
Field theory for string fluids

Daniel Schubring* and Vitaly Vanchurin†

Department of Physics, University of Minnesota, Duluth, Minnesota 55812, USA
(Received 16 November 2014; published 31 August 2015)

We develop a field theory description of nondissipative string fluids and construct an explicit mapping
between field theory degrees of freedom and hydrodynamic variables. The theory generalizes both a perfect
particle fluid and pressureless string fluid to what we call a perfect string fluid. Ideal magnetohydro-
dynamics is shown to be an example of the perfect string fluid whose equations of motion can be obtained
from a particular choice of the Lagrangian. The Lagrangian framework suggests a straightforward
extension of the perfect string fluid to more general anisotropic fluids describing higher dimensional branes
such as domain walls. Other modifications of the Lagrangian are discussed which may be useful in
describing relativistic superfluids and fluids containing additional currents.
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I. INTRODUCTION

Many physical, cosmological and biological systems
contain extended one-dimensional stringlike objects.
These could be the galactic filaments in the large scale
structure, cosmic strings after cosmological phase transition,
fundamental strings near or above the Hagedorn temper-
ature, topological strings in liquid crystals or even more
complicated objects such as polymer chains. Most of these
systems are considered highly nonperturbative and are
usually analyzed using numerical N-body type simulations
(see e.g. [1]). There are, however, a couple of analytical
methods that one could potentially adopt to describe a
collective behavior of these stringlike objects. One possibil-
ity is to expand each “string” into different vibration modes
and to treat these modes as an infinite tower of different
“particles.” Then the problem of strings reduces to the
problem of infinitely many particles which can be tackled if
the infinite tower is truncated. This is the effective field
theory approach taken, for example, by the string theory.
Another possibility is to first coarse-grain the network of

strings and then derive equations of motion for coarse-
grained fluids by following the dynamics of microscopi-
cally conserved quantities (energy, momentum, tangent
vector, etc.) [2]. This is the hydrodynamic approach that
was recently adopted to study, for example, cosmic strings.
Note that the two approaches are complementary: the
effective field theory is useful when the number of relevant
vibration modes is small, and the hydrodynamic descrip-
tion is useful when nonequilibrium effects are suppressed.
For example, in the limit of local equilibrium [3] one can
show that the dusts of Nambu-Goto, chiral or, more
generally, wiggly strings can be described using the
equations for the so-called pressureless string fluid [4].
In this paper we will start from a (less traditional)

hydrodynamic description, but nevertheless seek a (more
traditional) field theory description of string fluids.
A field theory Lagrangian for perfect (particle) fluids

was known for some time (see e.g. [5]). More recently a
field theory description of perfect fluids with charges was
proposed which also allows coupling of fluids to external
fields [6]. In what follows we will describe a simple
procedure of constructing field theories of even more
general fluids (with pressure, tension, charges, interactions,
etc.) by considering conserved currents at the level of
Lagrangians. Then the hydrodynamic equations of motion
can be obtained from the standard variational principle
without having to go through a coarse-graining procedure.
The paper is organized as follows. In Sec. II we define a

perfect string fluid as a generalization of an ordinary
perfect fluid with an additional conserved flux. The
energy-momentum tensor is derived from a Langrangian
as a function of three scalar fields. Since the first draft of
this paper it was realized that ideal magnetohydrodynamics
is a particular example of a perfect string fluid [7], and the
demonstration of this result is reproduced here.
In Sec. III we investigate string fluids for which the

pressure vanishes. Examples of this case include the
Stachel-Letelier model [8,9] and a recent description of
coarse-grained Nambu-Goto strings [4]. It is shown that in
these cases the string fluid is foliated by worldsheets of a
general form of string described by Carter [10]. And so
these classical strings may be alternatively described using
the variational principle of this paper.
In Sec. IV we discuss the variational principle in more

depth, describing the relabeling symmetries of the fields
and the corresponding Noether symmetries. And in Sec. VI
the relationship of the variational principle to the familiar
description of fluids in terms of Clebsch potentials is
discussed. By trading one of the previous scalar fields
for a Clebsch potential we derive a modified string fluid
which is shown to be equivalent to a model of a superfluid
by Carter and Langlois [11].
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In Sec. V we extend the perfect string fluid to fluids of
higher dimensional branes. A particularly simple case of a
fluid foliated by domain walls is discussed and shown to be
related to the ordinary theory of a massless scalar field.
In Sec. VII we extend the perfect string fluid by allowing

dependence on additional currents and fluxes such as a
conserved entropy density. Two complementary
approaches are discussed to achieve this. One approach
introduces no extra fields but breaks the relabeling sym-
metry in the Lagrangian. The other [6] maintains the
symmetry by introducing additional fields.
In Sec. VIII we summarize the main results of the paper

and discuss possible future directions of research. In
particular we describe how the dissipation effects can be
incorporated into presented Lagrangian formulation of
string fluids.

