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We show that the stress-energy tensor has additional terms with respect to the ideal form in states of
global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These
corrections are of quantum origin and their leading terms are second order in the gradients of the
thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-
energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we
find that there are more second-order coefficients and that all thermodynamic functions including energy
density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p,
that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for
a free real scalar field—both massive and massless—and we have found that they increase, particularly for
a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal
terms depend on the explicit form of the stress-energy operator, implying that different stress-energy
tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.
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I. INTRODUCTION

It is common wisdom that the form of the relativistic
stress-energy tensor in a thermodynamic equilibrium state
has the ideal form

Tμν ¼ ðρþ pÞuμuν − pgμν

where ρ and p are the energy density and pressure,
thermodynamic functions of temperature T and chemical
potential μ, and u a constant four-velocity. In quantum-
statistical mechanics, the above expression corresponds to
the renormalized mean value1 of the quantum stress-energy
tensor operator, built from local quantum fields, with the
density operator

ρ̂ ¼ ð1=ZÞ exp½−β · P̂þ ζQ̂� ð1Þ

where β ¼ ð1=TÞu is a constant inverse temperature four-
vector (or, simply, four-temperature), with T ¼ 1=

ffiffiffiffiffi
β2

p
being the proper (or comoving) temperature and u the
constant four-velocity; ζ ¼ μ=T is the ratio between
proper chemical potential and proper temperature; P̂ the
four-momentum operator; and Q̂ an internal conserved
charge:

TμνðxÞ¼ trðρ̂T̂μνðxÞÞren¼
1

Z
trðT̂μνðxÞexp½−β · P̂þ ζQ̂�Þren

¼ðρþpÞuμuν−pgμν: ð2Þ

The form (2) is dictated by the symmetries of the density
operator (1) which is translationally invariant and isotropic
in the rest frame where β ¼ ð1=TÞð1; 0Þ.
However, the density operator (1) is not the only form of

global thermodynamic equilibrium, which is, in general, a
state where the entropy S ¼ −trðρ̂ log ρ̂Þ is constant. For
instance, it is well known [1,2] that in nonrelativistic
quantum mechanics the operator

ρ̂ ¼ ð1=ZÞ exp½−Ĥ=T0 þ ωĴz=T0� ð3Þ

where T0 is a constant global temperature,2 Ĥ the
Hamiltonian and Ĵz the angular momentum operator along
some axis z, represents a globally equilibrated spinning
fluid with angular velocity ω. Similarly (see Sec. II) the
operator

ρ̂ ¼ ð1=ZÞ exp½−Ĥ=T0 þ aK̂z=T0�; ð4Þ

K̂z being the generator of a Lorentz boost along the z axis,
represents a relativistic fluid with constant comoving
acceleration along the z direction and it is still an equilib-
rium distribution. These two cases belong to a more general
class of thermodynamic equilibria which, in special rela-
tivity, are characterized by a four-temperature βðxÞ field
fulfilling the equation

1For free quantum fields, by renormalization we mean the use
of normal ordering in the stress-energy tensor operator.

2The global temperature T0 is a temperature measured by a
thermometer at rest with the external observer. In general,
differs from the proper temperature T measured by a comoving
thermometer.

PHYSICAL REVIEW D 92, 045037 (2015)

1550-7998=2015=92(4)=045037(15) 045037-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.045037
http://dx.doi.org/10.1103/PhysRevD.92.045037
http://dx.doi.org/10.1103/PhysRevD.92.045037
http://dx.doi.org/10.1103/PhysRevD.92.045037


∂μβν þ ∂νβμ ¼ 0 ð5Þ

which means that the four-temperature is a Killing vector
field. We will show how for such thermodynamic equilib-
rium states, with the appropriate treatment in quantum
relativistic statistical mechanics, the ideal form of the
stress-energy tensor gets quantum corrections—vanishing
in the ℏ → 0 limit—whose leading terms are proportional
to the squared gradients of β, which in turn can be
expressed in terms of the acceleration aμ and the vorticity
ωμ fields (see Sec. IV for definitions):

