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The semianalytical Oðα4sÞ expression for the renormalization group β function in the V scheme is
obtained in the case of the SUðNcÞ gauge group. In the process of calculations we use the existing
information about the three-loop perturbative approximation for the QCD static potential, evaluated in the
MS scheme. The comparison of the numerical values of the third and fourth coefficients for the QCD RG β

functions in the gauge-independent V and MS schemes and in the minimal momentum scheme in the
Landau gauge is presented. The phenomenologically oriented comparisons for the coefficients of Oðα4sÞ
expression for the eþe−-annihilation R-ratio in these schemes are presented. It is shown that taking into
account these QCD contributions is of vital importance and leads to a drastic decrease of the scheme-
dependence ambiguities of the fourth-order perturbative QCD approximations for the eþe−-annihilation
R-ratio for the number of active flavors, nf ¼ 5 in particular. We demonstrate that in the case of QED with

N-types of leptons the coefficients of the βV function are closely related to the ones of the Gell-Mann–Low
Ψ function and emphasize that they start to differ from each other at the fourth order due to the appearance
of the extra N2-contribution in the V scheme. The source of this extra correction is clarified. The general
all-order QED relations between the coefficients of the βV and Ψ functions are discussed.
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I. INTRODUCTION

The renormalization group (RG) β function is one
of the basic quantities of the RG method, which was
developed in the classical works of Refs. [1–3]. It defines
the energy behavior of the renormalized coupling constants
of the renormalized quantum field models. It is known
that in the case when the quantum field model under study
has the single coupling constant, the perturbation theory
(PT) expressions for its RG β functions depend on the
choice of the scheme of subtracting ultraviolet (UV)
divergences.
In QED the first and the second coefficients of the β

function are scheme independent and were obtained in
Ref. [3] from the analytical calculations of the two-loop
approximation for the renormalized photon propagator
performed in Ref. [4].
In the momentum (MOM) scheme, defined by subtrac-

tions of the UV divergences of the photon vacuum
polarization function at the nonzero Euclidean point λ2,
the QED RG β function coincides with the Gell-Man–Low
function ΨðαMOMÞ, where the expression for αMOMðq2Þ
coincides with the QED invariant charge, uniquely defined
by the combinations of the Green functions [5]. The

expressions for the coefficients of the PT series for
ΨðαMOMÞ depend on the number of leptons N.
For N ¼ 1, i.e. in the case of consideration of the

electron only, the three-loop term of the Ψ function was
calculated analytically in Ref. [6]. This result was gener-
alized to the case of the arbitrary number N of massless
leptons in Ref. [7]. The N-dependent expressions for
the four- and five-loop corrections to the Gell-Man–Low
function were evaluated symbolically in Refs. [8] and [9]
respectively. At N ¼ 1 the result of Ref. [9] coincides with
the similar expression, obtained in Ref. [10]. This feature
should be considered as a strong argument in favor of the
consistency of the complicated analytical five-loop calcu-
lations, performed in Ref. [9].
Another important scheme, which is used in QED, is the

on-shell (OS) scheme. In this scheme the photon vacuum
polarization function is defined by subtracting UV diver-
gences at zero transferred momentum, while the renormal-
ized on-shell masses of leptons are identified with their
experimentally measured values.
In the physical OS scheme the calculations of the βðαOSÞ

were performed at the three-loop level in the work of [11].
The analytical expression for the corresponding four-loop
correction was obtained in Ref. [12]. In the case of arbitrary
N the five-loop contribution was obtained in Ref. [13]. It is
in agreement with the results of the work [10], where this
term was obtained at N ¼ 1 with the help of the concrete
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RG relations. The agreement with the outcome of the direct

five-loop calculations of Ref. [13] gives us extra confidence
in the correctness and self-consistency of the results of the
complicated computer calculations used in Ref. [10].
The third class of schemes, which we are interested in, is

introduced when the dimensional regularization [14] is used.
These schemes include the minimal subtractions (MS)
scheme [15] and itsmodified variants, namely theMS scheme
[16] and the G scheme [17]. It is possible to prove that for
all these modifications of the MS scheme the coefficients
for the RG β functions coincide in all orders of PT.
At N ¼ 1 the three-loop correction to the βðαMSÞ

function was evaluated in Refs. [17] and [18] independ-
ently (this result had been also presented in the review of
Ref. [19]). In the case of the arbitrary N the three-loop
contribution to βðαMSÞ was obtained analytically in
Ref. [7]. The computation of the four-loop term was
completed in Ref. [8]. The five-loop correction to the
QED β function in the MS-like schemes was calculated in
Ref. [9]. At N ¼ 1 this expression coincides with the result
of nondirect analysis, performed in Ref. [10].
It is known that in QCD the MS-like schemes maintain

the explicit gauge independence of various RG quantities.
This property clarifies why in multiloop QCD calculations
the MS-like schemes are used more often. In QCD the first
coefficient of the β function was computed in Refs. [20,21]
and for the number of quark flavors nf ≤ 6 turned out to
be negative. This feature revealed the existence of the
asymptotic-freedom property in the gauge theory of strong
interactions. The two-loop correction to the QCD β
function in the MS-like scheme was analytically evaluated
in [22–24] and is also negative.1

At the three-loop level the QCD β function was
analytically calculated in the MS scheme in Ref. [26].
This result was confirmed later in Ref. [27]. The four-loop
term of the QCD β function in the MS-like schemes was
evaluated in Ref. [28] and confirmed in Ref. [29]. For
nf ¼ 6 the three-loop correction to the β function in
the MS-like schemes is positive (see the numerical results
presented below). Note however that the resummation
of the PT series for the QCD β function in the MS-like
schemes gives the argument that this feature does not affect
the asymptotic freedom property [30].
In QCD one can also use another gauge-independent

scheme, namely the V scheme. It was first introduced in
Refs. [31,32] and is determined by perturbative high-order
QCD corrections to the static potential. This scheme was

used in Ref. [33] to model massive dependence of the first
two coefficients of the RG β function in the V scheme and
for the related analysis of the manifestation of the massive-
dependent corrections in the effect of running of the QCD
coupling constant from the energies above the production
of charm quarks to the high energy region above the scale
s ¼ M2

Z. In this case the advantage of using the V scheme
and not the MS scheme is contained in the possibility of
modeling the smooth transition of the QCD coupling
constant through the thresholds of heavy quark produc-
tions. Among other applications of the V scheme in QCD
is the analysis of the perturbative QCD predictions for
ΓðH0 → bb̄Þ [34]. It was shown in this work that within
the large β0-expansion the perturbative approximations
for ΓðH0 → bb̄Þ in the V scheme are converging to the
concrete stable value faster than in the MS scheme.
However, to analyze more carefully the behavior of

various perturbative QCD series for the observable physical
quantities in the V scheme it is necessary to know high-
order PT corrections to the QCD β function in this scheme.
In the present work we will get the semianalytical result for
the fourth coefficient of the QCD β function in the V
scheme, i.e. for the βV function. In Sec. II the available
results of the analytical and semianalytical calculations
of the PT QCD corrections to the static potential
VQCDðαsðμ2ÞÞ in the MS scheme are summarized. The
concrete three-loop results, obtained by two groups of
authors, are compared. Section III is devoted to the
definition of the V scheme and to the presentation of
the concrete results for the third and fourth coefficients
of the βV function. The problem of finding the analytical
expression for the concrete known numerical contributions
to the fourth-order term of the βV function is raised. In
Sec. IV the numerical values for the scheme-dependent
coefficients of the QCD β function in the V scheme are
compared with the similar terms, obtained in the MS-like
schemes and in the gauge-dependent minimal-MOM
(mMOM) scheme widely used at present, defined in
Ref. [35]. We also get the Oðα4sÞ expression for the
eþe−-annihilation R-ratio in the V scheme and compare
it with gauge-independent scheme and gauge-dependent
mMOM scheme results. In fact both MS and mMOM
schemes were applied recently for the analysis of the
behavior of the R-ratio in the fourth order of PT [36].
Using the concrete physical input, we modify this analysis
and emphasize that it is more consistent to perform this
comparison for nf ¼ 4; 5 numbers of active flavors in the
energy region above the production of charm-quark pairs
and below s ≈ 900 GeV2, where the effects of subprocess
eþe− → Z0 → hadrons did not yet start to manifest itself.
In Sec. V we consider the QED limit of the results obtained
in Sec. III and obtain the expression for the Oðα5VÞ
approximation of the βV function in QED. The origin of
the difference with the QED Gell-Man–Low Ψ function,

1Its first calculation [25] contained a bug, which resulted in the
positive value of the two-loop term and in the appearance of the
IR-fixed point of the two-loop PT approximation of the QCD β
function. This unexpected conclusion stimulated recalculations of
this scheme-independent correction [22–24]. They resulted in the
disappearance of the perturbative scheme-independent IR-fixed
point in QCD.
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which is starting to manifest itself from the fourth term, is
demonstrated and explained. The existing common features
of the PT series for the Ψ and βV functions are clarified in
all orders of PT.

