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Spherically symmetric models of loop quantum gravity have been studied recently by different methods
that aim to deal with structure functions in the usual constraint algebra of gravitational systems. As noticed
by Gambini and Pullin, a linear redefinition of the constraints (with phase-space dependent coefficients)
can be used to eliminate structure functions, even Abelianizing the more difficult part of the constraint
algebra. The Abelianized constraints can then easily be quantized or modified by putative quantum effects.
As pointed out here, however, the method does not automatically provide a covariant quantization, defined
as an anomaly-free quantum theory with a classical limit in which the usual (off-shell) gauge structure of
hypersurface deformations in space-time appears. The holonomy-modified vacuum theory based on
Abelianization is covariant in this sense, but matter theories with local degrees of freedom are not. Detailed
demonstrations of these statements show complete agreement with results of canonical effective methods
applied earlier to the same systems (including signature change).
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I. INTRODUCTION

Several suggestions have been made in models of loop
quantum gravity which may indicate a potential to provide
interesting physical effects. Popular examples are mecha-
nisms to avoid some of the singularities encountered in
classical general relativity. Following from a crucial step in
the procedure of loop quantization, most of these effects are
based on a replacement of polynomial (extrinsic) curvature
expressions in the canonical Hamiltonian of the classical
theory by bounded (and usually periodic) functions. As can
easily be seen by the example of isotropic models, in which
the classical Hubble-squared term in the Friedmann equa-
tion would be turned into a bounded function, it is then not
surprising that upper bounds on curvature or energy
densities can be obtained. A more crucial consistency
question, also posed in [1], is whether the resulting
modified theories can be covariant, or whether the upper
bounds on curvature amount to a symmetry-breaking
cutoff.
In canonical formulations such as loop quantum gravity,

covariance is not manifest but still plays an important role.
Instead of using coordinate transformations of space-time
tensors, canonical theories refer to gauge transformations
which, in geometrical terms, generate deformations of
spatial hypersurfaces in space-time [2]. The generator of
a deformation normal to a hypersurface is the above-
mentioned gravitational Hamiltonian. If it is modified by
bounded curvature expressions (or other quantum correc-
tions), it is unclear whether it can still generate gauge

transformations. Mathematically, the question is whether
modified Hamiltonians can retain closed Poisson brackets
or commutators with themselves and with generators of
spatial deformations tangential to hypersurfaces. Some
information about this question has been gained in recent
years using effective [3–8] and operator methods [9–13].
Here we will follow a new but, as we will see, not
independent direction toward the same question.
Covariance cannot be addressed in minisuperspace

models such as isotropic cosmological ones, because they
do not show how temporal and spatial variations of fields
are related. The simplest inhomogeneous models are
obtained by imposing spherical symmetry, to be considered
in this paper. In this setting one has a nontrivial set of
hypersurface-deformation generators and brackets or com-
mutators between them. As in the full theory, the bracket of
two normal deformations has structure functions instead of
structure constants, so that the generators do not form a Lie
algebra. The usual quantization methods of gauge theories
therefore complicate considerably, and existing quantiza-
tions of spherically symmetric models use either reformu-
lations of the generators [14] or quantize the reduced phase
space from which the gauge flow has been eliminated
[15,16]. An interesting new proposal of reformulating the
generators (and at the same time including some ingre-
dients of a loop quantization) is the Abelianization of
normal deformations found recently in [17,18]. Compared
with earlier Abelianizations [19], an important feature
mentioned in [18] is that it works even when a scalar field
with local physical degrees of freedom is included. There is

PHYSICAL REVIEW D 92, 045043 (2015)

1550-7998=2015=92(4)=045043(16) 045043-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.045043
http://dx.doi.org/10.1103/PhysRevD.92.045043
http://dx.doi.org/10.1103/PhysRevD.92.045043
http://dx.doi.org/10.1103/PhysRevD.92.045043


therefore a chance that the problem of structure functions
may be overcome at least in these models.
A question left open in [17,18] is whether the resulting

quantizations are covariant. By quantizing a system in
which the brackets of gauge generators have been turned
into a Lie algebra, the constructions of [17,18] certainly
provide consistent quantummodels. However, it is not clear
whether or in what sense they are models of quantum
gravity with a consistent space-time picture. This is the
question we turn to in the present paper, starting with a
discussion of what it means for a canonical theory to be
covariant. We will show that the loop-modified vacuum
model of [17] is covariant only if the original Hamiltonian,
prior to Abelianization, is modified in a restricted way with
exactly the same conditions found by effective methods [5].
There is therefore a remarkable convergence between
results of Abelianization and the effective framework.
We will also show that the modified model of [18] with
a scalar field is not covariant, unless a background treat-
ment is used for the scalar on a vacuum solution so that
matter and gravity have nonmatching versions of covari-
ance. More broadly, we point out that to date no covariant
inhomogeneous model with local physical degrees of
freedom has been found with holonomy modifications
from loop quantum gravity (while such models exist for
curvature-independent inverse-triad corrections).

II. COVARIANCE IN CANONICAL TERMS

The canonical formulation of general relativity leads to a
phase space given by the spatial metric qab and momenta
related to extrinsic curvature Kab. It is subject to the
Hamiltonian constraints H½N�, labeled by spatial lapse
functions N, and diffeomorphism constraints D½Ma�,
labeled by spatial shift vector fields Ma. These constraints
are first class with closed brackets [20,21]

fD½Ma
1�; D½Ma

2�g ¼ D½LM1
Ma

2� ð1Þ

fH½N�; D½Ma�g ¼ −H½LMN� ð2Þ

fH½N1�; H½N2�g ¼ D½qabðN1∂bN2 − N2∂bN1Þ�: ð3Þ

They generate gauge transformations representing hyper-
surface deformations [2]. On the space of solutions to the
constraints, the same gauge transformations are equivalent
to Lie derivatives along space-time vector fields, and
therefore represent coordinate freedom. Manifest covari-
ance is replaced by gauge covariance under hypersurface
deformations. (For more details on canonical gravity, see
for instance [23].)

A. Conditions

This well-known result leads us to two conditions to be
realized for a modified or quantized canonical theory to be
covariant:

(i) The classical generators H½N� and D½Ma� must be
replaced by generators which still have closed
brackets, computed either as Poisson brackets in a
modified or effective theory, or as commutators of
operators in a quantization.

(ii) Brackets of the new generators of gauge trans-
formations must have a classical limit identical with
the classical brackets (1)–(3).

When condition (i) is satisfied, one has a consistent gauge
theory since the gauge generators eliminate the same
number of spurious degrees of freedom as in the classical
case. But only when conditions (i) and (ii) are satisfied does
one have a consistent space-time theory, in which there is a
classical regime with the correct space-time structure.
Accordingly, we call a modified, effective, or quantum
theory covariant if and only if conditions (i) and (ii) are
satisfied. The constructions in [17,18] have provided
consistent gauge theories obeying (i), but the question of
covariance or condition (ii) has not been addressed yet.
An important aspect of condition (ii) is that it is an off-

shell statement, for which not only the solution space of
constraints H½N� ¼ 0 and D½Ma� ¼ 0 is relevant but also
the behavior of fields not satisfying the constraints. This
dependence on off-shell properties is in agreement with the
usual understanding of space-time covariance, in which one
makes use of line elements or metric tensors not necessarily
solving Einstein’s (or modified) field equations. It is also an
important part of our classical picture of space-time as a
stage on which different matter systems can be set up. Even
though space-time and matter interact with each other, the
covariance conditions commonly posed for matter theories
require certain symmetries of the action on any background
space-time, not necessarily one solving Einstein’s equation.
The usual covariance statements about (classical or quan-
tum) matter systems on a classical space-time are therefore
off-shell. For all we know, there could well be stronger
interrelations between space-time and matter if both ingre-
dients are quantum, so that it would no longer be possible to
separate a covariant matter theory from an anomaly-free
space-time. However, for the combined system to have the
correct classical limit, our condition (ii), which is formu-
lated only in this limit, must still hold.

