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We show that the stress-energy tensor has additional terms with respect to the ideal form in states of
global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These
corrections are of quantum origin and their leading terms are second order in the gradients of the
thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-
energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we
find that there are more second-order coefficients and that all thermodynamic functions including energy
density receive acceleration and vorticity dependent corrections. Notably, also the relation between p and p,
that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for
a free real scalar field—both massive and massless—and we have found that they increase, particularly for
a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal
terms depend on the explicit form of the stress-energy operator, implying that different stress-energy

tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

DOI: 10.1103/PhysRevD.92.045037

I. INTRODUCTION

It is common wisdom that the form of the relativistic
stress-energy tensor in a thermodynamic equilibrium state
has the ideal form

™ = (p + p)u'u” — pg"

where p and p are the energy density and pressure,
thermodynamic functions of temperature 7' and chemical
potential x4, and u a constant four-velocity. In quantum-
statistical mechanics, the above expression corresponds to
the renormalized mean value' of the quantum stress-energy
tensor operator, built from local quantum fields, with the
density operator

p=(1/Z)exp[-f- P +¢0) (1)

where f = (1/T)u is a constant inverse temperature four-
vector (or, simply, four-temperature), with 7 =1 /\/ﬁ
being the proper (or comoving) temperature and u the
constant four-velocity; { = u/T is the ratio between
proper chemical potential and proper temperature; P the
four-momentum operator; and Q an internal conserved
charge:

A | N N N
Tﬂy(x) = tr(ﬁTﬂy(x))ren :ztr(le(X) CXp[—ﬂ‘ P +€QDren

=(p+p)u'u’—pg*. (2)

'For free quantum fields, by renormalization we mean the use
of normal ordering in the stress-energy tensor operator.
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The form (2) is dictated by the symmetries of the density
operator (1) which is translationally invariant and isotropic
in the rest frame where g = (1/7)(1,0).

However, the density operator (1) is not the only form of
global thermodynamic equilibrium, which is, in general, a
state where the entropy S = —tr(plogp) is constant. For
instance, it is well known [1,2] that in nonrelativistic
quantum mechanics the operator

p=(1/Z)exp[-H/Tq + w] /Ty (3)

where T, is a constant global temperature,” A the
Hamiltonian and J, the angular momentum operator along
some axis z, represents a globally equilibrated spinning
fluid with angular velocity w. Similarly (see Sec. II) the
operator

p=(1/Z)exp[-H/To+ aK_/To), (4)

K, being the generator of a Lorentz boost along the z axis,
represents a relativistic fluid with constant comoving
acceleration along the z direction and it is still an equilib-
rium distribution. These two cases belong to a more general
class of thermodynamic equilibria which, in special rela-
tivity, are characterized by a four-temperature f(x) field
fulfilling the equation

The global temperature T is a temperature measured by a
thermometer at rest with the external observer. In general,
differs from the proper temperature 7 measured by a comoving
thermometer.
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aﬂﬁl/ + 81/:3/4 =0 (5)

which means that the four-temperature is a Killing vector
field. We will show how for such thermodynamic equilib-
rium states, with the appropriate treatment in quantum
relativistic statistical mechanics, the ideal form of the
stress-energy tensor gets quantum corrections—yvanishing
in the 7 — 0 limit—whose leading terms are proportional
to the squared gradients of f, which in turn can be
expressed in terms of the acceleration ¢ and the vorticity
w* fields (see Sec. IV for definitions):

T = (p+ p)u'n’ — pg” + 1*(O(a*) + O(w?) + O(aw)).

As we will see, these corrections are normally tiny but they
can become relevant under specific circumstances and,
moreover, they are not microscopic in the sense of being
relevant only at very small scales.

The appearance of these terms is somehow in contrast to
the widespread belief that deviations from the ideal form (2)
can only arise in the presence of dissipative processes. In
fact, the existence of such terms has been pointed out by a
classification of second-order gradient corrections of the
stress-energy tensor in conformal hydrodynamics [3,4] and
also by means of kinetic theory [5], and some coefficients,
denoted as thermodynamic in view of their survival at
equilibrium, have been calculated in Ref. [6] for conformal
field theories.

In this paper, we show that the occurrence of non-
dissipative corrections to the ideal form of the stress-energy
tensor is a general fact which is related to the very notion of
equilibrium in quantum relativistic statistical mechanics.
Moreover, these corrections result from the expansion of
the density operator and their form is not assumed a priori
like in the Landau-frame-based gradient expansion. At
equilibrium, they have simple and suggestive expressions
as correlators of the stress-energy tensor with the generators
of the Lorentz group. The proper energy density expression
is also modified, as well as the relation between energy
density and pressure, that is, the equation of state. It is an
almost straightforward consequence that these corrections
will extend to a curved spacetime.

The paper is organized as follows: in Sec. II we obtain
the form of the density operator of general thermodynamic
equilibrium in quantum-statistical mechanics in flat space-
time. In Sec. III we discuss the relation between local
observables and the local value of the four-temperature
field. In Sec. IV we derive the form of the corrections to the
ideal form of the stress-energy tensor as a perturbative
expansion. In Sec. V we calculate those quantum correc-
tions in free scalar field theory. Finally, in Secs. VI and VII
we discuss the most important physical consequences and
draw conclusions.
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A. Notation

In this paper we wuse the natural units, with
h=c=K=1.

The Minkowskian metric tensor is diag(1,—1,—1,—1);
for the Levi-Civita symbol we use the convention
€"123 = 1. We will use the relativistic notation with
repeated indices assumed to be summed over; however
contractions of indices will be sometimes denoted with
dots, e.g. u-T -u = u,T"u,. Operators in Hilbert space
will be denoted by a large upper hat, e.g. T', and unit vectors
with a small upper hat, e.g. 9. The stress-energy tensor
is assumed to be symmetric with an associated vanishing

spin tensor.

II. EQUILIBRIUM IN RELATIVISTIC
QUANTUM-STATISTICAL MECHANICS

A general covariant form of the density operator in
relativistic quantum-statistical mechanics extending Eq. (1)
was first proposed, to our knowledge, in Refs. [7,8]:

p=gen |- [emamn-an| @
b

where X is a spacelike 3D hypersurface. This form can be
obtained by maximizing the total entropy with the con-
straints of given energy-momentum and charge densities at
some specific “time” of the hypersurface X; see the detailed
discussions in Ref. [8] and more recently in Refs. [9,10].
The density operator (6) is therefore especially suitable to
describe local thermodynamic equilibrium—that is, a
situation where the thermodynamic parameters temper-
ature, velocity field and chemical potential are a function
of space and time—in a quantum relativistic framework.
The operator (6) will not maintain its form under the unitary
time evolution and cannot thus represent the actual quan-
tum state in the Heisenberg representation. However, it is
time independent or, equivalently, independent of the
integration hypersurface X if the divergence of the inte-
grand vanishes and in this case the (6) is the density
operator of a thermodynamic equilibrium state. For con-
served stress-energy tensor and current this condition leads
to the request [11] that { is a constant and £ a Killing vector
field fulfilling Eq. (5) (with partial derivatives replaced by
covariant derivatives if necessary).