II. PRELIMINARIES: THE HIGH-ORDER
EXPRESSION OF THE STATIC POTENTIAL

IN QCD IN THE MS SCHEME

Let us first summarize the available information about
the perturbative QCD contributions to the static potential
known at present. This physical quantity is used in various
phenomenologically oriented QCD studies, e.g. in the
process of theoretical determinations of the charm-quark,
bottom-quark and the top-quark masses, and for the studies
of the properties of different mesons, composed from the
c- and b-quarks (see e.g. [37–39] and references therein).
Within PT the static potential in QCD is defined as a

renormalized expression for the potential of interaction
at a distance r between static heavy quarkQh and antiquark
Q̄h. It is expressed through the following Fourier
representation:

VQCDðμ2r2;αsðμ2ÞÞ ¼
Z

d3~q
ð2πÞ3 e

i~q ~rVð ~q2; μ2; αsðμ2ÞÞ

¼
Z

d3~q
ð2πÞ3 e

i~q ~r

�
−4πCF

αs;Vð ~q2=μ2VÞ
~q2

�

ð2:1Þ

where αs;Vð ~q2=μ2VÞ is the renormalized QCD coupling
constant in the V scheme; αs=4π ¼ g2=16π2; g is the
strong coupling constant of the QCD Lagrangian; Ta is
the generator of the SUðNcÞ group, normalized as
Ta ¼ λa=2; and CF is the Casimir operator, defined as
ðTaTaÞij ¼ CFδij. In the V scheme its coupling constant

αs;Vð ~q2=μ2VÞ is related to the numerator of the momentum
representation of the static potential in the MS scheme
defined in Eq. (2.1) and is expressed as

αs;Vð ~q2=μ2VÞ ¼ αsðμ2ÞPðαsðμ2Þ; LÞ

¼ αsðμ2Þ
X∞
n¼0

PMS
n ðLÞ

�
αsðμ2Þ
4π

�
n
: ð2:2Þ

The rhs of Eq. (2.2) is expressed through higher-order PT

QCD corrections to the static potential PMS
n ðLÞ in the MS

scheme which are known at present up to Oðα3sÞ-level and
will be presented below.
The evolution of the MS-scheme coupling constant

αsðμ2Þ (which depends on the MS-scheme renormalization
parameter μ2) is governed by the QCD MS-scheme β
function:

μ2
∂ðαs=4πÞ

∂μ2 ¼ βMSðasÞ ¼ −
X∞
i¼0

βi

�
αs
4π

�
iþ2

; ð2:3Þ

where as ¼ αs=4π and its known four MS-scheme coef-
ficients, taken from the work of Ref. [28], read

β0 ¼
11

3
CA −

4

3
TFnl ð2:4Þ

β1 ¼
34

3
C2
A − 4CFTFnl −

20

3
CATFnl ð2:5Þ

β2 ¼
2857

54
C3
A þ 2C2

FTFnl −
205

9
CFCATFnl

−
1415

27
C2
ATFnl þ

44

9
CFT2

Fn
2
l þ

158

27
CAT2

Fn
2
l ð2:6Þ

β3 ¼
�
150653

486
−
44

9
ζð3Þ

�
C4
A þ

�
−
39143

81
þ 136

3
ζð3Þ

�
C3
ATFnl þ

�
7073

243
−
656

9
ζð3Þ

�
C2
ACFTFnl

þ
�
−
4204

27
þ 352

9
ζð3Þ

�
CAC2

FTFnl þ 46C3
FTFnl þ

�
7930

81
þ 224

9
ζð3Þ

�
C2
AT

2
Fn

2
l

þ
�
1352

27
−
704

9
ζð3Þ

�
C2
FT

2
Fn

2
l þ

�
17152

243
þ 448

9
ζð3Þ

�
CACFT2

Fn
2
l þ

424

243
CAT3

Fn
3
l þ

1232

243
CFT3

Fn
3
l

þ
�
−
80

9
þ 704

3
ζð3Þ

�
dabcdA dabcdA

NA
þ
�
512

9
−
1664

3
ζð3Þ

�
dabcdF dabcdA

NA
nl þ

�
−
704

9
þ 512

3
ζð3Þ

�
dabcdF dabcdF

NA
n2l : ð2:7Þ

The characteristic color structures of the group SUðNcÞ are
defined as in the detailed work of Ref. [40]. In the notations
of Ref. [40] we have ½Ta; Tb� ¼ ifabcTc, where fabc are the
antisymmetric (under permutations of any pair of indices)

structure constants, which satisfy the well-known relation
facdfbcd ¼ CAδ

ab; CA and CF are the Casimir operators;
TrðTaTbÞ ¼ TFδ

ab; NA is the number of the generators of
the Lie algebra of the SUðNcÞ; nl is the number of quark
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flavors; and dabcdF ¼ TrðTaTðbTcTdÞÞ=6 is the totally
symmetric tensor. The notations ð…Þ are defining the
procedure of symmetrization of the generators TbTcTd;
and dabcdA ¼ TrðCaCðbCcCdÞÞ=6 is the total symmetric
tensor of ðCaÞbc ¼ −ifabc, where Ca are the generators
of the adjoint representation of the Lie algebra of the
SUðNcÞ group. The corresponding color structures in
Eqs. (2.4)–(2.7) have the following form [28]:

CA ¼ Nc; CF ¼ N2
c − 1

2Nc
; NA ¼ N2

c − 1 ð2:8Þ

dabcdA dabcdA

NA
¼ N2

cðN2
c þ 36Þ
24

;

dabcdF dabcdA

NA
¼ NcðN2

c þ 6Þ
48

ð2:9Þ

dabcdF dabcdF

NA
¼ N4

c − 6N2
c þ 18

96N2
c

: ð2:10Þ

The terms proportional to the nth powers of L¼
lnðμ2= ~q2Þ, PMS

n ðLÞ in the polynomial Pðαsðμ2ÞÞ of

Eq. (2.2), are expressed as PMS
0 ¼ 1, PMS

1 ðLÞ ¼ aMS
1 þ

β0L, PMS
2 ðLÞ¼aMS

2 þð2aMS
1 β0þβ1ÞLþβ20L

2, PMS
3 ðLÞ¼

aMS
3 þð3aMS

2 β0þ2aMS
1 β1þβMS

2 ÞLþð3aMS
1 β20þ5

2
β0β1ÞL2þ

β30L
3. The powers of L in the expressions presented above

arise from the solutions of the corresponding RG equations
in the MS-like schemes at the three-loop level.

The coefficients aMS
i are calculated from the concrete

Feynman diagrams. The first one, aMS
1 , was calculated a

long time ago in Refs. [41,42] and has the following form:

aMS
1 ¼ 31

9
CA −

20

9
TFnl ð2:11Þ

where nl ¼ nf − 1. The coefficient aMS
2 was obtained in

[31]. The bug in the pure Yang-Mills contribution to aMS
2 ,

evaluated in Ref. [31], was detected in Ref. [32].2

The final result of these analytical calculations of
Refs. [31,32] is

aMS
2 ¼

�
4343

162
þ 4π2 −

π4

4
þ 22

3
ζð3Þ

�
C2
A

−
�
1798

81
þ 56

3
ζð3Þ

�
CATFnl

−
�
55

3
− 16ζð3Þ

�
CFTFnl þ

�
20

9
TFnl

�
2

:

ð2:12Þ

The three-loop constant perturbative contribution to the
static potential in the MS scheme can be presented as

aMS
3 ¼ að3Þ3 n3l þ að2Þ3 n2l þ að1Þ3 nl þ að0Þ3 : ð2:13Þ

The nl-dependent terms were computed in Ref. [43] and
have the following form:

að3Þ ¼ −
�
20

9

�
3

T3
F ð2:14Þ

að2Þ3 ¼
�
12541

243
þ 368

3
ζð3Þ þ 64π4

135

�
CAT2

F

þ
�
14002

81
−
416

3
ζð3Þ

�
CFT2

F ð2:15Þ

að1Þ3 ¼ −709.717C2
ATF

þ
�
−
71281

162
þ 264ζð3Þ þ 80ζð5Þ

�
CACFTF

þ
�
286

9
þ 296

3
ζð3Þ − 160ζð5Þ

�
C2
FTF

− 56.83ð1Þ d
abcd
F dabcdF

NA
ð2:16Þ

where the error of numerical calculation of the C2
ATF

coefficient in Eq. (2.16) is not indicated in Ref. [43].
It is worth emphasizing that in the QED limit with