II. PERFECT STRING FLUID

The energy-momentum tensor for a perfect fluid is

Tμν ¼ ðρþ pÞuμuν − pgμν; ð1Þ

where u is the unit velocity of the fluid, p is the pressure,
and ρ is the energy density in the rest frame of u. The
energy density ρ is a function of the number densities na
indexed by a, and we can form the corresponding chemical
potentials

μa ≡ ∂ρ
∂na : ð2Þ

These number densities can be the density of any extensive
quantity such as baryon number, charge, or entropy
(in which case the chemical potential is the temperature).
The pressure p is then defined through the usual thermo-
dynamic relation, which defines it essentially as a Legendre
transform of ρ,

p ¼ −ρþ μana: ð3Þ
Then using (2) we get

dp ¼ −dρþ μadna þ nadμa

¼ nadμa: ð5Þ

In addition to the conservation equation for energy-
momentum we have the continuity equations for the
currents nμa ≡ nauμ,

∇μn
μ
a ¼ 0: ð6Þ

By using these continuity equations and (5), the conserva-
tion of Tμν

∇μ½ðμanaÞuμuν − pgμν� ¼ 0

can be reduced to the following equations of motion:

nμa∇½μðμauν�Þ ¼ 0: ð7Þ

What we are calling a perfect string fluid has in addition
to the conserved current nμ (we will consider only one
current for the moment) a conserved bivector F,

∇μFμν ¼ 0: ð8Þ

This bivector can be understood as representing a con-
served flux in the system such as angular momentum or
magnetic flux. In the magnetic case F is just the dual of the
electromagnetic tensor, and for this reason ideal magneto-
hydrodynamics can be treated as a special case of this
perfect string fluid formalism [7]. But more generally for
any network of oriented strings there will be a bivector
associated with the topological flux of strings.
In the perfect string fluid, F is also constrained to be a

simple bivector, i.e. it has exactly two linearly independent
eigenvectors, and the fluid velocity u is in the linear
subspace spanned by these eigenvectors. It is then con-
venient to define the “string flux” scalar φ and the
normalized bivector Σ as the magnitude and direction of F,

Fμν ¼ φΣμν ð9Þ

ΣμνΣμν ¼ −2: ð10Þ

The orthogonal to u spacelike direction w is defined from Σ
and u,

wμ ≡ Σμνuν; ð11Þ

in terms of which we can choose to express Σ as

Σμν ¼ wμuν − uμwν; ð12Þ

uμuμ ¼ −wμwμ ¼ 1; ð13Þ

uμwμ ¼ 0: ð14Þ

The projector h onto the linear subspace spanned by u and
w can also be defined in terms of Σ,

hμν ≡ uμuν − wμwν ¼ ΣμρΣρ
ν: ð15Þ

The conservation condition on F (8) implies through the
Frobenius theorem that u and w lie along two-dimensional
integrable submanifolds that can be identified as string
worldsheets [4]. And the dual tensor to F, ~F, is a two-form
that can be integrated to give the flux of these strings across

DANIEL SCHUBRING AND VITALY VANCHURIN PHYSICAL REVIEW D 92, 045042 (2015)

045042-2



a surface. The conservation of F just implies that the net
flux of strings through any closed surface is zero.
The dual to the current n, which we denote by ~n, will also

be useful as it is a three-form that can be integrated over a
volume to give the total conserved charge within the
volume. These two differential forms, ~n and ~F, have a
natural interpretation in terms of Lagrangian coordinates
labeling fluid particles. There is a two-dimensional space of
distinct “worldsheet” submanifolds that we can label with
the coordinates X and Y. There is an implicit map that
specifies which worldsheet passes through a given space-
time point that allows us to define X and Y as functions on
spacetime. The two-dimensional surfaces along which both
X and Y take constant values are just the worldsheets. As
we will discuss later there is a great deal of symmetry in
how we choose these coordinates but we do choose them so
that the measure dX ∧ dY is just the string flux. In fact this
will be taken as a definition,

~F≡ dX ∧ dY; ð16Þ

and thus we define the dual bivector F in (8) ultimately in
terms of X and Y fields.
X and Y specify a distinct worldsheet, but to label the

distinct fluid particles along the string we need a third
coordinate Z. The one-dimensional spaces along which all
three coordinates are constant are just the particle world-
lines. Again we will fix the measure dX ∧ dY ∧ dZ, taking
it to be the number density,

~n≡ dX ∧ dY ∧ dZ; ð17Þ

and so the current nμ and thus the directions u and w
[through (11)] are also specified in terms of these three
scalar fields (the Lagrangian coordinates).
An important thing to note about the use of Lagrangian

coordinates is that the continuity equations (6) and (8) are
satisfied by construction,

d ~n ¼ 0; ð18Þ

d ~F ¼ 0: ð19Þ

To get a complete set of equations of motion we only need
to add the conservation of the energy-momentum tensor
which is specified by choosing a Lagrangian as a certain
function of the X; Y and Z fields,