The density operator (6) is also well suited to describe
thermodynamic equilibrium in a general curved spacetime
possessing a timelike Killing vector field. In Minkowski
spacetime, which we will be dealing with in this work, the
general solution of Eq. (5) is

p = b+ oy, (7)

where b is a constant four-vector and w a constant
antisymmetric tensor, which, because of (7) can be written
as an exterior derivative of the g field:
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Wy, = _z(ayﬂy - ayﬁv)' (8)
Hence, the general equilibrium form in flat spacetime of the
density operator (6) reads

o N B
p=exp [—bﬂP” + Ewﬂbl" +¢0 (9)

where the J’s are the generators of the Lorentz trans-
formations:

= / 4, (1 — ),
z

Therefore, besides the chemical potentials, the most general
equilibrium density operator in Minkowski spacetime can
be written as a linear combination of the 10 generators of
the Poincaré group with 10 constant coefficients. The most
widely known case is the one with f = b and w = 0, that
is, Eq. (1), what we define as homogeneous thermodynamic
equilibrium. The rotating global equilibrium in Eq. (3) can
be obtained as a special case of Eq. (9) setting

b, = (1/T,,0,0,0) w

w = (a)/TO)(glthZD - gpoZ,u)

where @ has the meaning of a constant angular velocity [1].
Similarly, the form (4) can be obtained by setting
b, = (1/T,,0,0,0) w

w = (a/TO)(g()ug3y - 93;4901/)'

In the latter case, the contravariant components of f read

1
P :T—(l +az,0,0,at); (10)

0

thus the unit vector 3 is the velocity field of a fluid with
constant comoving acceleration along the field lines (for the
|
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field line going through z = 0, the comoving acceleration
is a).

III. MEAN VALUES OF LOCAL OPERATORS

Suppose we want to calculate the mean value of a local
operator O(x) (in the Heisenberg picture) with the density
operator (6):

(0()) = () Ox))
— (x| Loz, - ow)
(1)

If B is a general field, there is no compelling reason why,
at a given point x, the mean value O(x) should be
simply equal to the same value at the homogeneous
global thermodynamic equilibrium with a uniform four-
temperature f equal to its value in the point x, that is, 5(x).
For instance, the stress-energy tensor in the point x does
not need to be of the ideal form (2) with u = (x) and
p=p(F.0) p=p(B.0) if B is not constant. In fact, its
tensor structure in (2) is determined by the symmetries
of the density operator (1), which is obtained from (6)
provided that f is constant.

Nevertheless, one can imagine that if f and ¢ are
sufficiently slowly varying in space and time, O(x) will
be mostly determined by the values of the fields § and ¢
around the point x [9]. More specifically, the distance over
which the thermodynamic fields like § vary should be much
larger than the typical thermal correlation length, which is
governed by the microscopic parameters of the theory and
the temperature itself. This can be shown by recasting the
fields in the integrand of Eq. (11) as f = p(x) + 6 and
¢ ={(x) + 8¢, so as to obtain

O(x) =

0(x) :%tr(exp {—ﬂy(x) L ds, 7" + ¢(x) L az, ' - />: dZﬂ(T"”&ﬂb—&C}"‘)}O(x))

- %tr (exp [—ﬁy(x)f’” +¢(x)0 — L dz, (T"5p, — 5@3")] O(x)>

ren

Hence, applying the linear response theory to the exponent above,

O(x) =

/dz/dZ(y

/ dZ/dZ ()7 (v + i2B(x))) pix

where x and y both lie on the hypersurface X. The symbol
()p stands for the (renormalized) mean value calculated
with the homogeneous equilibrium density operator in
Eq. (1). Particularly, the ()4, stands for the mean value

()T (y + izB(x))) o)

~ {0y (T (v + i2B(x))) ) 5,

—(0(0)) i) (7 (v + i2B(x))) ) )6 (12)

|
calculated with a fixed four-temperature (and ¢) equal to the
value of the f# (and ¢) fields in the point x. The formula (12)
just expresses the aforementioned concept, namely that the
local equilibrium value of the operator O(x) is determined
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by the local values of the thermodynamic fields with
corrections depending on quantum-statistical correlations
between operators in different points. These correlations—
hence the integrand function in Eq. (12)—are significant
over microscopic distances / dictated by the mass, temper-
ature and coupling constants of the theory, which are
supposedly much smaller than the macroscopic distance
L over which 6f and 6¢ appreciably vary. This condition is
usually referred to as the hydrodynamical regime and in
this regime terms beyond the linear in §f and 8¢ in Eq. (12)
contribute less and less as they are expected to be sup-
pressed with higher powers of //L.

Under these circumstances, it is possible to expand the
thermodynamic fields in Eq. (11) into a Taylor series about
the point x. For a general § field, this method makes it
possible to find an approximate expression of the local
thermodynamic equilibrium operator (6) as a function of
B(x) and its derivatives [9]. For the special case of global
equilibrium, with constant £ and f a Killing vector field (7),
one can recast the operator (9) so as to have in the exponent
the value of the four-temperature in the point x:

1 o L5 ol
O(X) = ztl’ (exp |:—b/4Pﬂ + Ew/w‘ﬂw + CQ:| 0()6))

ren

1 A
= 2tr (exp [—(bﬂ + @, x") P!

+%w,w]’;” + CQ] O(x))

= %tr (exp [—ﬁ”(x)f’” + %wﬂ,,jﬁ” + CQ} O(x))

ren

(13)

where we have used the angular momentum operators
around the point x,

T =g — P P =T() I T(x)™t (14)

T(x) = explix - P] being the translation operator.

The calculation of mean values (13) is the main purpose
of this paper, and, specifically, when O = T**. We will
consider the term in @ as small compared with the terms
involving f and ¢ and expand accordingly. Thus, the
leading term in the above equation will be simply the
homogeneous equilibrium one with four-temperature equal
to its value in the x point, that is, the expression (2) with
u = f(x). We will see in Sec. IV that the lowest order
corrections to the ideal form are of the second order in @
and that they are of either quantum or quantum-relativistic
nature as they vanish for 24 — 0 or 2/c — 0.