B. Background treatment

In this context, one should therefore avoid taking the
viewpoint that on-shell properties are sufficient to decide
whether a space-time theory is meaningful. Although all
observables computed with a given solution refer to the
constraint surface modulo gauge transformations, covariance
in the form usually used is a statement about a partial
solution space. (For additional reasons, see [24].) Moreover,

BOJOWALD, BRAHMA, AND REYES PHYSICAL REVIEW D 92, 045043 (2015)

045043-2



the full solution space of general relativity or a modified
version is too unwieldy and in many cases of interest does
not allow manageable on-shell statements in complete terms.
Even models such as spherically symmetric gravity with a
scalar field remain challenging in this setting. Most evalu-
ations of gravitational theories (including [18]) make use of
some kind of background approximation, in which one starts
with a simple-enough vacuum solution and then perturba-
tively includes additional inhomogeneity or matter fields on
this background. In practice, the background picture is
therefore even more pronounced than the conceptual dis-
cussions of the preceding paragraph might indicate.
In more technical details, consistency of a matter model

as a space-time theory may be formulated by requiring the
fields to satisfy the local conservation equation ∇μTμν ¼ 0
for their stress-energy tensors. Canonically, as shown in
[25], this equation follows from the analogs of (1)–(3) for a
matter Hamiltonian (assuming, for simplicity, that no
curvature couplings are present). In particular, relating
stress-energy components to different kinds of derivatives
of the matter contributions Hmatter and Dmatter

a to the local
constraints, one can derive the equation

N
ffiffiffiffiffiffiffiffiffi
detq

p ∇μTμ
0 ¼−N

∂Hmatter

∂t −Na∂Dmatter
a

∂t
þL ~NCmatter½N;Na�þ∂qab

∂t
δHmatter

δqab

þ∂b

�
N2qabDmatter

a þ2Ncqba
δHmatter

δqac

�
:

ð4Þ

(The total matter contribution, summing the smeared
contributions to the Hamiltonian and diffeomorphism
constraints, is denoted by Cmatter½N;Na�.) The classical
off-shell brackets (and not just closed constraint brackets of
some form) imply that the two terms ∂Hmatter=∂t ¼
fHmatter; H½N;Na�g and ∂aðN2Dmatter

a Þ cancel out if (3)
holds, and the rest is zero based on other identities. A
conservation law therefore follows only if the brackets are
not just closed but (in the classical limit) of precisely the
form obtained for the classical hypersurface deformations.
(In [25], a matter Hamiltonian without curvature coupling
has been assumed for simplicity, in which case the matter
Hamiltonian and diffeomorphism generators alone have
brackets of the form (1)–(3). Again, the importance of off-
shell properties is underlined because the matter contribu-
tions to the constraints need not vanish separately. Some
quantum effects, like those to be studied in the rest of this
paper, may introduce additional curvature couplings, but
they disappear in the classical limit in which the off-shell
condition (ii) is formulated.)
For these independent reasons, off-shell brackets are

relevant in the definition of covariance and should be
checked before one can claim that a quantized model is a

quantum theory of space-time. Even if one uses a back-
ground treatment for a matter field on a vacuum solution
which later has been shown to be covariant, there are still
conditions to be imposed on the matter model: the existence
of a local conservation law. A background treatment makes
the construction of models less restrictive, but still such a
procedure is far from being arbitrary.
The difference between a background treatment and a

background-independent model in standard formulations is
that only the latter ensure the existence of solutions to the
coupled equations of gravity and matter, such as Gμν ¼
8πGTμν for general relativity. Compared to a background
treatment, coupling gravity to matter in a consistent way
implies additional restrictions even if the coupled equations
are not actually solved, that is if no backreaction is
considered. Classically, the equation is consistent because
the contracted Bianchi identity for Gμν and the local
conservation law for Tμν take the same form.
In models of loop quantum gravity, the contracted

Bianchi identity, in its canonical form as Poisson brackets
of gravitational constraints, is generically modified. Instead
of (3), we usually have

fH½N1�; H½N2�g ¼ D½βqabðN1∂bN2 − N2∂bN1Þ� ð5Þ
with a phase-space function β depending on the spatial
metric qab or extrinsic curvature. A consistent background-
independent model then requires the local conservation
law, or the Poisson brackets of matter contributions to the
constraints, to be modified in a matching way with the same
function β. (We emphasize again that this condition is
important even if backreaction of matter on space-time is
not considered by solving the coupled equations.) A
background treatment, on the other hand, merely requires
that the gravitational brackets and matter brackets have
consistent but not necessarily matching forms. These
contributions would both obey (5), but possibly with
different functions β for gravity and matter. As background
models, such theories would still be formally consistent,
but it would not be clear whether they could be background
formulations of covariant background-independent models.
The quantization proposed in [18] is an example for a
background treatment which, as demonstrated by the
derivations that follow, is not known how to be embedded
in a covariant background-independent theory of the same
symmetry type (setting aside the vastly more complicated
question of embedding it in some full quantum theory).

III. ABELIANIZATION OF NORMAL
DEFORMATIONS IN SPHERICALLY

SYMMETRIC MODELS

Compared with [14,16], the formulation of spherically
symmetric models with real connection variables, given in
[26] is most relevant for the inclusion of loop effects as they
are currently understood. We first recall these variables for
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notational purposes, and then discuss features of constraints
and possible modifications.

A. Classical theory

Using a radial variable x, not necessarily identical to the
area radius r, the spatial metric or line element

ds2 ¼ ðEφÞ2
jExj dx2 þ jExjðdϑ2 þ sin2ϑdφ2Þ ð6Þ

is expressed by two functions ExðxÞ and EφðxÞ which are
the independent components of a densitized triad reduced
to spherical symmetry [27]. (While Ex is a 1-dimensional
scalar in the reduced model, Eφ has density weight one; see
[26].) The triad components are canonically conjugate to
components of extrinsic curvature:

fKxðxÞ; ExðyÞg ¼ Gδðx; yÞ ð7Þ

fKφðxÞ; EφðyÞg ¼ 1

2
Gδðx; yÞ: ð8Þ

1. Vacuum model

The reduced diffeomorphism constraint has only one
component,

D½M� ¼ 1

G

Z
dxMðxÞ

�
−
1

2
ðExÞ0Kx þ K0

φEφ

�
; ð9Þ

and the reduced Hamiltonian constraint is

H½N� ¼ −
1

2G

Z
dxNðxÞðjExj−1

2EφK2
φ þ 2jExj12KφKx

þ jExj−1
2ð1 − Γ2

φÞEφ þ 2Γ0
φjExj12Þ ð10Þ

with the spin-connection component Γφ ¼ −ðExÞ0=2Eφ. It
is a lengthy but straightforward exercise to confirm that
these phase-space functions have the brackets (1)–(3) with
the inverse spatial metric qab replaced by the one compo-
nent jExj=ðEφÞ2. These brackets control covariance in the
reduced model, that is covariance under transformations
preserving spherical symmetry.
The reduced model still has structure functions.

However, as noted in [17], the linear combination

~C ≔
ðExÞ0
Eφ H − 2

Kφ

ffiffiffiffiffiffiffiffijExjp
Eφ D ð11Þ

of the original local constraints H and D allows one to
eliminate Kx from the new constraint ~C replacing H
(leavingD unchanged). Moreover, in the vacuum case, ~C ¼
C0 is a total derivative, so that integration by parts removes
one derivative at the (small) expense of working with a
densitized lapse function N0 ≕ L. Since the final smeared
constraint

C½L� ¼
Z

dxLðxÞCðxÞ

¼ −
1

G

Z
dxLðxÞð

ffiffiffiffiffiffiffiffi
jExj

p
ð1þ K2

φ − Γ2
φÞ þ constÞ;

ð12Þ

obtained after integrating by parts N ~C ¼ NC0, depends
neither on Kx nor on spatial derivatives of Kφ or Eφ, the
antisymmetric Poisson bracket of the final constraints C is
trivially zero, while

fC½L�; D½M�g ¼ C½ðMLÞ0� ð13Þ
as suitable for a constraint with densitized lapse function
L ¼ N0.
Our Eq. (13) corrects a small mistake in Eq. (15b) of [28]

which has important conceptual ramifications. In (12), an
undetermined constant appears because C½L� is derived only
for L ¼ N0 and boundary terms are ignored in [17]. (The
constant can be related to the classical ADM mass if
asymptotic flatness is assumed.) The presence of a constant,
which does not contribute to the left-hand side of (13), is
consistent with (13) because the smearing function ðMLÞ0 on
the right-hand side is again a total derivative. This smearing
function (rather than ML0) not only follows from a direct
calculation of the bracket, it is also the correct Lie derivative
LMd=dxL ¼ ML0 þM0L of a scalar L of density weight one.
(Recall that L is defined as N0, the derivative producing a
density weight in the 1-dimensional radial manifold.)

