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We provide evidence in favor of the conjectured duality between color and kinematics for the case
of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point
amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension.
We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical
four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a
theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with
specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in
four, six, and eight dimensions, and at two loops in four dimensions.
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I. INTRODUCTION

Recent years have seen remarkable progress in comput-
ing and understanding scattering processes in gauge and
gravity theories, both for phenomenological and theoretical
applications. (For various reviews see Refs. [1,2].) In
particular, various new structures have been uncovered
in the amplitudes of these theories (see, for example,
Ref. [3]). One such structure is the duality between color
and kinematics [4,5]. This Bern-Carrasco-Johansson (BCJ)
duality is conjectured to hold at all loop orders in Yang-
Mills theory and its supersymmetric counterparts. Besides
imposing strong constraints on gauge-theory amplitudes,
whenever a form of a gauge-theory loop integrand is
obtained where the duality is manifest, we obtain corre-
sponding gravity integrands simply by replacing color
factors by specified gauge-theory kinematic numerator
factors.
The duality between color and kinematics has been

confirmed in numerous tree-level studies [6–11], including
the construction of explicit representations for an arbitrary
number of external legs [12]. At loop level, the duality
remains a conjecture, but there is already significant non-
trivial evidence in its favor for supersymmetric theories
[5,13–17] and for special helicity configurations in non-
supersymmetric pure Yang-Mills theory [5,18]. Here we
provide further evidence in favor of the duality at loop
level, explicitly showing that it holds for pure Yang-Mills
one-loop four-point amplitudes for all polarization states
in D dimensions. We also present a duality-satisfying
representation of the two-loop four-point identical-helicity
amplitude of pure Yang-Mills. This amplitude in a

non-duality-satisfying representation was first given in
Ref. [19], while Ref. [5] noted the existence of a
duality-satisfying form. Here we explicitly give the full
duality-satisfying form, including contributions from dia-
grams absent from Ref. [19] that vanish under integration
but are necessary to make the duality manifest.
In order to construct the one-loop four-point pure Yang-

Mills amplitude, we use a D-dimensional variant [20] of
the unitarity method [21]. Our construction begins by
finding an ansatz for the amplitude constrained to satisfy
the duality. Since the amplitude is fully determined from
its D-dimensional unitarity cuts, we obtain a form of the
amplitude with the duality manifest by enforcing that the
ansatz has the correct unitarity cuts. The existence of such
a form where both the duality and the cuts are simulta-
neously satisfied is rather nontrivial. We do not use
helicity states tied to specific dimensions but instead
use formal polarization vectors because we wish to have
an expression for the amplitude valid in any dimension
and for all states. The price for this generality is that the
expressions are lengthier. Since the constructed integrand
has manifest BCJ duality, the double-copy construction
immediately gives the corresponding gravity amplitude
in a theory with a graviton, dilaton, and antisymmetric
tensor.
We use these results to study the ultraviolet divergences

of the corresponding gravity amplitudes. Recent years
have seen a renaissance in the study of ultraviolet diver-
gences in gravity theories, in a large measure due to the
greatly improved ability to carry out explicit multiloop
computations in gravity theories [5,13–15,22–24]. The
unitarity method also has revealed hints that multiloop
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supergravity theories may be better behaved in the ultra-
violet than suggested by power-counting arguments based
on standard symmetries [25]. Even pure Einstein gravity at
one loop exhibits surprising cancellations as the number of
external legs increases [26]. The question of whether it is
possible to construct a finite supergravity is still an open
one, though there has been enormous progress on this
question in recent years, including new computations and a
much better understanding of the consequences of super-
symmetry and duality symmetry (see e.g. Refs. [27,28]). In
half-maximal supergravity [29], two- and three-loop exam-
ples are known where the divergence vanishes, yet the
understanding of the possible symmetry behind this van-
ishing is incomplete [23,24,28,30]. The duality between
color and kinematics and its associated double-copy for-
mula offer a new angle on the ultraviolet divergences in
supergravity theories [5,13,23,24,31]. Here we explore the
ultraviolet properties of nonsupersymmetric gravity from
the double-copy perspective.
We use the gravity integrands constructed via the

double-copy property to determine the exact form of the
ultraviolet divergences. We do so at one loop in dimensions
D ¼ 4; 6; 8. The ultraviolet properties of one-loop four-
point gravity amplitudes have already been studied in some
detail over the years, including cases with scalars or
antisymmetric tensors coupling to gravity [26,32–36], so
no surprises should be expected, at least at four points.
Nevertheless, it is useful to look in some detail at the
ultraviolet properties to understand them from the double-
copy perspective. Here we examine the four-point ampli-
tudes in a theory of gravity coupled to a dilaton and an
antisymmetric tensor, corresponding to the double copy of
pure Yang-Mills theory. While related calculations have
been carried out, we are unaware of any calculations of the
ultraviolet properties in the theory corresponding to the
double-copy theory.
We find that inD ¼ 4, there are no one-loop divergences

in amplitudes involving external gravitons, though there
are divergences in the remaining amplitudes involving only
external dilatons or antisymmetric tensors, as expected
from simple counterterm arguments [32]. By two loops,
even the four-graviton amplitudes contain divergences, as
we demonstrate. In the two-loop case, the divergence is
proportional to a unique R3 operator which gives a
divergence in the identical-helicity four-point amplitude.
This means that the identical-helicity four-point amplitude
is sufficient for determining the coefficient of the R3

divergence. In D ¼ 6 and D ¼ 8, we find one-loop
divergences in the four-external-graviton amplitudes.
These results are not surprising and are in line with the
earlier studies. Our conclusion is that, by itself, the double-
copy structure is insufficient to render a gravity theory
finite in D ¼ 4 and requires additional ultraviolet cancel-
lations, such as those from supersymmetry.

This paper is organized as follows. In Sec. II, we briefly
review the duality between color and kinematics and the
double-copy construction of gravity. In Sec. III, we present
the construction of the duality-satisfying pure Yang-Mills
numerators at one and two loops. Then in Sec. IV, we study
the ultraviolet properties of gravity coupled to a dilaton
and an antisymmetric tensor at one loop in four, six, and
eight dimensions. In the same section, we also present the
ultraviolet properties at two loops in four dimensions.
Finally, in Sec. V we give our conclusions. Appendixes
evaluating two-loop integrals needed in Sec. IV B are
included. Appendix A focuses on extracting the divergen-
ces in dimensional regularization. This procedure mixes
infrared and ultraviolet divergences; so, in Appendix B we
give the infrared divergences that must be subtracted to
obtain the ultraviolet ones. Appendix C evaluates the
integrals using an alternative method for obtaining the
ultraviolet divergences more directly, by introducing a mass
to separate out the infrared divergences from the ultra-
violet ones.

II. REVIEW OF BCJ DUALITY

An L-loop m-point gauge-theory amplitude in D dimen-
sions, with all particles in the adjoint representation, may
be written as

AL-loop
m ¼ iLgm−2þ2L

X
Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

cjnjQ
αj
p2
αj

;

ð2:1Þ
where g is the gauge coupling constant. The first sum runs
over the m! permutations of the external legs, denoted by
Sm. The Sj symmetry factor removes any overcounting
from these permutations and also from any internal auto-
morphism symmetries of graph j. The j sum is over the set
of distinct, nonisomorphic, m-point L-loop graphs with
only cubic (i.e., trivalent) vertices. These graphs are
sufficient because any diagram with quartic or higher
vertices can be converted to a diagram with only cubic
vertices by multiplying and dividing by the appropriate
propagators. The propagators appearing in the graph are
1=
Q

αj
p2
αj . The nontrivial kinematic information is con-

tained in the numerators nj and depends on momenta,
polarizations, and spinors. In supersymmetric cases it will
depend also on Grassmann parameters, if a superspace
form is used. The loop integral is over L-independent
D-dimensional loop momenta, pl. Finally, cj denotes the
color factor obtained by dressing every vertex in graph j
with the group-theory structure constant, ~fabc¼ i

ffiffiffi
2

p
fabc¼

Trð½Ta;Tb�TcÞ, where the Hermitian generators of the
gauge group are normalized via TrðTaTbÞ ¼ δab.
The numerators appearing in Eq. (2.1) are by no means

unique because of freedom in moving terms between
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different diagrams. Utilizing this freedom, the BCJ con-
jecture is that to all loop orders, representations of the
amplitude exist where kinematic numerators obey the same
algebraic relations that the color factors obey [4,5]. In
ordinary gauge theories, this is simply the Jacobi identity,

ci ¼ cj − ck ⇒ ni ¼ nj − nk; ð2:2Þ

where i, j, and k label three diagrams whose color factors
obey the Jacobi identity. The basic Jacobi identity is
displayed in Fig. 1. The identity generalizes to any loop
order with any number of external legs by embedding it in
larger diagrams, where the other parts of the diagrams are
identical for the three diagrams. Furthermore, if the color
factor of a diagram is antisymmetric under a swap of legs,
we require that the numerator obey the same antisymmetry,

ci → −ci ⇒ ni → −ni: ð2:3Þ

The duality was noticed long ago for tree-level four-point
Feynman diagrams [37]; beyond this, it is rather nontrivial
and no longer holds for ordinary Feynman diagrams. We
note that the numerator relations are nontrivial functional
relations because they depend on momenta, polarizations,
and spinors, as discussed in some detail in Refs. [2,11,13].
While a complete understanding of the duality and its

consequences is still lacking, a variety of studies have
elucidated it, especially at tree level. In particular, this
duality leads to nontrivial relations between gauge-theory
color-ordered partial tree amplitudes [4,38]. The duality
(2.3) has also been studied in string theory [6,9,39]. In the
self-dual case, light-cone gauge Feynman rules have been
shown to exhibit the duality [10]. Explicit forms of n-point
tree amplitudes satisfying the duality have been found [12].
Although we do not yet have a complete Lagrangian
understanding, some progress in this direction can be
found in Refs. [8,10]. The duality (2.2) does not need to
be expressed in terms of group structure constants but
can alternatively be expressed in terms of a trace-based
representation [40]. Progress has also been made in under-
standing the underlying infinite-dimensional Lie algebra
[10,41] responsible for the duality. The duality between
color and kinematics also appears to hold in three-
dimensional theories based on three algebras [42], as well

as in some cases with higher-dimension operators [43].
Some initial studies of duality and its implications for gravity
in the high-energy limit have also been carried out [44].
At loop level, the duality remains a conjecture, but there

is already nontrivial evidence in its favor, especially for
supersymmetric theories. At present, the list of loop-level
cases where duality-satisfying forms of the amplitude are
known to hold includes:

(i) Up to four loops for four-point N ¼ 4 super-Yang-
Mills [5,13] in a form valid in D dimensions;

(ii) up to two loops for five external gluons in N ¼ 4
super-Yang-Mills theory [45];

(iii) up to seven points for one-loop amplitudes inN ¼ 4
super-Yang-Mills theory [46];

(iv) up to two loops for four-point identical-helicity pure
Yang-Mills amplitudes [5];

(v) through n points for one-loop all-plus-, or single-
minus-helicity pure Yang-Mills amplitudes [18];

(vi) through four loops for a two-point (Sudakov) form
factor in N ¼ 4 super-Yang-Mills theory [47];

(vii) one-loop four-point amplitudes in Yang-Mills the-
ories with less than maximally supersymmetric
amplitudes [17].