CA ¼ 0, the analytical expressions of the nl-dependent
terms, which are proportional to the powers of TF in
Eqs. (2.11), (2.12) and in Eqs. (2.14)–(2.16), are in
agreement with the MS-scheme results presented in [44]
for the constant terms of the three-loop approximation
of the photon vacuum polarization function in QED.
They were also confirmed in Ref. [13] in the process of
computation of the four-loop approximation of this quan-
tity. The agreement with the QED results of Refs. [44] gives
us extra confidence in the validity of the outcomes of
calculations of Ref. [43].
The numerical expressions of the nl-independent con-

tributions to Eq. (2.13) were obtained in Ref. [45] and read

að0Þ3 ¼ 502.24ð1ÞC3
A − 136.39ð12Þ d

abcd
F dabcdA

NA
: ð2:17Þ

These results should be compared with the results of the
independent calculation of Ref. [46]

að0Þ3 ¼ 502.22ð12ÞC3
A − 136.8ð14Þ d

abcd
F dabcdA

NA
ð2:18Þ

which have greater inaccuracies. Recently the more accu-
rate result for the second term in Eq. (2.18) was obtained2This correction was confirmed later by the author in Ref. [31].
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with the help of the computer code used in Ref. [46]. The
improved result for Eq. (2.18) is

að0Þ3 ¼ 502.22ð12ÞC3
A − 136.6ð2Þ d

abcd
F dabcdA

NA
ð2:19Þ

The numerical expression of the coefficient before the
second structure in Eq. (2.19) is in agreement with the
numerical expression of the same coefficient in Eq. (2.17)
and demonstrates the reliability of the computer codes,
created in the process of calculations, which were per-
formed in Refs. [45] and [46].3

The three-loop nl-independent correction to the static
potential also contains the RG noncontrollable additional
term 8π2C3

AL [47]. It is associated with the infrared (IR)
divergences, which begin to manifest themselves in the
static potential at the three-loop level [48,49]. In the
effective theory of heavy quarkonium—nonrelativistic
QCD—these IR-divergent L-terms are canceled by the
concrete UV-divergent contributions (see e.g. [49]).
Among the aims of this work is the determination of the

four-loop approximation of the RG β function in the V
scheme. This can be done by application of the RG-
motivated effective charges (ECH) approach, developed
in all orders of PT in the works of Refs. [50,51] and
independently at the next-to-leading order (NLO) in
Ref. [52] (for the concrete NLO applications see e.g. the
work [53]) The fourth-order approximation of the β
function in the V scheme defines the evolution of αs;V in
the region of intermediate and UV values of energy scales.
It does not depend on the manifestation of IR physical
effects and on the RG-uncontrollable L-dependent correc-
tions to the static potential. In view of this we will not
consider them in our further analysis.

III. THE FOURTH-ORDER APPROXIMATION OF
THE QCD β FUNCTION IN THE V SCHEME

A. The scale-scheme dependence ambiguities

Let us start this section by writing the RG equation for
the static potential, which is defined in Eq. (2.1). In the
massless limit, considered in this work, it has the following
form:

�
μ2

∂
∂μ2 þ βðasÞ

∂
∂as

�
Vð ~q2; μ2; asðμ2ÞÞ ¼ 0:

In QCD the scheme-dependence feature of the PT series
for the RG β function is the more delicate issue than the
scheme-dependence problem of the QED RG β function
discussed in the Introduction. Indeed, contrary to the QED
case, in this realistic theory of strong interactions it is

impossible to introduce straightforwardly the gauge-
invariant analog of the MOM scheme (see e.g. [54–56])
and thus to construct the invariant charge in a unique
gauge-invariant manner. In QCD the number of the
invariant-type charges of the MOM schemes is proportional
to 4, namely to the number of vertexes of the Lagrangian
(i.e. of the gluon-quark-antiquark, gluon-ghost-ghost,
three-gluon and the four-gluon vertexes). Moreover, the
definitions of these invariant-type charges depend on
different kinematic conditions for fixing the scales of
subtractions of UV divergences in the renormalized
Green functions, which enter these different QCD invari-
ant-type charges. Indeed, fixing the kinematics conditions
by a different way it is possible to construct a number of
MOM schemes, i.e. the symmetric MOM scheme [54], the
variant of the symmetric MOM scheme with one external
zero momentum [55] and the asymmetric MOM (AMOM)
scheme [56]. Different gauge-dependent MOM schemes
were used in the direct calculations of the massless two-
loop [35,57–61] three-loop [35,59–61] and even four-loop
[35,60,62] corrections to the QCD β function. These
analytical calculations revealed the importance of the
careful study of the dependence on the gauge parameter.4

The classical example of the validity of this statement is the
discovery that in the AMOM the nonproper choice of the
gauge in the two-loop PT correction to the QCD β function
can destroy the asymptotic freedom property of the
perturbative QCD [57,58].
Summarizing the discussions of the gauge ambiguities

in the QCD analogs of the invariant charges of various
MOM schemes, we stress that in these schemes it is
impossible to construct a gauge-invariant analog of the
Gell-Man–Low function. In view of this it is important to
study the expansions of the β function in terms of physical
coupling constants, which enter the effective LO approx-
imations of the RG-invariant physical quantities, e.g. the
effective coupling constant of the V scheme defined by the
QCD static potential [33].
In all these studies the ECH method, developed in

Refs. [50–52], was used. To remind the basis of this
approach consider first the system of Eqs. (2.1) and
(2.2), which defines the expansion of the QCD coupling
constant of the V scheme through the QCD coupling
constant in the MS scheme.
At the first step, following the NLO definition of the ECH

scheme, we define the effective scale of the V scheme as

μ2V ¼ exp½aMS
1 =β0�μ2MS

ð3:1Þ

where aMS
1 ¼ 31

9
CA − 20

9
TFnl and β0 is the first coefficient

of the QCD β function, defined in Eq. (2.3). At the next step

3We are grateful to Y. Sumino for informing us of this new
unpublished result of his personal calculations.

4It is worth emphasizing that in the Landau gauge the two-loop
expression of the QCD β function in the number of MOM
schemes coincides with the MS-scheme results.
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we fix ~q2 ¼ μ2V in Eq. (2.2) and get the following relation
between the effective charge of the V scheme and the QCD
coupling constant αs;MS:

αs;Vðμ2VÞ ¼ αs;MSðμ2VÞPðαs;MS; L ¼ 0Þ

¼ αs;MSðμ2VÞ
�
1þ aMS

2

�
αs;MSðμ2VÞ

4π

�
2

þ aMS
3

�
αs;MSðμ2VÞ

4π

�
3

þOðα4
s;MS

Þ
�
: ð3:2Þ

Now it is possible to define the ECH β function of the
static potential, which is the RG β function in the V scheme

μ2V
∂ðαs;V=4πÞ

∂μ2V ¼ βVðas;VÞ ¼ −
X∞
i¼0

βVi

�
αs;V
4π

�
iþ2

ð3:3Þ

where as;V ¼ αs;V=4π. The standard RG equation relates
the βV function to the β function in the MS-like schemes:

βVðas;Vðas;MSðμ2VÞÞ ¼ βMSðas;MSðμ2VÞÞ
das;Vðas;MSðμ2VÞÞ

das;MSðμ2VÞ
:

ð3:4Þ

Consider now the relation between β functions, computed
in the gauge-invariant UV subtraction schemes:

~βð ~asðasÞÞ ¼ βðasÞ
d ~asðasÞ
das

; ð3:5Þ

where we use the similar normalization conditions for both
βðasÞ and ~βð ~asÞ functions, namely

μ2
∂ð ~αs=4πÞ

∂μ2 ¼ ~βsð ~asÞ ¼ −
X∞
i¼0

~βi

�
~αs
4π

�
iþ2

; ð3:6Þ

with ~as ¼ ~αs=4π. For these normalization conditions the
coupling constant of one gauge-invariant renormalization
scheme ~asðμÞ is related to the coupling constant αsðμÞ of
another gauge-invariant renormalization scheme by the
following expression:

~αsðμ2Þ ¼ αsðμ2Þ
�
1þ a1

�
αsðμ2Þ
4π

�
þ a2

�
αsðμ2Þ
4π

�
2

þ a3

�
αsðμ2Þ
4π

�
3

þOðα4sÞ
�
: ð3:7Þ

Taking into account Eq. (3.5), the definitions for ~βð ~asÞ
in Eq. (3.6) and the relation of Eq. (3.7), it is possible to
get the following links between the coefficients of the β
functions in two gauge-invariant schemes:

~β0 ¼ β0 ð3:8Þ

~β1 ¼ β1 ð3:9Þ

~β2 ¼ β2 − a1β1 þ ða2 − a21Þβ0 ð3:10Þ

~β3 ¼ β3 − 2a1β2 þ a21β1 þ ð2a3 − 6a1a2 þ 4a31Þβ0:
ð3:11Þ

These formulas reflect the transformation laws of the β
function from one gauge-invariant renormalization scheme
to another one.