2. Scalar field

With all these features, the original Abelianization of the
vacuum constraint might look special and coincidental.
However, as noted rather in passing in [18], the same basic
idea can be used to Abelianize the bracket of two normal
deformations for models with a scalar field, except that the
constraint is no longer a total derivative and one does not
integrate by parts: The analog of the previous smeared ~C is
now

C½N� ¼ 1

G

Z
dxNðxÞ

�
−
1

2

ðExÞ0ffiffiffiffiffiffiffiffijExjp ð1þ K2
φÞ− 2

ffiffiffiffiffiffiffiffi
jExj

p
KφKφ

0

þ ðExÞ0
8

ffiffiffiffiffiffiffiffijExjp ðEφÞ2 ð4E
xðExÞ00 þ ððExÞ0Þ2Þ

−
1

2

ððExÞ0Þ2 ffiffiffiffiffiffiffiffijExjp ðEφÞ0
ðEφÞ3 þ 2πG

ðExÞ0ffiffiffiffiffiffiffiffijExjp ðEφÞ2

× ðP2
ϕ þ ðExÞ2ðϕ0Þ2Þ − 8πG

ffiffiffiffiffiffiffiffi
jExj

p Kφ

Eφ Pϕϕ
0
�
:

ð14Þ
The Abelianization property is not trivial at all, but by an
explicit calculation one can confirm that it is still true. As
we shall see, it generalizes to other matter fields as well.
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There is therefore a chance that Abelianizations of
normal deformations can give rise to generic results at
least in midi-superspace models. (Indeed, normal deforma-
tions in polarized Gowdy models can be Abelianized in a
very similar way [29,30].) Since the method relies on
eliminating one component of extrinsic curvature from the
Hamiltonian constraint, it is not clear how useful it could be
in the full theory where no component is distinguished. It is
also important that H, like D, is linear in the extrinsic-
curvature component to be eliminated, which again is not
true for any component in the full theory.

B. Modifications

Loop quantization of spherically symmetric models
[26,31] proceeds by turning Ex and Eφ into derivative
operators on spin-network states, while Kx and Kφ are not
directly represented. Instead, these degrees of freedom
are realized via holonomy operators quantizing h½x1;x2� ≔
expði R x2

x1
KxðxÞdxÞ and hfxg ≔ expðiKφðxÞÞ. (We label

“extended holonomies” ofKx by intervals ½x1; x2� and “point
holonomies” of Kφ by points fxg.) The first expression is a
gauge-invariant version of the U(1)-holonomy of the
x-component of a connection, while the second expression
models the same exponential behavior for the angular
component.
In order to proceed to a quantization of the constraints,

one has to make sure that all ingredients can be expressed
by holonomies instead of curvature (or connection) com-
ponents. Since the classical constraints are at most quad-
ratic in the latter, they require modifications (often viewed
as regularizations) before they can be turned into operators.
(One can avoid modifications of the diffeomorphism
constraint by representing the finite flow it generates
instead of the infinitesimal generator [32]. We comment
on this step and possible problems in Appendix A.) As
mentioned in the Introduction, unbounded functions of the
classical curvature components are then replaced by
bounded functions such as hfxg for K2

φ. Applied to the
Hamiltonian constraint, this process amounts to a modifi-
cation which may break covariance.
In [17,18], consistent gauge theories have been found

even with a modification of the Kφ-dependence, making use
of Abelianization results. However, the covariance question
remains to be addressed. We now answer this question
(with two different outcomes) in the two cases of the vacuum
model and the scalar model. After this, we extend
Abelianization results to general spherically symmetric
matter systems, with the same outcome as for a scalar field.

1. Vacuum model

It is clear that a modified constraint C½L� obtained after
replacing K2

φ in (12) by δ−2 sin2ðδKφÞ (or any other
function of Kφ) preserves the Abelian nature of the vacuum
constraint. Condition (i) for a consistent gauge theory is
therefore respected by the modification. The question

whether condition (ii) for a space-time model is respected
is less trivial to answer. Without the modification, we know
that the Abelian constraint comes from a system which
obeys the classical hypersurface-deformation brackets.
However, this observation does not guarantee that there
is a formulation of the modified constrained system which
(i) is closed for all values of δ and (ii) has brackets in
agreement with classical generators of hypersurface defor-
mations in the classical limit δ → 0.
Let us begin by modifying the first two terms of the usual

classical Hamiltonian constraint with arbitrary functions of
the extrinsic-curvature component Kφ. This procedure is
equivalent to including only pointwise holonomy corrections
for the angular component of the connection coefficient:

H½N�¼−
1

2G

Z
dxNðxÞðjExj−1

2Eφf1ðKφÞþ2jExj12f2ðKφÞKx

þjExj−1
2ð1−Γ2

φÞEφþ2Γφ
0jExj12Þ: ð15Þ

We first define a new linear combination of the modified
Hamiltonian constraint and the usual diffeomorphism con-
straint, just as in the classical case, to eliminate Kx from the
new constraint while leaving the diffeomorphism constraint
unchanged

~C ≔
ðExÞ0
Eφ H − 2

f2ðKφÞ
ffiffiffiffiffiffiffiffijExjp

Eφ D: ð16Þ

The new constraint has the form

~C½N� ¼ −
1

G

Z
dxNðxÞ ~CðxÞ

¼ −
1

G

Z
dxNðxÞ

�
d
dx

½
ffiffiffiffiffiffiffiffi
jExj

p
ð1 − Γ2

φÞ�

þ 1

2
jExj−1=2ðExÞ0f1 þ 2jExj1=2f2K0

φ

�
: ð17Þ

It is straightforward to see that the condition for ~C to be a
total derivative is

2f2 ¼
df1
dKφ

: ð18Þ

If this equation is true, we obtain a Lie algebra for the system
of constraints as in the classical case. A more general
analysis of consistent modifications of the Abelianized
constraints is given in Sec. III B 4.
Alternatively, we could have started from the classical

version of the new constraint C½N� in (12), after
Abelianization, introduced the modification function f1
as in [17], and then asked whether the modified constraint
can be redefined as part of a constrained system with
hypersurface deformations as the classical limit. To do so,
we should find out how we can go from the (modified)
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Abelianized system of constraints to a new system of
constraints H and D which, in the classical limit, are the
generators of hypersurface deformations. After modifying
the Abelianized constraint, we go back to a system of
Hamiltonian and diffeomorphism constraints by a linear
combination of D with the new constraint, which can only
be the inverse of (16), with f2 obeying (18) for the correct
hypersurface-deformation brackets to be realized in the
classical limit [after integrating by parts the modified (12)].
The new system has the classical diffeomorphism con-
straint and a modified Hamiltonian constraint with the first
two terms proportional to functions of Kφ which automati-
cally obey the relation (18) as a consequence of integrating
by parts.

2. Equivalence with effective methods and deformed
constraint brackets

This outcome, including the precise form of the relation
(18), is just what happens when one tries to close the
algebra of constraints without Abelianization, starting with
holonomy modifications directly in the Hamiltonian con-
straint [5,8]. Thus, the Abelianized system of constraints in
[17,18] is equivalent to the system of modified constraints
with deformed structure functions from effective models,
provided one makes sure that the modified system is still
covariant. In particular, the hypersurface-deformation
brackets are closed but deformed for δ ≠ 0.
Although Abelianization of normal deformations allows

one to remove structure functions from the brackets of
constraints, for covariant versions the same modifications
of brackets of hypersurface deformations are obtained as
found in direct treatments of structure functions [5,8]:
For holonomy-modified spherically symmetric models, we
have brackets (5) with

β ¼ ∂f2
∂Kφ

¼ 1

2

∂2f1
∂K2

φ
ð19Þ

using (18). This function is negative near a local maximum
of f1, indicating signature change [33,34]. This important
consequence and related implications of holonomy mod-
ifications cannot be avoided by reformulating the constraint
algebra because covariance conditions still require one to
check the brackets of hypersurface deformations even if
their generators are not used directly as constraints.
Realizing these relationships, there is complete agreement
between the modified models based on Abelianizations,
presented in [17,18], and the earlier constructions of
anomaly-free effective models in [5,8].

