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When a particle decays in an external field, the energy spectrum of the products is smeared. We derive an
analytical expression for the shape function accounting for the motion of the decaying particle and the final
state interactions. We apply our result to calculate the muonium decay spectrum and comment on
applications to the muon bound in an atom.
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I. INTRODUCTION

A bound particle decays differently than when it is free.
Even in the ground state, due to the uncertainty principle,
bound particles are in motion that causes a Doppler
smearing of their decay products. In addition, if the charge
responsible for the binding is conserved, daughter particles
are subject to final state interactions.
Binding effects partially cancel in the total decay width

[1–4]. However, in some regions, the energy spectrum of
the decay products can be significantly deformed. The
range of the accessible energy can also be modified, by a
participation of spectators.
In this paper we focus on weakly bound systems in

quantum electrodynamics (QED) where the bulk of the
decay products remains in the energy range accessible also
in the free decay. The slight but interesting redistribution in
that region is governed by the so-called shape function S
[5–10]. Here we present for the first time a simple analytical
expression for S.
The shape function was first introduced to describe heavy

quarks decaying while bound by quantum chromodynamics
(QCD). It is employed in a factorization formalism based on
the heavy-quark effective field theory (HQEFT) that sepa-
rates the short-distance scale, related to the heavy-quark
mass, from the long-distance nonperturbative effects gov-
erned by the scale ΛQCD, embodied in the shape function. In
QCD it is a nonperturbative quantity that can be fitted using
data but not yet derived theoretically.
The shape function formalism has been defined also for

quarkonium [11]. Subsequently in [12] a quarkonium
production shape function was obtained analytically.
Analytical results for the decay shape function in the ’t
Hooft model were obtained in [13].
In QED, the shape function has recently been computed

numerically and applied to describe the decay of a muon
bound in an atom [14] (so-called decay in orbit, DIO). The
spectrum of decay electrons consists of the low-energy part
up to about half the muon massmμ, and a (very suppressed)
high-energy tail extending almost to the full mμ. The shape
function formalism applies only to the former, also known
as the Michel region [15].

In this paper we will not be concerned with the high-
energy tail. We note here only that it is also of great current
interest because it will soon be precisely measured by
COMET [16] and Mu2e [17]. The high-energy part of the
DIO spectrum is a potentially dangerous background for
the exotic muon-electron conversion search, the main goal
of these experiments. That region has therefore recently
been theoretically scrutinized [18,19].

II. FACTORIZATION IN MUONIUM

The HQEFT is based on the heavy quark mass being
much larger than the nonperturbative scale ΛQCD. Similarly,
in muonic bound states there exists a hierarchy of scales
[20]: the mass of the decaying muon is much larger than the
typical residual momentum, mμ ≫ p. In a muonic atom we
have

p ∼mμZα; ð1Þ

while in muonium

p ∼meα; ð2Þ

where α ≈ 1=137 is the fine structure constant andme is the
electron mass.
With this observation, the factorization formula and the

shape function for the muon DIO were derived in [14] using
earlier QCD results [5,6,8–10]. Here we follow an equiv-
alent but a slightly more general approach [7] to derive the
differential rate for a heavy charged particle decay in the
presence of an external Coulomb field, neglecting radiative
effects. We apply the result to find the decay spectrum of
muonium.
We concentrate on the muon decay μþ → eþν̄μνe but our

results are general and apply to any QED bound state decay,
provided that the momentum in the bound state is much
smaller than the decaying particle mass.
The decay amplitude is related to the imaginary part of

the two-loop diagram depicted in Fig. 1. Integrating over
the relative neutrino momentum we express the differential
decay rate as
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dΓ ¼ 2G2
FImðhαβÞWαβ d4q

ð2πÞ3 ; ð3Þ

where q is the sum of neutrino four-momenta and GF is the
Fermi constant [21,22]. The neutrino tensor is

Wμν ¼ − π

3ð2πÞ3 q
2

�
gμν − qμqν

q2

�
: ð4Þ

The charged-particle tensor hμν can be decomposed using
five scalar functions that depend on q2 and v · q ¼ q0. Here
v is the four-velocity of the bound state. In general,

hμν ¼ −h1gμν þ h2vμvν − ih3ϵμνρσvρqσ

þ h4qμqν þ h5ðqνvμ þ qμvνÞ; ð5Þ

but since the neutrino tensor (4) is symmetric under μ↔ ν,
from now on we neglect the asymmetric part of h.
Contracting the tensors and denoting wi ¼ ImðhiÞ we find
that only two functions w1;2 suffice to describe the double
differential spectrum,

dΓ
dq2dq0

¼ G2
F

3ð2πÞ4 ½3q
2w1 − ðq2 − q20Þw2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 − q2

q
: ð6Þ

Functions wi can be calculated in QED. Adopting
Schwinger’s operator representation [23], we have instead
of the free electron propagator