Note that 3(x) is required to be a future-oriented timelike
vector in order to get a finite value for most observables at
the lowest order of the f# expansion. This condition cannot
be fulfilled everywhere for the expression (7) if @ # 0. For
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instance, for the rotating global equilibrium (3), it is easy to
check that

1 .
ﬁ:T—O(l,wk X X)

which becomes spacelike when ||wﬁ X x|| > 1, that is,
when the velocity exceeds the speed of light. Similarly, for
the operator (4), the g field (10) is future-oriented timelike
only in the Rindler wedge defined by the light cone of the
point (0,0,0,—a/T). Therefore, the validity of our calcu-
lations will be limited to the physical regions where the
field is timelike and with positive time component even
though the operator (9) written with the constants » and w
does not make this limitation apparent.

IV. PERTURBATIVE EXPANSION FOR THE
STRESS-ENERGY TENSOR

The goal of this section is to provide an expansion in @
for the mean value of the stress-energy tensor in the general
form of thermodynamic equilibrium:

T (x) :%tr (exp [—ﬂﬂ (x)P* +%wﬂbj’;” +CQ] f"’“’(x))
(15)

ren

Indeed, w is an adimensional tensor in natural units and it
has, in general, very small components. To understand its
physical meaning, it is very useful to decompose it into two
spacelike vector fields, each having three independent
components, projecting along a timelike vector. A physi-
cally interesting choice is u = j§ = f3/ \/P in the regions
where f given by Eq. (7) is timelike. We can then
decompose w as follows:

@ = "W u, + o'u’ — o' u (16)

where, by definition,

1
a'(x) = w"u, wh(x) = —56"”””wyl,u(,. (17)

Note that a and w, unlike @, are not constant. They are both
orthogonal to u and hence spacelike. The physical meaning
of @ and w vectors can be shown starting from Eq. (5).
Because of (7) and (5) at equilibrium one has

W, = avﬁy
whence

a' = wu, = u, 0" = u'u,0°\/ f* + \/ fu, 0’ u*.

We can now take the scalar product with u* and conclude
that
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u,,@”\/EED =0

which tells us that, as expected, at the thermodynamic
equilibrium the comoving temperature along the flow lines
does not change and 9,4* = V%, where

V,=0,—u,D.

Thereby, the a vector simply becomes

1
a =/ fPu, 0w = \/ P Dut = ?a”, (18)

that is, the acceleration field divided by the proper temper-
ature. Note also that, since 9,4, + 9,4, = 0, one has

1
0=u" (0,8, +0,p,) =0, + 78”,62

NG

1 1
=V (19)

:Taﬂ—

Likewise, it can be shown that w corresponds to an angular
velocity divided by a temperature, for, by using (8)

1 1
wh = — 5 gﬂb/mww) Us = E eﬂyﬂ(y(abﬂp)u”

1 1 1
= Ee’”’p"\ [ Pu,0,u, = ﬁe””p"uovyup = ?a)” (20)

since w* = %e"””"uﬂvy u,, or as it is known in literature, the
local vorticity vector. Restoring the physical constants, one
then has the adimensional four-vectors:

— haﬂ

hw,
o — _
" eKT

wy ——KT .

(21)

These numbers are, for the vast majority of physical
systems, much less than 1 and a perturbative expansion
|

2
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in w of Eq. (15) is then feasible. They can give rise to
relevant corrections if the implied additional terms to the
ideal stress-energy tensor are some sizeable fraction thereof
or when these terms are comparable to the viscous tensor.
According to Eq. (21), this happens at very large accel-
erations or very low temperatures. Hence, let us define

R(w) = exp [—ﬂﬂ(x)f”‘ + %wﬂ,ﬁ’}" + CQ]
—exp | AP+ S, 0 explcl] (2

where, in the last equality, advantage has been taken of the
supposed commutation of the charge operator Q with both
the P’s and J’s. At the second order in w one can write

R(w) =R + mﬂvfg(l)ﬂv + wﬂywpaﬁm"””" + o(w?)
(23)

and, by using the Poincaré group commutation relations, it
can be shown that (see Appendix A)

’fz(o) — efﬂ'i)“v’gQ
R — l{e—ﬁf’%Q )
4 ’ ’

R ppo % {ef/i-i’ﬂ“Q, jﬂvjﬂd} + %efﬂf’% 0 [P PYP°

_ % e PO gu o po (24)
where the curly bracket expression {,} stands for the
anticommutator.

By using Eqgs. (23) and (24), the mean value (15) can
be expressed as an expansion in w with coefficients
which are calculated at the homogeneous thermodynamic
equilibrium:

“ 1 PO . Aruv
= (1)) p) + 5 paRE(L T () (o)

1 PO Jit. Auv 1 Do DT. Fuv
+ @, §R6<va T T (%)) i +§ﬁ”(x)ﬂﬂ(x)<1’ P T (X)) i)

1 DT. 7 1 PO . Auv Jit
—Eﬂ/’(x)g’WP’;T"”(x))ﬂ(x)—ZReUﬁ s (x)>/3(x)<‘li >ﬂ(x) + o(w?) (25)

where we have used the relations for two Hermitian operators A, B,

Re(A B) = = ({A.BY)

N[ =

and the notation

iIm(A B) =

N =
—
o>
=

(A:B) = (AB) — (A)(B)
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has been introduced for the correlator between A and B. The terms in Eq. (25) containing P can be readily calculated taking

the derivative of (7" s With respect to f. Indeed,

0
P

2

P0p.

pg

BB

Note that the two rightmost terms in the last equation
vanish once multiplied by @,,,w;, for, since (P) 5 « f, they
contain the symmetric combination B4 or /.

All mean values in Eq. (25) involving angular momen-
tum operators can be rewritten in a form which makes it
apparent that their dependence on x is only through the
value of the four-temperature, by taking advantage of
the translational invariance of the density operator. For
instance,

(T T (x) gy
= (T @I TET 0 T T () T () g
= (I T O
and similarly for the others, where Eq. (14) has tzeen used.
Then, it is convenient to decompose the tensor J into two

spacelike vector operators in the same fashion as for @ in
Eq. (16):

Jw =yt RY — K uv + e"”p"jpug (27)
where
K=y Jen g = ! upoz J
=u, = _56 pollz

The operators J* and K* are simply the generators of the
rotation and boosts with respect to the reference frame with
time direction u#. Using the invariance by rotation (in the
hyperplane orthogonal to u), parity and time reversal,
|

<T’w>ﬂ = —/3’)9’15@72 T””)ﬂ

@’w)ﬂ = ﬁpﬁi(@ﬁiﬂ; 7AW>/} - <136§ T’w>ﬁ<fﬂ>ﬂ - <IST§ fwy>ﬂ<i)6>ﬂ)' (26)

[

which are assumed to hold for our Hamiltonian, one readily

obtains that (see Appendix B)
Re(I™ 7(0))y) =0 (7)) = 0.