3. Scalar field

It is easy to see that the Hamiltonian constraint of a
spherically symmetric gravity theory coupled to matter
cannot be modified according to holonomy corrections as

incorporated previously. If we look back at the classical form
of the Hamiltonian (14), we realize that Abelianization
works due to some subtle cancellations. The bracket between
the second term from the gravitational part in (14) (propor-
tional to K0

φ) and the first term from the scalar part
(proportional to Pϕ) is canceled by the bracket between
the first term and the third term (proportional to Pϕϕ

0), both
from the scalar part. Similarly, the bracket between the same
(second) term from the gravitational part and the second term
from the scalar part (proportional to ϕ0) is canceled by the
term arising from the bracket between the second and third
term of the scalar part. However, the most interesting
cancellation happens between the brackets of the first and
second terms of the scalar part and the bracket of the fourth
term of the gravitational part [proportional to ðEφÞ0] and the
third term of the scalar part.
If we now replace the extrinsic-curvature components by

some arbitrary functions of this variable, the resulting
bracket of constraints can never be made to close into a
combination of constraints, let alone made zero for an
Abelian bracket. If we replace K2

φ in the gravitational part
by some function fðKφÞ, then the Kφ in the third term of
the scalar part has to be replaced by df=dKφ, such that the
first two pairs of cancellations are still valid just as in the
classical case. However, with this modification, the bracket
between the first and second terms of the scalar part (which
do not contain Kφ to be modified) is not canceled by the
bracket coming from the term proportional to ðEφÞ0 from
the gravitational part and the third term from the scalar part,
the latter now having been modified. (Section III B 4
contains a more explicit demonstration.)
Although the result is negative in the sense that a simple

Abelianization does not lead to a covariant modified theory,
there is again agreement with effective methods. Attempts
to include scalar fields in spherically symmetric models
within an effective approach, along the lines of [5,8] for
vacuum models, have failed to provide closed brackets of
constraints including holonomy modifications. The reason
for this lack of closure is the appearance of precisely the
same terms that do not cancel out in an attempted
Abelianization. At present, it is not known whether
holonomy-modified spherically symmetric models with a
scalar field can be anomaly-free, or whether their normal
deformations can be Abelianized. We will demonstrate the
equivalence of these negative results based on effective
methods and partial Abelianizations after introducing more
general matter systems.

4. General matter model

We now consider generic (spherically symmetric) matter
systems with nonderivative couplings to gravity. We assume
a consistent or first-class gravity-matter system of this kind,
which has been obtained by inserting modification functions
in a classical matter system without curvature coupling and
higher spatial derivatives. The classical matter Hamiltonian
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therefore obeys the bracket (3) on its own, without including
gravitational terms. We assume the same property to be true
for a modified Hamiltonian obtained in this way even if
modification functions are allowed to depend on curvature
components (but not on spatial derivatives). In fact, it turns
out to be difficult to find consistent modified theories
violating this assumption because cross-terms of the gravi-
tational and matter parts of constraints in the fH;Hg-bracket
would lead to higher spatial derivatives in the bracket which,
if nonzero, could not be absorbed in a constraint to produce a
first-class system One can also confirm this property
explicitly for the matter Hamiltonians given below, where
correction functions are allowed to depend on Kφ.
The form of modifications assumed here therefore

implies that the matter parts of the diffeomorphism and
Hamiltonian constraints, Hmatter½N� ¼ R

dxNHmatter and
Dmatter½M� ¼ R

dxMDmatter, satisfy

fDmatter½M�; Dmatter½N�g ¼ Dmatter½MN0 − NM0� ð20Þ

fHmatter½M�; DT½N�g ¼ −Hmatter½NM0� ð21Þ

fHmatter½M�; Hmatter½N�g
¼ Dmatter½β̄jExjðEφÞ−2ðMN0 − NM0Þ� ð22Þ

where DT½N� ≔ D½N� þDmatter½N� is the total diffeomor-
phism constraint, including the gravitational part.
Classically one would have β̄ ¼ 1 (and Hmatter would only
depend on the triad fields), but here we are allowing for a
correction function β̄ðKφ; ExÞ to take into account possible
deformations of the matter part as in (5). Therefore, to
compute brackets we assume that Hmatter may also depend
on Kφ (but not on Kx, nor on derivatives of Kφ or the triad).
The brackets of total Hamiltonian constraints, combining
gravity and matter contributions, then do not decouple from
each other, and cross-terms will have to be considered
below. (Cross-terms must vanish in this case according to
the argument given at the beginning of this subsection, but
will do so only with additional restrictions on the modi-
fication functions.)
Examples of such deformed matter systems include the

scalar field, dust and null dust: In the first case, we have a
canonical pair

fϕðxÞ; PϕðyÞg ¼ 1

4π
δðx; yÞ; ð23Þ

and corresponding constraints

Dmatter½N� ¼ 4π

Z
dxNPϕϕ

0; ð24Þ

and

Hmatter½M� ¼ 4π

Z
dxM

�
ν

P2
ϕ

2jExj1=2Eφ
þ σ

jExj3=2ϕ02

2Eφ

þ jExj1=2Eφ UðϕÞ
2

�
; ð25Þ

with correction functions νðKφ; ExÞ and σðKφ; ExÞ such
that β̄ ¼ νσ. For dust fields [35], we have two canonical
pairs with

fτðxÞ; PτðyÞg ¼ fΦðxÞ; PΦðyÞg ¼ 1

4π
δðx; yÞ; ð26Þ

and a contribution

Dmatter½N� ¼ 4π

Z
dxNðPττ

0 þ PΦΦ0Þ ð27Þ

to the diffeomorphism constraint, while the matter part of
the Hamiltonian constraint is

Hmatter½M� ¼ 4π

Z
dxM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
τ þ β̄

jExj
ðEφÞ2 ðPττ

0 þ PΦΦ0Þ2
s

:

ð28Þ

For null dust fields [36], only the second canonical pair in
(26) survives and

Hmatter½M� ¼ 4π

Z
dxM

ffiffiffiffiffiffi
jβ̄j

q ffiffiffiffiffiffiffiffijExjp
Eφ jPΦΦ0j: ð29Þ

Starting from the classical linear combination of con-
straints

~CT ¼ ðExÞ0
Eφ ðHþHmatterÞ − 2

Kφ

ffiffiffiffiffiffiffiffijExjp
Eφ ðDþDmatterÞ;

one may replace K2
φ, KφKφ

0 and Kφ multiplying the matter
part of the diffeomorphism constraint by three different
functions f1, F2 and Fmatter. We therefore define

~Cmatter ≔
ðExÞ0
Eφ Hmatter − 2

FmatterðKφ; ExÞ ffiffiffiffiffiffiffiffijExjp
Eφ Dmatter

ð30Þ

and

~CT ≔ ~C þ ~Cmatter: ð31Þ

In the first term of gravitational contributions to the
constraint, we now consider a more general modified
expression:
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~C½M� ¼ −
1

2G

Z
dxM

�
jExj−1=2ðExÞ0ð1þ f1ðKφ; ExÞÞ þ 2jExj1=2F2ðKφ; K0

φ; ExÞ

−
ðExÞ0
4ðEφÞ2 ð4jE

xj1=2ðExÞ00 þ jExj−1=2ððExÞ0Þ2Þ þ jExj1=2ððExÞ0Þ2ðEφÞ0
ðEφÞ3

�
ð32Þ

where K2
φ has been replaced by a function f1 of Kφ (and

possibly Ex), and KφKφ
0 by a function F2 of these same

variables. We will also assume the orientation Ex > 0.
Using the equivalent expression