Tμν¼ðρþpÞuμuν−pgμνþℏ2ðOða2ÞþOðω2ÞþOðaωÞÞ:

As we will see, these corrections are normally tiny but they
can become relevant under specific circumstances and,
moreover, they are not microscopic in the sense of being
relevant only at very small scales.
The appearance of these terms is somehow in contrast to

the widespread belief that deviations from the ideal form (2)
can only arise in the presence of dissipative processes. In
fact, the existence of such terms has been pointed out by a
classification of second-order gradient corrections of the
stress-energy tensor in conformal hydrodynamics [3,4] and
also by means of kinetic theory [5], and some coefficients,
denoted as thermodynamic in view of their survival at
equilibrium, have been calculated in Ref. [6] for conformal
field theories.
In this paper, we show that the occurrence of non-

dissipative corrections to the ideal form of the stress-energy
tensor is a general fact which is related to the very notion of
equilibrium in quantum relativistic statistical mechanics.
Moreover, these corrections result from the expansion of
the density operator and their form is not assumed a priori
like in the Landau-frame-based gradient expansion. At
equilibrium, they have simple and suggestive expressions
as correlators of the stress-energy tensor with the generators
of the Lorentz group. The proper energy density expression
is also modified, as well as the relation between energy
density and pressure, that is, the equation of state. It is an
almost straightforward consequence that these corrections
will extend to a curved spacetime.
The paper is organized as follows: in Sec. II we obtain

the form of the density operator of general thermodynamic
equilibrium in quantum-statistical mechanics in flat space-
time. In Sec. III we discuss the relation between local
observables and the local value of the four-temperature
field. In Sec. IV we derive the form of the corrections to the
ideal form of the stress-energy tensor as a perturbative
expansion. In Sec. V we calculate those quantum correc-
tions in free scalar field theory. Finally, in Secs. VI and VII
we discuss the most important physical consequences and
draw conclusions.

A. Notation

In this paper we use the natural units, with
ℏ ¼ c ¼ K ¼ 1.
The Minkowskian metric tensor is diagð1;−1;−1;−1Þ;

for the Levi-Cività symbol we use the convention
ϵ0123 ¼ 1. We will use the relativistic notation with
repeated indices assumed to be summed over; however
contractions of indices will be sometimes denoted with
dots, e.g. u · T · u≡ uμTμνuν. Operators in Hilbert space
will be denoted by a large upper hat, e.g. T̂, and unit vectors
with a small upper hat, e.g. v̂. The stress-energy tensor
is assumed to be symmetric with an associated vanishing
spin tensor.

II. EQUILIBRIUM IN RELATIVISTIC
QUANTUM-STATISTICAL MECHANICS

A general covariant form of the density operator in
relativistic quantum-statistical mechanics extending Eq. (1)
was first proposed, to our knowledge, in Refs. [7,8]:

ρ̂ ¼ 1

Z
exp

�
−
Z
Σ
dΣμðT̂μνβν − ζĵμÞ

�
ð6Þ

where Σ is a spacelike 3D hypersurface. This form can be
obtained by maximizing the total entropy with the con-
straints of given energy-momentum and charge densities at
some specific “time” of the hypersurface Σ; see the detailed
discussions in Ref. [8] and more recently in Refs. [9,10].
The density operator (6) is therefore especially suitable to
describe local thermodynamic equilibrium—that is, a
situation where the thermodynamic parameters temper-
ature, velocity field and chemical potential are a function
of space and time—in a quantum relativistic framework.
The operator (6) will not maintain its form under the unitary
time evolution and cannot thus represent the actual quan-
tum state in the Heisenberg representation. However, it is
time independent or, equivalently, independent of the
integration hypersurface Σ if the divergence of the inte-
grand vanishes and in this case the (6) is the density
operator of a thermodynamic equilibrium state. For con-
served stress-energy tensor and current this condition leads
to the request [11] that ζ is a constant and β a Killing vector
field fulfilling Eq. (5) (with partial derivatives replaced by
covariant derivatives if necessary).
The density operator (6) is also well suited to describe

thermodynamic equilibrium in a general curved spacetime
possessing a timelike Killing vector field. In Minkowski
spacetime, which we will be dealing with in this work, the
general solution of Eq. (5) is

