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We calculate the bosonic boundary state corresponding to a moving fractional Dp-brane in a partially
orbifoldized spacetimeR1;d−5 × C2=Z2 in the presence of the Kalb-Ramond field, theUð1Þ gauge potential
and the tachyon field. Using this boundary state, we obtain the interaction amplitude of two parallel moving
Dp-branes with the above background fields. Various properties of the interaction will be investigated.
In addition, we study effects of the tachyon condensation on a moving fractional Dp-brane with the above
background fields through the boundary state formalism.
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I. INTRODUCTION

Boundary states, which first appeared in the literature in
Refs. [1,2], have a central role in string theory and
D-branes. They have been used to study D-brane properties
and their interactions [3,4]. Precisely, the interaction
between two D-branes can be described in two different
ways: the open and closed string channels. In the open
string channel, the interaction amplitude is given by the
one-loop diagram of the open string, stretched between two
D-branes, [5–7]; hence, it is a quantum process. In the
closed string channel, one can describe the interaction
between the branes via the tree-level exchange of a closed
string that is emitted from the first brane then propagates
toward the second one and is absorbed there [8–11]; thus, it
is a classical process. In this approach each brane couples to
all closed string states via the boundary state corresponding
to the brane. This is because the boundary state encodes all
properties of the D-branes. However, these two approaches
of interaction between the branes are equivalent, and this
equivalence is called the open/closed string duality [12].
On the other hand, the D-branes with nonzero back-

ground internal fields have shown several interesting
properties [13–19]. Therefore, the boundary state formal-
ism for various setups of D-branes in the presence of
background fields such as Bμν, the Uð1Þ gauge field and
tachyon field in the compact spacetime have been inves-
tigated. However, among the various setups with two
D-branes, the systems with fractional branes have some
interesting behaviors [20–25]. For example, in [25] the
gauge/gravity correspondence is derived from the open/
closed string duality for a system of fractional branes.
Another important issue concerning the D-branes is the

stability of them. The stability (instability) of D-branes can
be investigated via the open string tachyon condensation

[26,27]. This condensation usually leads to the instability
and collapse of the D-branes. That is, an unstable D-brane
decays into a lower-dimensional unstable D-brane as an
intermediate state and, finally, to the closed string vacuum.
These concepts have been studied by various methods
[28–31]. Since the boundary state completely comprises all
properties of the brane, it can be used to investigate the time
evolution of the brane through the tachyon condensation
process [32–35].
In this paper we use the boundary state method to obtain

the interaction amplitude between two parallel moving
fractional Dp-branes in a factorizable spacetime with the
orbifold structure R1;d−5 × C2=Z2. We shall consider
the Kalb-Ramond field Bμν, the Uð1Þ gauge potential
and the tachyon field on the world volumes of the branes.
In addition, the branes are moving along a common axis
which is perpendicular to both of them. Thus, in this setup
the generality of the system has been exerted, which
drastically affects the interaction of the branes. We shall
also study long-time behavior of the interaction amplitude.
Besides, we shall investigate effects of tachyon condensa-
tion on the stability of a moving fractional D-branes. We
shall observe that condensation of the tachyon drastically
reduces the dimensions of such branes.
The paper is organized as follows. In Sec. II, we compute

the boundary state associated with a moving fractional
Dp-brane with various background fields. In Sec. III, we
find the interaction amplitude of two parallel such branes,
and its behavior for large distances of the branes. In Sec. IV,
we examine a moving fractional Dp-brane with various
fields under the experience of the tachyon condensation.
Section V is devoted to the conclusions.

II. THE BOUNDARY STATE OF Dp-BRANE

Consider a fractional Dp-brane which lives in the
d-dimensional spacetime, including the orbifold C2=Z2,
where the Z2 group acts on the coordinates
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fxaja ¼ d − 4; d − 3; d − 2; d − 1g. This orbifold is non-
compact, so its fixed points are located at xa ¼ 0. The
Dp-brane is stuck at these fixed points.
We start with the following sigma-model action for the

closed string,

S ¼ −
1

4πα0

Z
Σ
d2σð

ffiffiffiffiffiffi
−h

p
habGμν∂aXμ∂bXν

þ ϵabBμν∂aXμ∂bXνÞ

þ 1

2πα0

Z
∂Σ

dσ

�
Aα∂σXα þ i

2
UαβXαXβ

�
; ð2:1Þ

where the set fxαjα ¼ 0; 1;…; pg represents the brane
directions, Σ indicates the world sheet of the closed string,
and ∂Σ is the boundary of it. The metrics of the world
sheet and the d-dimensional spacetime are hab and Gμν,
respectively. For simplifying the equations we select the
Kalb-Ramond field Bμν to be constant and Gμν ¼ ημν ¼
diagð−1; 1;…; 1Þ. The tachyon profile is chosen as TðXÞ ¼
i