Therefore, plugging the decomposition (27) into Eq. (25),
and using the relations (17) and (26) and after the removal
of the vanishing terms, Eq. (25) can be written as

o 1 " a A
T (x) = (T"(x)) gy + ia,;aaRf?(K’)K"; 7(0)) px)
1 Jp o . Fuv
+ 3 w,woRe(JPJ7; T (0)),;@

1 A a A
+ 5 a,weRe({J7, K7} T"(0)) 4
82
OPs0P.

0
o @y + 0l

1 N
+ gﬁpﬂl (T"(x)) gy

1
+ Eﬁpgﬂ (28)

The derivative terms are easy to work out by using (2); they
will give rise to expressions involving the thermodynamic
functions pressure, energy density and their derivatives,
that is, specific heats. On the other hand, the correlators in
Eq. (28) cannot be expressed in terms of known thermo-
dynamic functions. In fact, they can be written as linear
combinations of new thermodynamic coefficients which
can be expressed in turn as correlators of specific compo-
nents of the stress-energy tensor and angular momentum or
boost operators J and K , that is,

| 2
SRe({R? K7y 1 (0)) oy = —uut A7k, (T.0) + A ATk (T ) + (A/“’Af’” + AV AP — §A/‘”AP") k(T.0)

1 A A s 2
SRe({J7, 7 H T(0))) = —wu A, (T.) + A AP y(T,€) + (MM A + Ao a0w — 2 amre ) j(T.¢)

Re({K”. J7}: 7(0)) ) = (1, 0,69 + w5001, (T. )

where

(29)

AW = g — ytu?

is the projector onto the hyperplane orthogonal to u and
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3
L(T.0) = Re(RRST00),  ky(T.0) = 5Re S (RPR%T(0)),

JiT.0) = Re(PIEINO)y  jolT.6) = 1Re D

1,(T.0) = Re({K". J}: T7%(0))7.

In Eq. (30) the notation (); has been introduced meaning
that the expectation value is calculated in the rest frame
where # = (1/T,0). The derivation of Egs. (29) and (30)
can be found in Appendix B.

Finally, after having worked out the derivatives of the
stress-energy tensor and using Egs. (29) and (2) in Eq. (28),
one obtains

" (x) = (p— Uy — WzUw)uﬂuy
— (p — @Dy — W*D,,) A" + Adta” + WwHw”
+ Gy + ') + o(w?) (31)

where p, p are the usual homogeneous thermodynamic
equilibrium functions energy density and pressure, and the
functions U, D, A, W, G read

1. 9p 1 1 1
U,=—T—+- —k U,=-j
« =75 8T+4(p+p)+zz w =5

1 1 1 1 1
D,=— —ky——k D,==j)——j
a 24(p+p)+2 0 3 s w 2.]9 3]v

1
AZz(P"‘P)‘f'ks W= j,
G—ll 1( +p) (32)

=5l= Pt p)

The vector y* in Eq. (31) is defined as
= (a w),A" = W, i, (33)

where the w decomposition (16) has been used.

As it can be seen from Eq. (31), the stress-energy
tensor has corrections to its ideal form which depend on
quadratic combinations of the two vector fields, ¢ and w
arising from the decomposition of the exterior derivative of
the temperature four-vector . At thermodynamic equilib-
rium, according to the previous discussion and Egs. (21),
they are proportional to the acceleration ¢ and angular
velocity (or vorticity) @*, so that Eq. (31) can be rewritten
in the most suggestive fashion by restoring the natural
constants as

PHYSICAL REVIEW D 92, 045037 (2015)

ky(T,C) = Re(K'K*; T(0))

Js(T.0) =Re(J'I%:T2(0)7

(30)

T (x) n hlal 2U N hlo| ZU o
X)) = —_— — uru
Pr\exr) Z* "\ kT ) V™

L (A (Hl ) ] e
P \ckr) " \kr )
(PN aua oy ow (P2
E—— ara E— W
cKT KT
wlolal, .
+GW(”"7 + Pu”) + o(w?) (34)

where |a| = \/—a,a" and |0| = \/—w,0" and a, & are

the corresponding unit vectors. In the expression (34)
the adimensional scales #a/cKT and hw/KT involving
acceleration and vorticity have been separated from the
thermodynamic functions U, A, W, D, G having the same
dimension as p and/or p making it easier to appreciate the
size of the correction to the ideal form.

A. Relation with other second-order hydrodynamical
coefficient calculations

The appearance of extra terms in the stress-energy tensor
at thermodynamic equilibrium with respect to its ideal form
has, needless to say, several physical consequences. The
presence of nondissipative quadratic corrections in the
vorticity and gradients of temperature [hence accelerations
at equilibrium, according to Eq. (19)] was pointed out in
Refs. [3,4] and, being nondissipative in nature, defined as
thermodynamic in Ref. [6]. The calculation of such
coefficients has attracted much attention lately (see [12]
for a recent review), especially in conformal field theories
[13-15] with different techniques [16,17] (see also
Ref. [18]). The coefficients that we have denoted by D,,
D,,, A and W are in the following relation with those known
as &3, &4, A3, 14 in the literature:

A w
ﬁ = 9&4 ﬁ - 13
D, (/4 D,
T2 = <3 - 253) T = (344 —9&). (35)

Remarkably, the number of coefficients quoted in (34) is
larger than envisaged in Refs. [3,4] and the reason is that we
did not assume, as it is usually done in the Landau frame,
that the proper energy density p has the same functional
dependence on the temperature as at homogeneous
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thermodynamic equilibrium. This assumption proves to be
incorrect, and the extra coefficients cannot be reabsorbed
by a redefinition of temperature, as it will be discussed and
shown in Sec. VL.

Before tackling these issues, it is necessary to calculate
the coefficients U, D, A, W, G in some instance and we will
do it for the simplest case of a real scalar free field. As it
will be clear from the calculations shown in the next
section, they all have a classical expression in the massive
case, and, as a consequence, all the corrections in Eq. (34)
to the ideal form turn out to be of quantum origin, as they
vanish in the 72 — O limit.

