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Recently it was shown that in QCD-like theories with Nf > N, where Nf is the number of light flavors
and N is the number of colors, there are correlation functions that vanish in perturbation theory and at short
distances receive dominant, calculable contributions from small instantons. Here we extend the set of such
objects to theories with Nf ¼ N, which includes real QCD, and discuss their application as a calibration of
lattice computations at small quark mass. We revisit the related issue of the u quark mass and its additive
renormalization by small instantons, and discuss an alternative test of mu ¼ 0 on the lattice.
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I. INTRODUCTION

Two particularly interesting questions in QCD are the
origin of the η0 mass and the possibility that a small mass
for the u quark might solve the strong CP problem. Both
questions are inherently nonperturbative. Lattice gauge
theory has made enormous strides in the last decade on
each: the η0 mass is reasonably well reproduced (see, for
example, [1–3]), while the quark masses are known at the
5% level, with simulations bracketing the physical quark
masses at lattice spacings of order ð3 GeVÞ−1 or smaller
(see, for example, the detailed review [4]).
The elimination of the possibility that mu vanishes is

particularly important. The other known solutions to the
strong CP problem, the Peccei-Quinn and Nelson-Barr
mechanisms, both exhibit substantial challenges from the
theoretical point of view. The computations of the light
quark masses are quite complex, so it is reassuring that
simulations performed by different methods yield similar
results [5–11]. However, it would be useful to establish
independent cross-checks ofmu > 0 on the lattice, separate
from fits of the light quark spectrum. More generally, it
would be interesting to have analytic probes of nonpertur-
bative physics that could serve as a calibration of lattice
computations sensitive to the chiral anomaly.
At first sight,mu ¼ 0 appears inconsistent with results of

current algebra, but Georgi and McArthur [12], Choi, Kim,
and Sze [13], and Kaplan and Manohar [14] pointed out
reasons why this might be misleading. In [12] and [13]
it was shown that instantons contribute to an effective
mass for the u quark at QCD scales, proportional to mdms
and an IR-divergent integral over instanton scale sizes.
Reference [14] discussed more generally what can be
learned by fitting chiral Lagrangians to meson spectra,
noting that there are other operators quadratic in masses
which transform like the linear terms under the underlying
chiral symmetries, and that these effects are parametrically

of order mdms=ΛQCD, plausibly as large as the naive mu.
Banks, Nir, and Seiberg [15] developed these arguments
further, clarifying the connection between the chiral
Lagrangian and the underlying microscopic theory, and
discussing the circumstances under which a massless or
nearly massless u quark might accidentally emerge from
underlying symmetries.
We will study probes of both the low energy constants

(LECs) controlling the Kaplan-Manohar operator in the
chiral Lagrangian and the instanton configurations that
contribute to them. In the first part of this work we discuss
the dependence of m2

π on ms, which is sensitive to the
relevant combination of LECs. We point out that the
coefficient of this operator can already be estimated from
existing lattice data on the LECs, but the uncertainty is
substantial. Interestingly, it is suppressed in large N
[15,16]. It would be desirable if this parameter could be
fit more precisely with well-established systematic and
statistical errors. A small value not only corroborates
mu > 0, but lends quantitative support to the large N
picture as a good description and instantons as less
important for describing QCD at low scales.
In the second part of this work we discuss a more general

tool for studying small instantons in QCD and on the
lattice. While instantons are suggestive of the origin of the
η0 mass, and can provide a potentially substantial contri-
bution to the u quark mass, their precise role is unclear.
Instanton computations are plagued with infrared diver-
gences, and Witten long ago argued that instantons are not
the dominant players in understanding the mass of the η0
[17–19].1 However, there are certain correlation functions
in gauge theories that, at short distances, receive dominant,
calculable contributions from instantons. A limited set of

1Possible ways in which the instanton and large N viewpoints
might be reconciled are discussed in [20,21]. For a recent
discussion in theories under semiclassical control, see [22].
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such objects was noted in [23] for N > Nf; here we extend
the class of theories to include the phenomenologically
relevant case of QCD with three light quarks.2 These
Green’s functions provide a set of benchmark, nonpertur-
bative quantities accessible to both analytic calculation
and numerical simulation. At short distances, they should
in principle match well between the two. At larger
separations, they could provide a lattice measure of how
the instanton IR divergences are physically cut off. The rest
of this paper is organized as follows. In Sec. II we review
the theory of the up quark mass. We repeat (and slightly
correct) the instanton calculation of Georgi and McArthur
and describe the issue from the perspective of chiral
perturbation theory. In Sec. III we then discuss our first
test ofmu ¼ 0 using the linear dependence of the pion mass
on the strange quark mass. In Sec. IV we turn to the family
of correlators that probe small instantons in QCD. We
establish that small instantons are sensible configurations,
not only in theories with Nf > N, but also in QCD-like
theories, including the case of Nc ¼ 3 ¼ Nf, and that the
notion of an instanton density is well-defined for small
instantons.3 Subsequently we compute the leading semi-
classical contribution to a particular Green’s function at
short distances and analyze subleading corrections, organ-
ized with the operator product expansion. We discuss
optimal sets of correlators and considerations for lattice
simulations before turning to the more speculative question
of the role of instantons in quantities where the semi-
classical analysis leads to infrared divergences. The most
basic model for such calculations is to introduce a sharp
cutoff on the instanton scale size. We consider the effects of
simple cutoffs and note that the finite Green’s functions
may suggest a lower bound on the cutoff parameter. Finally,
in Sec. V we consider some of the theoretical issues
associated with a small bare mu. We explain that the status
of smallmu is similar to that of a high quality Peccei-Quinn
symmetry. It might be an accidental consequence of
horizontal symmetries in a theory of flavor, as in [15];
alternatively, the low energy theory may simply possess
apparently anomalous discrete symmetries, a phenomenon
familiar in string theory [24].