L ¼ L
�
1

2
ðdX ∧ dYÞ2;− 1

3!
ðdX ∧ dY ∧ dZÞ2

�
: ð20Þ

Note that the Lagrangian for perfect string fluids, Lðφ; nÞ,
only depends on the scalar fields through the combinations
φ2 and n2,

φ2 ¼ 1

2
~Fλμ ~Fλμ ¼

1

2
ðdX ∧ dYÞ2; ð21Þ

n2 ¼ −
1

3!
~nλμν ~nλμν ¼ −

1

3!
ðdX ∧ dY ∧ dZÞ2: ð22Þ

Varying the Lagrangian by gμν we find Tμν:

Tμν ¼ 2
∂L
∂gμν − Lgμν

¼ 2

� ∂L
∂φ2

φ2ðgμν − hμνÞ þ ∂L
∂n2 n

2ðgμν − uμuνÞ
�
− Lgμν

¼ ðρþ pÞuμuν − ðτ þ pÞwμwν − pgμν ð23Þ

where we define

ρ≡ −L; ð24Þ

p≡ L − L;φφ − L;nn; ð25Þ

and the new thermodynamic potential τ related to the string
tension,

τ≡ −Lþ L;nn: ð26Þ

Energy-momentum tensors of this form have been applied
for instance to the study of blackfolds [12] and anisotropic
cosmological models [13–15]. Our focus here is to study
the variational principle underlying this fluid, and show
how modifications of the Lagrangian can lead to more
general models of interacting fluids.
First of all, if L does not depend on φ the perfect string

fluid reduces to the ordinary perfect fluid. This approach to
perfect fluids in terms of a variational principle and
Lagrangian coordinates is well established (see [16] for
a review). Usually the variational principle is expressed by
varying the worldlines in the action through diffeomor-
phisms. But as we show later, we can also treat X; Y; Z as
ordinary scalar fields which can be varied independently to
produce the equations of motion. A similar field theory
perspective for perfect fluids is found in [6] and [17].
A perfect string fluid can also be understood as a

generalization of ideal magnetohydrodynamics [7]. In
the isentropic case the electric field vanishes in the rest
frame of the fluid [18]. In terms of the electromagnetic field
tensor ~F this can be written

~Fμνuν ¼ 0: ð27Þ

In the string fluid context this is the condition for F to be a
simple bivector, and for u to be in its linear subspace.
As discussed previously, this implies that there are two-
dimensional “worldsheets” which are everywhere
tangent to the velocity and the magnetic field, which is
also in the linear subspace of F. But in the context of
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magnetohydrodynamics this is just the statement that the
magnetic field lines are “frozen-in” and dragged along by
the velocity of the fluid.
In the standard covariant description of magnetohydro-

dynamics the energy-momentum tensor is simply the sum
of a perfect fluid part and an electromagnetic field part [19].
Any interaction between the two sectors takes place
implicitly through the conservation of energy-momentum
and in the frozen-in field line condition. Given the
variational principle for a perfect fluid discussed above,
the Lagrangian for ideal magnetohydrodynamics can be
expressed as

L ¼ −ρ0ðn2Þ −
1

2
φ2 ¼ −ρ0

�
− 1

3!
~nρσκ ~nρσκ

�
−
1

4
~Fρσ ~Fρσ

ð28Þ

¼ −ρ0
�
−

1

3!
ðdX ∧ dY ∧ dZÞ2

�
−
1

4
ðdX ∧ dYÞ2; ð29Þ

where ρ0ðn2Þ is the energy density of the perfect fluid as a
function of ~n.
This leads to an energy-momentum tensor

Tμν ¼ ðρ0 þ p0 þ φ2Þuμuν − φ2wμwν −
�
p0 þ

1

2
φ2

�
gμν;

ð30Þ

where p0 is the pressure of the perfect fluid component,
which differs from the full string fluid pressure appearing
as the coefficient of gμν. The energy-momentum tensor for
magnetohydrodynamics has been previously written in this
form (e.g. [20]). We wish to emphasize that the variational
principle for string fluids in terms of scalar fields can be
applied to magnetohydrodynamics as well.