In this paper, we add the nonsupersymmetric pure Yang-
Mills one-loop four-point amplitude in D dimensions to
this list. Besides direct constructions, we note that the
duality also appears to be consistent with loop-level
infrared properties of both gauge and gravity theories [16].
Another significant aspect of the duality is the ease with

which gravity loop integrands can be obtained from gauge-
theory ones, once the duality is made manifest [4,5]. One
simply replaces the color factor with a kinematic numerator
from a second gauge theory,

ci → ~ni: ð2:4Þ

This immediately gives the double-copy form of gravity
amplitudes,

ML-loop
m ¼ iLþ1

�
κ

2

�
m−2þ2LX

Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

~njnjQ
αj
p2
αj

;

ð2:5Þ

where ~nj and nj are gauge-theory numerator factors.
Only one of the two sets of numerators needs to satisfy
the duality (2.2) [5,8] in order for the double-copy form
(2.5) to be valid. The double-copy formalism has been
studied at loop level in some detail in a variety of cases
[5,13,14,16,23,24,45,46].

III. CONSTRUCTION OF
DUALITY-SATISFYING INTEGRANDS

We now describe the construction of a duality-satisfying
representation of the one-loop four-point amplitude in pure

FIG. 1. The basic Jacobi relation for either color or numerator
factors. These three diagrams can be embedded in a larger
diagram, including loops.
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Yang-Mills. Since we want the form to be valid in all
dimensions and for all D − 2 gluon states, we use formal
polarizations instead of helicity states. This complicates the
expression for the amplitude, but has the advantage that it
allows us to straightforwardly study the amplitude and its
gravity double copy in various dimensions. In this section,
we also present a form of the two-loop pure Yang-Mills
identical-helicity amplitude given in Ref. [19] that satisfies
BCJ duality after some rearrangement and addition of
diagrams that integrate to zero. In Sec. IV B, we use this
amplitude to show that although four-graviton amplitudes
are ultraviolet finite in D ¼ 4 at one loop, they diverge at
two loops, in accordance with expectations.

A. One loop

For a one-loop n-point amplitude, the duality (2.2) can
be used to express kinematic numerators of any diagram
directly in terms of n-gon numerators. In particular, for the
four-point case we have two basic relations determining
triangle and bubble contributions from box numerators as
illustrated in Fig. 2,

n12ð34Þ;p ¼ n1234;p − n1243;p;

nð12Þð34Þ;p ¼ n12ð34Þ;p − n21ð34Þ;p: ð3:1Þ

The labels 1,2,3,4 refer to the momenta and states of each
external leg, while the label p denotes the loop momentum
of the leg indicated in Fig. 2. (The parentheses in the
subscript of the numerators indicate which external legs
are pinched off to form a tree attached to the loop.) Note
that in the figure the momentum of each internal leg of each
diagram is the same as in the other two diagrams except for
the single internal leg that differs between the diagrams. In
general, the bubble and triangle contributions are non-
vanishing; indeed, this explicitly holds for the BCJ repre-
sentation of the one-loop four-point amplitude of pure
Yang-Mills theory that we construct.
Besides the diagrams in Fig. 2, there are diagrams with a

bubble on an external leg and diagrams with a tadpole, as

shown in Fig. 3. The duality also determines the numerators
of these diagrams via

n1ð234Þ;p ¼ n12ð34Þ;p þ n1ð43Þ2;p;

nð1234Þ;p ¼ nð12Þð34Þ;p − nð12Þð34Þ;−p;

nð1̂234Þ;p ¼ n1ð234Þ;p − n1ð234Þ;−p; ð3:2Þ

corresponding respectively to the three relations in Fig. 3.
[On the final line in Eq. (3.2), the hat marks leg 1 as the
location where the tadpole is attached.] We use these
equations to impose the auxiliary constraint that the tadpole
numerators determined by BCJ duality vanish identically
and that all terms in the bubble-on-external-leg diagrams
integrate to zero as they do for Feynman diagrams. Thus,
these diagrams are not necessary for determining the
integrated amplitudes (though in D ¼ 4 the bubble-on-
external-leg diagrams do affect the Yang-Mills ultraviolet
divergence).
Once we impose the BCJ conditions, the amplitude is

entirely specified by the box numerators. Our task is then
to find an expression for the box numerators such that
we obtain the correct amplitude. It is useful to impose
a few auxiliary constraints to help simplify the one-loop
construction:
(1) The box diagrams should have no more than four

powers of loop momenta in the pure Yang-Mills
case, matching the usual power count of Feynman-
gauge Feynman diagrams.

(2) Each numerator written in terms of formal polari-
zation vectors respects the symmetries of the dia-
grams. In particular, this condition implies that once
a box diagram with one ordering of external legs is
specified, the other orderings are obtained simply by
relabeling.

(3) The numerators of tadpole diagrams vanish prior to
integration.

FIG. 2. The Jacobi relations determining either color or
kinematic numerators of the four-point diagrams containing
either a triangle or internal bubble.

FIG. 3. The color or kinematic Jacobi relations involving a
bubble on an external leg or a tadpole. These diagrams have
vanishing contribution to the integrated amplitude.
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(4) All terms in the bubble-on-external-leg diagrams
integrate to zero, as they do for Feynman diagrams.

While it is not necessary to impose these conditions, they
greatly simplify the construction. They ensure that the type
of terms that appear in the ansatz are similar to those of
ordinary Feynman-gauge Feynman diagrams, avoiding
unnecessarily complicated terms. (Using generalized gauge
invariance, one can always introduce arbitrarily compli-
cated terms into amplitudes, which cancel at the end.)
The first three conditions simplify the construction by

restricting the number of terms that appear. The purpose of
the fourth auxiliary constraint is a bit more subtle. While
bubble-on-external-leg Feynman diagrams are well defined
in the on-shell limit, the freedom to reassign terms used in
the construction of BCJ numerators can introduce ill-
defined terms into such diagrams. As a simple example,
consider the effect of the term ðk1 þ k2Þ2ε1 · k2ε2 · k1ε3 · ε4
when added to the numerator of the first diagram of Fig. 3
(with ki and εi external momenta and polarizations). Even
after integration, this contribution to the diagram is ill-
defined because of the on-shell intermediate propagator.
Such singular contributions would need to be regularized
by an appropriate off-shell continuation to ensure that the
introduced singularities cancel properly against singular-
ities of other diagrams. While in principle we can introduce
such a regulator, it is best to avoid this complication
altogether. The fourth condition ensures that we can treat
the bubble-on-external-leg contributions in the sameway as
for Feynman diagrams. In particular, with the constraint
imposed, the bubble-on-external-leg contributions match
the Feynman-diagram property that they are proportional to
ðk2i ÞðD−4Þ=2, after accounting for the intermediate on-shell
propagator, and hence vanish in D > 4, for ki on shell. We
note that even with the fourth constraint, near D ¼ 4 we
encounter the same subtlety encountered with Feynman
diagrams: Although bubble-on-external-leg contributions
are set to zero in dimensional regularization, they can carry
ultraviolet divergences. Such ultraviolet divergences cancel
against infrared ones leaving a vanishing result for on-shell
bubble-on-external-leg diagrams. The net effect is that in
gauge theory, we need to account for such contributions to
obtain the correct ultraviolet divergences. In contrast, in
gravity even near D ¼ 4 there are neither infrared nor
ultraviolet divergences hiding in the bubble-on-external-leg
contributions because an extra two powers of numerator
momenta give rise to an additional vanishing.
We start the construction with an ansatz containing all

possible products of εi · εj, p · εi, ki · εj, p · ki, p · p, s, and
t, where the ki are three independent external momenta, p is
the loop momentum, εi are external polarization vectors, and

s ¼ ðk1 þ k2Þ2; t ¼ ðk2 þ k3Þ2 ð3:3Þ

are the usual Mandelstam invariants. By dimensional analy-
sis, each numerator term must contain four momenta in

addition to being linear in all four εi’s. We also set ki · εi ¼ 0
and impose momentum conservation with k4 ¼ −k1 − k2 −
k3 and k1 · ε4 ¼ −k2 · ε4 − k3 · ε4. This yields 468 terms,
each with a coefficient to be determined.
Our first constraint on the coefficients comes from

demanding that the box numerator obey the rotation and
reflection symmetries of the box diagram. This leaves us
with 81 free coefficients. An ansatz for the full amplitude is
then obtained by using the duality relations (3.1) and (3.2)
to determine numerators for all other diagrams.
The next step is to determine coefficients in the ansatz by

matching to the unitarity cuts of the amplitude. It is
convenient to use a color-ordered form of the amplitude
[48] for this matching. The seven diagrams contributing to
the color-ordered amplitude, that is the coefficient of the
color trace NcTr½Ta1Ta2Ta3Ta4 �, are shown in Fig. 4. The
other color-ordered amplitudes are simple relabelings of
this one. For the one-loop four-point amplitude, the s- and
t-channel unitarity cuts shown in Fig. 5 are sufficient to
determine this color-ordered amplitude up to terms that
integrate to zero. One straightforward means for determin-
ing the cuts is to construct the amplitude in Feynman gauge
and then take its unitarity cuts at the integrand level prior to

FIG. 4. The seven diagrams for the color-ordered amplitude
with ordering (1,2,3,4).

FIG. 5. The (a) s-channel and (b) t-channel unitarity cuts used
to determine the amplitude. The exposed intermediate legs are
on shell.
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integration. This automatically gives us an expression for
the cuts valid in D dimensions without any spurious
denominators (such as light-cone denominators from
physical state projectors). This matching procedure non-
trivially rearranges the amplitude so that BCJ duality is
manifest. After matching the cuts, we also impose the
fourth auxiliary condition to tame the bubble-on-external-
leg contributions. Finally we impose that the tadpole
numerators vanish. Including all the auxiliary constraints
with these conditions, we can solve for all but five free
coefficients. Because the s- and t-channel unitarity cuts are

independent of these parameters, the integrated amplitude
should not depend on them.
Using the shorthand notation,

p1 ¼ p; p2 ¼ p − k1; p3 ¼ p − k1 − k2;

p4 ¼ pþ k4; Eij ¼ εi · εj;