~C½M� ¼ −
1

2G

Z
dxM

�
d
dx

½2jExj1=2ð1 − Γ2
φÞ�

þ 2ðjExj1=2Þ0f1 þ 2jExj1=2F2

�
; ð33Þ

it is straightforward to see that requiring the term inside
the parenthesis to be a total derivative restricts f1

and F2 to be independent of Ex, and F2 to be linear
in K0

φ:

F2ðKφ; K0
φÞ ¼ 2f2ðKφÞK0

φ with 2f2 ¼
df1
dKφ

: ð34Þ

[Substituting the first condition back in (33) we recover
(17) and the second condition is again the same as the one
obtained from effective models for the closure of the
modified Hamiltonian and diffeomorphism constraints.]
Using (20), (21) and (22), we compute the bracket

f ~CT½M�; ~CT½N�g ¼ f ~C½M�; ~C½N�g þ
Z

dxðMN0 − NM0Þ

×

� jExj
ðEφÞ2

�ððExÞ0Þ2
ðEφÞ2

�
β̄ −

∂Fmatter

∂Kφ

�
þ 2Fmatter

�
2Fmatter −

∂F2

∂K0
φ

��
Dmatter

−
jExj1=2ðExÞ0

ðEφÞ2
�
2Fmatter −

∂F2

∂K0
φ

��
Hmatter − Eφ ∂Hmatter

∂Eφ

�
þ jExj1=2ððExÞ0Þ3

2ðEφÞ4
∂Hmatter

∂Kφ

�
: ð35Þ

(For details, see Appendix B.) We first note that the bracket

f ~C½M�; ~C½N�g ¼ −
1

2G

Z
dxðMN0 − NM0Þ jE

xjððExÞ0Þ2
ðEφÞ3

�∂F2

∂Kφ
−

∂2F2

∂Kφ∂K0
φ
Kφ

0

þ
�

1

2jExj
�∂f1
∂Kφ

−
∂F2

∂K0
φ

�
−

∂2F2

∂Ex∂K0
φ

�
ðExÞ0 − ∂2F2

ð∂K0
φÞ2

K00
φ

�
ð36Þ

by itself may form a closed system only if it vanishes
identically: since (36) does not depend on Kx and ðExÞ00,
f ~C½M�; ~C½N�g ¼ F ~C

~C þ FDD implies F ~C ¼ FD ¼ 0.
This is the Abelianization condition in the vacuum case.
The vanishing of the K00

φ term again implies that F2 must
depend linearly on K0

φ. Using this condition, all terms
proportional to K0

φ cancel out. The vanishing of the first
term and the ðExÞ0-term imply that F2 has the form
F2 ¼ 2f2ðKφ; ExÞK0

φ þ f3ðExÞ, for a general function f3
of the triad component Ex, as well as

∂f1
∂Kφ

− 2f2 ¼ 4jExj ∂f2∂Ex : ð37Þ

This requirement matches (34) in the case of correction
functions independent of Ex.

With these conditions, we can now look at the additional
contributions to (35) in the presence of matter. Using the
expression obtained for F2 and requiring the total bracket
(35) to be zero, we must have

Fmatter ¼ f2; β̄ ¼ ∂f2
∂Kφ

and
∂Hmatter

∂Kφ
¼ 0: ð38Þ

The last condition in (38) tells us that no deformation of
the matter part depending on Kφ is consistent with
Abelianization (or a closed system). Furthermore, in the
case of deformations of the matter Hamiltonian indepen-
dent of curvature, β̄ðExÞ can only be a function of the triad.
Thus also in this case, the second condition in (38) implies
that the only possible dependence on Kφ of the whole
system is the classical one. If a deformation consistent with
Abelianization exists, it must contain other derivatives of
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the fields. Remarkably, however, in the classical case with
β̄ ¼ 1 Abelianization of the constraint ~CT½M� follows for
general matter systems satisfying (20)–(22), not just for a
scalar field.

5. Maxwell field

To arrive at the negative conclusions above, it was crucial
that the matter contribution to the diffeomorphism con-
straint is assumed to be nonzero. It is well known, however,
that substituting a spherically symmetric ansatz in the
canonical action for a Maxwell field leads to a consistent
reduced system with a vanishing contribution to the diffeo-
morphism (or vector) constraint [37]. This property leaves
the possibility open for a consistent Abelianization of the
Einstein-Maxwell system (which, however, does not have
local degrees of freedom in spherical symmetry).
Indeed, in this case the canonical pairs are

fAxðxÞ; PðyÞg ¼ 1

4π
δðx; yÞ; ð39Þ

with AxðxÞ the sole spatial radial component of the vector
potential and Ex ≔ P sin ϑ the only nonzero radial compo-
nent of the (densitized) electric field. The contribution to
the Hamiltonian constraint is

Hmatter½M� ¼ 4π

Z
dxM

EφP2

2jExj3=2 ; ð40Þ

and there is the additional (Maxwell) Gauss constraint:

GMaxwell½Λ� ¼ 4π

Z
dxΛP0: ð41Þ

There is no contribution to the vector constraint obtained
from the fH;Hg-bracket, so the system does not satisfy
(20)–(22) but instead

DT½N� ¼ D½N� ð42Þ

fHmatter½M�; DT½N�g ¼ −Hmatter½NM0�
−GMaxwell½MNEφjExj−3=2P� ð43Þ

fHmatter½M�; Hmatter½N�g ¼ 0: ð44Þ

As before, one may also consider a deformed system
(which satisfies the same bracket relations) with

Hmatter½M� ¼ 4π

Z
dxM

νEφP2

2jExj3=2 ; ð45Þ

and correction function νðKφ; ExÞ. The combined con-

straint ~CT½M� results from taking Dmatter ¼ 0 in expression
(30), so that now f ~Cmatter½M�; ~Cmatter½N�g ¼ 0 and only the
last term in (35) survives:

f ~CT½M�; ~CT½N�g ¼ f ~C½M�; ~C½N�g þ
Z

dxðMN0 − NM0Þ

×
jExj1=2ððExÞ0Þ3

2ðEφÞ4
∂Hmatter

∂Kφ
: ð46Þ

Thus, a consistent Abelian deformation is always possible,
but again only as long as the correction function ν is
independent of curvature. The gravitational contribution to
the Hamiltonian constraint, however, can be modified in a
curvature-dependent way. Nevertheless, this model is not a
counterexample to our statements that no covariant hol-
onomy-modified models with local degrees of freedom are
known, because there are no local degrees of freedom in the
spherically symmetric Einstein–Maxwell system. As we
shall recall in the next section, these properties are again
fully compatible with results [38] using effective methods
and the requirement of anomaly-freedom.
We can interpret this system as further circumstantial

evidence that local degrees of freedom seem to be responsible
for making it more difficult (if not impossible) to find
covariant models with holonomy modifications. The spheri-
cally symmetric Einstein–Maxwell system can obey the
required consistency conditions, but only because the
Gauss constraint allows one to eliminate the new kinematical
degree of freedom, given by the Maxwell fields, from the
diffeomorphism constraint. The same constraint, P0 ¼ 0 in its
local version, removes the new kinematical degree of free-
dom from the reduced phase space. In contrast to the scalar or
dust examples, the nongravitational local kinematical degree
of freedom therefore does not lead to local physical degrees
of freedom, which then do not seem to present an obstacle to
a consistent holonomy-modified model.
Looking back at these calculations, the modified

Einstein–Maxwell system can be consistent despite the
fact that there is no contribution to the diffeomorphism
constraint because in this case the matter contributionR
dxδNAxP0 to the infinitesimal generator of radial diffeo-

morphisms is a multiple of the Gauss constraint. Again, this
is a special property of reduced models and unlikely to
extend to general configurations. One may consistently
define the Einstein–Maxwell constrained system as in [38],
with nonzero contribution

Dmatter½N� ¼ −4π
Z

dxNAxP0: ð47Þ

However, this alternative set of constraints satisfies
(20)–(22) with β̄ ¼ 0 and hence does not lead to an
Abelian deformation. (In fact, even classically, the corre-
sponding system of constraints CT½M� and DT½N� is not
closed unless the Gauss constraint is included.) Even
though the two initial systems of constraints with different
contributions to DT½N� are equivalent, the two systems
derived from them by substituting the Hamiltonian con-
straint with CT½M� are not.
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The generator of spatial diffeomorphisms, (47), has also
been used in [39] in the context of Abelianization. While
Abelianization of normal hypersurface deformations could
be achieved in this case, it was possible only by fixing the
U(1)-gauge of the Maxwell contribution. Our construction
leads to a more general result, showing Abelianization even
if no partial gauge fixing is used.