V. THE FREE SCALAR FIELD

The goal of this section is to calculate the coefficients
in Eq. (34) for a free real scalar field. This implies { = 0 in
the density operator (1), yet it is quite easy to extend the
obtained results to the charged case with { # 0 in the
Boltzmann limit of distinguishable particles.

The theory is described by the Lagrangian density:

1. ... 1
L= 3 O — Emzwz.
By adding the superpotential

260, (")

a class of stress-energy tensors can be obtained as Noether
currents associated to space-time translations. Although
they are explicitly dependent on the parameter &, they differ
from each other by a divergence:

. 1
T = 00y — 5 g (0 — mip?)
+280, (g™ pOMp — PP ) (36)

thus they lead to the same generators of the Poincaré group.
For £ =0 the tensor is the so-called canonical stress-
energy tensor, while for & = 1/6 the tensor is the so-called
improved stress-energy tensor [19]. In the translationally
invariant homogeneous equilibrium (1) all mean values of
local operators are independent of x; thus the divergence in
the above expression vanishes, and hence p and p do not
depend on &. In fact, as we will show, this is not true in the
case of generalized equilibrium and the correlators in
Eq. (30) are explicitly dependent on £.

At the very beginning, it should be pointed out that in
principle one should use normal ordering in the calculation
of the mean values of 7 in a free field theory to subtract zero
point infinity. However, this is not needed in the calculation
of a correlator such as (J#*J?; T%(0)); because :7: =
T — (0|7]0) (T being a quadratic operator in the fields) so
that the vacuum term cancels out in the subtrac-
tion (J#*J7°T%(0))y — (J#377) 1 (T%(0))r.

PHYSICAL REVIEW D 92, 045037 (2015)

The basic tool we need in order to carry out the
calculation is the free field n-points Wightman thermal
function:

W (122 ) = ()i (22) ()7
which can be written in terms of two-point thermal

functions according to a version of the Wick theorem
[20] suitable for thermal field theory. For an even n,

Wg—”)(xl, e Xp)

. 2 n—2
= Z[W;)(XI,XJ)W(T )(.Xz, ...,Xj,],XjJr], ...,x”)],
j=2

and if n is odd, W(T")(xl, ..y X,) = 0. In the case of a free
real scalar field, the two-point Wightman thermal function
reads

2 1 —ik(x—
W () = s [ ke 81000 + (17
x 8(k? —m?),
where
1
nr(e) = e

is the Bose-Einstein distribution. We then define
TP (x,y,2) = (P(0) 177 (3)T(2))

— (T ()17 (9)) (T (2)) 7,

which can be calculated with the point-split procedure as
v|pola U PO A\ 6

T’;‘ |/7 ‘ ﬂ(X,y, Z) - ®£ ®§’ ®zﬁ[W(T)(x1,x2’)’17)’27 Zla ZZ)

4 2

- W;)(xlvxzaYhyz)W(T)(Zl,Zz)],

where
o {(1 20, 26k, + (46 1)), -0,

+4¢0,, +m?] }

X1,Xp =X

The general expression of the correlators is then
(3 T 0)) 7 = / Exdyley T (x,y,0)

_ xvyp']’(%ﬂ\off\aﬁ(x’ y, 0)
_ x”y”’]'(}”‘ol"“ﬂ(x, y, O)

v UTOM‘OP‘OQH 0 37
+xy T (%, 3, 0)] (37)
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with x° = y° = 0 because the J’s are time independent.

C;V|/’f"\aﬁ($7 Y, Z) =

PHYSICAL REVIEW D 92, 045037 (2015)

Out of the 15 different diagrams stemming from the contractions of the six-point Wightman thermal function, in 7" some
are canceled by the subtraction term, leaving only the 12 diagrams in which 79 (z) is not a disconnected component. Since
<.7””>T =0, in Eq. (37) the remaining 4 disconnected graphs in 7 do not contribute to the result. Therefore in (37) we can
replace 7 with its connected subset of 8 diagrams and we get

C7? (x.y.0) =

1
(27)°

/d4kd4pd4qe—i(k+p)xe—i(q—k)y7);wpa|aﬂ(k’ P, q)5(k2 _ m2)5(p2 _ m2)5(q2 _ m2)

< [0(K%) + nr(K)][O(p°) + nr(Ip°DIO(g°) + nr(14°))].

with

Prlelb (k. p,q) = {—(1=2) (k' p* + p'k*) + 26(k"k* + p'p*) — ¢*[(4 = 1)k - p +25(K* + p?) — m*]}
X {(1 =28)(kq° + q"k°) + 2E(K°k° + q°q°) — ¢°[—(4& = D)k - g + 2£(k> + ¢*) — m?]}
x {=(1=28)(p"q" + q*p’) + 2£(p* P’ + q°qP) — g [(4E = 1)p - q + 2&(p* + ¢*) — m?]}.

The thermodynamic correlators in Eq. (30) can be found
by selecting the suitable indices in Eq. (37). For instance,
for the k, correlator,

k,(T) = /d3xd3yx3y3C(%0|00|00(x,y,0)|Xo:yo:0. (38)

Using
/d3xd3y_xiyjei<k+l))'xei<qk)'y
= —(27)°9,,8(p — k)9,,6(q — k)
and
1
8(k* —m?) = 5—[6(K* + ex) + 8(k — ).
28](

where g, = Vk? + m?, one can then integrate in x and y,
and thereafter in k°, p°, ¢° so as to obtain

1
k(T) = G / d3kd3pdq

X (Sppy ++8)0,,6(p—

Bexepeq
k)9,,6(q — k),
where the S terms correspond to the 8 possible combina-

tions of positive and negative frequency of the k, p and ¢
four-momenta. Thus, we have

|
Sipq = P0T0‘00‘00<k+’17+7 q)[1+ nr(e)][1 +nr(ep)]

X [1 + ny(eq)]

S_++ = P(])“O‘OO‘O()(k—’ P+ qu)nT(gk)[l + nT<8P>]
X [1 + nr(eq)]

S = PP p_. g )nr(e)nr(ep)nr(ey)-

where k. = *¢y, and similarly for p and g. We can then
integrate in p and q to get

1 1 H?
T)=— ke———
kt( ) (2”)3/d 8ex Op30qs

1
x [— (Sios bt 6 ()
€p€q p=—k.q=k

All the correlators in Eq. (30) can be calculated in a
similar fashion although it should be pointed out that the
case of k, is somewhat simpler because in Eq. (38) only one
term in Eq. (37) survived. Indeed, in general, one can have
up to four terms associated with different sets of indices.
Thus, the general correlator can be expressed as an integral
of a sum of terms analogous to that appearing in Eq. (39).