βν ¼ bν þϖνμxμ ð7Þ
where b is a constant four-vector and ϖ a constant
antisymmetric tensor, which, because of (7) can be written
as an exterior derivative of the β field:
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ϖνμ ¼ − 1

2
ð∂νβμ − ∂μβνÞ: ð8Þ

Hence, the general equilibrium form in flat spacetime of the
density operator (6) reads

ρ̂ ¼ 1

Z
exp

�
−bμP̂μ þ 1

2
ϖμνĴ

μν þ ζQ̂

�
ð9Þ

where the Ĵ’s are the generators of the Lorentz trans-
formations:

Ĵμν ¼
Z
Σ
dΣλðxμT̂λν − xνT̂λμÞ:

Therefore, besides the chemical potentials, the most general
equilibrium density operator in Minkowski spacetime can
be written as a linear combination of the 10 generators of
the Poincaré group with 10 constant coefficients. The most
widely known case is the one with β ¼ b and ϖ ¼ 0, that
is, Eq. (1), what we define as homogeneous thermodynamic
equilibrium. The rotating global equilibrium in Eq. (3) can
be obtained as a special case of Eq. (9) setting

bμ ¼ ð1=T0; 0; 0; 0Þ ϖμν ¼ ðω=T0Þðg1μg2ν − g1νg2μÞ
where ω has the meaning of a constant angular velocity [1].
Similarly, the form (4) can be obtained by setting

bμ ¼ ð1=T0; 0; 0; 0Þ ϖμν ¼ ða=T0Þðg0μg3ν − g3μg0νÞ:
In the latter case, the contravariant components of β read

βμ ¼ 1

T0

ð1þ az; 0; 0; atÞ; ð10Þ

thus the unit vector β̂ is the velocity field of a fluid with
constant comoving acceleration along the field lines (for the

field line going through z ¼ 0, the comoving acceleration
is a).

III. MEAN VALUES OF LOCAL OPERATORS

Suppose we want to calculate the mean value of a local
operator ÔðxÞ (in the Heisenberg picture) with the density
operator (6):

OðxÞ≡ hÔðxÞi ¼ trðρ̂ ÔðxÞÞren
¼ 1

Z
tr

�
exp

�
−
Z
Σ
dΣμðT̂μνβν − ζĵμÞ

�
ÔðxÞ

�
ren
:

ð11Þ

If β is a general field, there is no compelling reason why,
at a given point x, the mean value OðxÞ should be
simply equal to the same value at the homogeneous
global thermodynamic equilibrium with a uniform four-
temperature β equal to its value in the point x, that is, βðxÞ.
For instance, the stress-energy tensor in the point x does
not need to be of the ideal form (2) with u ¼ β̂ðxÞ and
ρ ¼ ρðβ2; ζÞ p ¼ pðβ2; ζÞ if β is not constant. In fact, its
tensor structure in (2) is determined by the symmetries
of the density operator (1), which is obtained from (6)
provided that β is constant.
Nevertheless, one can imagine that if β and ζ are

sufficiently slowly varying in space and time, OðxÞ will
be mostly determined by the values of the fields β and ζ
around the point x [9]. More specifically, the distance over
which the thermodynamic fields like β vary should be much
larger than the typical thermal correlation length, which is
governed by the microscopic parameters of the theory and
the temperature itself. This can be shown by recasting the
fields in the integrand of Eq. (11) as β ¼ βðxÞ þ δβ and
ζ ¼ ζðxÞ þ δζ, so as to obtain