Pij ¼ pi · εj; Kij ¼ ki · εj; ð3:4Þ

and setting the free parameters to zero for simplicity, the
box numerator is

n1234;p ¼ −i
�
Ds − 2

8
E14E23p2

1p
2
3 þ

Ds − 2

24
E13E24p2

1p
2
3 −

Ds − 2

24
E12E34p2

1p
2
3 −

2

3
E14E23p2

3s

−
2

3
E13E24p2

2sþ
2

3
E12E34p2

2sþ
2

3
E14E23p2

2sþ
1

2
E14E23s2 þ 2E23K24K41p2

3

þDs − 74

24
E13K12K34p2

3 þ
Ds − 74

24
E24K23K41p2

3 −
Ds − 26

3
E12K13K34p2

3

−
Ds − 26

6
E34K41K42p2

3 −
Ds − 26

2
E12K23K34p2

3 −
Ds − 26

2
E34K12K41p2

3

þDs − 26

12
E34K31K42p2

3 þ
5ðDs − 26Þ

24
E24K13K41p2

3 −
Ds − 26

8
E24K13K31p2

3

−
11ðDs − 26Þ

24
E24K23K31p2

3 −
Ds − 26

24
E34K12K31p2

3 þ
Ds − 30

2
E13K12K24p2

3

−
Ds − 14

6
E13K34K42p2

3 þ
Ds − 38

6
E13K24K42p2

3 −
5ðDs − 26Þ

24
E12K13K24p2

3

−
11ðDs − 26Þ

24
E12K23K24p2

3 þ
13Ds − 290

24
E14K23K42p2

3 þ ðDs − 24ÞE14K12K23p2
3

þ 11ðDs − 26Þ
24

E14K13K42p2
3 þ

11ðDs − 26Þ
24

E14K12K13p2
3 −

Ds − 26

12
E23K24K31p2

3

−
Ds − 26

12
E23K31K34p2

3 −
Ds − 50

12
E23K34K41p2

3 − 4E14K12K23s − 2E23K24K31s

− 2E23K24K41s − 2E12K23K24s − 2E14K12K13s − 2E12K23K34s

þ 7Ds − 230

12
E23K31P44p2

3 þ
7Ds − 230

24
E23K34P11p2

3 þ
7Ds − 230

24
E23K41P44p2

3

þ 7Ds − 230

24
E13K34P22p2

3 þ
7Ds − 230

24
E24K41P33p2

3 −
7ðDs − 26Þ

24
E24K13P11p2

3

þ 7ðDs − 26Þ
24

E12K13P44p2
3 −

7Ds − 230

24
E23K24P11p2

3 −
7Ds − 230

24
E12K24P33p2

3

−
7Ds − 230

24
E34K42P11p2

3 −
11Ds − 238

24
E13K12P44p2

3 −
11Ds − 238

24
E24K23P11p2

3

þ 2E12K23P44p2
3 þ 2E34K12P11p2

3 −
Ds − 14

6
E13K42P44p2

3 −
3ðDs − 26Þ

8
E34K31P22p2

3

−
3ðDs − 26Þ

8
E24K31P33p2

3 −
2ðDs − 29Þ

3
E34K41P22p2

3 −
2ðDs − 29Þ

3
E12K34P33p2

3

þ 13Ds − 290

24
E14K42P33p2

3 þ
13Ds − 290

24
E14K12P33p2

3 þ
13Ds − 290

24
E14K23P22p2

3
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þ 2ðDs − 29Þ
3

E13K24P22p2
3 − 2E14K42P33s − 2E34K41P22s − 2E14K12P33s

− 2E12K24P33s − 2E12K34P33s − 2E14K23P22sþ 2E13K34P22sþ 2E24K41P33s

þ 2E13K24P22s − ðDs − 2ÞE23P11P44p2
3 −

Ds − 2

6
E13P22P44p2

3 −
Ds − 2

6
E24P33P11p2

3

þDs − 2

6
E12P33P44p2

3 þ
Ds − 2

6
E34P11P22p2

3 − 4E34P11P22sþ 2E13P22P44s

þ 2E24P33P11sþ 4K12K13K24K31 þ 4K12K23K24K31 þ 2K12K13K31K34

þ 4K12K23K31K34 þK13K24K31K42 þ 2K12K23K34K41 − 4K12K24K41P33

þ 4K31K34K42P33 þ 4K24K41K42P33 þ 4K34K41K42P33 þ 4K24K31K42P33

− 8K34K41P22P33 − 8K24K41P22P33 þ 4K24K42P11P33

þ ðDs − 2ÞP11P22P33P44

�
þ cyclic; ð3:5Þ

where Ds is a state-counting parameter, so that Ds − 2 is
the number of gluon states circulating in the loop. The
notation “þ cyclic” indicates that one should include the
three additional cyclic permutations of indices, giving a
total of four permutations (1,2,3,4), (2,3,4,1), (3,4,1,2),
(4,1,2,3) of all variables εi; ki; pi; s; t. Plain-text, com-
puter-readable versions of the full expressions for the
numerators, including also gluino- and scalar-loop con-
tributions, can be found online [49]. In Eq. (3.5), we have
written the expression for the box numerator in a different
form than that available online in order to exhibit the
cyclic symmetry.
We have explicitly checked that after reducing the pure

Yang-Mills amplitude to an integral basis, the expression is
free of arbitrary parameters and inD ¼ 4matches the known
expression for the amplitude in Ref. [50], after accounting
for the fact that the expression in that paper is renormalized.
The reduction for four-dimensional external states was
carried out by expanding the external polarizations in terms
of the external momenta plus a dual vector [51].
As another simple cross-check, we have extracted the

ultraviolet divergences in D ¼ 6; 8 and compared them to
the known forms. In D ¼ 6; 8, with our fourth auxiliary
constraint there are no ultraviolet contributions from
bubbles on external legs. This allows us to directly
extract the ultraviolet divergences by introducing a mass
regulator and then expanding in small external momenta
using the methods of Ref. [52]. We find complete
agreement with both earlier evaluations in Ref. [53].
We have also compared this to an extraction of the
ultraviolet divergences directly using dimensional regu-
larization without introducing an additional mass regu-
lator and again find agreement.

B. Two loops

We now turn to two loops. As we shall discuss in Sec. IV,
the four-graviton amplitude in the double-copy theory is
ultraviolet finite at one loop. To test whether this continues
at two loops, we need the two-loop amplitude. As it turns
out, the identical-helicity amplitude is sufficient for our
purposes because the divergence comes from an R3

operator whose coefficient is fixed by this amplitude.
We therefore now turn to finding a form of the two-loop
identical-helicity amplitude where BCJ duality is manifest.
It would be interesting to obtain a general two-loop
construction valid for all states in D dimensions, but we
do not do so here.
The identical-helicity pure Yang-Mills amplitude has

previously been constructed in Ref. [19]. There the ampli-
tude is given in the following representation:

Að2Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ g6

1

4

X
S4

½CP
1234A

P0
1234 þ CNP

12;34A
NP
12;34�;
ð3:6Þ

where the sum runs over all 24 permutations of the external
legs. We will describe the all-plus-helicity case; the all-
negative-helicity case follows from parity conjugation. The
prefactor of 1=4 accounts for the overcount due to
symmetries of the diagrams. CP

1234 and CNP
12;34 are the color

factors obtained from the planar double-box and nonplanar
double-box diagrams shown in Figs. 6(a) and 6(b), respec-
tively, by dressing each vertex with an ~fabc and summing
over the contracted color indices. AP0

1234 and ANP
12;34 are then

the associated partial amplitudes. These partial amplitudes
are [19]
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AP0
1234 ¼ iT

�
sIP

4 ½ðDs − 2Þðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16ððλp · λqÞ2 − λ2pλ

2
qÞ�ðs; tÞ

þ 4ðDs − 2ÞIbow-tie
4 ½ðλ2p þ λ2qÞðλp · λqÞ�ðsÞ þ

ðDs − 2Þ2
s

Ibow-tie
4 ½λ2pλ2qððpþ qÞ2 þ sÞ�ðs; tÞ

�
;

ANP
12;34 ¼ iT sINP

4 ½ðDs − 2Þðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16ððλp · λqÞ2 − λ2pλ

2
qÞ�ðs; tÞ; ð3:7Þ

where the permutation-invariant kinematic prefactor is given by

T ≡ ½12�½34�
h12ih34i ; ð3:8Þ

where the angle and square brackets are standard spinor inner products. For the all-negative-helicity case, the angle and
square products should be swapped. The planar double-box [Fig. 6(a)], nonplanar double-box [Fig. 6(b)], and bow-tie
integrals (Fig. 7) are

IP
4 ½Pðλi; p; q; kiÞ�ðs; tÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðpþ qÞ2ðp − k1Þ2ðp − k1 − k2Þ2ðq − k4Þ2ðq − k3 − k4Þ2

;

INP
4 ½Pðλi; p; q; kiÞ�ðs; tÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðpþ qÞ2ðp − k1Þ2ðq − k2Þ2ðpþ qþ k3Þ2ðpþ qþ k3 þ k4Þ2

;

Ibow-tie
4 ½Pðλi; p; q; kiÞ�ðs; tÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðp − k1Þ2ðp − k1 − k2Þ2ðq − k4Þ2ðq − k3 − k4Þ2

; ð3:9Þ

where λp, λq, and λpþq represent the ð−2ϵÞ-dimensional components of loop momenta p, q, and ðpþ qÞ.
Reference [5] notes that a representation where the numerators satisfy the BCJ duality can be obtained directly from the

representation of the amplitude given in Ref. [19]. Here we describe this in more detail, including additional diagrams that
integrate to zero and are undetectable in ordinary unitarity cuts, but are needed to make the duality manifest.

FIG. 6. The diagrams needed to describe an integrand for the identical-helicity amplitude where the duality between color
and kinematics is manifest. When integrated diagrams (d)–(k) vanish. The (a) planar double-box, (b) nonplanar double-box, and
(c) double-triangle integrals are the only nonvanishing ones under integration.
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We begin with a rearranged form of the identical-helicity amplitude,

Að2Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ g6

X
S4

�
1

4
CP
1234A

P
1234 þ

1

4
CNP
12;34A

NP
12;34 þ

1

8
CDT
1234A

DT
1234

�
: ð3:10Þ

CDT
1234 is the color factor obtained from the stretched bow-tie or double-triangle diagram in Fig. 6(c). ANP

12;34 is given in
Eq. (3.7), while AP

1234 and ADT
1234 are

AP
1234 ¼ iT IP

4

�ðDs − 2Þ2
2

ðpþ qÞ2λ2pλ2q þ 16sððλp · λqÞ2 − λ2pλ
2
qÞ

þ ðDs − 2Þ
�
sðλ2pλ2q þ λ2pλ

2
pþq þ λ2qλ

2
pþq

�
þ 4ðpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞÞ

�
ðs; tÞ;

ADT
1234 ¼ iT IDT

4

�ðDs − 2Þ2
2

ð4p · qþ 2ðp − qÞ · ðk1 þ k2Þ − sÞλ2pλ2q

þ 8ðDs − 2Þðλ2p þ λ2qÞðλp · λqÞðp2 þ q2 − ðp − qÞ · ðk1 þ k2Þ þ sÞ
�
ðs; tÞ: ð3:11Þ

The double-triangle integral displayed in Fig. 6(c) is simply

IDT
4 ½Pðλi; p; q; kiÞ�ðs; tÞ ¼

1

s
Ibow-tie
4 ½Pðλi; p; q; kiÞ�ðs; tÞ;

ð3:12Þ

so that all integrals in the new representation of the
amplitude are given by trivalent graphs.
This form of the amplitude differs from Eq. (3.6) by

absorbing the bow-tie contribution depicted in Fig. 7 into
both the planar double box in Fig. 6(a) and the double
triangle in Fig. 6(c). When moving terms into the double
box Fig. 6(a), we must multiply by a factor of ðpþ qÞ2 in
the numerator to cancel the central propagator, while in the
double triangle Fig. 6(c), we must multiply by a factor of s.
In this rearrangement we have also included terms that
integrate to zero. In particular, the second term in the
double-triangle contribution in Eq. (3.11) proportional to
ðλp · λqÞ integrates to zero and does not contribute to the
integrated amplitude. We are therefore free to drop it. We
can also modify the first term in the double-triangle integral
into the form appearing in Ref. [19] by using the fact that
the substitution