4πα0 UαβXαXβ with constant symmetric matrix Uμν. We
chose the tachyon field only in the world volume of the
Dp-brane. For the Uð1Þ gauge potential Aα, which lives on
the world volume of the brane, we consider the gauge Aα ¼
− 1

2
FαβXβ where the field strength is constant. Note that the

gauge and tachyon fields are in the open string spectrum;
hence, their open string state counterparts adhere to
the brane.
The vanishing variation of this action defines the

following boundary state equations for the closed string,

ð∂τXα þ F α
β∂σXβ − iUα

βXβÞτ¼0
jBxi ¼ 0;

ðXI − yIÞτ¼0jBxi ¼ 0; ð2:2Þ

where the coordinates fxIjI ¼ pþ 1;…; d − 1g refer to
the directions perpendicular to the brane world volume and
the parameters fyIg specify the location of the brane. For
more simplification, we assumed that the mixed elements
Bα

I are zero. The total field strength possesses the
definition F αβ ¼ Fαβ − Bαβ.
Note that because the brane is stuck at the orbifold fixed

points, the presence of the orbifold directions puts some
prominent constraints on its dimension and motion. In
the d-dimensional spacetime, the brane can possess the
maximum dimension d-5. Besides, along the orbifoldized
directions, it cannot move. Therefore, for adding a
velocity to the brane along the perpendicular directions
fxiji ¼ pþ 1;…; d − 5g, we apply a boost on
the Eqs. (2.2),

½γ∂τðX0 − viXiÞ þ F 0
ᾱ∂σXᾱ − iU0

0γðX0 − viXiÞ − iU0
ᾱXᾱ�τ¼0jBxi ¼ 0;

½∂τXᾱ þ γF ᾱ
0∂σðX0 − viXiÞ þ F ᾱ

β̄∂σXβ̄ − iUᾱ
0γðX0 − viXiÞ − iUᾱ

β̄X
β̄�τ¼0jBxi ¼ 0;

½γðXi − viX0Þ − yi�τ¼0jBxi ¼ 0;

½Xa − ya�τ¼0jBxi ¼ 0; ð2:3Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p
, the set fxᾱg shows the directions of the brane, and the set fxig indicates the directions

perpendicular to its world volume except the orbifoldized directions. Since the branes are stuck at the orbifold fixed points,
we have ya ¼ 0.
The mode expansion of the closed string coordinates along the nonorbifold directions xα and xi has the feature

Xλðσ; τÞ ¼ xλ þ 2α0pλτ þ i
2

ffiffiffiffiffiffiffi
2α0

p X
m≠0

1

m
ðαλme−2imðτ−σÞ þ ~αλme−2imðτþσÞÞ; λ ∈ fα; ig; ð2:4Þ

and for the orbifold directions takes the form

Xaðσ; τÞ ¼ i
2

ffiffiffiffiffiffiffi
2α0

p X
r∈Zþ1

2

1

r
ðαare−2irðτ−σÞ þ ~αare−2irðτþσÞÞ: ð2:5Þ

Now, for simplification, we supposeU0α ¼ Uα0 ¼ 0. Using the above mode expansions, the boundary state equations (2.3)
can be written in terms of the string oscillators and zero modes,

½γðα0m − viαimÞ − F 0
ᾱα

ᾱ
m þ γð ~α0−m − vi ~αi−mÞ þ F 0

ᾱ ~α
ᾱ
−m�jBosci ¼ 0;�

αᾱm − γF ᾱ
0ðα0m − viαimÞ − F ᾱ

β̄α
β̄
m þ 1

2m
Uᾱ

β̄α
β̄
m þ ~αᾱ−m þ γF ᾱ

0ð ~α0−m − vi ~αi−mÞ þ F ᾱ
β̄ ~α

β̄
−m −

1

2m
Uᾱ

β̄ ~α
β̄
−m

�
jBosci ¼ 0;