II. REVIEWOF THE THEORY AND STATUS OFmu

In this section we briefly review the nonperturbative
renormalization of the up-quark mass, its relation to the
Kaplan-Manohar ambiguity in the chiral Lagrangian,
and the status of lattice computations of the light quark
spectrum.

A. Nonperturbative renormalization

Even if the up-quark mass vanishes somewhere in the
ultraviolet, symmetries permit a nonperturbative additive
renormalization of the form

∂tmu ¼ γmu þ CðgÞam�
dm

�
s ; ð1Þ

where γ is the perturbative anomalous dimension and a is
the Wilsonian length cutoff. Small instanton contributions
to second term in this renormalization group equation were
first discussed in Refs. [12,13]. The instanton computations
suffer an IR divergence in the integral over instanton sizes.
As an estimate, we can compute the contribution to mu
from instantons with size less than a sharp cutoff, ρ < ρ0.
Of course, this computation does not capture the complete
set of corrections to the Wilsonian mu, and may not be the
dominant contribution, but it can give us a sense of the
order of magnitude of QCD corrections.
We find, for the correction between the charm threshold

and ρ0,

mu½ρ0� ¼ 1.15
8π6

3
~Λ9msðμÞmdðμÞ

αðμÞ22=9

×
Z

ρ0

m−1
c

dρρ9
�
αðμÞ
αðρÞ

�
22=9

�
αðρÞ
αðμÞ

�
8=9

�
αðρ0Þ
αðρÞ

�
4=9

þmu½m−1
c �:

In this expression we include factors of αγ=β generated by
resumming higher-loop perturbative corrections at leading
log [solving Eq. (1)]. This expression differs from that in
[12], which only included some of the higher-order
perturbative corrections, resulting in a numerically rather
different effect as a function of ρ0.
The additive contribution to mu is shown in Fig. 1 as a

function of ρ0. If ρ0 is as small as 0.8 GeV−1, roughly the
charm threshold, the contribution to mu from smaller
instantons is less than a hundredth of an MeV; mu ¼
2 MeV corresponds to ρ0 ¼ 1.5 GeV−1.
Although our computation improves on that of [12] for

ultraviolet ρ0, due to the strong IR sensitivity, it is still
not possible to draw any sharp conclusion about the full
nonperturbative contribution to the running mu. We can
only conclude, as [12] did,4 that it is plausible a priori
that instantons and other nonperturbative effects could
contribute Oð1Þ MeV to mu.

B. Chiral perturbation theory

Although one might hope to test the nonperturbative
renormalization in Eq. (1) with meson phenomenology
and second-order chiral perturbation theory, Kaplan and
Manohar (KM) pointed out a significant obstacle [14],

2The arguments of Ref. [23] are self-consistent. They rely on a
set of assumptions explained in that work, and some further
elaboration will be provided in this paper.

3We thank R. Kitano for discussions of his program to extract
this quantity by different lattice methods. 4Note that in [12] the limit ρ0 → Λ−1 was taken.
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exhibiting an ambiguity in the parametrization of the chiral
Lagrangian. The leading-order term in the Lagrangian is

L2 ¼
F2

4
Trð∂μU†∂μUÞ þ F2

4
Trðχ†UÞ þ c:c: ð2Þ

where χ and U are given by

χ ¼ 2MB0; U ¼ ei
λAπA
F ; ð3Þ

M is the quark mass matrix, and B0 is proportional to the
magnitude of the chiral condensate. Second-order terms are
parametrized by the Gasser-Leutweyler (GL) parameters
L1−8 [25]. In brief, the KM ambiguity is the statement that
there is a particular combination of operators (with the
quantum numbers of, and receiving contributions from,
small instantons) that has the potential to mimic the effects
of a nonzero bare u quark mass. Following [15], the
operator can be written as

L ⊃ r1ðTrðχ†Uχ†UÞ − Trðχ†UÞ2Þ; ð4Þ

where in terms of the GL parameters,

r1 ¼
1

2
ðL8 − L6 − L7Þ: ð5Þ

By a redefinition of χ, r1 can be eliminated, providing an
effective contribution to mu of order mdms. Alternatively,
having fixed the ambiguity by requiring—for instance—
thatM is proportional to the UV quark mass matrix, a large
value of r1 and a small value of the bare mu would be
compatible with the observed pseudoscalar meson masses,
whereas the orthogonal combinations of GL parameters
are fixed by the spectrum. An r1 of order 10−3 would be

sufficient if mu ¼ 0. A nonzero r1, with orthogonal
combinations of L’s comparatively smaller, corresponds to:

−2L6 ≈ −2L7 ≈ L8 ≈ r1: ð6Þ

C. Lattice QCD

The only tool we have to reliably determine the light
quark masses—and in particular whether the u quark mass
is nearly zero in the UV—is lattice gauge theory. Light
quarks are perhaps the biggest challenge for the lattice, but
over the past decade, lattice computations have yielded
remarkably precise values for their masses. The FLAG
review [4] summarizes the results from several collabora-
tions, and they are generally in good agreement, giving
values for mu (md) of order 2 MeV (4.5 MeV) at a scale
of 2 GeV, with systematic and statistical errors around 5%.
From these results, mu deviates from zero with high
statistical significance. In the remainder of this work, we
discuss two methods of cross-checking ofmu > 0, orthogo-
nal to direct fits of the light quark specturm.