B. The V scheme β function in QCD:
Its Oðα6

s;vÞ-approximation

Consider now the fourth-order approximation of the
QCD β function in the V scheme. It is related to the
QCD β function of the MS scheme via Eq. (3.4). Its
gauge-independent coefficients can be obtained from
Eqs. (3.8)–(3.11), where

βV0 ¼ βMS
0 ¼ 11

3
CA −

4

3
TFnl; ð3:12Þ

βV1 ¼ βMS
1 ¼ 34

3
C2
A − 4CFTFnl −

20

3
CATFnl; ð3:13Þ

and ~βi ¼ βVi , βi ¼ βMS
i with i ¼ 2; 3 and aj ¼ aMS

j for

j ¼ 1; 2; 3. Using the concrete results for βMS
i (with

i ¼ 0; 1; 2; 3) and aj ¼ aMS
j (with j ¼ 1; 2; 3) from

Eqs. (3.10) and (3.11) of Sec. II, we get the third and
fourth coefficients βV2 and βV3 of the QCD β function in the
V scheme:

βV2 ¼
�
206

3
þ 44π2

3
−
11π4

12
þ 242

9
ζð3Þ

�
C3
A

−
�
445

9
þ 16π2

3
−
π4

3
þ 704

9
ζð3Þ

�
C2
ATFnl

þ 2C2
FTFnl −

�
686

9
−
176

3
ζð3Þ

�
CACFTFnl

þ
�
2

9
þ 224

9
ζð3Þ

�
CAT2

Fn
2
l

þ
�
184

9
−
64

3
ζð3Þ

�
CFT2

Fn
2
l ; ð3:14Þ
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βV3 ¼
�
−
5914367

4374
þ 22

3
· 502.24ð1Þ − 2728π2

9
þ 341π4

18
−
15136

27
ζð3Þ

�
C4
A

þ
�
4841537

2187
−
22

3
· 709.717 −

8

3
· 502.24ð1Þ þ 2752π2

9
−
172π4

9
þ 18184

9
ζð3Þ

�
C3
ATFnl

þ
�
−
15290

9
þ 1952

3
ζð3Þ þ 1760

3
ζð5Þ

�
C2
ACFTFnl þ

�
572

9
þ 2288

3
ζð3Þ − 3520

3
ζð5Þ

�
CAC2

FTFnl

þ 46C3
FTFnl þ

�
−
740860

729
þ 8

3
· 709.717 −

640π2

9
þ 3208π4

405
−
5696

9
ζð3Þ

�
C2
AT

2
Fn

2
l

þ
�
−
232

9
−
1024

3
ζð3Þ þ 1280

3
ζð5Þ

�
C2
FT

2
Fn

2
l þ

�
9328

9
− 448ζð3Þ − 640

3
ζð5Þ

�
CACFT2

Fn
2
l

þ
�
9376

81
−
512π4

405
þ 128

27
ζð3Þ

�
CAT3

Fn
3
l þ

�
−128þ 256

3
ζð3Þ

�
CFT3

Fn
3
l

þ
�
−
80

9
þ 704

3
ζð3Þ

�
dabcdA dabcdA

NA
þ
�
512

9
−
1664

3
ζð3Þ

�
dabcdF dabcdA

NA
nl þ

�
−
704

9
þ 512

3
ζð3Þ

�
dabcdF dabcdF

NA
n2l

−
22

3
· 56.83ð1ÞCA

dabcdF dabcdF

NA
nl −

22

3
· 136.39ð12ÞCA

dabcdF dabcdA

NA

þ 8

3
· 56.83ð1Þ d

abcd
F dabcdF

NA
TFn2l þ

8

3
· 136.39ð12Þ d

abcd
F dabcdA

NA
TFnl: ð3:15Þ

The property of the scheme independence of the coef-
ficients βVi within the gauge-independent MS-like schemes
is the consequence of application of the ECH approach to
the static potential. Indeed, it is possible to show that these
coefficients are related to the massless gauge-independent
scheme invariants, introduced in the work of Ref. [63]
(for the details of the derivation see e.g. Ref. [64]). The
analytical expression for Eq. (3.14) was obtained in
Ref. [32] and agrees with the similar one of Ref. [31] with
the C3

A-term corrected later on.
The result of Eq. (3.15) is new. Its semianalytical form is

explained by the similar representation presented in Sec. II
for the coefficients of Eqs. (2.16), (2.17) and of Eqs. (2.18),
(2.19), obtained in the works [43,45] and by the authors of
Ref. [46] respectively.
Consider now the real QCD case, based on the

SUðNc ¼ 3) gauge group of color. In the fundamental
representation its group structures are fixed as CA ¼ 3,
CF ¼ 4=3, TF ¼ 1=2, NA ¼ 8, dabcdA dabcdA ¼ 135,
dabcdF dabcdA ¼ 15=2 and dabcdF dabcdF ¼ 5=12. Converting
now the SUðNcÞ-group expressions presented above for
the coefficients of the QCD βV function into the form
corresponding to the SUð3Þ group, we get the well-known
results for β0 and β1,

β0 ¼ 11 − 0.666666nl; ð3:16Þ

β1 ¼ 102 − 12.66666nl; ð3:17Þ

and the following numerical expressions for the third and
fourth coefficients of the QCD βV function:

βV2 ¼ 4224.181 − 746.0062nl þ 20.87191n2l ; ð3:18Þ

βV3 ¼ 43175.06ð6.43Þ − 12951.700ð390Þnl
þ 706.9658ð6Þn2l − 4.87214n3l : ð3:19Þ

The errors of the first three terms in Eq. (3.19) are defined

as the mean square error σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
i¼1 σ

2
i

q
, where σi are the

numerical errors that arise from the multiplication of the
factor 2β0 by the computed errors of the corresponding

MS-scheme numbers for að1Þ3 and að0Þ3 , given in Eqs. (2.16)
and (2.17).

C. The guess about analytical representation of the
numerical terms in the SUðNcÞ expression for βV3
It may be inspiring to make a guess on the possible

analytical representations of the results of numerical

calculations of the concrete terms in the að1Þ3 and að0Þ3

coefficients. There is the general rule that the rate of
transcendentality structure is increasing with increasing
order of PT calculations.
Following this general rule and considering the terms in

the expressions for βV2 and βV3 , we claim that the numeri-

cally evaluated contributions in the expressions for the að1Þ3

and að0Þ3 coefficients, which enter the expressions for the
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concrete terms in βV3 , can be decomposed in terms of
rational and transcendental numbers in the following way:

709.717 ¼ R1 þ R2π
2 þ R3π

4 þ R4ζð3Þ
þ R5π

2ζð3Þ þ R6ζð5Þ ð3:20Þ

502.24ð1Þ ¼ R7 þ R8π
2 þ R9π

4 þ R10ζð3Þ
þ R11π

2ζð3Þ þ R12ζð5Þ ð3:21Þ

56.83ð1Þ ¼ R11 þ R12π
2 þ R13π

4 þ R14ζð3Þ ð3:22Þ

136.39ð12Þ ¼ R15 þ R16π
2 þ R17π

4 þ R18ζð3Þ ð3:23Þ

where Ri are still unknown rational numbers. Note that the
rational number is any number that can be expressed as the
ratio ðp=qÞ of two integers with nonzero q. Thus, some of
Ri coefficients in Eqs. (3.20)–(3.23) may be zero. There are
indications that R12 and R16 may really be zero. It will be
interesting to check this guess by analytical calculations of
the corresponding complicated Feynman diagrams.