½αim − viα0m − ~αi−m þ vi ~α0−mÞ�jBosci ¼ 0;

ðαar − ~αa−rÞjBosci ¼ 0; ð2:6Þ
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ðp̂0 − vip̂iÞjBið0Þ ¼ 0;

½2α0p̂ᾱ − iUᾱ
β̄x̂

β̄�jBið0Þ ¼ 0;

ðp̂i − vip̂0ÞjBið0Þ ¼ 0;

½γðx̂i − vix̂0Þ − yi�jBið0Þ ¼ 0: ð2:7Þ

Note that we decomposed the boundary state as
jBxi ¼ jBosci ⊗ jBið0Þ. Since the closed string is emitted
(absorbed) at the brane position xa ¼ 0, the zero-mode
equations do not have any contribution from Xa’s. The
second equation of (2.7), in terms of the eigenvalues,
implies the relation

pᾱ ¼ i
2α0

Uᾱ
β̄x

β̄: ð2:8Þ

Thus, in the brane volume the momentum of the emitted
(absorbed) closed string depends on its center of mass
position. Thus, we deduce that the tachyon field inspires a
peculiar potential on the closed string.
Using the coherent state method, the oscillating part of

the boundary state possesses the solution

jBosci ¼
Y∞
n¼1

½detMðnÞ�−1 exp
�
−
X∞
m¼1

�
1

m
αλ−mSðmÞλλ0 ~αλ

0
−m

��

× exp

�
−

X∞
r¼1=2

�
1

r
αa−r ~α

a
−r

��
j0iαj0i ~α; ð2:9Þ

where the infinite product comes from path integral and can
be learned by the Refs. [36,37]. Note that λ; λ0 ∈ fα; ig. The
matrix SðmÞ is defined as SðmÞ ¼ M−1

ðmÞNðmÞ with

M0
ðmÞλ ¼ γðδ0λ − viδiλÞ − F 0

ᾱδ
ᾱ
λ ;

Mᾱ
ðmÞλ ¼ δᾱλ − γF ᾱ

0ðδ0λ − viδiλÞ −
�
F ᾱ

β̄ −
1

2m
Uᾱ

β̄

�
δβ̄λ ;

Mi
ðmÞλ ¼ δiλ − viδ0λ :

N0
ðmÞλ ¼ γðδ0λ − viδiλÞ þ F 0

ᾱδ
ᾱ
λ ;

Nᾱ
ðmÞλ ¼ δᾱλ þ γF ᾱ

0ðδ0λ − viδiλÞ þ
�
F ᾱ

β̄ −
1

2m
Uᾱ

β̄

�
δβ̄λ ;

Ni
ðmÞλ ¼ −δiλ þ viδ0λ : ð2:10Þ

Equation (2.9) elaborates that a boundary state describes
creation of all closed string states from vacuum, or
equivalently it represents a source for closed strings,
emitted by the D-brane.
In fact, the coherent state method on the boundary state

(2.9) imposes the constraint SðmÞSTð−mÞ ¼ 1, which

introduces some relations among the parameters
fvi; Uᾱ β̄;F αβg; hence, it reduces the number of indepen-
dent parameters.
The zero-mode part of the boundary state, i.e., the

solution of Eqs. (2.7), is given by

jBið0Þ ¼ Tp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðU=4πα0Þp

×
Z

∞

−∞

Y
λ

dpλ exp ½−α0ðU−1Þᾱ β̄pᾱpβ̄�

×
Y
i

δ

�
x̂i − vix̂0 −

1

γ
yi
�Y

i

jpii
Y
α

jpαi: ð2:11Þ

The total boundary state associated with the Dp-brane is
exhibited by the following direct product,

jBi ¼ jBosci ⊗ jBið0Þ ⊗ jBghi;

where jBghi is the boundary state of the anticommuting
ghosts,

jBghi ¼ exp

�X∞
m¼1

ðc−m ~b−m − b−m ~c−mÞ
�

×
c0 þ ~c0

2
jq ¼ 1ij ~q ¼ 1i: ð2:12Þ

Since the ghost fields do not interact with the matter part,
their contribution to the boundary state is not affected by
the orbifold projection, the brane velocity and the back-
ground fields.

