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We point out the existence of a nonperturbative exact nilpotent BRST symmetry for the
Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant
resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.

DOI: 10.1103/PhysRevD.92.045039

I. INTRODUCTION

The Gribov-Zwanziger framework [1,2] is a nonpertur-
bative approach to face the hard problem of understanding
the behavior of Yang-Mills theories in the infrared region,
where standard perturbation theory cannot be applied. It
takes into account the existence of Gribov copiesl [1],
resulting in a modification of the Faddeev-Popov quanti-
zation formula for the Euclidean functional integral. Gribov
copies are present whenever the gauge fixing condition
allows multiple solutions, a very generic feature as shown
by [5]. So far, a nontrivial set of results has been obtained
from this approach, ranging from the gluon and ghost two-
point functions [6-8], to the glueball spectrum [9,10], to
thermodynamic quantities and phase transitions [11-17], to
supersymmetric theories [18,19] and to the case where
Higgs matter fields are present [20]. Nevertheless, the
important issue of the BRST symmetry still lacks a simple
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answer, see [21-37] for an overview of the ongoing
discussion. In the present paper we propose a manifestly
BRST invariant formulation of the Gribov-Zwanziger
framework, resulting in the existence of a nonperturbative
exact BRST symmetry. We limit ourselves here to outline
the main steps of our reasoning, postponing all details to a
longer and complete work.

II. THE ORIGINAL GRIBOV-ZWANZIGER
ACTION IN THE LANDAU GAUGE

The framework [1,2], applied to SU(N) gauge theories
in Euclidean space-time, implements the restriction of the
path integral to the Gribov region  in the Landau gauge,
0,A;, = 0, namely

Q = {A4]9,A% = 0, M (A) > 0}, (1)
where M4 is the Faddeev-Popov operator
M = =57 9* + gfbAcH,, with 0,A7=0. (2)

According to [1,2], for the partition function of quantized
Yang-Mills theory we write

z- / [DA]S(DA) det(M)e=Sw, 3)
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The restriction of the domain of integration to the region Q
can be effectively implemented by adding to the starting
action an additional nonlocal term H(A), known as the
horizon function. More precisely [1,2]

/ [DA]5(0A) det(M)e=Sw

Q

. / [DAJS(0A) det(M)e~ 7 HO-AN-1D) (4)
where

H(A) = ¢ / iy AL () M7 (x, )] pee AL ),
(5)

with [M~!] denoting the inverse of the Faddeev-Popov
operator, see Eq. (2). The mass parameter y* appearing in
expression (4) is known as the Gribov parameter. It is
determined in a self-consistent way by the gap equation [2]

(H) =4V(N? - 1), (6)

where the vacuum expectation value (H) has to be
evaluated with the measure defined in Eq. (4); V denotes
the space-time volume. Expression (4) can be cast in a more
suitable form by introducing a set of commuting (¢, ¢) and
anticommuting (w, @) auxiliary fields [2], namely

/ [DA]5(0A%) det(M)e=Sm = / [D®)e(Sez=4Vr(V?-1))
Q
(7

where ® refers to all fields present and S, stands for the
Gribov-Zwanziger action’

SGZ = SFP
+ / P GMA)P - dM(A)w + 12AD + $)).
(8)

with Sgp being the Faddeev-Popov action in the Landau
gauge

Sep = Sym + / d*x(b°D,A% + ¢99,De ). (9)

Notice that the gap equation (6) can be rewritten as

o€,
ot

0. Ve — / (DPle- V(-1 (10)

B *We employ here a shorthand notation, namely c;‘)/\{l (A)g
P M(A)P e, dM(A)w = D M(A)Pape, AP+ ¢)
PPN ).
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where £, denotes the vacuum energy. As already men-
tioned, until now, a simple resolution of the issue of the
BRST symmetry for the action (8) is still lacking.

One important property which should be underlined here
is that, as observed in [7], the Gribov region Q does not
support any more infinitesimal gauge transformations. If
one performs an infinitesimal gauge transformation of a
generic field A, belonging to €2, the resulting transformed
field lies outside the region Q. From this simple argument,
one easily understands that the restriction of the functional
integral to the region Q might give rise to possible
incompatibilities with the standard BRST symmetry.