ð4p · qþ 2ðp − qÞ · ðk1 þ k2Þ − sÞ → 2ðpþ qÞ2 þ s

ð3:13Þ

does not alter the value of the integrated amplitude: All
terms that are proportional to p2, q2, ðp − k1 − k2Þ2, and
ðq − k3 − k4Þ2 yield scale-free integrals that integrate to
zero. Finally, to see the equivalence of the two representa-
tions, we note that the double triangle Fig. 6(c) has a
different color factor from that of the planar double box
Fig. 6(a). However, we can convert the double-triangle
Fig. 6(c) color factor to the double-box Fig. 6(a) color
factor via the color Jacobi identity CDT

1234 ¼ CP
1234 − CP

2134.
This matches the color assignment used in Ref. [19].
Although not manifest, the kinematic numerator reflects
the antisymmetry of the Jacobi relations so that the addi-
tional terms picked up by AP

1234 and A
P
2134 are simply related

by relabelings. Thus, after integration our representation in
Eq. (3.10) is equivalent to the one in Eq. (3.6), which comes
from Ref. [19].
The integrand in Eq. (3.10) satisfies BCJ duality once we

include additional contributions that integrate to zero. To find
the full form, we consider Jacobi relations (2.2) around each
internal propagator of the planar double box, the nonplanar
double box, and the double triangle, as well as all resultant
integrals that arise from these Jacobi relations. Duality
relations where all three numerators are nonvanishing are
depicted in Fig. 8. The need for additional nonvanishing
numerators depicted in Figs. 6(d)–6(m) arises from these
dual-Jacobi relations. Other sample Jacobi relations where
one of the numerators vanishes are shown in Fig. 9. Up to
relabelings, there are in total 16 such relations involving two
nonvanishing numerators and one vanishing numerator. A
fully duality-satisfying form is given by the numerators,

FIG. 7. The bow-tie integral appearing in the identical-helicity
pure Yang-Mills amplitude.
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FIG. 8 (color online). The nontrivial duality relations (a)–(m) satisfied by the numerators of the identical-helicity two-loop amplitude.
The shaded (red) leg marks the central leg of the applied Jacobi identity.
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PPðλi; p; q; kiÞ ¼
ðDs − 2Þ2

2
ðpþ qÞ2λ2pλ2q þ 16sððλp · λqÞ2 − λ2pλ

2
qÞ

þ ðDs − 2Þðsðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 4ðpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞÞ;

PNPðλi; p; q; kiÞ ¼ ðDs − 2Þsðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16sððλp · λqÞ2 − λ2pλ

2
qÞ;

PDTðλi; p; q; kiÞ ¼
ðDs − 2Þ2

2
ð4p · qþ 2ðp − qÞ · ðk1 þ k2Þ − sÞλ2pλ2q

þ 8ðDs − 2Þðλ2p þ λ2qÞðλp · λqÞðp2 þ q2 − ðp − qÞ · ðk1 þ k2Þ þ sÞ;

PðdÞðλi; p; q; kiÞ ¼
ðDs − 2Þ2

2
ðpþ qÞ2λ2pλ2q þ 4ðDs − 2Þðpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞ;

PðeÞðλi; p; q; kiÞ ¼ ðDs − 2Þ2ðp2 þ q2 − ðp − qÞ · k1Þλ2pλ2q
þ 8ðDs − 2Þð2p · qþ ðp − qÞ · k1Þðλ2p þ λ2qÞðλp · λqÞ

PðfÞðλi; p; q; kiÞ ¼ −2ðDs − 2Þ2ðp · k1Þλ2pλ2q − 16ðDs − 2Þðq · k1Þðλ2p þ λ2qÞðλp · λqÞ

PðgÞðλi; p; q; kiÞ ¼
ðDs − 2Þ2

2
ððpþ qÞ2λ2p þ p2λ2pþqÞλ2q

þ 4ðDs − 2Þððpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞ − p2ðλ2q þ λ2pþqÞðλq · λpþqÞÞ;
PðhÞðλi; p; q; kiÞ ¼ 2ðDs − 2Þ2ððp · qÞλ2p þ p2ðλp · λqÞÞλ2q − 8ðDs − 2Þð3p2λ2q − q2ðλ2p þ λ2qÞÞðλp · λqÞ;

PðiÞðλi; p; q; kiÞ ¼ −
ðDs − 2Þ2

2
ð4q · k2 þ sÞλ2pλ2q − 4ðDs − 2Þð4p · k2 − sÞðλ2p þ λ2qÞðλp · λqÞ;

PðjÞðλi; p; q; kiÞ ¼ 8ðDs − 2Þsðλ2p þ λ2qÞðλp · λqÞ;
PðkÞðλi; p; q; kiÞ ¼ ðDs − 2Þ2tλ2pλ2q; ð3:14Þ

where each Px is the numerator of an integral
Ix
4½Pxðλi; p; q; kiÞ�ðs; tÞ corresponding to diagram x de-

picted in Fig. 6. In contrast to the one-loop case, the
duality-satisfying amplitudes do contain tadpole diagrams
with nonvanishing numerators.

Although BCJ duality gives us a set of well-defined
numerators for all diagrams, those diagrams with on-shell
or vanishing intermediate propagators are ill-defined.
However, all such ill-defined diagrams give vanishing
contributions after integration. They also do not contribute
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FIG. 9 (color online). Sample duality relations (a)–(f) involving graphs with vanishing numerators. In each relation, the leftmost
diagram has a vanishing numerator. The shaded (red) leg marks the central leg of the applied dual-Jacobi identity.
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to the standard two- and three-particle cuts. In more detail,
using the numerators from Eq. (3.14), Figs. 6(d)–6(k)
contain scale-free integrals that vanish after integration.
Note that Figs. 6(e), 6(f), and 6(h)–6(k) are ill-defined.
Figures 6(f), 6(h), and 6(j) contain a tadpole subdiagram.
We set these to zero, just as they are set to zero in Feynman
diagrams since the tadpole integral is scale free in dimen-
sional regularization. Figures 6(e), 6(i), and 6(k) are also ill-
defined for on-shell external legs because of the propagator
carrying an on-shell momentum. With Feynman diagrams,
this is normally dealt with by taking the legs off shell;
in principle, we can also define an off-shell continuation,
although it is nontrivial to do so consistently in our case.
However, such ill-defined bubble-on-external-leg contribu-
tions again vanish in dimensional regularization, since
the integrals are also scale free. In the gauge-theory case,
although vanishing, these integrals can potentially contain
ultraviolet divergences that cancel completely against
infrared divergences. However, in the gravity case, which
we are interested in here, the integrals are suppressed by an
additional power of the on-shell invariant k2i ¼ 0 and
therefore lead to ultraviolet divergences with zero coef-
ficient. Figures 6(d) and 6(g) may appear to have non-
vanishing cut contributions, but inverse propagators in the
numerator cancel propagators, again leaving scale-free
integrals that vanish.
In summary, the two-loop four-point all-plus-helicity

pure Yang-Mills amplitude in a duality-satisfying repre-
sentation is given by

Að2Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ g6

X
S4

X
x∈fdiagramsg

1

Sx
Cx
1234A

x
1234;

ð3:15Þ

where x labels diagrams in Fig. 6 with nonvanishing
numerators. Sx is the symmetry factor of diagram x, while
Cx
1234 is the color factor. The partial amplitudes are given by

Ax
1234 ¼ iT Ix

4½Pxðλi; p; q; kiÞ�ðs; tÞ; ð3:16Þ

where all diagrams except for those in Figs. 6(a)–6(c)
integrate to zero in gauge theory. In Sec. IV B, we will use
the double-copy relation (2.5) on these numerators to study
the two-loop ultraviolet behavior of gravity coupled to a
dilaton and an antisymmetric tensor.

IV. ULTRAVIOLET PROPERTIES
OF GRAVITY

We now turn to the ultraviolet properties of the gravity
double-copy theory consisting of a graviton, dilaton, and
antisymmetric tensor, from the perspective of the double-
copy formalism. The theory generated by taking the double
copy of pure Yang-Mills corresponds to the low-energy
effective Lagrangian of the bosonic part of string theory [54],

L ¼ ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ 1

2
∂μϕ∂μϕþ 1

6
e−2κϕ=

ffiffiffiffiffiffiffi
D−2

p
HμνρHμνρ

�
;

ð4:1Þ
where Hμνρ ¼ ∂μAνρ þ ∂νAρμ þ ∂ρAμν, and Aμν ¼ −Aνμ is
the rank-two antisymmetric tensor field.
Pure Einstein gravity is one-loop finite in four dimen-

sions [32]. However, when coupled to a scalar (dilaton)
[32] or to a rank-two antisymmetric tensor [34], the theory
is divergent. We find that the double-copy theory coupled
to both a dilaton and an antisymmetric tensor is also
divergent, although for all these theories the four-point
amplitudes with at least one external graviton are finite, as
expected from simple counterterm arguments. We will
show that the cancellation no longer holds at two loops,
and the theory has an R3 counterterm, in much the same
way as it does for pure Einstein gravity [55]. In six
dimensions, pure Einstein gravity is ultraviolet divergent
at one loop [35]. We find the same to be true in our double-
copy theory, and we find a divergence in eight dimensions
as well. We will give the explicit form of the divergences
for these cases. In carrying out these computations we use
the four-dimensional helicity scheme [56]. It would be
interesting to compare our results to ones obtained using
the standard dimensional-regularization scheme, used in,
for example, Ref. [55].