III. PRESSURELESS STRING FLUID

Besides the reduction to the perfect fluid, another
simplification of the string fluid occurs when L only
depends on φ and not n, a case previously studied by
Kopczyński [21]. The inspiration behind the Kopczyński
fluid came from the case where the pressure vanishes, in
which case the string fluid further reduces to a model
studied by Stachel in which the submanifolds behave as
independent Nambu-Goto strings [8]. More recently it was
shown that coarse-graining an interacting network of
Nambu-Goto strings in the limit of local equilibrium leads
to a pressureless string fluid where the submanifolds
behave as wiggly strings [4].
To gain a better understanding of the connection between

a pressureless fluid and classical strings, first note that ~n ¼
~F ∧ dZ involves a factor of φ and so it may be helpful to
define a factored number density ν,

n≡ φν: ð31Þ

From (25), the condition for the pressure to vanish is

L ¼ φ

�∂L
∂φ

�
n
þ n

�∂L
∂n

�
φ

¼ φ

�∂L
∂φ

�
ν

;

which implies that the derivative L;φ at constant ν is a
function of ν alone, which we write as

L≡ −φUðνÞ: ð32Þ

Similarly we can define a modified tension of the same
form as (26),

T ≡U −U;νν ¼ φ−1τ; ð33Þ

so that the energy-momentum tensor is just

Tμν ¼ φðUuμuν − TwμwνÞ: ð34Þ

This notation is intentionally similar to that used by Carter
in describing “barotropic” classical strings [22]. The differ-
ence is that Carter’s formalism applies to a single string
rather than a fluid foliated by worldsheets, and so any
spacetime derivatives must be projected into the worldsheet
directions. For instance, in Carter’s formalism the condition
for the simple bivector Σ to describe an integrable sub-
manifold is given as

hλμ∇λΣμν ¼ 0: ð35Þ

This condition corresponds to our conservation of the F
tensor

∇μðφΣμνÞ ¼ 0: ð36Þ

In general it can be proven [using both (35) and (36)] that if
there is a tensor Aμ… where the index μ lies in the
worldsheet, then the following statements are equivalent:

∇μðφAμ…Þ ¼ 0;

hλμ∇λAμ… ¼ 0: ð37Þ

Since in the pressureless case the conservation of
Tμν; Fμν, and nμ are all of this form, we see that φ
decouples from the equations of motion for the submani-
folds themselves, and these latter equations only depend on
derivatives along the worldsheets. So the motion of each
individual submanifold may be solved for independently as
a barotropic string described by the equation of state UðνÞ.
Once Σ has been solved for, the string flux φ is determined
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by the initial values on any two-dimensional spacelike
surface intersecting the submanifolds.
The connection between this variational approach and

that of barotropic strings can be used to construct
Lagrangians describing a theory with submanifolds acting
as strings with an arbitrary equation of state. The simplest
case would be a trivial equation of state for Nambu-Goto
strings where U ¼ μ0, the constant string tension.
The string fluid with submanifolds acting as Nambu-
Goto strings is the Stachel model, and from (32) we see
that the Lagrangian is just

L ¼ −μ0φ ¼ −μ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdX ∧ dYÞ2

q
: ð38Þ

A slightly more complicated example would be a fluid
description of a system of many Nambu-Goto strings [4]
which has submanifolds behaving as wiggly strings sat-
isfying the conditionUT ¼ μ20. By (33), this is described by
the equation of stateUðνÞ ¼ μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p
. So the Lagrangian

for that model is given by

L ¼ −μ0φ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p
¼ −μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ n2

q
ð39Þ

¼ −μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðdX ∧ dYÞ2 − 1

3!
ðdX ∧ dY ∧ dZÞ2

r
; ð40Þ

where again φ2 and n2 were rewritten in terms of the scalar
fields X; Y; Z.

IV. VARIATIONAL PRINCIPLE

Until now the Lagrangian L has only been used to find
the energy-momentum tensor. The conservation of Tμν and
the identities d ~n ¼ d ~F ¼ 0 are all that is needed for the
equations of motion, but it is not clear that this is equivalent
to requiring that the action S be invariant under variations
of X; Y; Z. Writing the action explicitly in terms of these
fields,

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p
Lðφ2; n2Þ

¼
Z

dx4
ffiffiffiffiffiffi
−g

p
L
�
1

2
ðdX ∧ dYÞ2;− 1

3!
ðdX ∧ dY ∧ dZÞ2

�
:

ð41Þ

Since Z only appears in terms of its derivative, the field
equation resulting from a variation δZ can be expressed as
the conservation of a current ΠZ

∇ν

�
2
∂L
∂n2 ~n

λμνX;λY;μ

�
≡∇νΠν

Z ¼ 0: ð42Þ

This can also be understood as the Noether current
associated with translations in Z. Recalling the definition
(11) of w and that of the chemical potential μ (2),

Πν
Z ¼ φμwν: ð43Þ

Due to the decoupling of φ through (37), for a pressureless
fluid this is identical to the spacelike current that appears as
a dual to n in Carter’s work on classical strings (e.g. [10]).
Here we see the connection to translation symmetry of Z,
and see that an analogue also holds for string fluids with
pressure.
The field equation corresponding to a variation δX can be

written as

X;κY;μ∇λ

�∂L
∂φ ~Σλμ

�
− X;κY ½;μZ;ν�∇λ

�∂L
∂n ~uλμν

�
¼ 0: ð44Þ

Putting the δY and δZ equations in the same form and
combining leads ultimately to the field equations