III. WARMING UP: A NONPERTURBATIVE
EXACT BRST SYMMETRY FOR THE GRIBOV-
ZWANZIGER ACTION IN THE LANDAU GAUGE

The previous observation has led us to consider a
nonlocal gauge invariant transverse field Af, 9,A" =0,
obtained by minimizing the auxiliary functional
Tr [ d4xAﬂAﬂ along the gauge orbit of A,, cf. [38-40]
and the Appendix,

oA ig[0A . OA
Al :P”U<Av—zg[§,Ay] +5 [ﬁ’a”ﬁb + 0(A?)

3 ,
- ﬂ——"aA—Hg[A ic’)A] +49 FaA,B laA}

& " P 2P
0,10, g0, [OA
+ lga—g |:§8A,AU:| + lia—g |:¥, HA] + 0<A3),
(11)
with P, = (8, — ag?”) the transverse projector.

Expression (11) is left invariant by infinitesimal gauge
transformations order by order. Moreover, looking at
Eq. (11), one realizes that a divergence JA is present in
all higher order terms. As a consequence, we can rewrite
Zwanziger’s horizon function H(A) in terms of the invari-
ant field A" as

H(A) = H(A") — R(A)(0A) (12)
where R(A)(0OA) is a shorthand notation, R(A)(0A) =
Jd*xd*yR(x,y)(0A),, R(A) being an infinite nonlocal

power series of A,. Therefore, for the Gribov-Zwanziger
action, we may write, omitting color indices for brevity,

SGZ = SYM + / d4x(b6”Aﬂ + E'a”DﬂC) + 74H(A)
= Sym + / d*x(bd,A, + ¢d,D,c)
+ 7 H(A") - y*R(A)(0A)
— Syw + / dx(b"0,A, + 20,D,c) + 7 H(AM),

(13)
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where the new field »” stands for
b" = b —y*R(A). (14)

The use of the field b" enables us to write down an exact
nilpotent nonperturbative BRST transformation. Rewriting
the Gribov-Zwanziger action by using the auxiliary fields

(., 0, ), ie.
SGZ = SYM + / d4x(bh8ﬂAM + E‘@,,Dﬂc)
+ / d*x(pM(AM)p — M (AN w + y* A (P + ¢)),
(15)

it becomes clear that expression (15) is left invariant by the
nilpotent nonperturbative BRST transformation

Syz =5+ 5},2, S}%z = O, SyZSGZ =0. (16)

In Egs. (16), the operator s stands for the usual BRST
operator

g . -
sAY=—Dabcb, sc“zif“’”c”c‘, sct=b", sb*=0,

spiP =i, swi? =0, st =¢i, s¢ib =0, (17)
while

5,0 =—y*RY(A), 6,.b"=y*sR*(A),
8,00 =2 gf e AR M (AP, 54 (rest) =0, (18)
The operators (s,5,2) obey the nice algebra
{s,éz}:szzéizzsizzo (19)

and clearly, for y2 — 0 we have 5, — s.

The operator s5,. is a genuine nonperturbative BRST
operator, as it depends explicitly on the nonperturbative
Gribov parameter 2.

Thanks to s,2, we can write down nonperturbative Ward
identities which clarify the origin of the breaking of the
standard BRST operator. From the nonperturbative exact
Slavnov-Taylor Ward identities

(s,2(2A)) =0, (20)

where A has ghost number zero, it follows that the operator
s will always acquire a breaking term proportional to y2,
namely

(s(2A)) = —(5,:(2A)). (21)

This equation gives a clear and simple understanding of the
origin of the breaking of the standard BRST symmetry s. It
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states that s is always plagued by breaking terms which are
proportional to the nonperturbative Gribov parameter and it
signals that, in presence of the Gribov horizon, the BRST
operator s has to be replaced by the nonperturbative one s,
It is the breaking of s that has also been signaled recently on
the lattice [37]. We will come back to this in a more detailed
forthcoming paper.
Moreover, we notice that

986z
ay?
indicating that the Gribov parameter y? is not akin to a
gauge parameter. As such, it will enter physical quantities.
With physical quantities, we mean the colorless gauge

invariant operators which are immediately seen to belong to
the cohomology of the new BRST operator s,2.