A. One loop

1. Four dimensions

In four dimensions, there is no one-loop four-point
divergence when one external leg is a graviton [32,34]
because the potential independent counterterms for such
divergences vanish on shell or can be eliminated by the
equations of motion. Using the double-copy formula (2.5),
we have explicitly confirmed finiteness in one-loop four-
point amplitudes containing at least one external graviton,
with the remaining legs either gravitons, dilatons, or
antisymmetric tensors. We obtain the gravity numerator
from the double-copy formula (2.5) by taking the two
Yang-Mills numerators, ~ni and ni, to be equal to the BCJ
form of the Yang-Mills numerator (3.5). As an interesting
cross-check, we have obtained an asymmetric representa-
tion of the gravity amplitudes by taking the ~ni to be the
numerators that satisfy BCJ duality and the ni to be
numerators obtained by gauge-theory Feynman rules in
Feynman gauge, similar to the procedure used recently for
half-maximal supergravity [23,24]. By generalized gauge
invariance [5,8], this should be equivalent to the symmetric
construction. Indeed, we find identical results for the
ultraviolet divergences.
To evaluate the ultraviolet divergences, we expand in

small external momenta to reduce to logarithmically
divergent integrals [52]. We then simplify tensor integrals
composed of loop momenta in the numerators by using
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Lorentz invariance, which implies that the integrals must be
linear combinations of products of metric tensors ημν. (See
Ref. [13] for a recent discussion of evaluating tensor
vacuum integrals.) With the insertion of a massive infrared
regulator, we finally integrate simple one-loop integrals to
find the potential ultraviolet divergence. Due to our
auxiliary conditions, contributions from bubbles on exter-
nal legs vanish, as they would for ordinary gravity
Feynman diagrams. We therefore obtain our entire result
from box, triangle, and bubble-on-internal-leg diagrams.
For completeness we have also computed the divergen-

ces directly in dimensional regularization without intro-
ducing a mass regulator, using techniques similar to those
for two loops in Appendix A. After subtracting the infrared
divergence as computed in Appendix B, we find complete
agreement with our result found using the massive infrared
regulator.
We obtain an expression for the divergence in terms of

formal polarization vectors. By taking linear combinations
of the product of polarization vectors from each copy of

Yang-Mills, we can project onto the graviton, dilaton, and
antisymmetric tensor states. In D ¼ 4 this is conveniently
implemented by using spinor helicity [57]. Graviton
polarization tensors correspond to the “left” and “right”
copies of Yang-Mills according to εhþμν → εþLμε

þ
Rν and

εh−μν → ε−Lμε
−
Rν. For the dilaton and antisymmetric tensor,

we symmetrize and antisymmetrize in opposite-helicity
configurations according to εϕμν → 1ffiffi

2
p ðεþLμε−Rν þ ε−Lμε

þ
RνÞ

and εAμν →
1ffiffi
2

p ðεþLμε−Rν − ε−Lμε
þ
RνÞ. By substituting the explicit

polarizations, we find that all configurations where at least
a single leg is a graviton are free of ultraviolet divergences,

Mð1Þð1h; 2; 3; 4Þjdiv ¼ 0; ð4:2Þ

where leg 1 is either a positive- or negative-helicity
graviton, and the other three states are unspecified.
We however find divergences for the cases with no

external gravitons. For the four-dilaton amplitude, we find

Mð1Þð1ϕ; 2ϕ; 3ϕ; 4ϕÞjdiv ¼
1

ϵ

�
κ

2

�
4 i
ð4πÞ2

1132 − 92Ds þ 3D2
s

120
ðs2 þ t2 þ u2Þ; ð4:3Þ

corresponding to the operator,

1

ϵ

�
κ

2

�
4 1

ð4πÞ4
1132 − 92Ds þ 3D2

s

240
ðDμϕDμϕÞ2: ð4:4Þ

This result is similar to the one obtained long ago by
’t Hooft and Veltman [32]. However, in our case we have an
antisymmetric tensor which can circulate in the loop,
altering the numerical coefficient. We note that the operator
in Ref. [32] looks different than above, but it can be written
in a similar way through use of the field equations of
motion.
The amplitude with four antisymmetric tensors is also

one-loop divergent in four dimensions. In four dimensions,
the antisymmetric tensor is dual to a scalar field, so we
expect the divergence to be the same as that for dilatons.
Indeed, the divergence in the four-antisymmetric-tensor
amplitude for a theory with an antisymmetric tensor
coupled to gravity is equal to that of the four-dilaton
amplitude in a theory of a dilaton coupled to gravity [34]. In
congruence, we find the divergence for four external
antisymmetric tensors to also be given by the same
expression as the four-dilaton divergence (4.3),

Mð1Þð1A; 2A; 3A; 4AÞjdiv ¼ Mð1Þð1ϕ; 2ϕ; 3ϕ; 4ϕÞjdiv:
ð4:5Þ

In terms of the antisymmetric tensor fields, the divergence
is generated by the operator,

1

ϵ

�
κ

2

�
4 1

ð4πÞ4
1132 − 92Ds þ 3D2

s

2160
ðHμνρHμνρÞ2: ð4:6Þ

The counterterm that cancels the divergence is given by the
negative of this operator.
In addition to the above divergences, there is also a

divergence in theD ¼ 4, ϕϕAA amplitude. This divergence
is given by

Mð1Þð1ϕ; 2ϕ; 3A; 4AÞjdiv
¼ 1

ϵ

�
κ

2

�
4 i
ð4πÞ4

�
1116 − 76Ds −D2

s

120
s2

þ −1124þ 84Ds −D2
s

120
ðt2 þ u2Þ

�
; ð4:7Þ

which corresponds to the operator,

1

ϵ

�
κ

2

�
4 1

ð4πÞ4
�
1124 − 84Ds þD2

s

60
HμρσHν

ρσDμϕDνϕ

−
1132 − 92Ds þ 3D2

s

360
HμνρHμνρDσϕDσϕ

�
: ð4:8Þ

2. Six dimensions

In six dimensions for external gravitons, the only
independent invariant operator at one loop [58] is
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RαβμνRμνρσRρσ
αβ: ð4:9Þ

This corresponds to the known D ¼ 6 one-loop divergence
of pure Einstein gravity given in Ref. [35]. We have
computed the coefficient of the D ¼ 6 divergence for
the double-copy theory of a graviton coupled to a dilaton
and an antisymmetric tensor. In this case, the divergence is
given by the operator,

−
1

ϵ

1

ð4πÞ3
ðDs − 2Þ2
30240

RαβμνRμνρσRρσ
αβ: ð4:10Þ

Appropriate powers of the coupling are generated by
expanding the metric around flat space, gμν ¼ ημνþ
κhμν. Although we do not include the explicit forms of
the counterterms here, we have also found divergences for
the following amplitudes (as well as their permutations and
parity conjugates) involving external dilatons and antisym-
metric tensors, where we restrict the external states to four
dimensions:

Mð1Þð1ϕ; 2þ; 3þ; 4þÞ; Mð1Þð1ϕ; 2ϕ; 3þ; 4þÞ;
Mð1Þð1ϕ; 2ϕ; 3ϕ; 4þÞ; Mð1Þð1ϕ; 2ϕ; 3ϕ; 4ϕÞ;
Mð1Þð1A; 2A; 3þ; 4þÞ; Mð1Þð1A; 2A; 3ϕ; 4þÞ;
Mð1Þð1A; 2A; 3ϕ; 4ϕÞ: ð4:11Þ

3. Eight dimensions

In eight dimensions, there are seven linearly independent
R4 operators [59]:

T1 ¼ ðRμνρσRμνρσÞ2;
T2 ¼ RμνρσRμνρ

λRγδκ
σRγδκλ;

T3 ¼ RμνρσRμν
λγRλγ

δκRρσδκ;

T4 ¼ RμνρσRμν
λγRρλ

δκRσγδκ;

T5 ¼ RμνρσRμν
λγRρ

δ
λ
κRσδγκ;

T6 ¼ RμνρσRμ
λ
ρ
γRλ

δ
γ
κRνδσκ;

T7 ¼ RμνρσRμ
λ
ρ
γRλ

δ
ν
κRγδσκ: ð4:12Þ

On shell, the combination

U ¼ −
T1

16
þ T2 −

T3

8
− T4 þ 2T5 − T6 þ 2T7 ð4:13Þ

is a total derivative, so only six of the Ti are independent on
shell. In terms of these operators, the divergence for gravity
coupled to a dilaton and an antisymmetric tensor at one
loop in D ¼ 8 is

1

ϵ

1

ð4πÞ4
1

1814400
½ð4274 − 899Ds þ 11D2

sÞT1

− 40ð466 − 103Ds − 2D2
sÞT2

− 2ð1886þ 319Ds −D2
sÞT3

− 180ð1034þDsÞT4 þ 16ð1196þ 34Ds −D2
sÞT6

þ 64ð12454þ 71Ds þD2
sÞT7 þ cU�; ð4:14Þ

where c is a free parameter multiplying the total deriva-
tive (4.13).
We have also found that the following four-point

amplitudes involving dilatons and antisymmetric tensors
diverge in D ¼ 8:

Mð1Þð1ϕ; 2ϕ; 3þ; 4þÞ; Mð1Þð1ϕ; 2ϕ; 3þ; 4−Þ;
Mð1Þð1ϕ; 2ϕ; 3ϕ; 4ϕÞ; Mð1Þð1A; 2A; 3þ; 4þÞ;
Mð1Þð1A; 2A; 3þ; 4−Þ; Mð1Þð1A; 2A; 3ϕ; 4þÞ;
Mð1Þð1A; 2A; 3ϕ; 4ϕÞ; Mð1Þð1A; 2A; 3A; 4AÞ; ð4:15Þ

where we have again chosen the external states to be four
dimensional. The other configurations are finite.

B. Ultraviolet properties of gravity
at two loops in four dimensions

Pure Einstein gravity in D ¼ 4 is one-loop finite, but it
does diverge at two loops [55]. This suggests that the two-
loop four-graviton amplitude, including also the dilaton and
antisymmetric tensor, should diverge as well. For external
gravitons, the only independent operator is the same R3

operator for one loop in six dimensions (4.9). Our aim is to
find its coefficient.
The R3 operator generates a nonvanishing four-point

amplitude for identical-helicity gravitons, illustrated in
Fig. 10. This means that we can determine the coefficient
of this operator by computing the four-graviton all-plus-
helicity amplitude. Fortunately, as we discussed in Sec. III,
we have the BCJ form of the required all-plus-helicity
Yang-Mills amplitude. Applying the double-copy formula
(2.5) to the Yang-Mills amplitude in Eq. (3.15) immediately
gives us the corresponding gravity integrand, simply by
squaring the numerators. Figures 6(d)–6(k) integrate to
zero in gravity just as they did in Yang-Mills. In addition, as

FIG. 10. The R3 operator diagrams that contribute to the all-
plus-helicity four-graviton amplitude. The solid dot represents
vertices generated by the R3 operator.
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was mentioned in Sec. III B, the second term of the double-triangle in Eq. (3.11) also integrates to zero; in fact, due to the
simple identity,

− ðp − qÞ · ðk1 þ k2Þ þ s ¼ 1

2
ðp − k1 − k2Þ2 þ

1

2
ðqþ k1 þ k2Þ2 −

1

2
p2 −

1

2
q2; ð4:16Þ

all such terms will integrate to zero because the inverse propagators lead to scale-free integrals. Thus, the four-graviton
all-plus-helicity amplitude is given by

Mð2Þð1þ; 2þ; 3þ; 4þÞ ¼
�
κ

2

�
6X

S4

�
1

4
MP

1234 þ
1

4
MNP

12;34 þ
1

8
MDT

1234

�
; ð4:17Þ

where

MP
1234 ¼ iT 2IP

4

��ðDs − 2Þ2
2

ðpþ qÞ2λ2pλ2q þ 16sððλp · λqÞ2 − λ2pλ
2
qÞ

þ ðDs − 2Þðsðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 4ðpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞÞ

�
2
�
ðs; tÞ

¼ iT 2

�
IP
4 ½ððDs − 2Þsðλ2pλ2q þ λ2pλ

2
pþq þ λ2qλ

2
pþqÞ þ 16sððλp · λqÞ2 − λ2pλ

2
qÞÞ2�ðs; tÞ

þ Ibow-tie
4

�
2

�
4ðDs − 2Þðλ2p þ λ2qÞðλp · λqÞ þ

ðDs − 2Þ2
2

λ2pλ
2
q

�

× ððDs − 2Þsðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16sððλp · λqÞ2 − λ2pλ

2
qÞÞ

�
ðs; tÞ

þ Ibow-tie
4

�
ðpþ qÞ2

�ðDs − 2Þ2
2

λ2pλ
2
q þ 4ðDs − 2Þðλ2p þ λ2qÞðλp · λqÞ

�
2
�
ðs; tÞ

�
;