IV. THE APPLICATIONS OF THE V SCHEME IN
PERTURBATIVE QCD AND THE RESULTS
OBTAINED IN THE MS SCHEME AND THE

MINIMAL MOM SCHEME

A. General discussions

In the last few years the interest in studying
the perturbative expressions for the QCD β function in
the gauge-independent and gauge-dependent schemes
increased. This interest was pushed ahead by the consid-
erations of the purity of the conformal windows related to
the IR fixed points in the expressions for the β functions of
the strong interaction theories, based on the concrete non-
Abelian groups with fermions (see e.g. [65–67]).
There are also more phenomenologically motivated

studies of the behavior of various PT QCD contributions
to the RG-invariant quantities, evaluated in the different
UV-subtraction schemes. The first study of the gauge
dependence of the three-loop corrections to the eþe−-
annihilation R-ratio was made within the AMOM scheme
in Ref. [68]. However, this work was based on the analysis
of the gauge dependence of the AMOM version of the
Oðα3sÞ contribution to this quantity containing the bugs,
evaluated in the MS scheme in Ref. [69]. It is worth
recalling that this MS-scheme result was corrected in
Ref. [70] and confirmed in Ref. [71] and later on in
Ref. [72]. In view of this it may be interesting to clarify
the status of the gauge dependence of the available Oðα4sÞ
approximation for the eþe−-annihilation R-ratio in the
AMOM scheme using the Oðα4sÞ corrections, evaluated
recently in Refs. [73,74].
Quite recently a similar analysis was done at the three-

loop level in different gauge-dependent MOM schemes,

and at the four-loop order in the mMOM scheme, specified
for the case of the Landau gauge [36]. This mMOM scheme
was formulated in Ref. [35] and already used in the
theoretical studies of the behavior of the gauge-dependent
QCD β function for different numbers of fermion flavors nf
(see the works of Refs. [62,65,67]). In this section we will
compare the expressions for the coefficients of the RG β
function in the V scheme obtained in Sec. III with the
similar mMOM-scheme results. In the next section we will
use the results of Sec. III to study the third- and fourth-order
approximations of the eþe−-annihilation R-ratio in the V
scheme and compare it with the results obtained in the MS
scheme and in the mMOM scheme, which were presented
in Ref. [36].

B. The definition of the minimal MOM scheme

Let us first briefly review how the mMOM scheme is
defined. Using the standard notations for the renormaliza-
tion constants of QCD in an arbitrary linear covariant gauge
namely

ψ0 ¼
ffiffiffiffiffiffi
Zψ

p
ψ ; Aaμ

0 ¼
ffiffiffiffiffiffi
ZA

p
Aaμ; ca0 ¼

ffiffiffiffiffi
Zc

p
ca;

g0 ¼ Zgg; λ0 ¼ ZAZ−1
λ λ ð4:1Þ

where ψ ; Aa
μ; ca are the quarks, gluons and ghosts fields

respectively; g is the constant of the strong interaction;
and λ is the gauge parameter, which is included in the
Lagrangian QCD as ð∂μAa

μÞ2=2λ. We first write down the
nonrenormalized gluon propagator in the momentum
space:

Dμν
ab ¼

iδab
p2 þ iε

�
−gμν þ ð1 − λÞ pμpν

p2 þ iε

�
: ð4:2Þ

The form of the QCD Lagrangian dictates how to relate
different renormalization constants. For example, the
renormalization constant of the gluon-ghost-ghost vertex
has the following form:

Zccg ¼ ZgZ
1=2
A Zc: ð4:3Þ

The definition of the mMOM scheme is based on the
consideration of this relation [35]. Taking into account
Eq. (4.3) one can write down the expression for the QCD
coupling constant of the mMOM scheme αmMOM

s as

αmMOM
s ðμ2Þ ¼ ZmMOM

A ðμ2ÞðZmMOM
c ðμ2ÞÞ2

ðZmMOM
ccg ðμ2ÞÞ2 α0s : ð4:4Þ

Following the proposals of Ref. [35] the renormalization
expressions for the gluon and ghost propagators are defined
by using the requirements that at p2 ¼ μ2 their residues are
equal to unity, namely
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Dðp2; αmMOM
s ðμ2ÞÞjp2¼μ2 ¼ 1;

Gðp2; αmMOM
s ðμ2ÞÞjp2¼μ2 ¼ 1: ð4:5Þ

Then the renormalized expression for the gluon propagator,
defined in the Landau gauge λ ¼ 0, will take the following
form:

Dμν
ab ¼ iδab

�
gμν −

pμpν

p2 þ iε

�
Dðp2; αmMOM

s ðμ2ÞÞ
p2 þ iε

ð4:6Þ

while the expression for the ghost propagator is defined as

Dc
ab ¼ iδab

Gðp2; αmMOM
s ðμ2ÞÞ

p2 þ iε
: ð4:7Þ

The most important additional requirements of the mMOM
scheme [35,62] are the special definitions of the renorm-
alization constant of the gluon-ghost-ghost vertex and of
the renormalization constant of the gauge parameter,
namely

ZmMOM
ccg ðαmMOM

s Þ ¼ ZMS
ccgðαMS

s Þ;
ZmMOM
λ ðαmMOM

s Þ ¼ ZMS
λ ðαMS

s Þ: ð4:8Þ

Taking into account the definition of the QCD coupling
constant in the MS scheme through the same vertex

αMS
s ðμ2Þ ¼ ZMS

A ðμ2ÞðZMS
c ðμ2ÞÞ2

ðZMS
ccgðμ2ÞÞ2

α0s ð4:9Þ

and Eqs. (4.3) and (4.8), one can get the useful relations
between the renormalization constants of the mMOM and
MS schemes

ZmMOM
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZmMOM
A

q
ZmMOM
c ¼ ZMS

g

ffiffiffiffiffiffiffiffiffi
ZMS
A

q
ZMS
c ; ð4:10Þ

and the relation between the renormalized QCD coupling
constants of these schemes

αmMOM
s ðμ2Þ ¼ ZmMOM

A

ZMS
A

�
ZmMOM
c

ZMS
c

�
2

αMS
s ðμ2Þ: ð4:11Þ

All formulas written above are valid for any linear covariant
gauge and for the Landau gauge λ ¼ 0 in particular. This
choice of the gauge leads to the simplification of the final
perturbative results we will be interested in. Note also that
the application of the Landau gauge allows us to simplify
definite lattice Yang-Mills studies (see e.g. [75]).

C. Comparison of the fourth-order approximations
of the QCD β function in the V, mMOM

and MS schemes

The analytical expressions for the three- and four-loop
coefficients of the QCD β function in the mMOM scheme
in the general covariant gaugewere obtained in Ref. [35]. In
the process of their derivation the MS-scheme results of
Refs. [28,29], supplemented with the explicit expressions
for the relation of Eq. (4.11), and with the three-loop
anomalous dimension of the gauge parameter in the MS
scheme, evaluated in Ref. [59], were used. The results of
Ref. [35] were confirmed recently in Ref. [62] by direct
symbolical three- and four-loop computations. In the
Landau gauge they take the following numerical form:

βmMOM;λ¼0
2 ¼ 3040.482 − 625.3867nl þ 19.38330n2l

ð4:12Þ

βmMOM;λ¼0
3 ¼ 100541.05 − 24423.330nl þ 1625.4022n2l

− 27.49263n3l : ð4:13Þ

It is interesting to compare these results with the numerical
expressions of the same coefficients of the QCD β function
in the gauge-invariant V scheme [see Eqs. (3.18) and
(3.19)] and in the gauge-invariant MS scheme, namely with

βMS
2 ¼ 1428.500 − 279.6111nl þ 6.01851n2l ; ð4:14Þ

βMS
3 ¼ 29242.96− 6946.289nlþ 405.0890n2l þ 1.49931n3l ;

ð4:15Þ
which follow from the results of analytical calculations of
Refs. [26] and [28].
For completeness, in Table I we present this comparison

for all numbers of quark flavors 1 ≤ nf ≤ 6, where
nf ¼ nl þ 1. These notations are identical to the ones
used for fixing the numbers of heavy flavors, which are
considered in the PT QCD expression for the static
potential V, where nl is the number of quarks, lighter
than Qh. They enter virtual corrections among the heavy
quark and antiquark of the flavor nf and vary in the
region 3 ≤ nl ≤ 5.
The results of this table demonstrate that the asymptotic

structure of the PT series for the effective β function in the
V scheme has nonregular behavior and differs from the
asymptotic structure of the PT for the β function in the MS
scheme, which was considered in Ref. [76] using the
approach developed in Ref. [77]. In view of this it is of
interest whether this nonregular behavior of the PT series
for the βV function will manifest itself in the process of
studies of scheme dependence of high-order coefficients for
the characteristics of typical physical QCD processes, e.g.
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for the eþe−-annihilation R-ratio in the region of direct
production of the pair of heavy quarks and antiquarks with
nf ¼ 4; 5 numbers of flavors. We will not consider in this
work the case of nf ¼ 6, related to the direct production of
the pair of tt̄-quarks in the process eþe− → hadrons, which
may be studied in the future if the ILC will be built. Indeed,
the total cross section of this process is dominated by the
subprocess eþe− → Z0 → hadrons and not by the subpro-
cess eþe− → γ → hadrons that interests us in this work.