−
3

2
Fλμ∇½κ

�∂L
∂φ Σλμ�

�
þ 2nλ∇½κ

�∂L
∂n uλ�

�
¼ 0: ð45Þ

For an ordinary particle fluid the first term vanishes
and the second term is just the usual equations of
motion (7). On the other hand the first term by itself
appears also in Kopczyński’s work [21]. These field
equations can be shown to be equivalent to conservation
of Tμν by reversing the steps leading to (7). Although here
we are considering a single current and a single string flux,
adding additional dependences na and Fb in the Lagrangian
simply leads to equations of the same form with a sum over
the indices a; b.
Of course just as for ΠZ, the field equations for δX and

δY can be understood as the conservation of the Noether
currents ΠX;ΠY associated with translations in X; Y. These
are special cases of a larger group of symmetry trans-
formations leaving the two-form dX ∧ dY invariant. This
group is equivalent to the symplectic transformations on the
two-dimensional X; Y space. A symplectic transformation
can be generated by an arbitrary function HðX; YÞ, where
for infinitesimal δt

δX ¼ þH;Yδt;

δY ¼ −H;Xδt: ð46Þ

Symmetry under these relabeling transformations corre-
sponds to the conservation of the class of currents

∇μðH;YΠ
μ
X −H;XΠ

μ
YÞ ¼ 0; ð47Þ

which is in turn equivalent to certain conditions on ΠX;ΠY ,

Πμ
XY;μ ¼ Πμ

YX;μ ¼ 0;

Πμ
XX;μ ¼ Πμ

YY;μ: ð48Þ
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Similarly an arbitrary function of X; Y may be added to Z
without changing the physical situation, and the conserva-
tion of the corresponding Noether currents is equivalent to
the condition

⊥λ
μΠ

μ
Z ¼ 0; ð49Þ

where

⊥λ
μ ¼ δλμ − uλuμ þ wλwμ ð50Þ

is the orthogonal projection to “worldsheets” spanned by u
and w. And so any field theory with the same relabeling
symmetries (which may depend on higher order derivatives
of the scalar fields) will have field equations equivalent to
the conservation of three currents ΠX;ΠY;ΠZ satisfying the
constraints above.

V. DOMAIN WALL FLUID

The variational approach discussed in this paper can be
easily generalized to different dimensions of spacetime and
to different numbers of scalar fields. In such cases the
submanifolds in the fluid may describe the world-volumes
of higher dimensional branes instead of strings or particles.
A simple case we will treat here is that of a single scalar
field X in 3þ 1 dimensional spacetime. In this case the
2þ 1 dimensional submanifolds along which X is constant
can describe the world-volume of two-dimensional mem-
branes or domain walls.
The gradient one-form ~Gμ ≡ X;μ annihilates the tangent

vectors to the world-volume, so the orthogonal projector
can be written as

⊥μν ¼ −
1

ψ2
X;μX;ν; ð51Þ

where ψ is the magnitude of X;μ,

ψ2 ≡ − ~Gμ ~Gμ: ð52Þ

This quantity ψ can be understood as the density of domain
walls along their normal direction, and similarly to φ and n
it may appear in the Lagrangian. As before, the divergence
of the dual three-form to ~G vanishes

Gλμν ≡ ϵλμνρ ~Gρ;

∇λGλμν ¼ 0; ð53Þ

and separating G into its magnitude and direction

Gλμν ≡ ψΣλμν; ð54Þ

the projector h onto the tangent space of the world-volume
can be written

hμν ¼
1

2
ΣμρσΣνρσ: ð55Þ

Now considering the Lagrangian corresponding to the
Stachel model (38)

L ¼ −ψ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνX;μX;ν

p
; ð56Þ

the energy-momentum tensor is

Tμν ¼
1

ψ
X;μX;ν − Lgμν

¼ ψð−⊥μν þ gμνÞ ¼ ψhμν: ð57Þ

Expressing h in terms of Σ, the conservation of energy-
momentum leads to

Σμρσ∇μΣνρσ ¼ 0: ð58Þ

This equation is the analogue of the equation
Σμρ∇μΣνρ ¼ 0 appearing in the Stachel model of a string
fluid [8]. And following exactly the same line of reasoning
as in that paper we can choose three coordinates para-
metrizing the world-volume and define the maps ξμ

embedding the world-volume in spacetime. Then Σ may
be expressed in terms of ξ and ultimately we find

ξμ;a∇μð
ffiffiffiffiffiffi
−h

p
ξ;aν Þ ¼ 0; ð59Þ

where h is now the determinant of the projector in the
world-volume basis (i.e. it is the determinant of the pull-
back of the metric). This has exactly the same form as the
Nambu-Goto equations of motion, except that a ranges
over three coordinates on the world volume rather than two.
And these are indeed the standard equations for a domain
wall in the limit of zero thickness; see for instance [23].
As an aside, note that it is easy to also consider the