In the massless case, T is the only energy scale and, on
purely dimensional grounds, one finds that the correlators
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TABLE L.  The integrand functions I(k,m,T) [see Eq. (40)] for the correlators in (30) of a free real scalar field.
I(k,m,T)

k, %T % sinh =0 (5&) sinh (%) {k?¢7 + T*[k* + 3&7(1 — 4&)][cosh(%) — 1] — 2Tk?e; sinh (%)}

ko 288T2 sinh 6(5—;) sinh(%) Wk* + 3T2[k% (1 — 4¢) + 8%(85 — 1)][cosh(%) — 1] — 2Tkey, sinh(%)}

k, msmh 0(sk) sinh (%) {k?e; + 15T%&; (1 — 2£)[cosh(%) — 1] — 5Tk?¢; sinh(%) }

i 34, Sinh™ 4(55) sinh(%) (1 — 4¢ )

Jo smh (;—‘T) sinh(%) (8 — 1)

Js W sinh™(3) sinh(%) (26 — 1)

L, 24T6 sinh ™ (55) cosh(5%) 2T (2 — 1) 4 ¢ coth(55)]

TABLE II. The correlators (30) calculated for a free real scalar field with vanishing chemical potential. Also

shown are the well-known expressions of p and p.

k(&) a,(x, &)

P 57 —(rx) 2K, (rx) + (rx) 7 K5 (rx)

p 307 (rx) 72K, (rx)

k, —m - €& S {[r* =1+ 24&x72]K5 (rx) + 3[r(1 — 8&) = 3r ' x ' K5 (rx) }

& —g# — 1 5 8(1 = SE)x 2K (r2) + [r(16 = 3) = 311Ky (1)

k, —%ﬂz—l-l]—z—% —%{2(1—25) 2Ky (rx) + [r(4E — 1) + 7 x K5 (rx) }

Ji é (1 —4¢) (1— 4§)x_2K2(rx)

Jo 15 (8—1) 1 (8 = 1)x 2K, (rx)

Js 52e-1) 126 —1)x72 K, (rx)

1, R e+ 1€ L1128 = 6)x 2K, (rx) + (2r + r H)x ' K5 (rx)]

are of the form «(&)T*. For instance, integrating the
Eq. (39) with m = 0 one obtains

k,(T) = (—in +1—§>T4

For the massive case, the integration is just a little
more involved. First, the angular part of the integration
in k can be readily carried out and one is left with
expressions like

(40)

1 [+
— dkl(k,m,T).
272 /o (k,m. T)

where the function I(k, m, T) is reported in Table I for the
various correlators. The integral in Eq. (40) can be
computed by setting k = m sinh y, which makes it possible
to extract an m* factor; the integral then depends on m and
T only through the ratio x = m/T and one is then left with
an adimensional integral over y that can be turned into a
series of type (41) involving the modified Bessel functions
of the second type K, (x):

TABLE III.  The coefficients of the stress-energy tensor in Eq. (34) calculated for a free real scalar field with vanishing chemical
potential.
x(¢) ar(x.$) f(m, 1)
U, L(1-6¢) L (r? + 246x7 ) Ky (rx) + 3(1 — 88)rx K5 (rx)] m* T +im(1 —88) + (F—36)T + o(T)
U, 15 (1—49) 3 (1= 48)x 2Ky (rx) (L —28)T + o(T)
D, E(6E—1) 3 [(12 — 488)x 72K, (rx) + (24& — 5)rx ' K5 (rx)] m(E—2)+ EE—HT +o(T)
D, §¢ Ex 2Ky (rx) T +o(T)
A 5 (1—6%) 2148 —2)x2K5 (rx) 4 (1 — 48) rx ' K5 (rx)] mE—& +E—36T +o(T)
w 5 (25—1) 3 (26 — 12Ky (rx) (€ =T +o(T)
G 3 (1+6£) £1(6& —3)x2K, (rx) 4 rx~' K5 (rx)] L+ (6—5T +o(T)
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4 o
m
S an(x9), (41)
2z r=1

where, as has been mentioned, x = m/T. The final
expression of functions a and « can be found in Table II.

With the correlators calculated, we are now in a position
to write down the coefficients of Eq. (32), reported in
Table IIT alongside their nonrelativistic limit m/T =x>> 1,
factorized as nf(m, T), where

3

‘ 3

n =

pe N (rx) 'K, (rx) (42)

[\

is the particle density at the homogeneous equilibrium.
The nonrelativistic limit can be extracted by simply
taking the asymptotic expansion of the r = 1 term of each
series.

As it can be seen from Table III, all the coefficients
U,A,D,W,G have a finite nonrelativistic limit with the
dimension of an energy per unit volume. Consequently, as
it has been mentioned, all the corrections to the stress-
energy tensor in Eq. (34) are of quantum origin as they
linearly depend on 7.

The coefficient W = 15/T? for the massless case turns
out to be in agreement with the calculation in Ref. [6] for
& = 0. However, unlike therein argued, we found that it has
an explicit dependence on &, that is, on the stress-energy
tensor form.

VI. THERMODYNAMICAL INEQUIVALENCE,
FRAME DEPENDENCE AND EQUATION
OF STATE

We are now going to discuss some physical conse-
quences of the general form of the stress-energy tensor (34)
which we rewrite here:

T (x) = [p + a*U, + @* U, Ju"u
— [p + @*D, + @*D,,) A" + Aa*a*a”
+ W@ e + Gaa(u'y” + p'u”) + o(w?)
(43)

where the shorthands a = #la|/cKT and & = hla|/KT
for the adimensional scales related to acceleration and
vorticity.

The first remarkable consequence is that, as pointed
out in Refs. [21,22], the mean stress-energy tensor in a
general thermodynamic equilibrium depends on the fun-
damental stress-energy tensor operator written in terms of
the quantum fields. This is at variance with the familiar
homogeneous equilibrium, and it is made apparent by the
dependence of the thermal functions other than p and p in
Table III on the parameter &. If one were able to measure
one of the coefficients multiplying a> or @ with a

PHYSICAL REVIEW D 92, 045037 (2015)

thermodynamics experiment, one would obtain information
about the true, physical stress-energy tensor operator, and
hence on the correct gravitational theory, a conclusion
already drawn in Ref. [21].