D. The fourth-order approximation for the eþe−

R-ratio in the MS and V schemes

We now discuss the fourth-order PT expression for the
eþe−-annihilation R-ratio in the V scheme. The idea to
study this particular expression, as well as the PT expres-
sions for other observable physical quantities in the V
scheme, was proposed some time ago in Ref. [78]. In this
section we will realize this proposal, obtain the fourth-order
V-scheme PTapproximation for the eþe−-annihilation ratio
RðsÞ and compare its coefficients and energy dependence
with the results obtained in the MS scheme and in the
Landau-gauge variant of the mMOM scheme [36]. The
studies to be made in this subsection supplement the ones
presented above. Moreover, the results obtained in Sec. IV
C will be used in the process of the numerical calculations
to be presented below.
We remind the reader that the eþe−-annihilation R-ratio

is defined as

RðsÞ ¼ σðeþe− → γ → hadronsÞ
σ0ðeþe− → γ → μþμ−Þ ¼ 12πImΠðsþ iεÞ

ð4:16Þ
where s is the transferred energy in the Minkowskian
region, σ0ðeþe− → γ → μþμ−Þ ¼ 4π2α=ð3sÞ is the theo-
retical normalization factor, Πðq2Þ is the QCD expression
for the photon vacuum polarization function

Πμνðq2Þ ¼ ðqμqν − gμνq2Þ

Πðq2Þ ¼ i
Z

d4xeiqxh0jTjμðxÞjνð0Þj0i ð4:17Þ

and jμ ¼
P

fQfψ̄fγμψf is the electromagnetic hadronic
current. Since the eþe−-annihilation R-ratio is the RG-
invariant quantity, it obeys the RG equation without an
anomalous dimension term, namely

�
μ2

∂
∂μ2 þ βðasÞ

∂
∂as

�
RðsÞ ¼ 0: ð4:18Þ

In the MS scheme the Oðα4sÞ approximation for the eþe−
R-ratio has the following form:

RMS ¼ 3
X
f

Q2
f

�
1þ 4

αMS
s

4π
þ rMS

1

�
αMS
s

4π

�2

þ rMS
2

�
αMS
s

4π

�3

þ rMS
3

�
αMS
s

4π

�4�
ð4:19Þ

where the coefficient rMS
1 was evaluated analytically in

Ref. [79] and numerically in Ref. [80] and confirmed

analytically in Ref. [81]. The coefficient rMS
2 was analyti-

cally evaluated in Ref. [70] and confirmed in Refs. [71]
and [72], while the symbolical expression for the non-

singlet and singlet contributions to rMS
3 were obtained

analytically only recently in Refs. [73] and [74] respec-

tively. The coefficients rMS
1 , rMS

2 and rMS
3 can be expressed

in the numerical form as

rMS
1 ¼ −1.84472nf þ 31.7713; ð4:20Þ

rMS
2 ¼ −0.33139n2f − 76.8085nf − 424.763 − 26.4435δf;

ð4:21Þ

rMS
3 ¼ 5.50812n3f − 204.1431n2f þ 4806.339nf − 40091.67

þ ð49.0568nf − 1521.214Þδf; ð4:22Þ
where the terms, proportional to δf ¼ ðPfQfÞ2=ð

P
fQ

2
fÞ,

are the singlet contributions.
In the V scheme the PTexpression for the eþe− R-ratio is

defined as

TABLE I. The comparison of the numerical values of the third and fourth coefficients of the QCD β function in the
V, MS and mMOM schemes in the Landau gauge.

The numerical coefficients of the QCD β function in different schemes

nf βV2 βV3 βMS
2 βMS

3
βmMOM;λ¼0
2 βmMOM;λ¼0

3

1 3499.047 30925.46� 6.44 1154.907 22 703.26 2434.478 77 715.63
2 2815.656 20060.55� 6.48 893.351 16 982.73 1867.242 57 976.06
3 2174.010 10551.11� 6.54 643.833 12 090.37 1338.771 41 157.38
4 1574.107 2367.90� 6.62 406.351 8035.18 849.068 27 094.64
5 1015.948 −4518.30� 6.72 180.907 4826.15 398.131 15 622.88
6 499.533 −10136.74� 6.84 −32.500 2472.28 −14.038 6 577.14
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RV ¼ 3
X
f

Q2
f

�
1þ 4

αs;V
4π

þ rV1

�
αs;V
4π

�
2

þ rV2

�
αs;V
4π

�
3

þ rV3

�
αs;V
4π

�
4
�
: ð4:23Þ

Using the ECH approach of Ref. [51] and the V-scheme
relations of Eqs. (3.1), (3.10) and (3.11) we obtain the
following general expressions for rVi :

rV1 ¼ rMS
1 − 4aMS

1 ; ð4:24Þ

rV2 ¼ rMS
2 − 4aMS

2 − 2aMS
1 rV1 ; ð4:25Þ

rV3 ¼ rMS
3 − 4aMS

3 − 3aMS
1 rV2 − ð2aMS

2 þ ðaMS
1 Þ2ÞrV1

ð4:26Þ

and the numerical values of these coefficients, namely

rV1 ¼ 2.59972nf − 9.5620; ð4:27Þ

rV2 ¼ 0.50749n2f þ 113.6320nf − 2054.140 − 26.4435δf;

ð4:28Þ

rV3 ¼ 3.05815n3f − 144.9455n2f þ 3455.279ð2Þnf
− 20387.90ð1.17Þ − ð39.0881nf þ 701.466Þδf

ð4:29Þ

The errors in the values of the nf- and n0f-terms in
Eq. (4.29) arise from the numerical errors in the values

of the nl- and n0l -dependent constituents a
ð1Þ
3 and að0Þ3 of the

coefficient aMS
3 defined in Eq. (2.16) and Ref. (2.17), which

enter into the definition of rV3 through Eq. (4.26).

E. The comparison of the fourth-order V-, MS- and
mMOM-scheme approximations for the eþe− R-ratio

As the start of the study of the scheme and energy
dependence of the eþe−-annihilation R-ratio in different
orders of PT in the case of applications of three different

schemes we first present in Table II the comparison of the
following from Eqs. (4.27)–(4.29) and Eqs. (4.20)–(4.21)
numerical expressions for three PT coefficients in the V and
MS scheme with the numerical expressions of the same
coefficients, obtained in the Landau-gauge version of the
mMOM scheme in Ref. [36].

Note that the values of the coefficients rMS
i , rVi and

rmMOM;λ¼0
i with i ¼ 2, 3 are negative for any number of nf,
apart from the case of the rmMOM;λ¼0

3 value at nf ¼ 5; 6. In
the MS scheme this feature is related to the manifestation in

the expressions for rMS
2 and rMS

3 of the effects proportional
to π2, which arise from analytical continuation to the
Minkowskian region of energies of the PT contributions
in the rhs of Eq. (4.16) (for a detailed explanation see e.g.
Ref. [64]). The negative values of the V-scheme coeffi-
cients are also related to these kinematic π2 effects, but the

numerical difference with the negative values of rMS
2 - and

rMS
3 -terms is related to the numerical values of the additions
contributions to the rV2 and rV3 -terms. Note that in the case
of rV2 they are negative [see Eq. (4.25)] but in the case of rV3
they are positive due to interplay among the third huge
positive contribution to Eq. (4.26) and other negative
contributions to the same equation. Note also that the
values of rV2 are very closed to rmMOM

2 , but this feature does
not remain at the fourth order of PT.
We now plot the energy and scheme dependence of the

next-to-leading order, next-to-next-to-leading order (NNLO)
and next-to-next-to-next-to-leading order (N3LO) approx-
imations for the function rðsÞ ¼ RðsÞ=ð3PfQ

2
fÞ − 1. It

depends on s ¼ q2, where s is measured in GeV2. The
first three plots are presented in Fig. 1 for the energy region
above the threshold of charmonium production and below
the threshold of the bottomonium production, i.e. in the
region where nf ¼ 4 numbers of active flavors are contrib-
uting to the expression for rðsÞ. In Fig. 2 the scheme
dependencies of the NLO, NNLO and N3LO approxima-
tions of the same function are presented in the region
with nf ¼ 5 numbers of active flavors. More definitely,
we consider the energy region above the threshold of
bottomonium production and up to the energies

TABLE II. The comparison of the numerical values of the known coefficients for the eþe−-annihilation R-ratio in the V and MS
schemes and in the Landau-gauge version of the mMOM scheme.

The numerical coefficients of the R-ratio in different schemes

nf rV1 rMS
1

rmMOM
1 rV2 rMS

2
rmMOM
2 rV3 rMS

3
rmMOM
3

1 −6.9622 29.9265 −21.9622 −1966.444 −528.346 −1575.567 −17815.06� 1.17 −36956.12 −13190.55
2 −4.3625 28.0818 −19.3625 −1830.134 −584.994 −1467.688 −14188.58� 1.17 −31536.11 −8632.68
3 −1.7628 26.2371 −16.7628 −1708.676 −658.171 −1374.660 −11244.00� 1.17 −27361.22 −4748.58
4 0.8368 24.3924 −14.1631 −1602.069 −747.876 −1296.483 −9033.31� 1.17 −24310.08 −1590.24
5 3.4366 22.5477 −11.5634 −1475.696 −819.494 −1198.540 −6434.41� 1.17 −20591.03 1575.00
6 6.0363 20.7029 −8.9637 −1369.944 −913.410 −1121.218 −4775.30� 1.17 −18149.16 3873.49
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s ¼ 900 GeV2, where the subprocess eþe− → Z0 →
hadrons, which starts to dominate near the beginning of
the left shoulder of the direct manifestation of the Z0-boson
in the eþe−-collisions, can be safely neglected.