III. INTERACTION OF THE Dp-BRANES

In this section we calculate the interaction amplitude
between two parallel-moving fractional Dp-branes through
the closed string exchange. For this, we compute the
overlap of the two boundary states via the closed string
propagator, i.e., A ¼ hB1jDjB2i, where jB1i and jB2i are
the total boundary states corresponding to the branes, and
D is the closed string propagator which is accurately
defined by

D ¼ 2α0
Z

∞

0

dte−tHclosed :

The closed string Hamiltonian is the sum of the
Hamiltonians of the matter part and ghost part. For the
matter part, there is
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Hmatter ¼ α0pλpλ þ 2

�X∞
n¼1

ðαλ−nαnλ þ ~αλ−n ~αnλÞ þ
X∞
r¼1=2

ðαa−rαra þ ~αa−r ~αraÞ
�
−
d − 4

6
: ð3:1Þ

The difference of the constant term with the conventional case is a consequence of the orbifold projection on the four
directions.
For simplicity we suppose that the branes are moving along the same alignment with the velocities vi1 and v

i
2. The result

of the calculations reveals the following elegant interaction amplitude,

A ¼ T2
pα

0V ᾱ

2ð2πÞd−p−5
Q∞

n¼1 ½det ðMðnÞ1MðnÞ2Þ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðU1=4πα0Þ det ðU2=4πα0Þ

p
Z

∞

0

dt

�
ðdetAÞ−1=2ed−4

6
t

×

� ffiffiffiffiffiffi
π

α0t

r �
d−p−5

exp

�
−

1

4α0t

X
i

�
yi1
γ1

−
yi2
γ2

�
2
��

×
Y∞
n¼1

ðdet½1 − SðnÞ1STðnÞ2e
−4nt�−1ð1 − e−4ntÞ−2Þ; ð3:2Þ

where V ᾱ is the common volume of the branes, and

Aᾱ β̄ ¼ 2α0tδᾱ β̄ − 2α0½ðU−1
1 Þᾱ β̄ − ðU−1

2 Þᾱ β̄�: ð3:3Þ

In the second line the exponential term indicates a damping
factor concerning the distance of the branes. In the last line,
the determinant part, accompanied by the factorQ∞

n¼1ð1 − e−4ntÞ−4, is the contribution of the oscillators
while the advent of

Q∞
n¼1ð1 − e−4ntÞ2 is due to the

conformal ghosts. The overall factor behind the integral,
which depends on the parameters of the system, clarifies a
portion of the interaction strength.

A. Interaction of the distant branes

In any interaction theory, the behavior of the interaction
amplitude, after a long enough time, gives a trusty long-
range forces of the theory. On the other hand, for the distant
branes, the massless closed string states make a consid-
erable contribution to the interaction, while the contribu-
tions of all massive states, except the tachyon state, are
damped.
The orbifold projection specifies some new effects on the

large-distance amplitude. This interaction is constructed via
the limit t → ∞ of the oscillating part of the general
amplitude (3.2). Therefore, the contribution of the graviton,
Kalb-Ramond, dilaton and tachyon states on the interaction
in the 26-dimensional spacetime is determined by

A0 ¼
T2
pα

0V ᾱ

2ð2πÞd−p−5
Q∞

n¼1 ½det ðMðnÞ1MðnÞ2Þ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðU1=4πα0Þdet ðU2=4πα0Þ

p

×
Z

∞
dt

� ffiffiffiffiffiffi
π

α0t

r �
d−p−5

exp

�
−

1

4α0t

X
i

�
yi1
γ1

−
yi2
γ2

�
2
�

× ðdetAÞ−1=2ðe11t=3 þ ½2þ TrðS1ST2 Þ�e−t=3Þ: ð3:4Þ

We applied the limit only on the third line of Eq. (3.2). This
is due to the fact that the other factors do not originate from
the exchange of the massless and tachyon states. For
example, the exponential factor is related to the position
of the branes. Appearance of the divergent part is a
subsequent of the exchange of the closed string tachyon,
due to its negative mass squared. At the limit t → ∞ the
second factor in the last line vanishes. This demonstrates
that the massless states, i.e., the gravitation, dilaton and
Kalb-Ramond, notably do not possess any contribution in
the long-distance interaction. In other words, orbifold
projection quenches the long-range force. More precisely,
this projection manipulated the zero-point energy of the
Hamiltonian; hence, this unconventional result was created.
Note that the massless states, similar to the massive ones,
for usual distances of the branes contribute to the
interaction.
One can see that in the noncritical dimension d ¼ 28 the

quenching factor e−t=3 will be removed, and the long-range
force is restored. In this case the modified zero-point energy
of the Hamiltonian is exactly balanced by two extra
dimensions.