III. TESTING mu ¼ 0 WITH LOW ENERGY
CONSTANTS

As we will discuss in this section, testing the mu ¼ 0
hypothesis does not require obtaining precise values for mu
andmd. This question can be addressed with meson spectra
in lattice simulations away from the physical point, and in
particular their variation with the quark masses.
The critical point is that the KM transformation is not

a symmetry of QCD, and the lattice can resolve it by
measuring some quantity sensitive to r1. For example,
consider corrections to the average pion mass proportional
to ms,

m2
π ¼ β1ðmu þmdÞ þ β2msðmu þmdÞ þOðm2

u;dÞ: ð7Þ
Lattice calculations are often done with muðaÞ ¼ mdðaÞ≡
m̂. The parameters β1 and β2 can be extracted on the lattice
by varying m̂ and msðaÞ independently; e.g.,

β2
β1

≈
m2

π1 −m2
π2

m2
π2ms1 −m2

π1ms2

ð8Þ

if simulations are done at two values of ms.
5 Taking the

simplified limit where GL parameters orthogonal to r1 are
negligible, the βi reduce to

β1 ¼ B0; β2 ¼ −16
r1B2

0

F2
: ð9Þ

In this limit, ifmu vanishes, then the combination ofm2
π and

the kaon masses can be used to formulate the constraint
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FIG. 1. The effective mu generated by small instantons as a
function of a hard IR cutoff on the instanton size. Thick line:
RG-improved result. Thin line: Georgi-McArthur approximation
(partial RG-improvement). Dashed line: one loop result. In all
cases we take ms ¼ 93 MeV, md ¼ 4 MeV, set the renormali-
zation scale to 2 GeV, and take the limit of a large UV cutoff,
ignoring small corrections from heavy-quark thresholds.

5A related measurement was discussed in [16] as a method to
fix the ambiguity.
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β2
β1

≈
1

ms

m2
π − ðm2

K0 −m2
KþÞQCD

m2
π þ ðm2

K0 −m2
KþÞQCD

; ð10Þ

where the subscript indicates that only the QCD contribu-
tion to the kaon splitting is used. Numerically, this con-
straint gives

β2
β1

≈ 5 GeV−1: ð11Þ

Corrections to Eq. (10) from keeping the other GL
parameters are easy to include. More precisely,

β2
β1

¼ 16
B0

F2
ð2L6 − L4Þ; ð12Þ

and the same combination of the Li as well as the
combination 2L8 − L5 appear again in the kaon masses,
so we can write a more general formula relating β2=β1 to
m2

π , m2
K , ms, and B0. This relation increases the required β2

β1

to Oð10Þ GeV−1. Alternatively, if the quadratic depend-
ence of m2

K on ms is measured on the lattice, the more
general constraint can be written in the form

β2
β1

≈
1

ms

m2
π − ðm2

K0 −m2
KþÞQCD

m2
π þ ðm2

K0 −m2
KþÞQCD

þ 1

B0

m2
πð∂2m2

K=∂m2
sÞ

m2
π þ ðm2

K0 −m2
KþÞQCD

: ð13Þ

From the results quoted in [4] for B0,ms, and 2L6 − L4, we
can estimate

β2
β1

≃ ð1� 1Þ GeV−1: ð14Þ

Although the error bars are large (and here only crudely
estimated), the ratio is too small to account for the effects of
the u quark mass. But β2=β1 is a fundamental prediction of
QCD and it would be interesting to see a dedicated study
with increased precision. It would provide another dem-
onstration of mu ≠ 0, as well as a probe of the contribution
of small instantons to the chiral Lagrangian.

IV. INSTANTONS AND NONPERTURBATIVE
GREEN’S FUNCTIONS

We turn now to a more general test of nonperturbative
physics on the lattice, which is sensitive to the same short-
distance gauge field configurations that renormalize mu in
the UV.
In [23] it was observed that in gauge theories with

Nf > N massless flavors, certain Green’s functions vanish
in perturbation theory, and at short distances receive a
contribution from an instanton that is infrared-finite and

calculable in a systematic expansion in αðxÞ. For the case of
N ¼ 2; Nf ¼ 3, for example, one such Green’s function
behaves as

hūdd̄sðxÞs̄uð0Þi ∼ Λ16=3x−11=3 þ nonsingular: ð15Þ

The one-instanton computation generating the singular
term in Eq. (15) is both infrared and ultraviolet finite,
and perturbative corrections can be computed. It was
argued in [23] that IR-divergent corrections from the
instanton ensemble do not contribute to the leading singular
behavior.
The operator product expansion (OPE) helps clarify the

UV and IR structure. The OPE for the operator in Eq. (15)
has the form

ūdd̄sðxÞs̄uð0Þ ∼ ðcΛ16=3x−11=3 þ nonsingularÞI
þ ð1þOðαÞÞ∶ūdd̄ss̄uð0Þ∶þ � � � : ð16Þ