The second consequence is that, as it is apparent from
Eq. (43), ¥ =T/ is not an eigenvector of 7T if y is
nonvanishing, that is, if the three vectors a, w, u (or a, o, u)
are linearly independent, as it can be seen from Eq. (34).
This is what happens for the rigid rotation, where a,® and u
are orthogonal to each other. In this case, the u vector does
not coincide with the Landau definition of four-velocity,
and should then be taken as defining a new hydrodynamical
frame, dubbed the f frame, as it has been extensively
discussed in Ref. [9].

The third, and perhaps the most striking consequence, is
that the dependence of energy density and pressure on the
temperature and chemical potential are modified with
respect to the homogeneous equilibrium case. Also, there
are more second-order coefficients in the expansion of the
stress-energy tensor than previously envisaged. Looking
at Eq. (43) it can be realized that, with respect to the
expansions presented in Refs. [3,4,6], there are three new
coefficients, that is, G, U,, U,,, and two of them imply a
modification of the energy density. One could argue that
they would disappear by going to the Landau frame. Yet, in
the diagonalization of the stress-energy tensor in Eq. (43),
it can be readily shown that, retaining only quadratic terms
in a and @,

pett = p + @2U, + @ U, + o(w?)

1 1
Pt = p + a@* <Da +§A> + @ (DW + §W> + o(w?),

(44)

where the effective pressure has been defined as the mean
of the eigenvalues of the spacelike eigenvectors. Therefore,
the energy density and the pressure coincide, in this
approximation, with those in the # frame and the coef-
ficients U, and U,, survive. One may wonder whether the
modification of the energy density could be reabsorbed by a
redefinition of the temperature other than the length of the
vector in the density operator in Eq. (6), which is based on
the maximization of entropy with macroscopic constraints
[9]. In fact, a redefinition would cure only one of the
eigenvalues of the stress-energy tensor, unless the coef-
ficients U, D, A, W fulfilled some peculiar relations. In all
other cases, the relation between the eigenvalues of the
stress-energy tensor, or the relation between energy density
and pressure, in other words the equation of state ps(pesr ),
is modified with respect to the homogeneous equilibrium
case. For instance, in the nonrelativistic limit of the massive
case m > T one has, according to Table III, that the leading
corrections are those in &%, and restoring the natural
constants
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_~_Lm_ 72 — 1+imh2|a|2
Peit =P T o4 kT 24 (KT)?

ol (es) e

(45)

2 1
Pefleﬂ'( §—§>mc2a n=

where p = mn and p = nKT are the usual nonrelativistic
expressions for the ideal Boltzmann gas and n has the
well-known approximate expression

3/2
n= mT /e’”/T.
2

We note in passing that the relations (45) should hold in
the case of a charged scalar field in the nondegenerate
Boltzmann limit with a chemical potential, that is,

3/2
n= m_T / e(ﬂfm)/T’
2z

and negligible antiparticle contribution.

If it were possible to redefine 7 to a new T' =T +
b(T)a* such that p = mn(T') and p = T'n(T’), then the
coefficients in the @> expansion of the functions would be
the same. This can be shown by taking into account that

On/OT = (m/T?*)n(T) in the nonrelativistic m > T limit,
so that
p(T") = mn(T') = mn(T) + = (T'—-T)
oT
= mn(T) <1 + ﬁzbc‘ﬂ)
T
p(T') = T'n(T") = Tn(T) 4 n(T) (1 + ';1) ba*

= Tn(T)(l +%ba2>.

However, it can be seen by comparing the above equation
with (45) that in general this is not the case, except when
£ = 1/4 which is neither the canonical nor the improved
tensor.

Furthermore, in general, the redefinition of a temperature
would be mass dependent and it would then be troublesome
to define thermodynamic equilibrium at a common temper-
ature of a mixture of gases. Let

where p is the familiar homogeneous energy density.
Expanding the new temperature in a and @ the leading
order corrections must be of the second order:

PHYSICAL REVIEW D 92, 045037 (2015)
T' =T+ Tz(T)a* + Ty (T)d? + o(w?),

where T, and T are proportional to the second derivatives
of T'(T,a, ®) with respect to a and @ respectively. These
unknown functions can be obtained by comparing with
Eq. (44):

7
a’;(T a’ + Ty@*) = p+ a*U, + @°U,, + o(w?),
implying
U, U,
T'=T a* el 2).
+8p/8T +0p/8Ta) + o(w*)

Looking at Tables II and III, it can be realized that the
coefficients of @*> and @’ are nontrivial functions of the
mass and temperature.

Going now back to the properly defined 7 = 1/ \/ﬁ'2 we
observe that in the nonrelativistic limit the relation between
the effective energy density and pressure gets modified into

KT mh?|al|?
Peft = Pett — - [ ( 5——) XT)? }

Therefore, the effective equation of state depends on the
acceleration besides the temperature. This could be sur-
prising, but in fact in general global equilibrium all
parameters, including acceleration and angular velocity,
play the role of thermodynamic variables on the same
footing as temperature and chemical potential. It can be
seen that in the nonrelativistic nondegenerate limit the
quantum correction to the relations (44) and the equation of
state becomes more important at low proper temperature,
being proportional to 1/73. Of course this applies as long
as the acceleration is such that mh?|a|?/(KT)? < 1 so that
the expansion method holds®; for very low temperatures,
one would have to take more and more terms into account
and eventually the exact solution would be needed.

VII. CONCLUSIONS

In conclusion, we have demonstrated that the relativistic
stress-energy tensor in general states of global thermody-
namic equilibrium features quantum corrections with
respect to its ideal form (2) depending on the local values
of acceleration and vorticity, besides proper temperature
and chemical potential. We have calculated the coefficients
of the additional terms of the stress-energy tensor in the
appropriate quantum-statistical framework at the second
order of an expansion in the parameters #a/cKT and
hw/KT for the simplest case of a real scalar field. We have
found that more terms exist with respect to previous

*For a proton and |a| = g one has that the ratio becomes O(1)
for T~ 1078 K.
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assessments; our calculated coefficient W for the real scalar
field agrees with previous calculations [6].

We have emphasized three major physical consequences
of this finding:

(1) The coefficients explicitly depend on the form of the
quantum stress-energy tensor operator, which was
already argued in Refs. [21,22].

(2) The effective energy density—defined as the eigen-
value of the stress-energy tensor—is also modified
by terms involving acceleration and vorticity which
cannot be reabsorbed by means of a redefinition of
the temperature.

(3) The equation of state and the relation between
effective pressure and effective energy density are
also modified by the presence of vorticity and
acceleration.