IV. INSTABILITY OF A Dp-BRANE UNDER
THE TACHYON CONDENSATION

One of the main important aspects of studying the
D-branes is determining their stability or instability, which
drastically leads to finding the time evolution of them.
Generally, adding the tachyonic mode of the open string
spectrum to a single D-brane or to a system of D-branes
usually makes them unstable. This phenomenon is known
as tachyon condensation [26,27]. During this process the
dimension of the brane is consecutively reduced, and at the
end we receive only closed strings. In this section we
examine the behavior of our Dp-brane under the experience
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of the condensation of the tachyon. Our aim is to see the
effects of the fractionality, transverse motion and back-
ground fields on the stability of the brane.
Tachyon condensation occurs when some of the ele-

ments of the tachyon matrix become infinity. We exhibit
the condensation via the limit Upp → ∞. To obtain
evolution of the Dp-brane, we apply this limit on the
corresponding boundary state. At first we observe that
since there is no tachyon matrix element in the orbifold
part of the boundary state, the condensation of the tachyon
has no effect on this part. This elaborates that fractionality
of the brane on its instability is inactive.
The limit Upp → ∞ implies that

lim
Upp→∞

ðU−1Þpᾱ ¼ lim
Upp→∞

ðU−1Þᾱp ¼ 0: ð4:1Þ

Therefore, the dimensional reduction on the exponential
factor of Eq. (2.11) takes place; i.e., the matrix ðU−1Þα0β0
with α0; β0 ≠ p, which is ðp − 1Þ × ðp − 1Þ, appears.
The prefactor of the total boundary state is

Tp

2

Q∞
n¼1 ½detMðnÞ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðU=4πα0Þp : ð4:2Þ

Now we find the evolution of this factor after condensation
of the tachyon. Thus, we have

lim
Upp→∞

detUp×p ¼ Upp det ~Uðp−1Þ×ðp−1Þ;

where the matrix ~U is completely similar to U without the
last row and the last column. In the sameway, for the matrix
MðnÞ we acquire

lim
Upp→∞

det ðMðnÞÞðd−4Þ×ðd−4Þ ¼
1

2n
Upp det ð ~MðnÞÞðd−5Þ×ðd−5Þ:

Again the matrix ~MðnÞ is completely similar toMðnÞ without
the (pþ 1)th row and (pþ 1)th column. Adding all these
together, we receive the following satisfactory limit for the
prefactor (4.2):

Tp

2
lim

Upp→∞

Q∞
n¼1 ½detMðnÞ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðU=4πα0Þp →

Tp−1

2

Q∞
n¼1 ½det ~MðnÞ�−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð ~U=4πα0Þ

q :

ð4:3Þ

Note that for accomplishing this limit we used the regulation
formula

Q∞
n¼1ðnaÞ →

ffiffiffiffiffiffiffiffiffiffiffi
2π=a

p
, and also we introduced the

prominent relation between the tensions of a
Dp-brane and a Dðp − 1Þ-brane, i.e., Tp−1 ¼ 2π

ffiffiffiffi
α0

p
Tp.