The energy dependence of coupling constant as ¼
αMS
s =ð4πÞ of the NLO, NNLO approximations of the PT

expansions of the eþe−-annihilation ratio RðsÞ in the MS
scheme, which is presented in Eq. (4.19), is defined through

the powers of logarithmic terms L ¼ lnðs=Λðnf Þ2
MS

Þ as

aNLOs ¼ 1

β0L
−
β1 lnðLÞ
β30L

2
ð4:30Þ

aNNLOs ¼ aNLOs þ ΔaNNLOs ð4:31Þ

where

ΔaNNLOs ¼ 1

β50L
3
½β21ln2ðLÞ − β21 lnðLÞ þ β2β0 − β21�:

ð4:32Þ

At the fourth N3LO, first studied in Ref. [82], one has

aN
3LO

s ¼ aNNLOs þ ΔaN3LO
s ð4:33Þ

where the additional correction reads

ΔaN3LO
s ¼ 1

β70L
4

�
β31

�
−ln3ðLÞ þ 5

2
ln2ðLÞ þ 2 lnðLÞ − 1

2

�

− 3β0β1β2 lnðLÞ þ β20
β3
2

�
: ð4:34Þ

In the numerical form the expressions for the MS β-
function coefficients βi in Eqs. (4.30)–(4.34) are defined in
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FIG. 1 (color online). Scheme dependence of the NLO (left), NNLO (right) and N3LO (bottom) approximations for the eþe−

characteristic rðq2Þ ¼ Rðq2Þ=ð3PfQ
2
fÞ − 1 in the case of nf ¼ 4 numbers of active flavors. The dashed black curve depicts the

variations of the MS approximants. The solid green line demonstrates the variations of the mMOM-scheme results, while the solid red
line shows the V-scheme results.
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Eqs. (3.16), (3.17) and Eqs. (4.14), (4.15) respectively. For
the concrete numbers of nf flavors their values are given in
Table I. Note that in the analysis of Ref. [36] the same
expansion was used for the numbers of active flavors
nf ¼ 5 and nf ¼ 6 and for the value of ΛMS ¼ 500 MeV,
which did not vary from order to order of the MS-scheme
perturbative expressions considered in Ref. [36]. In the
process of obtaining our results, presented in Figs. 1 and 2,
and keeping in mind physical motivations discussed above,
we used nf ¼ 4 and nf ¼ 5.
Contrary to the studies of Ref. [36] the values of the

parameters Λ
ðnfÞ
MS

, Λ
ðnfÞ
mMOM and parameter Λ

ðnfÞ
V (that is new

to this work) were not fixed, but depend on the choice of
both nf and the order of approximations. The concrete
results for the values of the parameters used are presented in
Table III.
In the cases of nf ¼ 4 numbers of active flavors and

ν ¼ 2; 3; 4 the values for Λ
ðnf¼4Þ
MS

given in Table III are fixed
from the results of the fits of the Fermilab Tevatron
experimental data for the xF3 structure function of the

neutrino-nucleon deep-inelastic scattering process at the
Nðν−1ÞLO of the theoretical PT results, performed in

Ref. [83]. In the case of nf ¼ 5 the values of Λ
ðnf¼5Þ
MS

at
ν ¼ 2; 3; 4 were obtained in Ref. [84] from the related

results for Λ
ðnf¼4Þ
MS

using the NLO, NNLO and N3LO
matching conditions, evaluated at the NNLO in

 0.05

0.055

 0.06

0.065

 100  200  300  400  500  600  700  800  900

Two loop approximation, nf =5    q2, GeV2

MS-bar
V

mMOM

 0.05

 0.055

 0.06

 0.065

 100  200  300  400  500  600  700  800  900

Three loop approximation, nf =5    q2, GeV2

MS-bar
V

mMOM

 0.05

 0.055

 0.06

 0.065

 100  200  300  400  500  600  700  800  900

Four loop approximation, nf =5    q2, GeV2

MS-bar
V

mMOM

FIG. 2 (color online). Scheme dependence of the NLO (left), NNLO (right) and N3LO (bottom) approximations to rðq2Þ are
presented for nf ¼ 5 numbers of active flavors. The variation of the MS-, mMOM- and V-scheme results is indicated by the three
curves as in Fig. 1.

TABLE III. The dependence of the parameters, used for getting
the results of Figs. 1 and 2 from the nf , ν (order of approxima-
tion), and from the choice of the scheme.

The numerical values of the ΛQCD in different schemes, MeV

nf
The order of

approximation ν Λ
ðnfÞ
MS Λ

ðnfÞ
V Λ

ðnfÞ
mMOM

4 2 350 500 625
4 3 335 475 600
4 4 330 470 590
5 2 250 340 435
5 3 245 335 430
5 4 240 330 420
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Refs. [85] and [86] and at the N3LO in Ref. [82]. The
matching point in these conditions was fixed by the on-shell
b-quarkmass values, extracted at different orders of PT from
the analysis of the heavy quarkonium spectrumwhile taking
into account the Padé estimated value of the coefficient a3
from Eq. (2.13), obtained in Ref. [87]. These Padé estimates
turned out to be in satisfactory agreement with the results of
direct calculations of the value of a3 obtained later (see
Refs. [43,45,46]). In view of the reliability of the results of

Ref. [88] we may safely use the values for Λ
ðnf¼5Þ
MS

from
Table III for transforming them to the values of the scale

parameters Λ
ðnf¼5Þ
mMOM and Λ

ðnf¼5Þ
V in particular.

In general the scale parameters ΛðnfÞ of the MS, V and
mMOM schemes considered in Table III are related by the
following equations:

Λ
ðnfÞ2
V ¼ Λ

ðnfÞ2
MS

exp½aMS
1 ðnfÞ=β0ðnfÞ�;

Λðnf Þ2
mMOM ¼ ΛðnfÞ2

MS
exp½ðrMS

1 ðnfÞ − rmMOM
1 ðnfÞÞ=4β0ðnfÞ�:

ð4:35Þ

They are derived by means of the ECH approach. We used
these expressions to get in Table III the numerical values

of Λ
ðnfÞ
V and Λ

ðnfÞ
mMOM from the results described above

for Λ
ðnfÞ
MS

. Combining them with the numerical values

for the coefficients βV2 ðnfÞ, βV3 ðnfÞ and βmMOM;λ¼0
2 ðnfÞ,

βmMOM;λ¼0
3 ðnfÞ in the analogs of Eqs. (4.30), (4.32) and

Eq. (4.34), and taking into account the expressions for
the coefficients ri in rðq2Þ ¼ Rðq2Þ=ð3PfQ

2
fÞ − 1 in three

different schemes, we plot in Figs. 1 and 2 the energy
dependence of rðq2Þ in three different orders of PT and
three different schemes, namely MS, V and mMOM
schemes in the cases of nf ¼ 4 and nf ¼ 5 respectively.

F. Discussions of the results

Considering now the plots of Figs. 1 and 2 we may
conclude that in all cases the PT approximants for the

function rðsÞ related to the eþe−-annihilation R-ratio are
converging in all schemes. In the MS scheme the rate of
convergence of the related PT approximants is better than
in the V scheme and mMOM scheme. At the NLO the
results of the V scheme are closer to the mMOM ones
than to the results obtained in the MS scheme, while at the
NNLO the situation is reversed—the V-scheme approx-
imations are closer to the MS ones, while the application
of the mMOM scheme puts a lower bound on the
theoretical expression for rðsÞ. However, at the N3LO
the lower theoretical bound on the energy dependence of
rðsÞ is changed again and the lower bound is now
obtained within the V scheme. The comparison of three
approximants for rðsÞ in the case of consideration of the
V-scheme results supports the conclusion, made in
Sec. IV C, that the PT approximants in the V scheme
have less regular behavior than the MS ones. The results
of Table II demonstrate the positive feature of taking into
accountOðα4sÞ-corrections to eþe−-annihilation R-ratio in
all three schemes. Indeed, the scheme dependence of the
expression for the eþe− ratio is drastically decreased at
this level. This is the positive message, which supports
the work presented above on the inclusion of the Oðα4sÞ
correction in the theoretical approximations in the MS,
mMOM and V schemes.