The coefficient of the unit operator is the sum of a singular
contribution, which can be computed systematically in
perturbation theory about a single instanton, and non-
singular, incalculable corrections generated by interactions
with the full instanton ensemble [23]. The coefficient of the
six-fermion operator is nonsingular. In the one-instanton
background, its matrix element is UV divergent, so the
operator must have a subtraction applied as denoted by the
normal-ordering in Eq. (16).6 With connected dilute gas
corrections, the matrix element acquires IR divergences
and is not calculable analytically. In principle it can be
computed numerically, for example, on the lattice. In any
case, in each order of the perturbation expansion, we expect
that the most singular term in (15) is calculable.
The demonstration given in [23] that the (one-instanton,

instanton-ensemble) contributions to the correlation func-
tions factorize as above into (most singular, less singular)
terms falls short of a rigorous proof. It is an assumption of
this work that this factorization holds.
We can generalize to other operators, replacing, for

example, ūdðxÞ by ūσμνFμνdðxÞ. The unit operator coef-
ficient is now more singular by two more powers of x.
Similarly, the six fermion operator also appears, now with a
singular coefficient proportional to 1=x2 and powers of
ðα=πÞ. But again the most singular term is the unit operator
and it remains calculable.
It is interesting to consider whether other theories, and in

particular N ¼ Nf ¼ 3, possess Green’s functions with
similar properties.

6Infrared finiteness of certain matrix elements like this one in a
one-instanton background has been discussed in various works
[26–28], and correctly noted to acquire incalculable contributions
from the instanton ensemble.
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A. Green’s functions in pure SUðNÞ
Based on the finite Green’s functions described above,

one might hope to find similar objects in other theories.
Consider, for example, pure (Nf ¼ 0) SUð2Þ gauge theory.
In perturbation theory, the Green’s function

GðxÞ ¼ hF2ðxÞF ~Fð0Þi ð17Þ

vanishes as a result of CP invariance. In an instanton
background, with a nonzero vacuum angle θ, G is propor-
tional to sin θ:

GðxÞ ¼ cΛ22=3x−2=3 sin θ: ð18Þ
The leading instanton contribution is infrared finite and
mildly singular for small x. However, higher-order correc-
tions, although suppressed by α, are more singular at
short distances. In the OPE description, the operator F ~F
appears:

F2ðxÞF ~Fð0Þ ∼ cΛ22=3x−2=3 sin θIþ kx−4F ~Fð0Þ þ � � � :
ð19Þ

Although k is Oðα=πÞ, at sufficiently short distances, the
F ~F contribution dominates over that of the unit operator.
Moreover, the expectation value of F ~F is incalculable
(unless θ ¼ 0, in which case it vanishes along with the rest
of G). Its leading instanton contribution diverges as the
10=3 power of any would-be infrared cutoff.
In a lattice computation (capable of measuring

θ-dependent effects), the unit operator might be isolated
by working at moderate (not extremely small) x and
subtracting kαx−4 times a lattice-measured value of
hF ~Fi. But at the very least the procedure would be
extremely challenging. The OPE structure in this example
is general among pure gauge theories, as well as theories
with Nf < N. At best, the only computable quantities in
these theories are described by subleading terms in an
operator product expansion.

B. Nf ¼ N

As discussed in [23], Nf ¼ N is a borderline case for
fermionic correlators analogous to Eq. (15). They are not
strictly calculable in a 1-instanton background, possessing
logarithmic IR divergences that correspond in the OPE
to matrix elements of the multiquark local operators.
However, these theories are particularly interesting both
because of the relevance to nature for Nf ¼ N ¼ 3 and
because there is a wealth of lattice data.
Correlators of operators with field strength insertions

provide a more effective probe. In the Nf ¼ N ¼ 3 case,
for example, consider the Green’s function

GðxÞ ¼ hūσμνFμνdðxÞd̄σρσFρσss̄uð0Þi: ð20Þ

G is finite in the 1-instanton background at leading order in
α. Correspondingly, the OPE includes the unit operator
with a Λ9x−4 singularity. G acquires an infrared divergence
when the gauge fields are allowed to fluctuate due to the
contraction of FðxÞFð0Þ in the correlation function.
The OPE takes the form:

ūσμνFμνdðxÞd̄σρσFρσss̄uð0Þ ∼ cΛ9x−4ð1þ k logðxμÞÞI
þ kx−4∶ūud̄ds̄sð0Þ∶þ � � � ð21Þ

where k is Oðα=πÞ. Here the six quark operator is
schematic and stands for a family of similar operators with
different spin contractions. The logðxμÞ term in the
coefficient of the unit operator includes nonperturbative
operator mixing, generated by the logarithmic UV diver-
gence of hūud̄ds̄sð0Þi in the instanton background.
As mentioned above the six quark matrix elements are

also IR log-divergent and incalculable. However, their
coefficients are not more singular than that of the unit
operator, and furthermore k is ðα=πÞ-suppressed. Therefore,
the calculable term is much easier to isolate. As a first
approximation, the incalculable matrix elements might
simply be ignored: at scales of order x ∼m−1

τ , for example,
α=π is a 10% effect. More accurately, in a lattice compu-
tation they could in principle be measured and subtracted
from G.
We chose the form of G in Eq. (20) because it exhibits

simply how such Green’s functions may be decomposed
into calculable and incalculable terms. With slightly differ-
ent choices of G, the incalculable matrix elements can be
pushed off to even higher orders in perturbation theory.
For example:

hūσμνFμνdðxÞd̄sðyÞs̄uð0Þi;
hūσμνFμνdðxÞd̄σρσ ~FρσsðyÞs̄uð0Þi;
hūσμνFμνdðxÞd̄σρσFρσsðyÞs̄σλπFλπuð0Þi;
hudsFμνðxÞū d̄ s̄ ~Fμνð0Þi; ð22Þ

all have OPEs with the six-fermion operators appearing at
Oðα=πÞ2. Note that in Eq. (22) we have also separated the
operators in a way that prevents disconnected contributions
to the correlators.
Returning to the Green’s function in Eq. (20) for

illustration, we can evaluate the contribution in the instan-
ton background at leading order in α (the coefficient c):