2.

# 5,2 (something), (22)

IV. GRIBOV PROBLEM IN THE LINEAR
COVARIANT GAUGE AND ITS
BRST INVARIANT RESOLUTION

Having found a nonperturbative exact nilpotent sym-
metry of the Gribov-Zwanziger action in the Landau gauge,
we move to the linear covariant gauges. We shall proceed
by staying as close as possible to the BRST construction of
the gauge-fixing, i.e. by defining it as an exact non-
perturbative variation, by employing the nilpotent operator
5,2 introduced before. Moreover, this construction will be
linked to the introduction of a suitable region Q" in field
space which shares many properties of the Gribov region Q
of the Landau gauge.

Thus, according to the general BRST procedure for the
gauge-fixing, we write down the following s,.-invariant
action

st50 =t
+ [ d@MAp=aMAN0 + A G+ )
23
with (23)
_ a_
Stp=Sym+ 5,2 / d*x (caﬂAﬂ - Ecbh>

— Sym+ / dx <bhaﬂAﬂ S b+ aaﬂo,,c) (24

Expression (23) naturally generalizes the Gribov-
Zwanziger action of the Landau gauge to an arbitrary
linear covariant gauge in a manifestly nonperturbative
BRST invariant way, namely,

528G = 0. 25
7y~ GZ

The action (23) reduces precisely to the Gribov-Zwanziger
action in the limit @ — 0
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SIG%G|a:O = SGZ? (26)

while yielding the usual action of the linear covariant gauge
when 72 =0, ie.,

LCG|,
Séz" =0 = Srp

— Sym + / d*x (baﬂAﬂ - gbb 4 aaﬂDﬂc)
(27)

Expression (27) is nothing but the Faddeev-Popov action of
the linear covariant gauges

9,A, = ab, (28)

where a stands for the gauge parameter and » for the
Lagrange multiplier.

Since in expression (23) the gauge parameter a is
coupled to a s,2-exact quantity, expectation values of s,.-
invariant quantities will not depend on a. In particular, this
will be the case for the dynamical mass scale y. As we
shall see at the end of this section, the independence of 7>
from a is a consequence of the fact that y* is now
determined by the gauge invariant horizon condition

agg =0= (H(A")) =4V(N*-1)
Oy
e VE — / [Dq)]e—(Sg%G—4Vy4(Nz—l))’ (29)

where use has been made of the identity

/ [D2] % (F(A)e~ a7 (=) =0, (30)

valid for an arbitrary quantity F(A).
It is also interesting to note that, integrating out the field
b" in expression (23), one gets the nice equation

1
/ d4x<bh8ﬂA,, —gbhbh> = / d'xs- (0,4, (1)

We point out that, recently, the linear covariant gauges have
been studied in lattice numerical simulations by [41,42] or
with functional methods by [43-46]. It is worth underlining
that the tree level gluon propagator [47] stemming from
expression (23) turns out to be in qualitative agreement
with the available lattice numerical simulations [41,42],
exhibiting an infrared suppression in the gluon sector. A
more detailed analysis will involve taking into account
additional d = 2 condensates, following [7]. Let us provide
a geometrical understanding of the action (23) by showing
that it enables one to eliminate infinitesimal gauge copies.
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The Faddeev-Popov operator for general « reads

M (A) = —0,D3 = —0,(5D, — gf**°A;)
= =60 + agf" b + gf AL, (32)

Infinitesimal Gribov copies will appear whenever
Mah(A)é«b =0, (33)

with {* a normalizable zero mode, in which case Aj —
Debg? also fulfills condition (28) if A4 does.