C. Impossible modifications

We will now verify explicitly that the impossibility of
obtaining a (partially) Abelian algebra from deformations
of the classical ~CT constraint is consistent with negative
results for an anomaly-free deformed constraint algebra.
Again, consider a classical spherically symmetric matter

system with nonderivative couplings, and such that cor-
rection functions in the Hamiltonian HT½M� ¼ H½M� þ
Hmatter½M� do not contain derivatives of the gravitational
fields K and E. It is easy to see that if the deformed vacuum
algebra satisfies

fH½M�; H½N�g ¼ D½βjExjðEφÞ−2ðMN0 − NM0Þ� ð48Þ

with a correction function β depending on the connection or
extrinsic curvature, and the matter contribution to the
diffeomorphism constraint is nontrivial, then the matter
Hamiltonian must be deformed with correction functions
also depending on extrinsic curvature. (This is at least true
if we assume no second or higher derivatives of the matter
fields.) Indeed, if we assume Hmatter to be independent of
Kx and Kφ it follows that

S ≔ fH½M�; Hmatter½N�g − ðM ↔ NÞ ¼ 0;

and therefore the “crossed” or “mixed” brackets vanish and
we have

fHT½M�; HT½N�g ¼ fH½M�; H½N�g
þ fHmatter½M�; Hmatter½N�g:

For a first-class algebra we must have

fHmatter½M�; Hmatter½N�g
¼ Dmatter½βjExjðEφÞ−2ðMN0 − NM0Þ�:

There cannot be additional multiples of the (total)
Hamiltonian constraint since the latter contains second
derivatives of Ex. However, the right-hand side of the above
expression for the bracket depends on curvature, so the left-
hand side, that is Hmatter½M�, must depend on curvature
after all.
Motivated by the previous observations and by consis-

tent deformations with inverse-triad corrections obtained in
[5–7], we will consider matter systems which additionally
satisfy (20), (21) and (22) with a correction function

β̄ðKx; Kφ; ExÞ depending on both extrinsic curvature com-
ponents and Ex. (The scalar and dust fields above with
deformation functions also depending on Kx satisfy these
conditions.) For these systems or any other model with
matter Hamiltonians depending on connection or extrinsic-
curvature components, we have

S ¼
Z

dxðMN0 − NM0Þ
��jExj−1

2ðExÞ0
2Eφ −

jExj12ðEφÞ0
ðEφÞ2

�
×
∂Hmatter

∂Kx
þ jExj12ðExÞ0

2ðEφÞ2
∂Hmatter

∂Kφ

�
þ
Z

dxðMN00 − NM00Þ jE
xj12

Eφ

∂Hmatter

∂Kx
: ð49Þ

As shown in [8], variations by MN0 − NM0 and
MN00 − NM00 are independent, so that ∂Hmatter=∂Kx ¼ 0.
Therefore, restricting now to Kx-independent corrections,

fHT½M�; HT½N�g

¼
Z

dxðMN0 − NM0Þ
� jExj
ðEφÞ2 ðβDþ β̄DmatterÞ

þ jExj12ðExÞ0
2ðEφÞ2

∂Hmatter

∂Kφ

�
: ð50Þ

It is now easy to see that the last term cannot be a linear
combination containing the total Hamiltonian because the
latter contains second-order derivatives of Ex in its gravi-
tational part while the former does not. Since Hmatter must
be independent of Kx, this last term cannot contain a
multiple of the gravitational part of the diffeomorphism
constraint D either. Hence the only possibilities left for a
closed algebra are that the last term vanishes or that it is a
multiple of Dmatter. Since we are assuming Dmatter ≠ 0, this
last possibility is, however, inconsistent since it would
require β to depend on ðExÞ0. It then follows again that
deformations of the matter Hamiltonian must be indepen-
dent of Kφ:

∂Hmatter

∂Kφ
¼ 0 and β ¼ β̄:

If Hmatter is independent of both curvature components,
then β̄ is necessarily independent of curvature too and the
last condition above precludes any vacuum deformation
such as (19) depending on curvature. We have come full
circle, in this case the only consistent deformations of the
combined gravity-matter system independent of Kx must
also be independent of Kφ. Only triad-dependent deforma-
tions of the type found in [5–7] are allowed.
For Maxwell fields, there is no contribution from the

fHmatter½M�; Hmatter½N�g-bracket, and therefore β̄Dmatter ¼
0 in (50). Deformations of the gravitational and matter parts
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of the Hamiltonian effectively “decouple” and we see that
consistent or anomaly-free deformations are possible with
Kφ-dependent deformations (19) of the gravitational part
and an undeformed or deformed but curvature-independent
matter Hamiltonian.

IV. CONCLUSIONS

Abelianization of normal hypersurface deformations can
eliminate structure functions from constraint brackets and
thereby open up access to standard quantization methods
applied to gravitational models. However, by itself, this
result leaves the question of covariance unaddressed, which
is important for gravitational theories. As shown here,
covariance of modified theories is indeed nontrivial in this
setting, and it is not always realized: A standard holonomy
modification of the Abelianized constraint does not lead to
hypersurface-deformation generators with the correct
classical limit if a scalar field or other matter with local
physical degrees of freedom are coupled to gravity.
In our general discussion of covariance in canonical

systems, we have highlighted the important distinction
between background treatments and background-
independent theories. Even if backreaction is not consid-
ered, there is a difference between these two cases as
regards covariance in nonclassical systems. Hypersurface-
deformation generators may then be deformed in different
ways as one departs from the classical limit, but a consistent
gravity-matter system requires the same deformation of
both ingredients. A background treatment in which covari-
ance is required separately for gravity and matter, on the
other hand, may formally give rise to more options. As an
example, the holonomy-modified scalar model of [18] does
not correspond to a covariant gravity-matter system, as
shown here, but the actual constructions of [18] make use
of a gravitational background and may be formally con-
sistent. (We note that two different kinds of modifications
appear in [18], holonomymodifications and a discretization
of the scalar Hamiltonian. While the latter is in the
foreground in [18], we have tested only the former in
the present paper. Covariance conditions on discretized
scalar Hamiltonians remain to be explored, but possible
discrete versions of hypersurface-deformation brackets are
known [40].)
An interesting result is also the fact that there seems to be

complete agreement on this question, addressed with
different methods: Abelianization and anomaly freedom
implemented with effective techniques as introduced in [3]
in the context of cosmological perturbations. This con-
vergence of results obtained by different methods gives
further support to the phenomenon of signature change
discovered by an analysis of canonical effective models
[33]. At first sight, it might seem that the constructions of
[17,18] do not lead to modified space-time structures in
spherically symmetric models, unlike what effective cal-
culations have shown in the same models [5,8]. However, if

one actually poses the question of covariance and space-
time structure in the constructions of [17,18], one finds, as
shown here, that covariance requires the Hamiltonian
constraints to be modified with the same restriction (18)
as found in [5,8] for anomaly-free effective models. If K2

φ is
replaced by some function fðKφÞ, in effective and
Abelianized models the same modified brackets

fH½N1�; H½N2�g
¼ −D½βðKφÞðjExj=ðEφÞ2ÞðN1N2

0 − N2N1
0Þ� ð51Þ

are realized for generators of hypersurface deformations,
with a nontrivial function