GðxÞ ¼ −144
�
2

π2

�
3
Z

d4x0dρ
ρ5

CðgÞðΛρÞ9

×

�
ρ

ðx − x0Þ2 þ ρ2

�
5
�

ρ

x20 þ ρ2

�
8

: ð23Þ

Combining denominators with Feynman parameters, we
obtain
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GðxÞ ¼ −
2

7

�
2

π2

�
2

CðgÞΛ9jxj−4: ð24Þ

The functional determinant calculation fixes the coefficient
CðgÞ [29]. For the case Nf ¼ N ¼ 3 (in the MS scheme),
we obtain

CðgÞΛ9ρ9 ¼ Λ9ρ9α−62π4e4×0.146−0.44: ð25Þ

Λ is the one loop renormalization group (RG) invariant
scale, and the numerical factor from the exponent is 1.15.
Inserting Eq. (25) into Eq. (24) yields the complete singular
contribution to the Green’s function of Eq. (20) at leading
order in α.
At one loop, the scale of the α−6 factor is arbitrary.

We can define a two loop RG-invariant scale:

~Λ9 ¼ μ9e−
2π
αðμÞαðμÞ−32

9 : ð26Þ

Setting μ ¼ mτ and αðmτÞ ¼ 0.32 yields ~Λ ¼ 0.333 GeV.
Then we can write the determinant as

CðgÞΛ9 ≡ ~CðgÞ ~Λ9 ¼ 1.15 × ð2π4Þ × α−22=9 × ~Λ9: ð27Þ

The scale of the residual coupling factor can generally be
determined in each Green’s function from renormalization
group considerations. For instance, in Eq. (24), radiative
corrections must remove most of the renormalization
scale dependence introduced by the factor α−22=9, running
α to a scale of order x and leaving only μ-dependence
generated by the anomalous dimension of G (a matrix in
the presence of operator mixing). However, the variation of
the one loop prediction with μ is logarithmic, and higher-
precision calculation will only be valuable if it is shown
that the lattice can compute the correlators with Oð50%Þ
precision.

C. Finite Green’s functions and lattice tests

The finite correlation functions provide a potentially
interesting arena for lattice gauge computations. First, they
are inherently nonperturbative and test an interesting aspect
of lattice simulations. Second, they are sensitive to phe-
nomena that are important to understanding hadronic
physics in the chiral limit. For example, a computation
of these Green’s functions on the lattice could be used to
constrain a variety of models for possible infrared cutoffs
on the instanton size. In particular, consider a hard cutoff,
ρ0. If, at scales of order jxj ¼ 1.5 GeV−1, the semiclassical
expansion forGðxÞ is at least as good as perturbation theory
[i.e. GðxÞ is equal to the semiclassical value to order α

π, or
about 90%], then we would obtain a rather weak require-
ment on the infrared cutoff,

ρ0 ≳m−1
c : ð28Þ

If the instantons cut off more softly, the same criterion
yields more stringent constraints. For example, with an
exponential cutoff, e−ρ=ρ0 , one finds ρ0 ≳ Λ−1.
However, the effects of UV instantons are inherently

small, and one can ask whether they are observable.
Among the challenges to measuring such instanton

dominated Green’s functions are the effects of finite quark
masses, which yield perturbative contributions. On the other
hand, current simulations achieve quite small masses, less
than 10 MeV for light quarks and 100 MeV for the strange
quark, and quite small lattice spacings, a−1 ≃ 4 GeV in
some cases. In any simulation it would be important to
choose the Green’s function carefully so as to avoid
disconnected parts, as in the correlators of Eq. (22).
Take the case hūσμνFμνdðxÞd̄σρπFρπsðyÞs̄uð0Þi. The

leading perturbative contribution behaves as

mdmsmu

ð4π2Þ4x10 ; ð29Þ

which can be compared with the nonperturbative contri-
bution appearing at zeroth order in quark masses,

CðgÞΛ9x−4: ð30Þ

The latter term is already dominant for x≳ ð30ΛÞ−1, for
quark masses in the range above.
Typically, for a fixed gauge configuration in a simulation

ensemble, the correlator receives a contribution of order the
quark masses. Occasionally, a configuration will contribute
a much larger value [by a factor of order 1=ðx3mumdmsÞ].
For very small quark masses, the probability to find the
latter configurations in an ensemble could be suppressed
by the fermion determinant. For very large ensembles, this
effect cancels out in Green’s functions (due to the 1=m
behavior of the quasizero mode contribution to the fermion
propagator in the instanton background), but for smaller
ensembles, it may be more convenient to remove the
suppression of the probability by hand, and restore it later
as a weight for the contribution of each configuration.