Unlike the case of the Landau gauge, we notice that,
when a # 0, the partial derivative 0 and the covariant one D
do not commute. As a consequence, the Faddeev-Popov
operator in Eq. (32) is not Hermitian. The Hermiticity of
M@ plays an important role in the original Gribov-
Zwanziger analysis. Let us therefore consider

M“b(Ah) — _aﬂ(éabaﬂ _ gfahcAﬁ’c), (34)

with A" the gauge invariant field defined in Eq. (11). By
construction, the operator M(A") in Eq. (34) is gauge
invariant order by order and Hermitian, thanks to the
transversality of A”. It thus makes sense to define the region
Q" ={A,0,A4 = ab®,d,A} =0, M (A") > 0}. (35)
The region Q" shares the important properties of the Gribov
region € of the Landau gauge of being convex and bounded
in all directions [48]. Those properties follow from the
linearity of the operator M (A") in the field A".

Let us recall that the Landau gauge is, as far as we know,
the only gauge for which it has been proven that every
gauge orbit crosses at least once the Gribov region Q
[48,49], i.e. a gauge field configuration located outside of
the region € is a copy of some configuration located within
Q. The essential ingredient in the proof of [48,49] is that the
functional Tr [ d4xA”A” achieves its absolute minimum
along the gauge orbit of A, and this for an arbitrary starting
gauge configuration A. Said otherwise, the search for the
minima along the gauge orbit can be regarded as a pure
mathematical problem for the functional Tr [ d*xA 4 Ay, not
related to the particular gauge condition obeyed by the
configuration A. Actually, it turns out that the functional
Tr [ d4xAﬂA” has many relative minima along the gauge
orbit before attaining its absolute minimum. The set of the
relative minima of Tr f d4xA”A” is precisely the Gribov
region Q. The proof of [48,49] shows thus that, given an
arbitrary gauge configuration A, it is always possible to
introduce a related transverse field A” through the process
of minimization of the functional Tr f d4xAﬂA” along the
gauge orbit of A. Any configuration A” can be identified with
a local minimum of the functional Tr [ d4xAﬂAM, while any
such minimum 1is left invariant by infinitesimal gauge
transformations. Our construction of a nonperturbative
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BRST operator is possible with any A”, but for our purposes
we use the unique order by order representation given in
Eq. (11). These considerations make the region Q" a suitable
candidate to integrate over.

Let us proceed by showing that the use of the region (35)
enables us to eliminate a large class of infinitesimal gauge
copies from the partition function. This proposition bor-
rows from an earlier insight of some of us in [47,50], where

9,0,

only the transverse component A;, A; = (5,, — “4")A,,

was considered instead of the complete invariant gauge
field A”.

Following [47,50], let us assume that {“ is a zero mode
of the Faddeev-Popov operator (32) having a Taylor
expansion in a,

gr=>"a"gs. (36)
n=0

Let us decompose the gauge field Aj according to

A, =Al+1, d,t, = ab, (37)

so that, in view of Eq. (37), we can write
o0
7, =Y ot =ai, (38)
n=0

since 7, has to vanish in the limit « - 0. If A, € Q" we
can write

Ca — _g[M(Ah)—l]adfdbcaﬂ(T’I;CL*)
= —galM(A") 1]l f e, (23C°), (39)

or, expanding in powers of a,
ZG"CZ’ _ _Zgan—H [M(Ah)_l}adfdbcaﬂ(éf,%ﬁ). (40)

Matching orders of a shows that the nth order coefficient {¢
is proportional to the (n — 1)th. Since for the first coef-
ficient we find £ = 0, we immediately find ¢} = 0, and
thus £ = 0. Said otherwise, all zero modes that possess a
Taylor expansion around a = 0, are automatically vanish-
ing. As such, the restriction to Q" excludes at least the set of
infinitesimally connected gauge copies related to the
aforementioned zero modes.

We proceed by implementing M" = M (A") > 0 into
the path integral. We rely on the so-called Gribov no-pole
condition [1], whose all order implementation can be found
in [27]. For any external field A”, we can use Wick’s
theorem to invert the operator M (A") in any dimension
d. Denoting by G* (A", p?) = (p| M+(A,> |p) the Fourier-

transform of the inverse of AM“?(A"), one introduces the so-
called Gribov form factor [27] o(A”, p?) through

PHYSICAL REVIEW D 92, 045039 (2015)

5 i ih 2
o1 @ r?)

ab h 2
_ ;s 1+o—(A,p)' (1)
N-—1 p?