In principle, these findings could be extended to matter in
local thermodynamic equilibrium in flat spacetime, as well
as to matter in global/local equilibrium in a curved space-
time. In this case, it is well known that  in Eq. (6) must be a
Killing vector which can have a nonvanishing exterior
derivative 0,4, — 0,5, and, consequently, additional terms
of the stress-energy tensor with respect to its ideal form (2).
This might be of phenomenological relevance for the study
of the equilibrium of self-gravitating objects.
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APPENDIX A: R EXPANSION

To derive the expressions of R™, we can disregard, for
the sake of simplicity, the conserved charge in (22) for it
commutes with both P and J operators. Defining
P 1

=-w

2

1%

T, (A1)

and applying the known Poincaré algebra relations, we find

[ ’B] - _iﬁﬂwﬂyp s
[[A.B].A] = 0.
[[A, B], B] = p'@,,wp0g” P,
]

Now, using the Baker-Campbell-Hausdorff formula to
expand exp[A —|—B] and retaining only the nonvanishing
terms; taking into account that any commutator involving
A, B or commutators thereof will in turn commute with A,
being proportional to four-momentum operators, we
obtain

PHYSICAL REVIEW D 92, 045037 (2015)
R(p.w) = b = eBehehi Bl AR BIHIAD BLE
— eBeA+H{ABI+4{[A.B].B]+{[[A.B].B].B]+-
(A2)

and its expansion up to second order in B (which is
tantamount to a second order in w) reads

R(p.w) =el + <E+%[A ia})&

1/\ 1 A Py
+ <§B2 +-B[A.B] +

W

~

where advantage has been taken of the fact that exp[A]
commutes with both the commutators [A, B] and [[A, B], B].

Now, by using the relation

e Bet = B—[A, B

which is a known corollary of the Baker-Campbell-
Hausdorff formula for our case, Eq. (A3) can be rewritten
as

We can now take the half-sum of (A3) and (A4) to obtain

AA

R(p.m) = &b+ 2 e BY + {eh, B2} — SAA,BY
(A3)

Inserting the expressions of Aand B in Eq. (Al)in Eq. (AS5)
one can read off the operators in Eq. (23), which are quoted
in Eq. (24).

APPENDIX B: CALCULATION OF
ANGULAR MOMENTUM-STRESS ENERGY
TENSOR CORRELATORS

The density operator (1), which is used to calculate the
mean values denoted as () ; can be written as ApoA™" where

A is the Lorentz transformation turning S, = (1/7. 0) into
p. Hence, the mean value of a general tensor can be
expanded as

A

<0;41,....;4N>ﬁ<x) —_ Alylll ”.AﬂN<0l/],...,I/N>T
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where (), as has been mentioned in the text, stands for the
mean value with the density operator %exp[—f - P] =
Lexp[—H/T]. Note that

3
Ag=p YNNG =gv - =8 (B2)

ij=1

Since exp[—H/T] is invariant by rotation, only scalars
under spatial rotation, either components or contractions
of the tensor O'~*» may have a nonvanishing value.
Furthermore, we assume that the Hamiltonian operator is
symmetric under parity and time reversal transformations,
so that also pseudoscalars and scalars which are odd under
time reversal will have vanishing mean value.

For instance, for a symmetric tensor operator $** one can
write

() = 8ho8A + A™B (B3)

where A" is the transverse projector in the rest frame,
ie. A" = g" — 64 Of course, Eq. (B3) becomes the
well-known

(§), = AP'B* + A™B

by using (B1) and (B2). The coefficients A and B can be
calculated from the mean values by selecting the compo-
nents in Eq. (B3) which make all terms vanishing except
one. Thereby,

A= <SOO>T B = _<Sii>T-

This general procedure can be applied to the calculations
of tensors of any rank. Indeed, in view of Eq. (B2), any time
a time component or 0 index is selected in (0¥, in
Eq. (B1) a 5 will appear eventually turning into a u after
boosting, while for a space contraction of indices a A
projector will eventually turn into a A like in Eq. (B2).

We can first apply the above argument to the calculation
of (Jwre) ;- By using the decomposition (27) and taking
into account (B1), the only possible nonvanishing contri-
butions read

Yet, they both vanish because they are odd under time
reversal and parity respectively. No scalar can be formed
with (J#), and so the mean value of the angular momen-
tum (J*) 5 vanishes too.

Let us now move to the more complicated case of
correlators involving two angular momentum operators,
starting from

({k?. K7} 7).

PHYSICAL REVIEW D 92, 045037 (2015)

In the rest frame, {k”,K°} is a symmetric tensor with
vanishing time components, so it has one spin-0 component
obtained with the contraction of the indices p and ¢ and one
spin-2 component under rotation which can be obtained by
applying the projector
poo — L (Ankg + AgAn — 2 A4
aff 2 a=p a=p 3 ap

to the tensor itself. In order to construct a rotation singlet,
we need to combine the above components with the
corresponding components of 7#*. The spin-0 components
can only contract with 7% and its spatial trace, so one
obtains two contributions:

—AP Sk, APPAMk,
whereas the contraction of the spin-2 component of
{K”,K°} with the one of T gives rise to

- - . 2.
(A””A"” + APPAF — 3 A’“’A”) k.
Altogether
1 NURN .
SRe({K? K} 1),
= —A" &S5k, + A7 Ak,
. - 2. .
+ <A””A"” 4+ AP A — §A’“’A””> kg (B4)
which in the observer frame reads

IR
5Re<{K’ K}, T”")ﬂ
= — APk, + AP Ay

2
+ <Aﬂﬂ AT APAT 2 M”Af’”) k.

To find a compact expression of the coefficients k,, kg, k;
one can select the indices making all terms on the right-
hand side of (B4) vanishing except the one of interest. One
can check that all indices in the definitions (30) are properly
chosen (notice how in k, we avoided the symmetrization in
u<>v associated with the anticommutator since we know
that the antisymmetric part will not contribute). For the
Jis Jo, Js the procedure is precisely the same outlined above
with the replacement K — J.

In fact, the correlator ({K”,J°};T"), is a somewhat
special case because {kp T ?} is odd under parity and time
reversal. Therefore, the only nonvanishing contraction is
between the two spin-1 components of the tensors {K”, J°}
and 7" respectively. The spin-1 components can be
obtained by means of the projectors
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eOa/h

1 - -
P = 55’5&,52 + S5 ALY

respectively. Hence

Re({R?,J7}: ), = (e%orghAY + evorghAL)l,
= (75 4 B2,

which, once boosted, reads

Re({K”,J°}; T’“’>ﬂ = (u €"u + u e%u")l,.
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