Hamiltonian formulation of this theory of domain wall
submanifolds. The conjugate momentum P to X is just the
time component of the Noether current Πμ

X associated to
translations in X,

P ¼ Π0
X;

Πμ
X ¼ ∂L

∂X;μ
¼ 1

ψ
gμνX;ν; ð60Þ

where, specializing to a Minkowski metric,

ψ2 ¼ j∇Xj2
1þ P2

: ð61Þ

Then the Hamiltonian density is found to be
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H ¼ _XPþ ψ ;

¼ ψP2 þ ψ ;

¼ j∇Xj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

p
; ð62Þ

and Hamilton’s equations just express the conservation of
the current ΠX and its relation to the time derivative X;0.
This Hamiltonian may also be of interest in lower space-
time dimensions, where it describes a dust of Nambu-Goto
strings or free particles.
Returning now to the Lagrangian formulation and a

general metric, we can generalize the Lagrangian to an
arbitrary function of ψ and that will lead to the appearance
of nonvanishing pressure in the energy-momentum tensor
just as in the string fluid case. So in the familiar theory of a
massless scalar field L ¼ gμνX;μX;ν (where X;μ is space-
like) the surfaces along which X is constant act like domain
walls under pressure.
Another direction of generalization is to reintroduce

dependence of the Lagrangian on n in addition to ψ with
both quantities expressed in terms of the same scalar field
X. By construction the fluid velocity described by ~n will be
confined to the domain walls, just as before it was confined
to the worldsheet submanifolds. In the same way, reintro-
ducing dependence on φ in the Lagrangian will describe a
string fluid confined to domain walls. This can be inter-
preted in a less obscure way as the Lagrangian for a perfect
anisotropic fluid with a distinct pressure (or tension) in
three characteristic spatial directions.

VI. CLEBSCH POTENTIALS

Some readers may be more familiar with the variational
principle for perfect fluids in terms of Clebsch potentials.
An irrotational velocity field can be described as the
gradient of a scalar potential T. In discussing the vorticity
of the fluid as in (7), it is appropriate to consider μuλ rather
than u alone, and so we take T to satisfy

μuλ ≡ μλ ¼ ∂λT:

Then the fluid satisfies a variational principle with the
Lagrangian equal to the pressure, which is taken to be a
function of μ2 ¼ gκλ∂κT∂λT. Note that this is formally
similar to the domain wall fluid discussed in the previous
section. The only difference is that ∂λT is here taken to be
timelike rather than spacelike.
If we wish to describe a fluid with nonvanishing vorticity

we need to introduce additional scalar potentials. In a fluid
with an entropy current in addition to a number density it is
useful to consider four additional potentials as in a paper by
Schutz [5]. We will delay the discussion of additional
currents to the following section and consider a fluid with
an equation of state depending on a single n. Then the
vorticity is a simple bivector and we can describe the fluid
with two additional scalar potentials X and Y,

μ ¼ dT þ XdY: ð63Þ

As before, the pressure as a function of μ2 can be taken as
the Lagrangian, and variations of T; X and Y lead to the
correct fluid equations [5].
The vorticity takes the form of the flux tensor ~F,

dμ ¼ dX ∧ dY ≡ ~F: ð64Þ

Previously we were taking ~F to describe the flux carried by
strings in some underlying network, and the vorticity is
indeed the flux carried by vortex lines in a superfluid. The
superfluid may be described on a large scale such that the
individual vortex lines are coarse-grained and the vorticity
is a continuous tensor [24,25]. One difference between this
coarse-grained superfluid and an ordinary superfluid is that
just as for a perfect string fluid, the thermodynamic
quantities may depend on the magnitude of vorticity φ2

as well as the quantity μ2. Such a dependence appears
already in the “vortex fibration model" of Carter and
Langlois [11]. In the remainder of this section we will
show that their model of a superfluid at zero temperature
follows from a simple modification of a perfect string fluid
where the Lagrangian depends on μ and the scalar field T
(instead of n and the earlier field Z).
First note that T does not respect the same symmetries

as Z. There is still symmetry under shifts of T by a
constant, which leads to a Noether current which will be
identified as the ordinary fluid current n. But the quantity μ
in (63) is not preserved if we add an arbitrary function of
X; Y to T. Thus unlike the situation in (50), n is not in
general orthogonal to ~F. In other words the vortex lines are
not “frozen into" the fluid flow, in contrast to field lines in
ideal magnetohydrodynamics.
However there is a symmetry under a simultaneous

change in X; Y and T. If X; Y are changed by a symplectic
transformation (46), (63) will be preserved if T is changed by

δT ¼ ðHXX −HÞδt:

And besides μ and ~F, the quantity

~hλμν ≡ ðdX ∧ dY ∧ dTÞλμν ¼ ðμ ∧ ~FÞλμν ¼ μφ ~wλμν ð65Þ

also satisfies this symmetry. So in general we may take the
Lagrangian to also depend on

h2 ≡ 1

3!
~hλμν ~hλμν ð66Þ

in addition to φ2 and μ2. The duplicate notation h is chosen
in this context to agree with the notation for the helicity
vector h in the Carter-Langlois model [11]. It is easy to see
that a Lagrangian
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L¼L
�
1