V. THEORETICAL ISSUES ASSOCIATED
WITH mu ¼ 0

We conclude with a short discussion of the mu ¼ 0
proposal from a theoretical perspective, commenting
briefly on two issues: whether mu ¼ 0 is well defined,
and whether it is well motivated.
First, a question raised in some of the lattice literature

is whether mu ¼ 0 has an unambiguous meaning [30] (for
a recent discussion, see the lecture notes of Sharpe7).
A concise counterargument to [30] was given in [31]; here

7http://faculty.washington.edu/srsharpe/brazil13/sharpe_brazil4
.pdf
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we add a few additional comments. In part, one’s view of
this question is shaped by what one may view as possible
in lattice computations in practice and in principle. With the
ability to compute with arbitrarily small lattice spacing
and small quark mass, the answer is clearly yes, at least
in principle, as can be seen from the following. Suppose
the lattice spacing is extremely small, say a−1 ¼ TeV.
Instanton contributions to masses from smaller scales are
completely negligible, as can be seen from Fig. 1. On this
lattice, calculate a correlator such as that of two currents,
hūγμuðxÞūγμuð0Þi, at distances a few times a. The lattice
must reproduce the massless perturbative result, with
corrections behaving as m2

ux2; m2
ua2 (or possibly mua).

The question of whether the corrections vanish as mu → 0
is well posed. Of course in practice there may be numerical
issues in achieving the required accuracy; this would
seem to be a question, however, of the size and nature
of systematic errors.
A more interesting question is precisely how small mu

has to be to solve the strong CP problem, and what would
be required to establish a suitable bound. The chiral
perturbation theory formula for dn, the neutron electric
dipole moment [32], involves ratios of current quark
masses. But what masses are these?.
To answer this question, we first sharpen what is meant

by “instanton” contributions to the quark masses by
considering the question of θ-dependence. If at scale a,
one presents the Lagrangian with θ appearing in front of
F ~F only, the contribution to mu from instantons at scales
larger than a is proportional to eiθ. This piece does not
contribute to dn. We lump together all contributions of
this type (e.g. from dilute gas corrections to the instanton,
but more generally from unspecified nonperturbative
sources) to define the “instanton” contribution.
The masses appearing in the usual expression for dn

clearly do not include the instanton contribution, and if
one chooses too small an energy scale, separating these out
is problematic. The simplest procedure (conceptually) is to
choose the scale high enough that the contribution to mq
from instantons at shorter distances can be neglected.
In this situation, we require

mu

md
< 10−10: ð31Þ

With the sort of lattice spacings achievable at present,
however, instanton contributions to mu (again the contri-
butions from integrating out instantons at scales smaller
than a) are much larger than 10−10md. Spacings of roughly
a−1 ≈ 10 GeV or smaller are required.
So there are two ingredients to establishing that mu is

small enough to solve the strong CP problem. The lattice
spacing must be small enough that instanton contributions
to mu from shorter scales are much smaller than 10−10md,
and the value of the mass at amust be smaller that 10−10md.

Of course, lattices so small and analyses so precise
would be very difficult to achieve, and the analysis would
require treatment of the chiral Lagrangian to very high
order. At best, one could hope for qualitative evidence that
the u quark mass vanishes, but it would be unrealistic to
prove that a small u quark mass was responsible for the
solution of the strong CP problem.
Separately, one can ask what is required of an underlying

theory to obtain such a small mu. A similar question arises
for the axion solution to the strong CP problem: how might
one obtain a Peccei-Quinn symmetry of adequate quality
[33] to solve the strong CP problem. It is clearly interesting
to compare these questions to establish, at a purely
theoretical level, whether one or the other solution is more
plausible.
One formulation of the problem of a massless u quark

was provided in [15]. The authors considered possible
nonanomalous symmetries spontaneously broken by an
order parameter S. Assuming the symmetry to be discrete,
the u quark mass (Yukawa coupling) should be suppressed
relative to other quark masses by powers of S. If S is of
order, say, CKM angles, suppression by many powers of S
is needed, and thus a large or complicated discrete
symmetry. As is well known, the situation for axions is
similar. If the Peccei-Quinn symmetry is broken by an order
parameter ϕ, then if, say, ϕ ∼ 1011 GeV, one needs to

suppress operators such as ϕNþ4

MN
p
, for quite largeN (11 or 12).

If implemented with discrete symmetries, again, large
symmetries are required.
Neither of these solutions seems terribly plausible. A

more compelling framework is provided by string theory,
where Peccei-Quinn symmetries controlled by small quan-

tities like e
−8π2

g2 are familiar [34]. The problem becomes
explaining the appearance of the small exponentials, but
these are at least possibly required by other considerations.
Such small exponentials can also explain a small mu;
anomalous discrete are indeed familiar in string theory [24].
So, in this framework, both solutions of the strong CP
problem have a level of plausibility, tied to the existence
(or not) of small exponential factors. We might, tentatively,
argue that mu ¼ 0 is slightly less plausible. The axion
solution simply requires an extremely small exponential;
small mu requires a small exponential and an approximate
discrete symmetry. In addition, states with light axions
might have the additional virtue of possessing a dark matter
candidate.

VI. CONCLUSIONS

In the first part of this paper we have argued that it would
be interesting to have detailed lattice fits to the parameter
β2=β1 controlling the ms dependence of m2

π. Establishing a
bound significantly smaller than 5 GeV−1 provides an
exclusion of the massless u quark hypothesis that is
independent of the direct fits of the light quark spectrum.
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We have provided a rough estimate based on published data,
and it appears to be five times too small to allow for
a massless u quark. But this is a fundamental QCD
parameter, and a dedicated analysis by the different collab-
orations would be highly desirable. This quantity can be
reliably obtained working with ~m ¼ mu ¼ md, and quark
masses significantly larger than their values in nature.
In the second part of our work we have discussed

analytic probes of nonperturbative physics on the lattice
more generally. We have seen that there are a set of
correlation functions in QCD for which, at short distances,
instantons provide reliable results, and we have argued that
evaluation of such correlators on the lattice would provide a
useful calibration. Such computations may eventually be
achievable, given the small lattice spacings and quark
masses currently accessible. Alternatively, the existence
of these correlators can be viewed as a demonstration that
small instantons are physically meaningful, and in principle
they provide a way to extract the instanton density and the
IR cutoff on ρ from lattice computations.
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APPENDIX: CONNECTIONS WITH
THE Uð1Þ PROBLEM