Geb (A, p?) =

Repeating the procedure outlined in [27], it follows that at
zero momentum

2

g
oA 0) ==y o)

A’k dq .
—_ ALab(_J Mh —11bc Ah.ca ]
[ A R e A
(42)
Comparison of Egs. (5) and (42) learns that 6(A",0) =
V(ZI(\?QI). We will concentrate on the zero momentum limit,

since it is expected on general grounds3 that the smallest
eigenvalue of M@ (A") will carry no momentum, so it
would be sufficient to avoid this eigenvalue becoming
negative. At the level of expectation values, we can rewrite
Eq. (42) as

1
p (1= (o(A". p?))'™)’
(43)

gh(pZ) — <gaa(Ah’p2)>cann —

so that we must impose at the level of the path integral
(6(A",0))'"' < 1, or

(H(AM)YPL < VA(N? - 1). (44)

We can add this constraint to the path integral measure with
a step function. Via a saddle point evaluation in the
thermodynamic limit [1,26], one then finds

[DP]O[VA(N? — 1) — H(AM))e Sk

— D3] / 2""’? e—Stptn[VA(N>=1)=H(A")]
Tin

— [D®]e=Sketn VAN ~1)=H(A")] (45)

where Sﬁp stands for the expression given in Eq. (24). The
saddle point equation precisely amounts to Eq. (29), i.e.,
the horizon condition with identification #* = y*. As the
horizon condition is writable in terms of the vacuum energy
and since the only contributing diagrams to the latter are
1PI (see also [27]), it indeed follows that condition (44) is
met. As such, we have excluded a large set of zero modes

*We can consider M (A") as a perturbed system around —92,
which reaches its lowest eigenvalue at zero momentum. A few
comments regarding this were made in [4]. One can also check,
a posteriori but explicitly, that the expectation value (a(A", 0)) is
maximal.
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by effectively having imposed that M(A") > 0 via the
action (23). Upon introduction of the auxiliary fields
(¢, ¢, w, @), the latter is equivalent to the action appearing
in Eq. (23), given that Eq. (29) holds.

V. CONCLUSION

For the first time, we have identified a nonperturbative
nilpotent BRST symmetry for gauge theories quantized a la
Gribov-Zwanziger, that is by further restricting the domain
of integration in the path integral. This eliminates a large set
of gauge copies and deeply affects the infrared low-
momentum regime of the gauge theory. The new BRST
operator s,» depends explicitly on the gauge invariant mass
parameter y* that is linked to the aforementioned restric-
tion. As such, the operator 5,2 itself is intertwined with this
geometric restriction.

The introduction of s,» opens up whole new strata of
applications. We have already discussed a first one in this
paper, namely a nonperturbative extension of the usual
linear covariant gauge to a setting where the Gribov gauge
fixing ambiguity is also faced in this gauge. Our setup
generalizes to the refined Gribov-Zwanziger approach [7],
in which case we can make contact with the gauge invariant
d = 2 condensate (A2 ), of important phenomenological
interest [51,52]. A renormalization analysis of the proposed
framework is already in preparation, of relevance to explicit
studies of propagators, spectrum and thermodynamics.
Generalizations, compatible with the new nonperturbative
BRST, to the matter sector are also possible. Moreover, it
would also be interesting to make contact with lattice
studies of the linear covariant gauge, e.g. to find out if a
practical numerical implementation of our proposal exists.
We are already studying a functional depending on the
original gauge field A, and an auxiliary field B,,, with the
property that the minimum occurs for 9,A, = ab (thus

|

falu) = Tr/ d*xAlAL = Tr/ d*x (uTAﬂu —l—éu*@,,u) (uTAMu + ibﬁ@u)

along the gauge orbit of a given configuration A,.
To give a well-defined mathematical meaning to expression
(Al), we shall require that both Aj and the local gauge
transformations, u € U, are square-integrable, i.e.