1

k −me
→

1

kþ π −me
; ð7Þ

where πμ is defined such that it does not contain any heavy
degrees of freedom. The commutator of its components
gives the electromagnetic field-strength tensor ½πμ; πν� ¼
−ieFμν where e is the muon charge. Formally,

hμν ¼ 2hMjμ̄γμ
1

kþ π −me
γνð1 − γ5ÞμjMi; ð8Þ

where jMi denotes the bound-muon state and k ¼
mμv − q. Equation (8) is valid in the whole phase space.

To simplify our considerations, we restrict ourselves to
the Michel region where the electron is almost on-shell,
k2 ∼mμp and the time component of k is large, v · k ≫ p.
This is the region where binding effects are most promi-
nent. (Near the highest energies also the virtuality is much
higher, k2 ∼m2

μ, permitting a perturbative expansion of the
electron propagator [19].) We neglect the electron mass
since the electron is highly relativistic [8,24]. The only
effect of the electron mass is an overall shift of the endpoint
spectrum, just like in a free-muon decay.
In the Michel region, the four-momentum k can be

written as k ¼ ðv · kÞnþ δk, where n is a lightlike vector,

n2 ¼ 0, and δk ∼ p. Neglecting terms suppressed by p2

m2
μ
,

hμν ¼ 4ð2mμvμvν − ν · kgμν − vνqμ − vμqνÞ

×
D
M
��� 1

k2 þ 2ðπ · nÞðk · vÞ
���ME

: ð9Þ

We cannot further expand the denominator since both terms
are of order mμp. We introduce λ ¼ − k2

2k·v; it will be useful
to remember that λ scales like the muon momentum
λ ∼ p ∼ Zα. We now define the shape function,

SðλÞ ¼ hMjδðλ − n · πÞjMi; ð10Þ

and obtain

w1 ¼ 2πSðλÞ; ð11Þ

w2 ¼
4mμ

k · v
πSðλÞ ¼ 2mμ

k · v
w1: ð12Þ

We have recovered the QCD scaling behavior [25]:
functions wi depend in the leading order only on the ratio
of k2 and v · k rather than on these two variables separately.
Equation (10) reveals that the shape function is closely

related to the momentum distribution of the muon in the
bound state. However, due to gauge invariance we cannot
replace n · π by the momentum in the ~n direction.

III. SHAPE FUNCTION

Formula (10) is the same for muonium and for a muonic
atom. Both systems are nonrelativistic, therefore the wave
function needed to calculate the expectation value in (10)
has the same analytical form. The only difference is its
parameters and thus the physical scales that characterize the
muon momentum p [see below, Eq. (15)]. We now proceed
to an explicit calculation of the function S in Eq. (10).
The bound-state wave function follows from field theory

via the Bethe-Salpeter equation [26]. In the nonrelativistic
limit it reduces to the Schrödinger equation,

μ e

ν

ν

FIG. 1. Muon self-energy diagram whose imaginary part
corresponds to the muon decay rate. Double line for charged
particles indicates the electromagnetic interaction with the
spectator electron that needs to be resummed.
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�
~p2

2μ
þ VðrÞ

�
ψSðrÞ ¼ EψSðrÞ; ð13Þ

where μ is the reduced mass of the system. In the case of a
muonic atom, with the mass of the nucleus mN ,

μ ¼ mμmN

mμ þmN
≈mμ: ð14Þ

Subsequent formulas apply to muonium with the following
substitutions,

mμ → me;

mN → mμ;

Z → 1: ð15Þ

For example, the reduced mass in muonium is

μ ¼ memμ

me þmμ
≈me: ð16Þ

With this notation we also have p ∼ Zαμ.
As customary, Eq. (13) is written in the Coulomb gauge,

with the electromagnetic four-potential given by

eAμðxÞ ¼ ðVðrÞ; 0; 0; 0Þ; ð17Þ

with VðrÞ ¼ − Zα
r for a muonic atom or VðrÞ ¼ − α

r for
muonium. The determination of the shape function is
especially convenient in the so-called light-cone gauge,

nμAμðxÞ ¼ 0: ð18Þ

In this gauge, the electron is effectively free up to effects
quadratic in the electromagnetic field. The price for this
simplification is a more complicated formula for the muon
wave function. In the light-cone gauge, Eq. (10) takes a
simple form in the momentum representation,