Witten has argued that—given the qualitative successes
of large N ideas in understanding QCD—instantons are
unlikely to provide a useful understanding of the η0 mass
and other phenomena. Still, we have seen that small
instantons are meaningful, and it is interesting to consider
a model where both the η0 mass and mu receive contribu-
tions from small instantons, suppressed in the infrared by a
rigid cutoff on ρ. Correlating the two masses, of course,
requires that the cutoff is the same in both cases.
If the cutoff is not too large, then the η0 is the pseudo-

Goldstone boson of a Uð1Þ symmetry, which gains mass as
a consequence of the anomaly (this, of course, has parallels

with the large N treatment). The Goldstone bosons are then
described by a unitary matrix,

U ¼ e
i
fπ
ðπaσaþη0Þ:

The effective action for U contains terms of the form:

L ¼ f2πðμTrðMUÞ þ a detðUÞÞ: ðA1Þ

The latter term receives contributions from small instan-
tons. The use of instantons here is not in the spirit of largeN
(as stressed in [18,19]); we are seeking, at most, a crude
connection between the mu and η0, and any detailed
statement must be taken with a grain of salt.
From the perspective of the instanton computation, the

second term is the ’t Hooft interaction, proportional to
ūud̄ds̄s. To connect this with the operator U, we take
hūui ¼ ð250 MeVÞ3 and replace the six quark operators by
a simple product. The contribution from small instantons is
very cutoff dependent. But, except for very large cutoff ρc,
it will not give an appreciable contribution to the η0 mass,
as seen in Fig. 2. It may be hard to make sense of this
calculation for any cutoff below mη0 ∼ 1 GeV, and the
cutoff required to generate the full η0 mass is approximately
1=ð0.7Þ GeV. The same cutoff applied to the u quark mass
computation would lead to a few MeV for mu.
The η0 mass and mu computations differ in that m2

η0
receives contributions from all topological charge sectors.
Thus there is no simple connection between the contribu-
tions except when ρΛ ≪ 1.
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FIG. 2. Contributions tomη0 from small instantons as a function
of a hard IR cutoff. In contrast to Fig. 1, the estimate here is taken
only at 1 loop and will have small logarithmic corrections.

MICHAEL DINE, PATRICK DRAPER, AND GUIDO FESTUCCIA PHYSICAL REVIEW D 92, 054004 (2015)

054004-8



[1] N. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu, R. D.
Mawhinney, C. T. Sachrajda, A. Soni, and R. Zhou, The η
and η0 Mesons from Lattice QCD, Phys. Rev. Lett. 105,
241601 (2010).

[2] E. B. Gregory, A. C. Irving, C. M. Richards, and C. McNeile
(UKQCD Collaboration), A study of the eta and eta’mesons
with improved staggered fermions, Phys. Rev. D 86, 014504
(2012).

[3] C. Michael, K. Ottnad, and C. Urbach, η and η0 masses and
decay constants from lattice QCD with 2þ 1þ 1 quark
flavours, Proc. Sci., LATTICE2013 (2014) 253 [arXiv:
1311.5490].

[4] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo et al.,
Review of lattice results concerning low energy particle
physics, Eur. Phys. J. C 74, 2890 (2014).

[5] A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar
et al., Nonperturbative QCD simulations with 2þ 1 flavors
of improved staggered quarks, Rev. Mod. Phys. 82, 1349
(2010).

[6] A. Bazavov et al. (MILC Collaboration), MILC results for
light pseudoscalars, Proc. Sci., CD09 (2009) 007 [arXiv:
0910.2966].

[7] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert, Lattice
QCD at the physical point: Light quark masses, Phys. Lett.
B 701, 265 (2011).

[8] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert, K. K. Szabó, and G. Vulvert, Lattice
QCD at the physical point: Simulation and analysis details,
J. High Energy Phys. 08 (2011) 148.

[9] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and G.
Lepage, High-precision c and b masses, and QCD coupling
from current-current correlators in lattice and continuum
QCD, Phys. Rev. D 82, 034512 (2010).

[10] S. Aoki, K. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi
et al., 1þ 1þ 1 flavor QCD þ QED simulation at the
physical point, Phys. Rev. D 86, 034507 (2012).

[11] J. Laiho and R. S. Van de Water, Pseudoscalar decay
constants, light-quark masses, and BK from mixed-action
lattice QCD, Proc. Sci., LATTICE2011 (2011) 293 [arXiv:
1112.4861].

[12] H. Georgi and I. N. McArthur, Instantons and the up quark
mass (unpublished).

[13] K. Choi, C. Kim, and W. Sze, Mass Renormalization by
Instantons and the Strong CP Problem, Phys. Rev. Lett. 61,
794 (1988).

[14] D. B. Kaplan and A. V. Manohar, Current Mass Ratios of the
Light Quarks, Phys. Rev. Lett. 56, 2004 (1986).

[15] T. Banks, Y. Nir, and N. Seiberg, Missing (up) Mass,
Accidental Anomalous Symmetries, and the Strong CP
Problem, arXiv:hep-ph/9403203.