βðKφÞ ¼
1

2

∂2f
∂K2

φ
: ð52Þ

[Signature change is indicated by β changing sign, which
always happens if fðKφÞ has a local maximum. For the
popular modification fðKφÞ ¼ δ−2 sin2ðδKφÞ, for instance,
βðKφÞ ¼ cosð2δKφÞ.] The agreement of results is promis-
ing, but at the same time one then has to take seriously the
resulting modified space-time structures at high curvature,
which can lead to problems of indeterminism and Cauchy
horizons for black holes [41] or global issues for cosmo-
logical perturbation equations [34].
In this light, the language used in [17,18], speaking

about quantum systems on quantum space-time does not
seem justified because covariance conditions, which are
usually understood as being crucial for space-time theories,
have not been checked. (This language goes back to
cosmological constructions in [42,43], where it seems
equally unjustified because the background minisuperspace
models used in these examples do not even allow one to test
covariance and the consistency of quantum space-time
structures. Instead, metric structures are merely postulated.)
In the scalar model, no consistent space-time structure of
the holonomy-modified theory is known, so that it seems
unclear how to use formal solutions of these systems for an
analysis of Hawking radiation, the stated aim of [18].
At present, it is not known whether covariance can

always be realized in the presence of holonomy modifica-
tions from loop quantum gravity, even if one restricts
oneself to the rather tractable spherically symmetric mod-
els. Especially the presence of local physical degrees of
freedom seems to pose a challenge, as indicated by the
general matter models considered here (as well as the
spherically symmetric Einstein–Maxwell system as dis-
cussed in Sec. III B 5) and the polarized Gowdy models of
[29]. This result of our paper might pose a challenge to loop
quantum gravity. We certainly did not discuss full quan-
tizations of the models considered, but if the theory is to
have the correct semiclassical limit, brackets of the form
analyzed here will be encountered in some way.
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The partial nature of our no-go results [44] can be used to
suggest how covariant holonomy-modified models with
local degrees of freedom could possibly be realized. One
way to avoid the negative conclusions would be to include
higher spatial derivatives of the matter field. Such terms are
expected in continuum effective models of loop quantum
gravity because matter fields and their standard derivative
terms in the Hamiltonian have to be discretized for an
operator acting on spin-network states [45]. For anomalies
to cancel out, holonomy modifications in the gravitational
contribution to the constraint would have to be carefully
adjusted to matter discretizations. So far, these two quan-
tization steps have been considered as independent, but off-
shell anomaly-freedommay force one to combine them. If a
consistent version then becomes possible, it would have
several unexpected features, in addition to making con-
sistent models rather tightly constrained. First, for the
covariance conditions of the gravitational background
and the matter system to match, the matter discretization
would have to depend on extrinsic curvature because the
modified structure function (52) of a covariant holonomy-
modified background has such a dependence. Second,
holonomy modifications in one direction (here, an angular
direction in spherically symmetric models which gives rise
to point holonomies ofKφ) would have to be closely related
to the matter discretization in another direction (here, the
radial one so as to have higher spatial derivatives). It is not
clear whether covariant models can be found by imple-
menting these features, evading our no-go results. (For
radial holonomy modifications in vacuum spherically
symmetric models, higher spatial derivatives do not seem
to help much [8].) Nevertheless, there is a chance that it
would be fruitful to match covariance conditions of
gravitational terms with holonomy modifications, as
studied in [5,8] and in the present paper, with methods
to obtain consistent discretizations as studied for instance in
[40,46,47].
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APPENDIX A: DIFFEOMORPHISM CONSTRAINT

The diffeomorphism constraint in loop quantum gravity
is usually not constructed by writing the classical expres-
sion in terms of holonomies and inserting basic operators,
but rather by lifting the spatial flow generated by the
constraint to the state space [32]. (See [48] for an
alternative.)
In spherically symmetric models [26], one can represent

states by referring to an orthonormal basis

ψfðx1;k1;μ1Þ;…;ðxn;kn;μnÞg½Kx; Kφ�

¼
Yn
j¼1

exp

�
ikj

Z
xjþ1

xj

Kxdx

�
exp ðiμjKφðxjÞÞ ðA1Þ

with integer kj, real numbers μj, and xj in the radial
manifold. (For simplicity, we assume the radial manifold to
be compact. In the notation used to write states, we set
knþ1 ¼ 0.) Spatial diffeomorphisms Φ can easily be rep-
resented unitarily by

Φ̂ψfðx1;k1;μ1Þ;…;ðxn;kn;μnÞg

≔ ψfðΦðx1Þ;k1;μ1Þ;…;ðΦðxnÞ;kn;μnÞg: ðA2Þ

This action can be used to factor out spatial diffeomorphisms
by group averaging, but it does not define a diffeomorphism
constraint: States with different fx1;…; xng are orthogonal
to each other, so that one cannot take a t-derivative of the
quantized flow of a 1-parameter family Φt ¼ expðtvÞ with a
spatial vector field v as an infinitesimal generator.

1. Effective constraints

In a continuum effective theory, on the other hand, there
should be a well-defined version of the diffeomorphism
constraint, possibly with quantum corrections. For instance,
in the canonical framework of [49–51], the effective con-
straint would be computed as the expectation value of
Φ̂ in a suitable class of semiclassical states obtained by
superpositions of the basis states. For a local effective theory
(and therefore the classical limit) to exist, these superposed
states must be such that expectationvalues hÊxi and so on are
differentiable functions ofx in some coarse-graining approxi-
mation. A derivative expansion of these or more complicated
expectation values (such as the Hamiltonian constraint) then
gives rise to a theory with gauge transformations of infini-
tesimal diffeomorphisms acting on effective fields.
In order to compute an effective constraint, one need not

construct explicit semiclassical states, which would be
challenging in models of loop quantum gravity. Instead,
one parametrizes states by expectation values and moments
of basic operators, so that a semiclassical regime can be
specified more easily by a certain hierarchy of the moments
by powers of ℏ. By the same condition, the derivative
expansion can be combined with a semiclassical expansion,
in which the classical diffeomorphism constraint is
extended by moment terms. Not only expectation values
of the basic operators but also their fluctuations and higher
moments are then subject to gauge transformations.
In addition to expectation values of basic operators

quantizing Ex, Kx, Eφ and Kφ in the case of spherically
symmetric models, the moments are defined as

Δ½ðEφÞn1ðExÞn2ðKφÞn3ðKxÞn4 �
≔ hðdΔEφÞn1ð ˆΔExÞn2ð dΔKφÞn3ðdΔKxÞn4isymm ðA3Þ
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in totally symmetric ordering, where Δ̂ζ ≔ ζ̂ − hζ̂i if ζ
represents a generic phase space variable. In a loop
quantization, one would use holonomy operators instead
of quantized components of extrinsic curvature. These
variables form a phase space, with a Poisson bracket based
on an extension of

fhÂi; hB̂ig ¼ h½Â; B̂�i
iℏ

ðA4Þ

to moments by the Leibnitz rule.
For expectation values of basic operators, (A4) reduces

to the classical bracket. The bracket (A4) applied to
moments is not the only extension of the classical bracket
one could think of, but it is distinguished by the fact that a
closed commutator algebra of some set of operators, such
as some first-class constraint operators ĈI , implies a closed

algebra of effective constraints, defined as hcpolĈIi with

polynomials cpol in basic operators, under Poisson brackets.
One can therefore analyze the possibility of first-class
quantizations by computing Poisson brackets of effective
constraints, which in most cases is much more feasible than
analyzing the possibility of closed commutators. The
effective constraints can be computed in terms of the
moments by Taylor expanding the expectation value in

hcΔζi [49–51].
In models with local kinematical degrees of freedom, we

proceed formally in order to illustrate the main features.
(But see [52] for a demonstration that canonical effective
methods can also be applied to quantum field theories.) For
the diffeomorphism constraint of the spherically symmetric
vacuum model, given in (9), we have an infinite family of

effective constraints D½N�pol ≔ hcpol D̂½N�i where cpol now
stands for arbitrary polynomials in the cΔζ of spherically
symmetric variables. We assume that we have selected a
consistent factor-ordering choice for the operator D̂½N�,
which in this case is known to exist [13]. For semiclassical
states, we have

Δ½ðEφÞn1ðExÞn2ðKφÞn3ðKxÞn4 �≡Oðℏðn1þn2þn3þn4ÞÞ:

This hierarchy allows us to consider a closed system of
finitely many local effective constraints to any fixed order
in ℏ, after expanding each of these constraints (starting with
the diffeomorphism constraint for pol ¼ 1) in terms of
basic expectation values hζ̂i and the moments.
As follows from general considerations of effective

constrained systems [50,51,53], no new observables arise
in this way, but quantum corrections to the classical
reduced phase space appear. For every new quantum
variable given by a moment, there is a higher-order
effective constraint with cpol ≠ 1 which fixes the moment
or removes it by the gauge flow. So far, this property has

been demonstrated for finite-dimensional models, but such
a result is sufficient for the usual counting of local degrees
of freedom in which one subtracts the number of con-
straints plus gauge flows from the number of kinematical
degrees of freedom.