1
IAII* = Tr/d4xA”A” = E/d“xAﬁAZ < 400,

|t Oul|> = Tr/ d*x(u'0,u)(u'd,u) < +oo. (A2)

Then, it has been shown [48,49] that f,[u] reaches its
absolute minimum along the gauge orbit of A, i.e. there
exists a certain 4 such that

PHYSICAL REVIEW D 92, 045039 (2015)

effectively implementing the linear covariant gauge) and
for B, = A! with M(B) > 0. This could circumvent
potential issues with the convergence of the series expres-
sion used in Eq. (11) to define A" in case of “large” gauge
fields, while it would also open the road to simulation of
our proposed nonperturbative linear covariant gauge. We
will report on this in future work.

As a final but most crucial remark, we stress that no
sacrifices have to be made with respect to gauge invariance,
even when the Gribov problem is taken into account.
The physical content of the theory is described by the
s,2-cohomology, which can be studied along the lines of
[53,54] upon localization of our approach, another matter
of current investigation.
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APPENDIX: A GAUGE INVARIANT
TRANSVERSAL GAUGE FIELD

As it will turn out, the construction of the transverse
gauge field AL’ follows from the minimization of the
functional f [u]

: (A1)
[

8 4lh] = 0. (A3)

52fA [h] >0, (A4)

Falhl < falul. Y uelt. (A3)

Following [38—40], we can work out the conditions (A3)
and (A4) in a series expansion. We set

i 1 e
v = he'9” = he'9” !,

(A6)

with
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1 are the conditions for a local minimum. Clearly, this is the
a b ahc arb\ _ _ sab ’
.17 = if Te(T°T") = 25 ’ (A7) a priori reason why the Gribov region Q, Eq. (1), is
4 introduced as it is.
We first obtain The transversality condition, §,A = 0, can be solved
7 for h = h(A) as a power series in A Setting
Al = Al +iglA}, o] + = ([, Al 0] — 8,0 ;
2 Al = WA+ ROk, h=ei% = el (A1)
+ ig . 0,0] + O(?). (A8) 9
we expand the gauge transformation matrix /4 in powers
One subsequently finds of &
7
falv] = falh] + 2Tr/ d4x(a)8”AZ) h=1+4igé —352 + 0(&). (A12)
- Tr/ d*x0d,D,(A")w + O(w?).  (A9)  As such,
. g
A=A, - A = 2EA
Armed with this expression, one simply realizes that s w0 +iglAu & + 2 (& ut] + g7cAuE
2 2
g 2 9 2 3
Sfalh] =0 < 9,4k =0, _EA”é —35 A, +0(&). (A13)
&falh] >0 ¢ -0,D,(A") >0 (A10) " Imposing 9,Al = 0 yields
|
2
g
0%¢ = 0,A +igl0,A,. €] + ig[A,. 0,8 + g0, A, + GE0, AL + GEA 0,6 — 53,/1”(52 A 0,88 — A u$0,E
g g g
- E@,/ijﬂ - ffaﬂfA” - 3528 A, + z— [5 P’ + 0(&8). (A14)
Solving iteratively, we arrive at
0A g 0A 0A
&= 7 aﬂAﬂ + 182 {8A,8—] + i [ch’?ﬂ?} —1—2? [? 8A} + 0(A%), (A15)
and thus
8 0A] .90, 1 . 1 0
A=A, 32 0,0A — 1952 [A,,,G 82] 55 [GA,?aA} + lg|:A” 7 8A] + 12 {8 0A, 85 8A} +0(A%). (Al6)
It is interesting to rewrite Afj as
= (5, - 2% (4 aAA Lona, Loa 0(A?
w— \ ™ P v 82 82 Uaz + ( )
a,0,
= (% - (’;2 )fo (A17)
Under an infinitesimal gauge transformation
0A, = —0,A+ig[A,. 4], (A18)
it can be checked that
0A
50, = —d), (z ig [E,AD + o) (A19)

*We refer to [40] for technical details.
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The combined knowledge of (A17) and (A19) nicely displays that A” is indeed transverse, while it is also gauge invariant,

u

order by order. It is perhaps interesting to notice here that in [55], the one loop renormalizability of the nonlocal operator
1 [ d*xA"A", ie. the local minimum of Eq. (A2), was explicitly checked.
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