2
ðdX∧ dYÞ2;ðdTþXdYÞ2;− 1

3!
ðdX∧ dY ∧ dTÞ2

�

ð67Þ

leads to an energy-momentum tensor agreeing with that of
Carter-Langlois. (Note that in Ref. [11] the Lagrangian was
denoted by Ψ.)
The purpose of this section is rather to demonstrate that

variation ofL by X; Y and T leads to an alternate variational
principle to that of [11], which involves a Kalb-Ramond
field rather than the scalar T and requires an extra term in
the Lagrangian to enforce a constraint.
Defining the current n and the antisymmetric tensor λ

through

δL≡ nρδμρ þ
1

2
λρσδ ~Fρσ; ð68Þ

it is clear that the equation of motion resulting from a
variation δT is just the conservation

∇ρnρ ¼ 0:

Variations by δX and δY respectively lead to

nρY;ρ −∇ρðλρσY;σÞ ¼ 0;

−∇ρðnρXÞ −∇σðλρσX;ρÞ ¼ 0:

All these equations of motion for fields X, Y and T can be
combined to obtain the equation of motion of the Carter-
Langlois model

ðnρ −∇σλ
σρÞ ~Fρτ ¼ 0; ð69Þ

which reduces the ordinary equation of motion for a perfect
fluid (7), when the Lagrangian does not depend on ~F (and
thus λ ¼ 0).

VII. ADDITIONAL CURRENTS

In the standard treatment of perfect fluids the equation of
state is often taken to depend on both the number density n
and also a conserved entropy density ns. The problem of
how to extend the variational principle to fluids with
multiple constituents needs to be addressed. The most
obvious solution is to implement the current ns by
introducing an additional scalar field Zs in the
Lagrangian in the combination ~ns ¼ dX ∧ dY ∧ dZs.
Then the two currents, n and ns, may flow with different
velocities, although both velocities will be confined to the
same submanifolds.
If instead we wish for a currentlike entropy to flow with

the same velocity u as n, there are two valid options. First
consider a modification similar to that taken in the
variational approach to ordinary fluids [16,17]. The entropy

per particle S is constant along the particle worldines,
so it is a function SðX; Y; ZÞ. The entropy density current is
then

~ns ¼ SðX; Y; ZÞ ~n; ð70Þ

which is conserved by construction and points in the
direction u. A Lagrangian depending on n2s then can be
varied by X; Y; Z (but not S itself) as in (44). The extra
dependence on ns ultimately leads to an extra term in the
equation of motion (45) of the form

2nλs∇½κ

�∂L
∂ns uλ�

�
:

And this is just what is needed for conservation of the
energy-momentum tensor (23) to hold if the equation of
state also depends on ns.
In this approach even for an arbitrary number of addi-

tional currents, we do not introduce any extra degrees of
freedom in the theory in the sense of extra fields having
conjugate momenta. However the function S, which physi-
cally depends on initial conditions, appears directly in
the Lagrangian. This explicitly breaks the relabeling
symmetries of X; Y; Z.
Previously the Noether current associated to shifts in Z

was the dual current (43). It is indeed true that in the
presence of additional currents (indexed by a) the dual
current is not generalized to any gauge invariant Noether
current. But a useful expression may still be derived from
the δZ equation of motion,

na∇μðφμawμÞ ¼ 0: ð71Þ

This can also be derived without making use of the
variational principle by using energy-momentum conser-
vation wμ∇νTμν ¼ 0, and the identity (37).
An alternate approach to implementing additional cur-

rents flowing with the velocity has been previously sug-
gested [6]. We may introduce an extra scalar field θ, and
allow the Lagrangian to also depend on θ through the
combination

y≡ 1

n
ϵκλμνX;κY;λZ;μθ;ν:

The equation of motion associated to δθ is

∇μðL;yuμÞ ¼ 0; ð72Þ

and thus L;y is interpreted as ns. The quantity y itself is
equal to the chemical potential associated to ns, and the
Lagrangian in this case is the Legendre transform of −ρ
in the ns variable. In the specific case where ns is
interpreted as entropy, y is equal to the temperature T
and L is the negative of the Helmholtz free energy. The
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field θ itself has appeared in the literature before as the
quantity “thermasy” [5].
This approach introduces the additional degree of free-

dom θ, but maintains the relabeling symmetry in the
Lagrangian. The Noether current associated to shifts in
Z now contains a gauge dependent term involving θ

Πμ
Z ¼ φðμþ STÞwμ − SFμνθ;ν: ð73Þ

However this dependence is eliminated upon taking the
divergence

∇μðSFμνθ;νÞ ¼ Fμνθ;ν∇μS

¼ φTwμ∇μS;

where the second line makes use of the vanishing of the
derivative of S in the u direction. So the conservation of the
current ΠZ leads to the appropriate generalization (71) of
the dual current conservation

