line shows the pressure of
the interpolation EOS, the solid line is the pressure of the quark
matter, and the pressure of the hadronic matter is the dashed line.
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region, it is different from both quark matter and hadronic
matter in the crossover region. Finally, by integrating the
TOV equations with the EOS, we get the mass-radius
relation of the hybrid stars. This is shown in the Fig. 10.
The maximum mass is 2.35 times the solar mass. There are
also other interpolation functions to make the interpolation
EOS. For example, a polynomial function was used in

Ref. [22]. But we find that different interpolation functions
cannot make an appreciable difference. If we adopt the
polynomial function to construct the EOS, the difference of
the maximum mass is less than 5 percent. This result is
apprehensible because the interpolation functions should be
smooth at the boundaries of the interpolating interval. Thus,
the values of different interpolation functions in the cross-
over region do not differ widely.

IV. DISCUSSION

In this paper we introduced our quark EOS with three
flavors of quarks based on the framework of DSEs to
calculate the structure of a hybrid star. For the hadronic
phase we adopted the APR EOS and we calculated the
mass-radius relationship of the hybrid stars from the point
of view of the smooth crossover phase transition from
hadronic matter to quark matter. The common belief is that
the EOS for the quark phase should be very stiff in order to
construct a two-solar-mass hybrid star. For example, in
Ref. [20] the authors performed the interpolation in the
P − ρ plane and claimed that no matter what kind of
hadronic EOS is adopted, the maximum mass of neutron
stars can only exceed two solar masses if the crossover

FIG. 7 (color online). The interpolation EOS (green dotted line)
compared with the quark EOS (solid line) and hadronic EOS
(dashed line).
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FIG. 8 (color online). The sound velocity of the hybrid EOS
obtained by the interpolation from the P − ρB plane.
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FIG. 9 (color online). The sound velocity of the hybrid EOS
obtained by the interpolation from the P − μB plane.

FIG. 10 (color online). The mass-radius relation of the hybrid
stars based on the smooth crossover EOS. The maximum mass is
over two solar masses.

FIG. 6 (color online). The energy density as a function of the
baryon chemical potential. The green dotted line shows the
energy density of the interpolation EOS, the solid line is
the energy density of the quark matter, and the energy density
of the hadronic matter is the dashed line.
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takes place at around 3 times the normal nuclear matter
density and the quark matter is strongly interacting in the
crossover region and has a stiff EOS. Nonetheless, we find
that if we start from the P − μ plane, the interpolation
function can generate a stiff EOS and finally construct a
massive hybrid star compatible with two solar masses, even
though our quark EOS is relatively soft.
For simplicity, the hyperons were not included because

the interaction of hyperons with nucleons and among
themselves are not well determined. The consideration
of the hyperon will soften the EOS for hadronic matter,
but in our result the maximum mass of the hybrid stars is

larger than the maximum mass of both the pure quark
stars and the pure hadronic stars. So, the extent of the
influence of hyperons will be model dependent and needs
further study.
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