MNP
12;34 ¼ iT 2s2INP

4 ½ððDs − 2Þðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16ððλp · λqÞ2 − λ2pλ

2
qÞÞ2�ðs; tÞ;

MDT
1234 ¼ iT 2IDT

4

��ðDs − 2Þ2
2

ð4p · qþ 2ðp − qÞ · ðk1 þ k2Þ − sÞλ2pλ2q
�

2
�
ðs; tÞ

¼ iT 2
1

s
Ibow-tie
4

��ðDs − 2Þ2
2

ð4p · qþ 2ðp − qÞ · ðk1 þ k2Þ − sÞλ2pλ2q
�

2
�
ðs; tÞ: ð4:18Þ

We have explicitly confirmed that s-, t-, and u-channel unitarity cuts are satisfied. We did so numerically keeping the
internal states in integer dimensions D ¼ 6 and D ¼ 8.
To obtain the ultraviolet divergences, we integrate the amplitudes in dimensional regularization. We carry out the

extraction of the ultraviolet divergences in two ways. In the first approach we simply use dimensional regularization and
then subtract the known infrared divergences, leaving only the ultraviolet ones. In the second approach we introduce a
mass regulator to separate the ultraviolet singularities from the infrared divergences, as carried out in Appendix C. Either
method yields the same result. In fact, the second method also shows that the vanishing integrals that we dropped, including
Figs. 6(d)–6(k) and the second term of the double-triangle in Eq. (3.11), are not ultraviolet divergent.
The dimensionally regularized integrals are performed in Appendix A. Equation (A10) gives the planar double-box

integrals, Eq. (A17) gives the nonplanar double-box integrals, and Eq. (A21) gives the bow-tie integrals. The infrared
divergence from Appendix B is

Mð2Þð1þ; 2þ; 3þ; 4þÞjIR div ¼ −
1

ϵ

�
κ

2

�
6 i
ð4πÞ4 T

2
ðDs − 2Þ2

120
ðs2 þ t2 þ u2Þ

×

�
s log

�
−s
μ2

�
þ t log

�
−t
μ2

�
þ u log

�
−u
μ2

��
: ð4:19Þ
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We insert the divergent parts of the integrals evaluated using dimensional regularization into Eq. (4.18), then insert these
results into Eq. (4.17) and perform the permutation sum. Finally we subtract the infrared divergence and arrive at the two-
loop ultraviolet divergence of gravity coupled to a dilaton and an antisymmetric tensor for four external positive-helicity
gravitons:

Mð2Þð1þ; 2þ; 3þ; 4þÞjUVdiv ¼
1

ϵ

�
κ

2

�
6 i
ð4πÞ4 T

2
ð2D4

s − 136D3
s þ 2883D2

s − 35164Ds þ 103052Þstu
10800

: ð4:20Þ

For our second method, we evaluate the ultraviolet divergences of the required integrals by going to vacuum integrals and
using a massive infrared regulator, sidestepping the need to subtract the infrared divergence. The ultraviolet divergences of
the individual integrals are calculated in Appendix C. After permutations, the contributions of the planar double-box,
nonplanar double-box, and double-triangle components are

MPð1þ; 2þ; 3þ; 4þÞjUVdiv ¼ −
1

ϵ

�
κ

2

�
6 i
ð4πÞ4 T

2
ð2D3

s − 63D2
s þ 588Ds − 1420Þstu

180
;

MNPð1þ; 2þ; 3þ; 4þÞjUVdiv ¼ −
1

ϵ

�
κ

2

�
6 i
ð4πÞ4 T

2
ð21D2

s − 4Ds − 396Þstu
240

;

MDTð1þ; 2þ; 3þ; 4þÞjUVdiv ¼
1

ϵ

�
κ

2

�
6 i
ð4πÞ4 T

2
ðDs − 2Þ4stu

5400
: ð4:21Þ

Summing these contributions, we find complete agreement with Eq. (4.20).
We can reexpress the two-loop divergence in terms of the operator that generates it. By matching the amplitude generated

by the diagrams with an R3 vertex shown in Fig. 10 to the divergence in Eq. (4.20), we find that the operator

−
1

ϵ

�
κ

2

�
2 1

ð4πÞ4
2D4

s − 136D3
s þ 2883D2

s − 35164Ds þ 103052

648000
RαβμνRμνρσRρσ

αβ ð4:22Þ

generates the bare two-loop divergence for gravity coupled to a dilaton and an antisymmetric tensor. As will be discussed in
Ref. [60] there are also additional evanescent counterterm contributions.

V. CONCLUSION

In this paper we constructed a representation of the one-
loop four-point amplitude of pure Yang-Mills theory explic-
itly exhibiting the duality between color and kinematics.
This construction is the first nonsupersymmetric example at
loop level valid in any dimension with no restriction on the
external states. The cost of this generality is relatively com-
plicated expressions in terms of formal polarization vectors.
The duality between color and kinematics and its asso-

ciated gravity double-copy structure has proven useful for
unraveling ultraviolet properties in various dimensions
[5,13,23,24,31]. Using the one-loop four-point pure Yang-
Mills amplitude with the duality manifest, we obtained the
integrand for the corresponding amplitude in a theory of a
graviton, dilaton, and antisymmetric tensor. In D ¼ 4, we
found that one-loop four-point amplitudes with one or more
external gravitons are ultraviolet finite, while amplitudes
involving only external dilatons or antisymmetric tensor
fields diverge. This result is similar to those of earlier studies
involving gravity coupled either to a scalar, an antisymmetric
tensor, or other matter and is in line with simple counterterm
arguments [32–34]. We gave the explicit form, including
numerical coefficients, for all four-point divergences in this
theory. Since our construction is valid in any dimension, we

also investigated the ultraviolet properties of the double-copy
theory in higher dimensions. In particular, we showed that in
D ¼ 6; 8 the one-loop four-graviton amplitudes diverge, as
expected, and gave the explicit form of these divergences
including their numerical coefficients.
In order to investigate whether the observed D ¼ 4

ultraviolet finiteness of the amplitudes with one or more
external gravitons continues beyond one loop, we also
computed the coefficient of the potential two-loop R3

divergences. This was greatly simplified by the observation
that the coefficient of the divergence can be determined from
the identical-helicity four-graviton configuration. The
required gravity amplitude was then easily constructed via
the double-copy property, by first finding a representation of
the pure Yang-Mills amplitude that satisfies the duality. The
existence of such a representation has already been noted in
Ref. [5]. Here we provided the explicit representation,
including diagrams that integrate to zero not present in
the original form of the two-loop identical-helicity amplitude
given in Ref. [19]. We found that the two-loop amplitude
with external gravitons is indeed divergent and that the R3

counterterm has a nonzero coefficient. This is not surprising
given that pure Einstein gravity diverges at two loops [55].
Our paper definitively shows that, as one might have
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expected, the double-copy property by itself cannot render a
gravity theory ultraviolet finite. For ultraviolet finiteness, an
additional mechanism such as supersymmetry is needed.
Further progress in clarifying the ultraviolet structure of
gravity theories will undoubtedly rely on new multiloop
calculations to guide theoretical developments. We expect
that the duality between color and kinematics will continue
to play an important role in this.
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Note added in proof.—A subsequent analysis has revealed
that at two loops there are evanescent counterterms not
accounted for in our two-loop analysis [60]. The appearance
of such counterterms is unexpected because there are no
corresponding one-loop divergences inD ¼ 4 that can act as
subdivergences. The net effect is that the numerical coef-
ficient of the divergence in Eq. (4.22) should be interpreted
as a bare result without counterterm or subdivergence
subtractions. Consequently, the coefficient will be modified,
although the conclusion that there is a divergence is
unaltered. This surprising phenomenon, as well as the
counterterm subtraction terms, will be described in Ref. [60].

APPENDIX A: TWO-LOOP DIMENSIONALLY
REGULARIZED INTEGRALS

In this appendix, we explicitly compute the divergent
parts of dimensionally regularized two-loop integrals in
D ¼ 4 − 2ϵ, appearing in Sec. IV B. In general, both
ultraviolet and infrared divergences appear as poles in ϵ
so we must subtract the infrared ones in order to obtain the
ultraviolet ones.
We start with the planar double-box integral displayed in

Fig. 6(a), following the discussion in Sec. 4 of Ref. [61],

IP
4 ½Pðλi; p; q; kiÞ�ðs; tÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðpþ qÞ2ðp − k1Þ2ðp − k1 − k2Þ2ðq − k4Þ2ðq − k3 − k4Þ2

: ðA1Þ

Using Schwinger parameters, we rewrite the planar double-box integral with constant numerator as

IP
4 ½1�ðs; tÞ ¼

1

ð4πÞD
Y7
i¼1

Z
∞

0

dti½ΔPðTÞ�−D
2 exp

�
−
QPðs; t; tiÞ
ΔPðTÞ

�
; ðA2Þ

where

ΔPðTÞ ¼ ðTpTq þ TpTpq þ TqTpqÞ; ðA3Þ
and

Tp ¼ t3 þ t4 þ t5;

Tq ¼ t1 þ t2 þ t7;

Tpq ¼ t6: ðA4Þ
Tp, Tq, and Tpq are sums of Schwinger parameters corresponding to propagators with loop momenta p, q, and pþ q,
respectively. We also have

QPðs; t; tiÞ ¼ −sðt1t2Tp þ t3t4Tq þ t6ðt1 þ t3Þðt2 þ t4ÞÞ − tt5t6t7: ðA5Þ

To account for factors of λ2p, λ2q, and λ2pþq in the numerator, we take derivatives on the ð−2ϵÞ-dimensional part of the
(Wick-rotated) integral:

Z
dλ−2ϵp dλ−2ϵq exp ½−Tpλ

2
p − Tqλ

2
q − Tpqλ

2
pþq� ∝ ½ΔPðTÞ�ϵ; ðA6Þ

with respect to Tp, Tq, and Tpq. This introduces additional factors to be inserted in the integrand in Eq. (A2). For
example,
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ðλ2pÞ4 → −ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ
�
Tq þ Tpq

ΔPðTÞ
�

4

;

ðλ2pÞ3λ2q → ϵ2ð1 − ϵÞð2 − ϵÞ ðTq þ TpqÞ2
ΔPðTÞ3

− ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ ðTq þ TpqÞ2T2
pq

ΔPðTÞ4
;

ðλ2pÞ2λ2qλ2pþq → ϵ2ð1 − ϵÞ2 1

ΔPðTÞ2
þ ϵð1 − ϵÞð2 − ϵÞ ϵðT

2
q þ T2

pqÞ þ 2TqTpq

ΔPðTÞ3
− ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ T2

qT2
pq

ΔPðTÞ4
: ðA7Þ

We account for extra factors of Δa
PðTÞ by shifting the dimension D → D − 2a. Following Smirnov [62], we change six of

the seven Schwinger parameters to Feynman parameters with the delta-function constraint
P

i≠6αi ¼ 1:

IP
4 ½Pðλp; λqÞ�ðs; tÞ ¼

Γ½7 −Dþ γ�
ð4πÞD

Z
∞

0

dα6
Y
i≠6

Z
1

0

dαiδ

�
1 −

X
i≠6

αi

� ½ΔPðTÞ�7−3D
2
þγ

½QPðs; t; αiÞ�7−Dþγ DðαiÞ; ðA8Þ

where DðαiÞ represents the extra factors in one term of Eq. (A7), with ti → αi. The parameter γ counts the factors of αi in
DðαiÞ and can take on values 0, 2, and 4 for the integrals under consideration here. Next we perform a change of variables
that imposes the delta-function constraint [62]:

α1 ¼ β1ξ3; α2 ¼ ð1 − ξ5Þð1 − ξ4Þ; α3 ¼ β2ξ1; α4 ¼ ξ5ð1 − ξ2Þ;
α5 ¼ β2ð1 − ξ1Þ; α7 ¼ β1ð1 − ξ3Þ; β1 ¼ ð1 − ξ5Þξ4; β2 ¼ ξ5ξ2: ðA9Þ

We then integrate these parameters to obtain a Mellin-Barnes representation, which we again integrate. Finally we arrive at
the dimensionally regularized results of our required planar double-box integrals:

IP
4 ½ðλ2pÞ4�ðs; tÞ ¼ I 0P −

1

ð4πÞ4
sþ 2t
360ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pþqÞ4�ðs; tÞ ¼ 2I 0P −

1

ð4πÞ4
29sþ 4t
180ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ3λ2q�ðs; tÞ ¼ −

1

ð4πÞ4
s

480ϵ
þOðϵ0Þ;

IP
4 ½ðλ2pÞ3λ2pþq�ðs; tÞ ¼ I 0P þ 1

ð4πÞ4
s − t
360ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ2ðλ2qÞ2�ðs; tÞ ¼ Oðϵ0Þ;

IP
4 ½ðλ2pÞ2ðλ2pþqÞ2�ðs; tÞ ¼ I 0P −

1

ð4πÞ4
sþ 2t
720ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ2λ2qλ2pþq�ðs; tÞ ¼

1

ð4πÞ4
s

720ϵ
þOðϵ0Þ;

IP
4 ½λ2pλ2qðλ2pþqÞ2�ðs; tÞ ¼ −

1

ð4πÞ4
s

240ϵ
þOðϵ0Þ;

IP
4 ½λ2pðλ2pþqÞ3�ðs; tÞ ¼ I 0P −

1

ð4πÞ4
5sþ t
180ϵ

þOðϵ0Þ; ðA10Þ

where

I 0P ≡ 1

ð4πÞ4
�

1

840sϵ2
ð2s2 þ stþ 2t2Þð−sÞ−2ϵe−2ϵγE þ 1

88200su4ϵ
ð4s6 þ 753s5tþ 4306s4t2 þ 9144s3t3 − 315π2s3t3

þ 9381s2t4 þ 4813st5 þ 1019t6Þþ t3ð11s2 þ 7stþ 2t2Þ
840su3ϵ

log

�
t
s

�
−

s2t3

280u4ϵ
log2

�
t
s

��
þOðϵ0Þ: ðA11Þ

All integrals above are symmetric under λp ↔ λq.
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Next we look at the nonplanar double-box integrals:

INP
4 ½Pðλi; p; q; kiÞ�ðs; tÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðpþ qÞ2ðp − k1Þ2ðq − k2Þ2ðpþ qþ k3Þ2ðpþ qþ k3 þ k4Þ2

; ðA12Þ

whose evaluation follows that of the planar double-box integrals quite closely. ΔNPðTÞ takes the same form as ΔPðTÞ in
Eq. (A3), except that

Tp ¼ t1 þ t2; Tq ¼ t3 þ t4; Tpq ¼ t5 þ t6 þ t7: ðA13Þ

We then also have

QNPðs; t; u; tiÞ ¼ −sðt1t3t5 þ t2t4t7 þ t5t7ðTp þ TqÞÞ − tt2t3t6 − ut1t4t6: ðA14Þ

In this case, we find it advantageous to only change the four Schwinger parameters associated with Tp and Tq to Feynman
parameters, resulting in

INP
4 ½Pðλp; λqÞ� ¼

Γ½7 −Dþ γ�
ð4πÞD

Y7
i¼5

Z
∞

0

dαi
Y4
j¼1

Z
1

0

dαjδ

�
1 −

X4
i¼1

αi

� ½ΔNPðTÞ�7−3D
2
þγ

½QNPðs; t; u; αiÞ�7−Dþγ DðαiÞ: ðA15Þ

We impose the delta-function constraint via further redefinition:

α1 ¼ ξ3ð1 − ξ1Þ; α2 ¼ ξ3ξ1; α3 ¼ ð1 − ξ3Þð1 − ξ2Þ; α4 ¼ ð1 − ξ3Þξ2: ðA16Þ

Once again we can straightforwardly integrate the parameters and use the Mellin-Barnes representation to evaluate our
required nonplanar double-box integrals:

INP
4 ½ðλ2pÞ4�ðs; tÞ ¼ I 0NP −

1

ð4πÞ4
215s2 þ 342stþ 342t2

50400sϵ
þOðϵ0Þ;

INP
4 ½ðλ2pþqÞ4�ðs; tÞ ¼

1

ð4πÞ4
s

80ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ3λ2q�ðs; tÞ ¼ I 0NP −

1

ð4πÞ4
215s2 þ 342stþ 342t2

50400sϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ3λ2pþq�ðs; tÞ ¼ Oðϵ0Þ;

INP
4 ½ðλ2pÞ2ðλ2qÞ2�ðs; tÞ ¼ I 0NP −

1

ð4πÞ4
230s2 þ 171stþ 171t2

25200sϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ2ðλ2pþqÞ2�ðs; tÞ ¼

1

ð4πÞ4
s

160ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ2λ2qλ2pþq�ðs; tÞ ¼

1

ð4πÞ4
s

1440ϵ
þOðϵ0Þ;

INP
4 ½λ2pλ2qðλ2pþqÞ2�ðs; tÞ ¼ Oðϵ0Þ;

INP
4 ½λ2pðλ2pþqÞ3�ðs; tÞ ¼

1

ð4πÞ4
s

160ϵ
þOðϵ0Þ; ðA17Þ

where
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I 0NP ≡ 1

ð4πÞ4
�

1

840sϵ2
ð2t2 þ tuþ 2u2Þð−sÞ−ϵð−tÞ−ϵe−2ϵγE þ 1

352800s5ϵ
ð5581u6 þ 25188u5tþ 51783u4t2 þ 64352u3t3

− 1260π2u3t3 þ 51783u2t4 þ 25188ut5 þ 5581t6Þþ u3ð11t2 þ 7tuþ 2u2Þ
840s4ϵ

log
�
u
t

�
−

t3u3

280s5ϵ
log2

�
u
t

��

þOðϵ0Þ: ðA18Þ

As with the planar results, the above are valid under the exchange λp↔ λq.
Finally we evaluate the bow-tie integrals:

Ibow-tie
4 ½Pðλi; p; q; kiÞ�ðsÞ≡

Z
dDp
ð2πÞD

dDq
ð2πÞD

Pðλi; p; q; kiÞ
p2q2ðp − k1Þ2ðp − k1 − k2Þ2ðq − k4Þ2ðq − k3 − k4Þ2

: ðA19Þ

The bow-tie integrals are relatively simple because they are products of two one-loop integrals. Similar techniques
involving Schwinger parameters and Mellin-Barnes representations can be used on each one-loop integral. Since bubbles
with a massless leg vanish in dimensional regularization, the replacement ðpþ qÞ2 → 2p · q is valid in the numerator. We
also use the tensor reduction ðλp · λqÞ2 → λ2pλ

2
q=ð−2ϵÞ. For the bow-tie integrals appearing in Eq. (4.18), this tensor

reduction is the only source of an ultraviolet divergence. When evaluating the bow-tie contributions then, we expose
ðλp · λqÞ2 factors through the substitutions,

λ2pþq → λ2p þ λ2q þ 2ðλp · λqÞ; ðpþ qÞ2 → ð2pð4Þ · qð4ÞÞ − 2ðλp · λqÞ: ðA20Þ

Only terms containing a ðλp · λqÞ2 are ultraviolet divergent; there are no terms with ðλp · λqÞ4 or higher powers of ðλp · λqÞ.
The relevant bow-tie integrals are then given by

Ibow-tie
4 ½ðλ2pÞ2ðλp · λqÞ2�ðsÞ ¼

1

ð4πÞ4
s2

720ϵ
þOðϵ0Þ;

Ibow-tie
4 ½λ2pλ2qðλp · λqÞ2�ðsÞ ¼

1

ð4πÞ4
s2

1152ϵ
þOðϵ0Þ;

Ibow-tie
4 ½ðλ2pÞ2λ2qðλp · λqÞ2�ðsÞ ¼

1

ð4πÞ4
s3

8640ϵ
þOðϵ0Þ;

Ibow-tie
4 ½ðλ2pÞ2ðλ2qÞ2ðλp · λqÞ2�ðsÞ ¼

1

ð4πÞ4
s4

64800ϵ
þOðϵ0Þ;

Ibow-tie
4 ½ðλ2pÞ2ðλp · λqÞ2ð2pð4Þ · qð4ÞÞ�ðs; tÞ ¼ −

1

ð4πÞ4
s2ð10s − tÞ
15120ϵ

þOðϵ0Þ;

Ibow-tie
4 ½λ2pλ2qðλp · λqÞ2ð2pð4Þ · qð4ÞÞ�ðs; tÞ ¼ −

1

ð4πÞ4
s2ð12s − tÞ
28800ϵ

þOðϵ0Þ: ðA21Þ

These are also symmetric under the exchange λp ↔ λq.