2. Local observables?

The statement in our last paragraph is in conflict with an
observation made in [17,18], pointing out a large class of
new local observables in loop-quantized spherically
symmetric models. However, on closer inspection, these
observables have the following, problematic origin: In
loop quantizations such as the one sketched above, one
constructs a state space using auxiliary ingredients in
addition to the classical phase-space variables (or corre-
sponding quantum numbers): While kj and μj in (A1) give
eigenvalues of the quantized Ex and Eφ, respectively,
the vertex positions xj have no classical correspondence.
By group averaging (A2), the diffeomorphism constraint
is then solved by factoring out the vertex positions, that is
the nonclassical ingredients. In the classical theory,
however, the diffeomorphism constraint and its flow
provide nontrivial relationships between Ex, Eφ and their
momenta, which do not follow from the group-averaging
construction. By ignoring these relationships, the loop-
quantized theory has additional local observables, but
their meaning is obscure because their origin is the
auxiliary vertex positions introduced for kinematical
states. Indeed, [17,18] explicitly state that their local
observables parametrize the sequence of successive kj,
which depends on how the spurious vertex positions are
injected in states. As our discussion of effective con-
straints shows, these observables, while they may look
like local degrees of freedom, cannot be part of a local
effective theory. And even though coordinate-dependent
vertex positions are averaged over, they leave a trace in the
resulting theory by the missing relationships between
kinematical phase-space variables.
In loop-quantized spherically symmetric models, the

implementation of the diffeomorphism constraint directly
follows the full theory [32]. Although the diffeomorphism
constraint is usually considered well understood in loop
quantum gravity, several problems of the theory related to
its solutions remain and indicate difficulties both with
coordinate independence (vertex positions affecting
observables even after spatial diffeomorphisms have been
factored out) and the classical limit (observables without a
place in local effective theories).

APPENDIX B: CONSTRAINT BRACKET
FOR MATTER MODELS

We can compute the bracket (35) by splitting the
gravity and matter parts and by exploiting the antisymmetry
property:
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f ~CT½M�; ~CT½N�g ¼ f ~C½M� þ ~Cmatter½M�; ~C½N� þ ~Cmatter½N�g ¼ f ~C½M�; ~C½N�g þ f ~Cmatter½M�; ~Cmatter½N�g
þ f ~C½M�; ~Cmatter½N�g − f ~C½N�; ~Cmatter½M�g: ðB1Þ

The gravity part

f ~C½M�; ~C½N�g ¼ 2G
Z

dx
1

2

δ ~C½M�
δKφ

δ ~C½N�
δEφ − ðM ↔ NÞ

is simple and results in expression (36). The “mixed” brackets are also straightforward:

f ~C½M�; ~Cmatter½N�g − f ~C½N�; ~Cmatter½M�g

¼ 2G
Z

dx
1

2

�
δ ~C½M�
δKφ

δ ~Cmatter½N�
δEφ −

δ ~C½M�
δEφ

δ ~Cmatter½N�
δKφ

�
− ðM ↔ NÞ

¼
Z

dxðMN0 − NM0ÞjExj1=2
�ððExÞ0Þ2
2ðEφÞ3

∂ ~Cmatter

∂Kφ
−
∂F2

∂K0
φ

∂ ~Cmatter

∂Eφ

�
¼

Z
dxðMN0 − NM0Þ jE

xj1=2ðExÞ0
Eφ

�ððExÞ0Þ2
2ðEφÞ3

∂Hmatter

∂Kφ
−
∂F2

∂K0
φ

∂Hmatter

∂Eφ

�
−

jExj
ðEφÞ2

�ððExÞ0Þ2
ðEφÞ2

∂Fmatter

∂Kφ
þ 2Fmatter

∂F2

∂K0
φ

�
Dmatter þ

jExj1=2ðExÞ0
ðEφÞ2

∂F2

∂K0
φ
Hmatter: ðB2Þ

For the matter part we use

f ~Cmatter½M�; ~Cmatter½N�g ¼ fHmatter½ ~M� −Dmatter½M̂�; Hmatter½ ~N� −Dmatter½N̂�g
¼ fHmatter½ ~M�; Hmatter½ ~N�g þ fDmatter½M̂�; Dmatter½N̂�g
− ðfHmatter½ ~M�; Dmatter½N̂�g − fHmatter½ ~N�; Dmatter½M̂�gÞ; ðB3Þ

with

~M ≔
ðExÞ0
Eφ M; M̂ ≔

2Fmatter

ffiffiffiffiffiffiffiffijExjp
Eφ M ðB4Þ

and similarly for ~N and N̂. SinceHmatter does not depend onKx and because of antisymmetry of the bracket we may use (22)
directly:

fHmatter½ ~M�; Hmatter½ ~N�g ¼ fHmatter½ ~M�; Hmatter½ ~N�gj ~M;N̂

¼ Dmatter½β̄jExjðEφÞ−2ð ~M ~N0 − ~N ~M0Þ�
¼ Dmatter½β̄jExjððExÞ0Þ2ðEφÞ−4ðMN0 − NM0Þ�; ðB5Þ

where the notation j ~M;N̂ indicates that in the bracket ~M and N̂ are taken as constant on phase space. Similarly, since Dmatter
does not depend on gravitational variables, we can use (20):

fDmatter½M̂�; Dmatter½N̂�g ¼ Dmatter½M̂N̂0 − N̂N̂0�
¼ Dmatter½4F2

matterjExjðEφÞ−2ðMN0 − NM0Þ�: ðB6Þ

Computing the last line in (B3) is more subtle. First we write

fHmatter½ ~M�; Dmatter½N̂�g ¼ fHmatter½ ~M�; DT½N̂�g − fHmatter½ ~M�; D½N̂�g: ðB7Þ
One now may check that
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fHmatter½ ~M�; DT½N̂�g − ðM ↔ NÞ ¼ fHmatter½ ~M�; DT½N̂�gj ~M;N̂ − ðM ↔ NÞ: ðB8Þ

There are two additional terms (proportional to MN0 − NM0) arising from the phase-space dependence of the smearing
fields which could add to the bracket: one coming from the integration by parts of ðExÞ0 in ðδ ~M=δExÞHmatterδDT½N̂�=δKx −
ðM ↔ NÞ and the other from the integration by parts of K0

φ in the gravitational part of the diffeomorphism constraint in
ðδHmatter½ ~M�=δEφÞðδDT½N̂�=δKφÞ − ðM ↔ NÞ. However, these two terms exactly cancel, and hence we may use (21):

fHmatter½ ~M�; DT½N̂�g − ðM ↔ NÞ ¼ −Hmatter½ ~M0N̂� − ðM ↔ NÞ
¼ Hmatter½2FmatterjExj1=2ðExÞ0ðEφÞ−2ðMN0 − NM0Þ�: ðB9Þ

Finally, it is straightforward to check that

fHmatter½ ~M�; D½N̂�g − ðM ↔ NÞ ¼
Z

dxðMN0 − NM0Þ 2FmatterjExj1=2ðExÞ0
Eφ

∂Hmatter

∂Eφ : ðB10Þ

Putting everything back in (B3),

f ~Cmatter½M�; ~Cmatter½N�g ¼
Z

dxðMN0 − NM0Þ
� jExj
ðEφÞ2

�ððExÞ0Þ2
ðEφÞ2 β̄ þ 4F2

matter

�
Dmatter

−
2FmatterjExj1=2ðExÞ0

ðEφÞ2
�
Hmatter − Eφ ∂Hmatter

∂Eφ

��
: ðB11Þ
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