∇μΠ
μ
Z ¼ ∇μðφμwμÞ þ S∇μðφTwμÞ ¼ 0: ð74Þ

Finally note that both of these approaches to introducing
extra currents can be easily generalized to introducing extra
fluxes in the equation of state. For instance if we introduce
dependence on the two fields θ1; θ2 in the combination

υ≡ 1

φ
ϵκλμνX;κY;λθ

1
;μθ

2
;ν;

the two Noether currents associated with the new fields are
equivalent to the conservation of a single antisymmetric
tensor Fs ¼ L;υΣ. The conservation of Fs and F implies
that L;υ=φ is constant on the worldsheets, and so we can
represent it by a function SðX; YÞ. Alternately we could
introduce SðX; YÞ directly in the Lagrangian through a
dependence on φ2

s ¼ S2φ2. And again the Lagrangians for
the two distinct approaches to introducing fluxes are simply
related through Legendre transforms.

VIII. CONCLUSION

In this paper we developed a field theory description of
various nondissipative generalized fluids including pres-
sureless dusts of topological defects, magnetohydrodynam-
ics, and the Carter-Langlois model of a relativistic
superfluid. [11] The constructions are based on the varia-
tional principle which is discussed in detail in Sec. IV. The
effective degrees of freedom are the scalar fields X; Y; Z
with spacelike gradients dX; dY; dZ and a scalar field T
with a timelike gradient dT. In what follows we summarize
different fluids discussed in the paper together with
corresponding field theory Lagrangians L.
A perfect particle fluid may be described by an arbitrary

function ρ of the magnitude of dX ∧ dY ∧ dZ,

L ¼ −ρðn2Þ;

n2 ≡ −
1

3!
ðdX ∧ dY ∧ dZÞ2;

where ρ is equal to the energy density, and n the number
density of the fluid.
The Stachel-Letelier string fluid describing a dust of

Nambu-Goto strings may be described by a particular
function of the magnitude of dX ∧ dY,

L ¼ −μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðdX ∧ dYÞ2

r

where μ0 is string tension.
This may be generalized to a perfect string fluid

described by an arbitrary function ρ of both dX ∧ dY
and dX ∧ dY ∧ dZ,

L ¼ −ρðn2;φ2Þ;

φ2 ≡ 1

2
ðdX ∧ dYÞ2;

where φ has an interpretation as a flux carried by the
strings.
This may be further generalized to describe fluids of

higher dimensional branes as discussed in Sec. V. In
particular the Lagrangian

L ¼ −ρðn2;φ2;ψ2Þ;

ψ2 ≡ −
1

2
dX2

completely breaks the symmetry between X; Y; Z and can
be interpreted as a string fluid confined to a fluid of domain
walls, where ψ describes the local density of domain walls.
As described in Sec. VII, dependence on the differentials

of additional scalar fields wedged with the original fields
X; Y; Z generically leads to the presence of additional
currents and fluxes. For instance the Lagrangian

LððdX ∧ dYÞ2; ðdX ∧ dY ∧ dZÞ2; ðdX ∧ dY ∧ QÞ2Þ

describes a string fluid with the strings carrying an addi-
tional confined current or flux depending on whetherQ is a
one-form or a two-form.
This variational principle may be applied to some

familiar physical systems. In particular, ideal magnetohy-
drodynamics is equivalent to a string fluid with a particular
form of the Lagrangian,

L ¼ −ρ0ðn2Þ −
1

4
ðdX ∧ dYÞ2; ð75Þ

where ρ0ðn2Þ is energy density of the perfect fluid
component of the plasma as a function of the
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number density, which again is expressed in terms
of dX ∧ dY ∧ dZ.
The Carter-Langlois model for a superfluid may be

described in terms of the flux φ as before but the variational
principle involves the Clebsch potential scalar field T rather
than Z, as described in Sec. VI. The Lagrangian takes the
general form

LððdX ∧ dYÞ2; ðdT þ XdYÞ2; ðdX ∧ dY ∧ dTÞ2Þ: ð76Þ

Here dT þ XdY points in the direction of the velocity of the
fluid u and has magnitude equal to the chemical potential μ.

The extra dependence dX ∧ dY ∧ dT may be interpreted
as the dual of the helicity vector.
The fluids discussed in this paper are isentropic, and

another less obvious extension may be to introduce dis-
sipation effects into string fluids using the Lagrangian
framework developed here. A similar problem was studied
in the context of black holes [26] and more recently in the
context of particle fluids [27]. Alternatively, an approach
similar to that of Israel-Stewart [28] has been used to
introduce dissipative effects in string fluids and magneto-
hydrodynamics using the requirement of consistency with
the second law of thermodynamics [7].
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