APPENDIX B: TWO-LOOP INFRARED DIVERGENCE

In this appendix we obtain the two-loop infrared divergence for the four-point all-plus-helicity graviton amplitude in the
theory of gravity coupled to a dilaton and an antisymmetric tensor using dimensional regularization in D ¼ 4 − 2ϵ. We
subtract the infrared divergence from the total divergence to obtain the ultraviolet divergence. Infrared divergences in
gravity can be obtained by exponentiating the divergence found at the one-loop order [16,63,64]. In the cases where there is
a divergence at one loop, the infrared singularities are “one-loop exact”; however, in the all-plus-helicity gravitons case, the
first divergence occurs at two loops. Nevertheless, the same principles apply. More specifically we are concerned with the
exponentiation of the gravitational soft function, which describes the effects of soft graviton exchange between external
particles.
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Following the discussion of Ref. [64], a gravity scattering amplitude can be written as

Mn ¼ Sn ·Hn; ðB1Þ

where Sn is the infrared-divergent soft function andHn is the infrared-finite hard function. Each quantity in Eq. (B1) can be
written as a loop expansion in powers of ðκ=2Þ2ð4πe−γEÞϵ:

Mn ¼
X∞
L¼0

MðLÞ
n ; Sn ¼ 1þ

X∞
L¼1

SðLÞn ; Hn ¼
X∞
L¼0

HðLÞ
n : ðB2Þ

The soft function is given by the exponential of the lowest-order infrared divergence:

Sn ¼ exp

�
σn
ϵ

�
; σn ¼

�
κ

2

�
2 1

ð4πÞ2−ϵ e
−γEϵ

Xn
j¼1

X
i<j

sij log

�
−sij
μ2

�
; sij ¼ ðki þ kjÞ2: ðB3Þ

An L-loop amplitude can then be written as

MðLÞ
n ¼

XL
l¼0

1

ðL − lÞ!
�
σn
ϵ

�
L−l

HðlÞ
n ðϵÞ: ðB4Þ

For four-point amplitudes, we have

σ4 ¼
�
κ

2

�
2 2

ð4πÞ2−ϵ e
−γEϵ

�
s log

�
−s
μ2

�
þ t log

�
−t
μ2

�
þ u log

�
−u
μ2

��
; ðB5Þ

and the one-loop infrared divergence is given by

Mð1Þ
4 jIR div ¼

σ4
ϵ
Mð0Þ

4 : ðB6Þ

We used this to subtract the infrared divergence from our dimensionally regularized one-loop result in Sec. IVA 1 to isolate
the ultraviolet divergence. The four-point two-loop infrared divergence is given by

Mð2Þ
4 jIR div ¼

1

2

�
σ4
ϵ

�
2

Mð0Þ
4 þ σ4

ϵ
Hð1Þ

4 ðϵÞj
IR div

: ðB7Þ

For the all-plus-helicity gravitons case, the tree amplitudeMð0Þ
4 vanishes. The one-loop amplitude is therefore infrared finite

and equal to the one-loop infrared-finite hard function. The one-loop amplitude can be computed using the double-copy
procedure in Sec. IVA 1 and is given by [65]

Mð1Þð1þ; 2þ; 3þ; 4þÞ ¼ −
�
κ

2

�
4 i
ð4πÞ2

� ½12�½34�
h12ih34i

�
2 ðDs − 2Þ2

240
ðs2 þ t2 þ u2Þ: ðB8Þ

The two-loop infrared divergence is then

Mð2Þð1þ; 2þ; 3þ; 4þÞjIR div ¼ −
1

ϵ

�
κ

2

�
6 i
ð4πÞ4

� ½12�½34�
h12ih34i

�
2 ðDs − 2Þ2

120
ðs2 þ t2 þ u2Þ

×

�
s log

�
−s
μ2

�
þ t log

�
−t
μ2

�
þ u log

�
−u
μ2

��
: ðB9Þ
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APPENDIX C: TWO-LOOP ULTRAVIOLET
DIVERGENCES FROM VACUUM INTEGRALS

In this appendix we compute the ultraviolet divergences
of the integrals in Sec. IV B. The techniques are very
similar to those used to study the one-loop ultraviolet
properties of gravity in Sec. IV. However, before we can use
them, we must deal with the ð−2ϵÞ-dimensional compo-
nents λp, λq, and λpþq in the numerators of the integrals
using the techniques in Sec. 4.1 of Ref. [61].

The effect of inserting factors of λp, λq, and λpþq into
the planar and nonplanar double-box integrals is very
similar to inserting factors of v · p, v · q, and v · ðpþ qÞ,
where

vμ ≡ ϵμν1ν2ν3k
ν1
1 k

ν2
2 k

ν3
3 : ðC1Þ

Example parameter insertions for factors of λi are given
in Eq. (A7). For polynomials in v · p and v · q, we have

ðv · pÞ8 → 105

�
stu
8

�
4 ðTq þ TpqÞ4

Δ4
;

ðv · pÞ6ðv · qÞ2 →
�
stu
8

�
4
�
15

ðTq þ TpqÞ2
Δ3

þ 105
ðTq þ TpqÞ2T2

pq

Δ4

�
;

ðv · pÞ4ðv · qÞ4 →
�
stu
8

�
4
�
9
1

Δ2
þ 90

T2
pq

Δ3
þ 105

T4
pq

Δ4

�
;

ðv · pÞ4ðv · qÞ2ðv · ðpþ qÞÞ2 →
�
stu
8

�
4
�
9
1

Δ2
þ 15

3T2
q þ 3T2

pq − 2ðTq þ TpqÞ2
Δ3

þ 105
T2
qT2

pq

Δ4

�
: ðC2Þ

These are valid for both the planar and nonplanar double boxes provided the corresponding definitions for Δ, Tp, Tq, and
Tpq given in Appendix A are used.

We can also relate polynomials in v · p and v · q to the λi. The four-dimensional component of the loop momenta p can
be written as

pμ
½4� ≡ cp1k

μ
1 þ cp2k

μ
2 þ cp3k

μ
3 þ cpvvμ; ðC3Þ

where

cp1 ¼ 1

2su
½−tð2p · k1Þ þ uð2p · k2Þ þ sð2p · k3Þ�;

cp2 ¼ 1

2st
½tð2p · k1Þ − uð2p · k2Þ þ sð2p · k3Þ�;

cp3 ¼ 1

2tu
½tð2p · k1Þ þ uð2p · k2Þ − sð2p · k3Þ�;

cpv ¼ −
4

stu
ϵμν1ν2ν3p

μkν11 k
ν2
2 k

ν3
3 ¼ −

4

stu
v · p: ðC4Þ

We therefore have

p2 þ λ2p ¼ p½4� · p½4� ¼ scp1c
p
2 þ tcp2c

p
3 þ ucp1c

p
3 −

1

4
stuðcpv Þ2; ðC5Þ

or

λ2p ¼ −
4

stu
ðv · pÞ2 þ P̂p; ðC6Þ

where
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P̂p≡ − p2 þ scp1c
p
2 þ tcp2c

p
3 þ ucp1c

p
3 : ðC7Þ

Similarly, we have

λ2q ¼ −
4

stu
ðv · qÞ2 þ P̂q;

λ2pþq ¼ −
4

stu
ðv · ðpþ qÞÞ2 þ P̂pq; ðC8Þ

where

P̂q≡ − q2 þ scq1c
q
2 þ tcq2c

q
3 þ ucq1c

q
3;

P̂pq≡ − ðpþ qÞ2 þ sðcp1 þ cq1Þðcp2 þ cq2Þ þ tðcp2 þ cq2Þðcp3 þ cq3Þ þ uðcp1 þ cq1Þðcp3 þ cq3Þ: ðC9Þ

These relations, along with the parameter replacements in Eqs. (A7) and (C2), allow us to rewrite the integrals involving
factors λi in terms of integrals involving tensor products between the loop momenta and the external momenta. For a general
function fðp · ki; q · kiÞ, we have

Z
ðλ2pÞ4f ¼ −

ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ
105

�
8

stu

�
4
Z

ðv · pÞ8f

¼ −
16ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ

ð1 − 2ϵÞð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ
Z

P̂4
pf;

Z
ðλ2pÞ3λ2qf ¼ −

16ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ
ð1 − 2ϵÞð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂3

pP̂qf

þ 12ϵð1 − ϵÞð2 − ϵÞ
ð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂2

pf

Δ
;

Z
ðλ2pÞ2ðλ2qÞ2f ¼ −

16ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ
ð1 − 2ϵÞð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂2

pP̂
2
qf

þ 16ϵð1 − ϵÞð2 − ϵÞ
ð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂pP̂qf

Δ

−
6ϵð1 − ϵÞ

ð5 − 2ϵÞð7 − 2ϵÞ
Z

f
Δ2

;

Z
ðλ2pÞ2λ2qλ2pþqf ¼ −

16ϵð1 − ϵÞð2 − ϵÞð3 − ϵÞ
ð1 − 2ϵÞð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂2

pP̂qP̂pqf

þ 4ϵð1 − ϵÞð2 − ϵÞ
ð3 − 2ϵÞð5 − 2ϵÞð7 − 2ϵÞ

Z
P̂pðP̂p þ 2P̂q þ 2P̂pqÞf

Δ

−
6ϵð1 − ϵÞ

ð5 − 2ϵÞð7 − 2ϵÞ
Z

f
Δ2

; ðC10Þ

where a factor 1=Δ indicates that a shift in dimension of the integral should be made: D → Dþ 2, ϵ → ϵ − 1 [ϵ’s in
prefactors in Eq. (C10) should not be shifted, however].
Once we have integrals in a form involving tensor products between the loop momenta and external momenta, we expand

in small external momenta to reduce to logarithmically divergent integrals, just as we did in the one-loop case. This gives us
vacuum integrals. We then reduce the tensors involving loop momenta using Lorentz covariance and insert an infrared mass
regulator. By integrating we obtain the ultraviolet divergences. Since every prefactor in Eq. (C10) contains a factor of ϵ, to
get the ultraviolet divergence, we only need the 1=ϵ2 pole of the integrals on the right-hand side. These leading contributions
have no dependence on the mass regulator, so we are unaffected by subdivergence issues due to the mass regulator. The
ultraviolet divergences of the planar and nonplanar double-box integrals are then
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IP
4 ½ðλ2pÞ4�ðs; tÞ ¼ Oðϵ0Þ;

IP
4 ½ðλ2pþqÞ4�ðs; tÞ ¼ −

1

ð4πÞ4
14sþ t
90ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ3λ2q�ðs; tÞ ¼ −

1

ð4πÞ4
s

480ϵ
þOðϵ0Þ;

IP
4 ½ðλ2pÞ3λ2pþq�ðs; tÞ ¼

1

ð4πÞ4
2sþ t
360ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ2ðλ2qÞ2�ðs; tÞ ¼ Oðϵ0Þ;

IP
4 ½ðλ2pÞ2ðλ2pþqÞ2�ðs; tÞ ¼

1

ð4πÞ4
sþ 2t
720ϵ

þOðϵ0Þ;

IP
4 ½ðλ2pÞ2λ2qλ2pþq�ðs; tÞ ¼

1

ð4πÞ4
s

720ϵ
þOðϵ0Þ;

IP
4 ½λ2pλ2qðλ2pþqÞ2�ðs; tÞ ¼ −

1

ð4πÞ4
s

240ϵ
þOðϵ0Þ;

IP
4 ½λ2pðλ2pþqÞ3�ðs; tÞ ¼ −

1

ð4πÞ4
s

40ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ4�ðs; tÞ ¼ −

1

ð4πÞ4
s

80ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pþqÞ4�ðs; tÞ ¼ −

1

ð4πÞ4
s

80ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ3λ2q�ðs; tÞ ¼ Oðϵ0Þ;

INP
4 ½ðλ2pÞ3λ2pþq�ðs; tÞ ¼ −

1

ð4πÞ4
s

80ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ2ðλ2qÞ2�ðs; tÞ ¼ −

1

ð4πÞ4
7s

1440ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ2ðλ2pþqÞ2�ðs; tÞ ¼ −

1

ð4πÞ4
s

160ϵ
þOðϵ0Þ;

INP
4 ½ðλ2pÞ2λ2qλ2pþq�ðs; tÞ ¼

1

ð4πÞ4
s

1440ϵ
þOðϵ0Þ;

INP
4 ½λ2pλ2qðλ2pþqÞ2�ðs; tÞ ¼ Oðϵ0Þ;

INP
4 ½λ2pðλ2pþqÞ3�ðs; tÞ ¼ −

1

ð4πÞ4
s

160ϵ
þOðϵ0Þ: ðC11Þ

The bow-tie integrals do not contain infrared divergences, and their ultraviolet divergences were computed in Appendix A.
Combining all the pieces then gives us the ultraviolet divergence in Eq. (4.20).
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