OðxÞ ¼ 1

Z
tr

�
exp

�
−βνðxÞ

Z
Σ
dΣμT̂

μν þ ζðxÞ
Z
Σ
dΣμĵ

μ −
Z
Σ
dΣμðT̂μνδβν − δζĵμÞ

�
ÔðxÞ

�
ren

¼ 1

Z
tr

�
exp

�
−βνðxÞP̂ν þ ζðxÞQ̂ −

Z
Σ
dΣμðT̂μνδβν − δζĵμÞ

�
ÔðxÞ

�
ren
:

Hence, applying the linear response theory to the exponent above,

OðxÞ≃ hÔðxÞiβðxÞ −
Z

1

0

dz
Z
Σ
dΣμðyÞðhÔðxÞT̂μνðyþ izβðxÞÞiβðxÞ − hÔðxÞiβðxÞhT̂μνðyþ izβðxÞÞiβðxÞÞδβν

þ
Z

1

0

dz
Z
Σ
dΣμðyÞðhÔðxÞĵμðyþ izβðxÞÞiβðxÞ − hÔðxÞiβðxÞhĵμðyþ izβðxÞÞiβðxÞÞδζ ð12Þ

where x and y both lie on the hypersurface Σ. The symbol
hiβ stands for the (renormalized) mean value calculated
with the homogeneous equilibrium density operator in
Eq. (1). Particularly, the hiβðxÞ stands for the mean value

calculated with a fixed four-temperature (and ζ) equal to the
value of the β (and ζ) fields in the point x. The formula (12)
just expresses the aforementioned concept, namely that the
local equilibrium value of the operator ÔðxÞ is determined
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by the local values of the thermodynamic fields with
corrections depending on quantum-statistical correlations
between operators in different points. These correlations—
hence the integrand function in Eq. (12)—are significant
over microscopic distances l dictated by the mass, temper-
ature and coupling constants of the theory, which are
supposedly much smaller than the macroscopic distance
L over which δβ and δζ appreciably vary. This condition is
usually referred to as the hydrodynamical regime and in
this regime terms beyond the linear in δβ and δζ in Eq. (12)
contribute less and less as they are expected to be sup-
pressed with higher powers of l=L.
Under these circumstances, it is possible to expand the

thermodynamic fields in Eq. (11) into a Taylor series about
the point x. For a general β field, this method makes it
possible to find an approximate expression of the local
thermodynamic equilibrium operator (6) as a function of
βðxÞ and its derivatives [9]. For the special case of global
equilibrium, with constant ζ and β a Killing vector field (7),
one can recast the operator (9) so as to have in the exponent
the value of the four-temperature in the point x:

OðxÞ ¼ 1

Z
tr

�
exp

�
−bμP̂μ þ 1

2
ϖμνĴ

μν þ ζQ̂

�
ÔðxÞ

�
ren

¼ 1

Z
tr

�
exp

�
−ðbμ þϖμνxνÞP̂μ

þ 1

2
ϖμνĴ

μν
x þ ζQ̂

�
ÔðxÞ

�
ren

¼ 1

Z
tr

�
exp

�
−βμðxÞP̂μ þ 1

2
ϖμνĴ

μν
x þ ζQ̂

�
ÔðxÞ

�
ren

ð13Þ

where we have used the angular momentum operators
around the point x,

Ĵμνx ¼ Ĵμν − xμP̂ν þ xνP̂μ ¼ T̂ðxÞĴμνT̂ðxÞ−1 ð14Þ

T̂ðxÞ ¼ exp½ix · P̂� being the translation operator.
The calculation of mean values (13) is the main purpose

of this paper, and, specifically, when Ô ¼ T̂μν. We will
consider the term in ϖ as small compared with the terms
involving β and ζ and expand accordingly. Thus, the
leading term in the above equation will be simply the
homogeneous equilibrium one with four-temperature equal
to its value in the x point, that is, the expression (2) with
u ¼ β̂ðxÞ. We will see in Sec. IV that the lowest order
corrections to the ideal form are of the second order in ϖ
and that they are of either quantum or quantum-relativistic
nature as they vanish for ℏ → 0 or ℏ=c → 0.
Note that βðxÞ is required to be a future-oriented timelike