SðλÞ ¼
Z

d3k
ð2πÞ3 ψ

⋆
Sð~kÞδðλþ ~n · ~kÞψSð~kÞ: ð19Þ

We are neglecting terms of order ðZαÞ2 in the above
expression. To fulfill condition (18), we change the gauge,

eA0
μðxÞ ¼ eAμðxÞ þ ∂μχðxÞ; ð20Þ

with

χðxÞ ¼ χð~xÞ ¼ Zα ln ð~n · ~rþ rÞ: ð21Þ

This transformation changes the muon Schrödinger wave
function in the 1S state, ψSðrÞ, by an ~r-dependent phase
factor, such that

ψSðrÞ→ψð~rÞ¼ e−iχð~rÞψSðrÞ¼ ð~n ·~rþ rÞ−iZαψSðrÞ: ð22Þ

After the transformation, the wave function is no longer
rotationally invariant, since the gauge fixing distinguishes
the direction of the outgoing electron.
We use the Schwinger parametrization,

ΓðαÞ
Aα ¼

Z
∞

0

dttα−1 exp ½−At� ð23Þ

to Fourier-transform Eq. (22),

ψð~kÞ ¼
Z

d3r exp ð−i~k · ~rÞψð~rÞ

¼ iZα
ΓðiZαÞ sin ðiπZαÞ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ3Z3α3π3

p
ðμ2Z2α2 þ ~k2Þ2

×

�
μ2Z2α2 þ ~k2

2ðμZα − i~n · ~kÞ

�iZα

×
�

μ2Z2α2 þ ~k2

2ðμZα − i~n · ~kÞ
− μðiþ ZαÞ

�
: ð24Þ

We integrate in (19) first over ~n · ~k using the delta-function,

then over ~k⊥, components of ~k perpendicular to ~n,

SðλÞ¼ 2μ3Z6α6

3sinhðπZαÞ
3λ2þ6λμþμ2ð4þZ2α2Þ

½λ2þμ2Z2α2�3 e2Zαarctanð
λ

μZαÞ:

ð25Þ

The exponential function in (25) arises from

jðμZαþ iλÞ−iZαj2, appearing after integrating jψð~kÞj2 with
the delta-function in (19). The leading behavior can be
understood with the help of integral

Z
d2k⊥

1

ð~k2⊥ þ λ2 þ μ2Z2α2Þ4
∼

1

ðλ2 þ μ2Z2α2Þ3 : ð26Þ

The result (25) contains subleading terms, related to the
Coulomb potential in (10), required by the gauge invari-
ance. At the current stage of calculations SðλÞ is explicitly
gauge independent. We can drop subleading terms to obtain
a leading-order formula,

SðλÞ ¼ 8μ5Z5α5

3π½λ2 þ μ2Z2α2�3 : ð27Þ

The analytical formula obtained here is useful for several
reasons. First of all, counting powers and remembering that
λ ∼ p, we find that SðλÞ ∼ 1

p ∼
1
Zα. This reminds us that SðλÞ

is a nonperturbative object and explains why its effect on
the spectrum can be quite dramatic, as we shall see in
muonium in Sec. IV.
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Further, Eq. (25) allows us to better control the expan-
sion and the resummation of the p effects in the decay
spectrum. This cannot be done so easily with a numerical
evaluation [14], as is especially clear when we analyze the
first three moments, useful in HQEFT for constraining
possible forms of the shape function.
The zeroth order moment gives just the normalization.