[16] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Testing
mðuÞ¼ 0 on the lattice, J. High Energy Phys. 11 (1999) 027.

[17] E. Witten, Instantons, the quark model, and the 1=n
expansion, Nucl. Phys. B149, 285 (1979).

[18] E. Witten, Current algebra theorems for the U(1) Goldstone
boson, Nucl. Phys. B156, 269 (1979).

[19] E. Witten, Large N chiral dynamics, Ann. Phys. (N.Y.) 128,
363 (1980).

[20] T. Schaefer and E. V. Shuryak, Instantons in QCD, Rev.
Mod. Phys. 70, 323 (1998).

[21] T. Schaefer, Instantons and the large Nc limit, A.D. 2004,
arXiv:hep-ph/0412215.

[22] E. Poppitz, T. Schfer, and M. Ünsal, Universal mechanism
of (semi-classical) deconfinement and theta-dependence for
all simple groups, J. High Energy Phys. 03 (2013) 087.

[23] M. Dine, G. Festuccia, L. Pack, and W. Wu, Reliable
semiclassical computations in QCD, Phys. Rev. D 82,
065015 (2010).

[24] T. Banks and M. Dine, Note on discrete gauge anomalies,
Phys. Rev. D 45, 1424 (1992).

[25] J. Gasser and H. Leutwyler, Chiral perturbation theory:
Expansions in the mass of the strange quark, Nucl. Phys.
B250, 465 (1985).

[26] E. V. Shuryak, Instantonic molecules and the nonperturba-
tive divergences, Phys. Lett. B 196, 373 (1987).

[27] M. Velkovsky and E. V. Shuryak, QCD with large number
of quarks: Effects of the instanton-anti-instanton pairs, Phys.
Lett. B 437, 398 (1998).

[28] A. R. Zhitnitsky, Conformal window in QCD for large
numbers of colors and flavors, Nucl. Phys. A921, 1 (2014).

[29] G. ’t Hooft, Computation of the quantum effects due to a
four-dimensional pseudoparticle, Phys. Rev. D 14, 3432
(1976).

[30] M. Creutz, Ambiguities in the Up-Quark Mass, Phys. Rev.
Lett. 92, 162003 (2004).

[31] M. Srednicki, Comment on “Ambiguities in the Up-Quark
Mass”, Phys. Rev. Lett. 95, 059101 (2005).

[32] R. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten,
Chiral estimate of the electric dipole moment of the neutron
in quantum chromodynamics, Phys. Lett. 88B, 123 (1979).

[33] M. Dine, G. Festuccia, J. Kehayias, and W. Wu, Axions in
the landscape and string theory, J. High Energy Phys. 01
(2011) 012.

[34] E. Witten, Some properties of O(32) superstrings, Phys.
Lett. 149B, 351 (1984).

INSTANTON EFFECTS IN THREE FLAVOR QCD PHYSICAL REVIEW D 92, 054004 (2015)

054004-9

http://dx.doi.org/10.1103/PhysRevLett.105.241601
http://dx.doi.org/10.1103/PhysRevLett.105.241601
http://dx.doi.org/10.1103/PhysRevD.86.014504
http://dx.doi.org/10.1103/PhysRevD.86.014504
http://arXiv.org/abs/1311.5490
http://arXiv.org/abs/1311.5490
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://arXiv.org/abs/0910.2966
http://arXiv.org/abs/0910.2966
http://dx.doi.org/10.1016/j.physletb.2011.05.053
http://dx.doi.org/10.1016/j.physletb.2011.05.053
http://dx.doi.org/10.1007/JHEP08(2011)148
http://dx.doi.org/10.1103/PhysRevD.82.034512
http://dx.doi.org/10.1103/PhysRevD.86.034507
http://arXiv.org/abs/1112.4861
http://arXiv.org/abs/1112.4861
http://dx.doi.org/10.1103/PhysRevLett.61.794
http://dx.doi.org/10.1103/PhysRevLett.61.794
http://dx.doi.org/10.1103/PhysRevLett.56.2004
http://arXiv.org/abs/hep-ph/9403203
http://dx.doi.org/10.1088/1126-6708/1999/11/027
http://dx.doi.org/10.1016/0550-3213(79)90243-8
http://dx.doi.org/10.1016/0550-3213(79)90031-2
http://dx.doi.org/10.1016/0003-4916(80)90325-5
http://dx.doi.org/10.1016/0003-4916(80)90325-5
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/RevModPhys.70.323
http://arXiv.org/abs/hep-ph/0412215
http://dx.doi.org/10.1007/JHEP03(2013)087
http://dx.doi.org/10.1103/PhysRevD.82.065015
http://dx.doi.org/10.1103/PhysRevD.82.065015
http://dx.doi.org/10.1103/PhysRevD.45.1424
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1016/0370-2693(87)90751-9
http://dx.doi.org/10.1016/S0370-2693(98)00930-7
http://dx.doi.org/10.1016/S0370-2693(98)00930-7
http://dx.doi.org/10.1016/j.nuclphysa.2013.10.011
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevLett.92.162003
http://dx.doi.org/10.1103/PhysRevLett.92.162003
http://dx.doi.org/10.1103/PhysRevLett.95.059101
http://dx.doi.org/10.1016/0370-2693(79)90128-X
http://dx.doi.org/10.1007/JHEP01(2011)012
http://dx.doi.org/10.1007/JHEP01(2011)012
http://dx.doi.org/10.1016/0370-2693(84)90422-2
http://dx.doi.org/10.1016/0370-2693(84)90422-2