The Eq. (4.3) clarifies that the total prefactor of the boundary
state does not resist against the collapse of the brane.
Now we demonstrate that the matrix SðnÞλλ0 also respects

the dimensional reduction of the Dp-brane. To investigate

this, for simplicity we suppose that the velocity has only
one component along the xpþ1 direction. In this case, after
tachyon condensation all elements of the ðpþ 1Þth row and
ðpþ 1Þth column of the matrix SðnÞλλ0 vanish, except the
element SðnÞpp which tends to −1. However, because of the
velocity and background fields, elements of the ðpþ 2Þth
row and ðpþ 2Þth column remain nonzero. We deduce that
this part of the boundary state also does not prevent
elimination of the xp direction of the Dp-brane.
For example, the matrix SðnÞ for a fractional D2-brane,

parallel to the x1x2 plane with the velocity v along the x3

direction, at the infrared fixed point U22 → ∞ possesses
the following feature,

lim
U22→∞

SðnÞ ¼
� ðΓðnÞÞ4×4 0

0 −1ðd−8Þ×ðd−8Þ

�
;

ΓðnÞ ¼

0
BBBBB@

Γ 0
ðnÞ0 Γ 0

ðnÞ1 0 Γ 0
ðnÞ3

Γ 1
ðnÞ0 Γ 1

ðnÞ1 0 Γ 1
ðnÞ3

0 0 −1 0

Γ 3
ðnÞ0 Γ 3

ðnÞ1 0 Γ 3
ðnÞ3

1
CCCCCA
; ð4:4Þ

where the matrix elements are given by

Γ 0
ðnÞ0 ¼ γ2ð1þ v2Þð1þ 1

2nU11Þ þ E2
1

1þ 1
2nU11 − E2

1

;

Γ 0
ðnÞ1 ¼ −

2γE1

1þ 1
2nU11 − E2

1

;

Γ 1
ðnÞ0 ¼ −

2γE1

1þ 1
2nU11 − E2

1

;

Γ 1
ðnÞ1 ¼ 1 − 1

2nU11 þ E2
1

1þ 1
2nU11 − E2

1

;

Γ 0
ðnÞ3 ¼ −

2γ2vð1þ 1
2nU11Þ

1þ 1
2nU11 − E2

1

;

Γ 1
ðnÞ3 ¼ 2γvE1

1þ 1
2nU11 − E2

1

;

Γ 3
ðnÞ0 ¼ γ2v½ð1þ 1

2nU11Þ þ 2E2
1�

1þ 1
2nU11 − E2

1

;

Γ 3
ðnÞ1 ¼ −

2γvE1

1þ 1
2nU11 − E2

1

;

Γ 3
ðnÞ3 ¼ −γ2ð1þ v2Þð1þ 1

2nU11Þ þ E2
1

1þ 1
2nU11 − E2

1

:

The electric field component is defined by E1 ¼ F 01. In the
static case, i.e., v ¼ 0, the matrix ΓðnÞ finds the conven-
tional feature; that is, the elements of its last row and
last column, except ΓðnÞ33, vanish, and the element ΓðnÞ33
tends to −1.
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V. CONCLUSIONS

In this article we constructed the boundary state of a
bosonic closed string, emitted (absorbed) by a moving
fractional Dp-brane in the orbifoldized spacetime R1;d−5 ×
C2=Z2 in the presence of the Kalb-Ramond field, a Uð1Þ
gauge potential and the open string tachyon field. The
boundary state equations reveal that in the brane volume the
tachyon field induces an exotic potential on the center-of-
mass of the closed string.
The interaction amplitude of two parallel moving frac-

tional branes with the same dimension, in the presence of
various background fields, was acquired. The variety of the
adjustable parameters, i.e., the background fields, veloc-
ities, the spacetime and branes dimensions, and the
orbifoldized directions, elaborates a generalized amplitude
and an adjustable strength for the branes’ interactions.
For the large distances of the branes, the behavior of the

interaction amplitude was studied. We observed that for the

critical dimension d ¼ 26, in the large times the contribu-
tion of the mediated massless states quickly vanishes. This
is purely an effect of the orbifold projection. In the special
noncritical dimension, i.e., d ¼ 28, the contribution of the
massless states reduces to the conventional case; i.e., in this
dimension we receive a long-range force. In fact, for each
number of the orbifoldized directions one can demonstrate
that the damping of the long-range force is compensated by
a specific dimension of the noncritical spacetime, while for
the other dimensions the long-range force is removed. That
is, for some dimensions it is drastically quenched, while for
the other dimensions it is divergent.
At the end we specified the effects of the tachyon

condensation phenomenon on a moving fractional Dp-brane
with various background fields via its corresponding boun-
dary state. We observed that the advent of the fractionality,
transverse motion and background fields cannot protect the
brane against collapse and dimensional reduction.
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