With the normalized wave function in Eq. (19), the shape
functions (25) and (27) are automatically normalized to
unity; this is a consequence of the definition (10).
When the subleading terms are neglected the first

moment of the shape function (27) vanishes,
Z

dλλSðλÞ ¼ hn · πi ¼ 0þOðZ2α2Þ: ð28Þ

Naive power counting in the left-hand side suggests a result
linear in Zα. That leading part vanishes, similarly to the
first moment of the B-meson shape function. A contribu-
tion linear in p

mμ
∼ Zα is absent due to the CGG/BUV

theorem [3,4]. Moments of the shape function are related to
matrix elements of local operators in the heavy particle
effective theory. Operators of dimensions 3 and 5 exist. A
dimension 4 operator that could generate, in the leading
order, a nonvanishing first moment is missing. A nonzero
first moment can only appear at the subleading order [5,6].
The second moment is related to the square of the

average momentum in the direction of ~n,Z
dλλ2SðλÞ ¼ 1

3
h~p2i þOðZ4α4Þ: ð29Þ

In contrast to the first moment, there is no cancellation here
and the naive counting correctly predicts a result quadratic
in Zα. Therefore we do not need subleading corrections in
Eq. (9) to calculate (29). This moment characterizes the
width σλ of the region smeared due to the shape function
effects. As expected, it is of the same order as p: σλ ¼ Zαμffiffi

3
p .

This is similar to the HQEFT where the second moment is
also related to the average kinetic energy of the heavy quark
inside a meson.
In muonic aluminum, the stopping target of the planned

conversion searches (Mu2e and COMET), the shape
function effect is sizeable since σλ ∼ 6 MeV, and has been
precisely measured by TWIST [27]. In the case of the
muonium the effect is much smaller, σλ ∼ 2 keV, and is
negligible except near the end of the spectrum.
In Fig. 2 we plot the shape function for Zα ¼ 0.25. The

width is proportional to p, suggesting that the dominant
effect is due to the muon motion in the initial state.
Finally, we would like to point out that the formula (27)

can guide phenomenological models of the shape function
in QCD. Some QCD bound states can be described with the
help of effective theories similar to nonrelativistic QED
[28,29]. For example, Ref. [30] postulated a similar func-
tional form of the shape function,

SðλÞ ¼ N
λð1 − λÞ

ðλ − bÞ2 þ a2
θðλÞθð1 − λÞ; ð30Þ

with parameters a; b to be fitted from data. Our function has
a higher power of the denominator, therefore does not
require an artificial restriction of its support by θ functions,
because its tails are sufficiently suppressed.

IV. MUONIUM SPECTRUM

Having obtained the shape function, we can calculate the
muonium spectrum using (6). After an integration over q2,
the electron energy is given by Ee ¼ mμ − q0 þOðZ2α2Þ.

FIG. 2 (color online). Leading shape (27) function for
μ ¼ 1 MeV and Zα ¼ 0.25. The width is σλ ¼ μ Zαffiffi

3
p . To illustrate

it better we included two vertical dashed lines at the ends of σλ
region.

FIG. 3 (color online). Endpoint region of the muonium decay.
Electron energy is parametrized in terms of ε, such that

ε ¼ 104 Ee−Emax
Emax

, Emax ¼ m2
μþm2

e

2mμ
. Dashed (solid) line shows the

free-muon (muonium) spectrum. Vertical dotted lines emphasize
the size of the region that is smeared due to binding effects.
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The shape function formalism can be interpreted as a
replacement of the zero-width on-shell relation for the
electron by a finite-width shape function SðλÞ. [If SðλÞ in
the functions wi is replaced by the Dirac-delta on-shell
condition, the free-muon decay spectrum results.]
Since the muon is almost at rest, the smearing is negligible
far from the free muon decay endpoint, the only region
where the spectrum is quickly varying with the electron
energy.
We ignore the tail of the spectrum at energies higher than

the free endpoint plus several αme. It is very suppressed and
its evaluation requires perturbative corrections due to hard
photons [19,20]. We also ignore the lowest region of the
spectrum where positronium can be formed [31].
For illustration, Fig. 3 shows the muonium decay

spectrum in the vicinity of the free muon endpoint. The
extent of the region affected by the shape function
corresponds to the smearing width σλ, denoted by two
vertical lines. In this region the slope of the spectrum is
proportional to the shape function SðλÞ and therefore is of
the order of 1

p ∼
1
σλ
.

Note that the free-muon decay, denoted with the dashed
line, resembles a step function. This is an artefact of the
very narrow width of the region shown in this figure. In
fact, the free-decay spectrum varies with ε to the left of the
step and vanishes to the right of it.

V. CONCLUSIONS

We have derived an analytical formula for the shape
function and used it to calculate the muonium decay
spectrum. Shape function moments were analyzed and
compared with appropriate expressions in HQEFT. Our
analytical formula may also have a limited application to
describe nonrelativistic QCD systems. For now, the ana-
lytical expression for the shape function has improved our
understanding of the approximations used in the derivation
of the muon DIO spectrum.
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