V. THE FOUR-LOOP QED RESULT
FOR THE RG β FUNCTION

IN THE V SCHEME

Consider now the case of QED with N types of
identically charged leptons. We will use the results of
Sec. III B for the fourth-order PT approximation of the RG
V-scheme β-function of the SUðNcÞ colour gauge group
theory. Fixing the SUðNcÞ-group weights in Eqs. (3.12),
(3.13), (3.14) and (3.15) as CA ¼ 0, CF ¼ 1, TF ¼ 1,
dabcdA ¼ 0, dabcdF ¼ 1, NA ¼ 1 and nf ¼ N, we obtain
the following four-loop semianalytical expression for the
RG β function in QED in the V scheme:

βVQEDðaVÞ ¼
4

3
Na2V þ 4Na3V þ

�
−2N þ

�
64

3
ζð3Þ − 184

9

�
N2

�
a4V

þ
�
−46N þ

�
104þ 512

3
ζð3Þ − 1280

3
ζð5Þ − 8

3
· 56.83ð1ÞÞN2 þ

�
128 −

256

3
ζð3Þ

�
N3

�
a5V þOða6VÞ

ð5:1Þ

where aV ¼ αV=4π and N is the number of leptons. Comparing this result with the four-loop approximation of the QED β
function in the MOM scheme, i.e. of the Gell-Man–Low Ψ function, namely with
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ΨðaMOMÞ ¼
4

3
Na2MOM þ 4Na3MOM þ

�
−2N þ

�
64

3
ζð3Þ − 184

9

�
N2

�
a4MOM

þ
�
−46N þ

�
104þ 512

3
ζð3Þ − 1280

3
ζð5Þ

�
N2 þ

�
128 −

256

3
ζð3Þ

�
N3

�
a5MOM þOða6MOMÞ ð5:2Þ

where aMOM ¼ αMOM=4π. We conclude that in spite of
identical agreement at the third order of PT5, the general
expressions for the RG QED β-function in these two
different schemes are not the same. They start to differ
from the fourth order of PT due to contributing to the 0ða5VÞ
coefficient of the βV-function of the additional light-by-
light-type scattering diagrams, which appear in the QED

analog of the coefficient að1Þ3 in the M̄S scheme, given in
Eq. (2.16). They enter in the definition of theN2-term of the
βV3 coefficient of the V-scheme QED β-function through
Eq. (3.11).
It is possible to clarify what kind of N-dependent high-

order coefficients of the following expression of the QED β
function in the V scheme

βVðaVÞ ¼
X∞
i¼0

βVi

�
αV
4π

�
iþ2

¼ βV½1�0 N

�
αV
4π

�
2

þ
X∞
i¼1

Xi

l¼1

βV½l�i Nl

�
αV
4π

�
iþ2

ð5:3Þ

will also receive additional contributions and what kind
of N-dependent coefficients of the QED βV function will
coincide with the similar expressions for the Ψ function,
which we will define as

ΨðaMOMÞ¼Ψ½1�
0 N

�
αMOM

4π

�
2

þ
X∞
i¼1

Xi

l¼1

Ψ½l�
i N

l

�
αMOM

4π

�
iþ2

:

ð5:4Þ

Using the analogs of Eqs. (3.10) and (3.11), which can be
derived using the considerations of Ref. [64], we arrive at
the following relations:

βV½l�i ¼ Ψ½l�
i þ ΔβV½l�i ð5:5Þ

where extra terms ΔβV½l�i in the N-dependent contributions
to the coefficients of the QED βV function appear in the
following region of indexes: ½i; l� ¼ ½i ≥ 3; 2 ≤ l ≤ i − 1�.
In the cases of ½i; l� ¼ ½i ≥ 3; l ¼ 1 or i� the proportional

to N½l� coefficients of the βV- and Ψ functions, defined in
Eqs. (5.3) and (5.4), are the same. In the case of i ¼ 3,

which corresponds to the totally known for the moment
fourth order results, these identical coefficients are propor-
tional to N and N3. At the third order the proportional to N-
term was analytically evaluated in Ref. [90]. At the fourth
order of PT the proportional to N and N3 terms were
evaluated in Ref. [8]. For i ¼ 3 the terms under discussion
can be obtained from the results of Ref. [9] and read

βV½1�4 ¼ Ψ½1�
4 ¼ 4157

6
þ 128ζð3Þ ð5:6Þ

βV½4�4 ¼ Ψ½4�
4 ¼ −

8756

9
þ 3584

9
ζð3Þ þ 5120

9
ζð5Þ: ð5:7Þ

Note that this result from Ref. [9] is in agreement with the
multiloop expression for this particular contribution to the
Gell-Man–Low function, evaluated in Ref. [91] up to 20
loops analytically and numerically up to 100 loops. The
scheme independence of the linear-in-N-contribution to
Eqs. (5.3) and (5.4) is the consequence of the conformal
symmetry property, which is valid in QED in the perturba-
tive quenched approximation (for the recent detailed study
see Ref. [92]).
In the numerical form the scheme-dependent coefficients

of the βVQED function read

βV2 ¼ −2N þ 5.19943N2 ð5:8Þ

βV3 ¼ −46N þ 284.818ð26ÞN2 − 25.42447N3: ð5:9Þ
The analogous expressions for the three- and four-loop
coefficients of the QED β function in the MS scheme
follow from the analytical results of Ref. [8] and have the
following form:

βMS
2 ¼ −2N þ 4.88888N2 ð5:10Þ

βMS
3 ¼ −46N þ 82.9753N2 þ 5.06995N3: ð5:11Þ

The numerical expressions for the analogous coefficients
of the Ψ function (or the QED β function in the MOM
scheme), whichwe obtain from the samework of Ref. [8], are

Ψ2 ¼ −2N þ 5.19943N2 ð5:12Þ

Ψ3 ¼ −46N þ 133.2714N2 − 25.42447N3: ð5:13Þ

Note once more that the first three coefficients of the βV

function and of theΨ function are the same and start to differ
from the fourth order of PT in the following way:

5This observation was made and used in the unpublished work
of A. L. Kataev and A. V. Garkusha; see Ref. [89] as well.
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βV3 ¼ Ψ3 − 151.54ð2ÞN2: ð5:14Þ

This additional contribution arises from the light-by-light-
type scattering contribution, which is typical of theV scheme.
For completeness we present the QED expressions for

the Oðα5Þ approximations for the Ψ and βVQED functions in
the case of N=1:

ΨðaMOMÞ ¼ 1.3333a2MOM þ 4a3MOM þ 3.1994a4MOM

− 153.8469a5MOM þOða6MOMÞ ð5:15Þ

βVQEDðavÞ ¼ 1.3333a2V þ 4a3V þ 3.1994a4V

− 305.3936ð266Þa5V þOða6VÞ: ð5:16Þ
One can observe that even for N ¼ 1 the numerical effect

of the light-light-scattering contribution, which is typical
for the V scheme [see Eq. (5.14)], is rather sizable and
almost equals the whole value of the other term in the
expression of Eq. (5.14).

VI. CONCLUSIONS

In this work we consider the definition of the gauge-
independent RG QCD β function in the V scheme. Using
higher-order corrections to the static potential of the quark-
antiquark interaction and β function in the MS scheme, we
compute the fourth term of the PT expression for the β
function in the V scheme in the general case of the SUðNcÞ
group in the semianalytical term. Our guess of possible
expressions of the corresponding numerical contributions
through concrete transcendental numbers is made. The
comparison of the numerical expressions of the scheme-
dependent coefficients of the βV function of QCD with the
similar coefficients of the QCD β function in the MS and
mMOM scheme in the Landau gauge are presented. The
indication that the structure of the PT series for the effective

β function in the V scheme has nonregular asymptotic
behavior and differs from the asymptotic PT for the β
function in the MS scheme are presented. The results
obtained in the V scheme are used to study the scheme
dependence of the Oðα4sÞ approximation for the eþe−-
annihilation R-ratio in the energy region above the
thresholds of production of the charmonium states. The
conclusion is made that the comparison between the
fourth-order expressions for the eþe−-annihilation R-ratio,
obtained in the MS schemes, in the Landau-gauge variant
of the mMOM scheme and in the gauge-independent V
scheme leads to a drastic decrease of the scheme depend-
ence of the fourth-order perturbative QCD predictions for
the case of nf ¼ 5 numbers of active flavors in particular.
Considering the QED limit of the SUðNcÞ-group βV

function we observe that its perturbative expression is
starting to differ from the perturbative expression for the
Gell-Mann–Low Ψ function from the level of the Oðα6VÞ-
corrections. The relations between coefficients of the QED
βV function and theΨ function are presented in all orders of
PT in the case of the N-types of identical leptons. The
conclusion that starting from the fourth-order perturbative
approximation two N-dependent terms in the coefficients
of the perturbative expansions of the βV and Ψ functions
will always coincide is made. Theoretical reasons of this
foundations are presented.
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