vector in order to get a finite value for most observables at
the lowest order of the β expansion. This condition cannot
be fulfilled everywhere for the expression (7) if ϖ ≠ 0. For

instance, for the rotating global equilibrium (3), it is easy to
check that

β ¼ 1

T0

ð1;ωk̂ × xÞ

which becomes spacelike when ∥ωk̂ × x∥ > 1, that is,
when the velocity exceeds the speed of light. Similarly, for
the operator (4), the β field (10) is future-oriented timelike
only in the Rindler wedge defined by the light cone of the
point ð0; 0; 0;−a=TÞ. Therefore, the validity of our calcu-
lations will be limited to the physical regions where the β
field is timelike and with positive time component even
though the operator (9) written with the constants b and ϖ
does not make this limitation apparent.

IV. PERTURBATIVE EXPANSION FOR THE
STRESS-ENERGY TENSOR

The goal of this section is to provide an expansion in ϖ
for the mean value of the stress-energy tensor in the general
form of thermodynamic equilibrium:

TμνðxÞ¼ 1

Z
tr

�
exp

�
−βμðxÞP̂μþ1

2
ϖμνĴ

μν
x þζQ̂

�
T̂μνðxÞ

�
ren
:

ð15Þ

Indeed, ϖ is an adimensional tensor in natural units and it
has, in general, very small components. To understand its
physical meaning, it is very useful to decompose it into two
spacelike vector fields, each having three independent
components, projecting along a timelike vector. A physi-
cally interesting choice is u ¼ β̂ ¼ β=

ffiffiffiffiffi
β2

p
, in the regions

where β given by Eq. (7) is timelike. We can then
decompose ϖ as follows:

ϖμν ¼ ϵμνρσwρuσ þ αμuν − ανuμ ð16Þ
where, by definition,

αμðxÞ ¼ ϖμνuν wμðxÞ ¼ − 1

2
ϵμνρσϖνρuσ: ð17Þ

Note that α and w, unlikeϖ, are not constant. They are both
orthogonal to u and hence spacelike. The physical meaning
of α and w vectors can be shown starting from Eq. (5).
Because of (7) and (5) at equilibrium one has

ϖμν ¼ ∂νβμ

whence

αμ ¼ ϖμνuν ¼ uν∂νβμ ¼ uμuν∂ν
ffiffiffiffiffi
β2

q
þ

ffiffiffiffiffi
β2

q
uν∂νuμ:

We can now take the scalar product with uμ and conclude
that
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uν∂ν
ffiffiffiffiffi
β2

q
≡D

ffiffiffiffiffi
β2

q
¼ 0

which tells us that, as expected, at the thermodynamic
equilibrium the comoving temperature along the flow lines
does not change and ∂μβ

2 ¼ ∇μβ
2, where

∇μ ≡ ∂μ − uμD:

Thereby, the α vector simply becomes

αμ ¼
ffiffiffiffiffi
β2

q
uν∂νuμ ¼

ffiffiffiffiffi
β2

q
Duμ ¼ 1

T
aμ; ð18Þ

that is, the acceleration field divided by the proper temper-
ature. Note also that, since ∂μβν þ ∂νβμ ¼ 0, one has

0 ¼ uνð∂νβμ þ ∂μβνÞ ¼ αμ þ
1

2
ffiffiffiffiffi
β2

p ∂μβ
2

¼ 1

T
aμ − 1

T2
∇μT: ð19Þ

Likewise, it can be shown that w corresponds to an angular
velocity divided by a temperature, for, by using (8)

wμ ¼ − 1

2
ϵμνρσϖνρuσ ¼

1

2
ϵμνρσð∂νβρÞuσ

¼ 1

2
ϵμνρσ

ffiffiffiffiffi
β2

q
uσ∂νuρ ¼

1

2T
ϵμνρσuσ∇νuρ ¼

1

T
ωμ ð20Þ

since ωμ ¼ 1
2
ϵμνρσuσ∇νuρ, or as it is known in literature, the

local vorticity vector. Restoring the physical constants, one
then has the adimensional four-vectors:

αμ ¼
ℏaμ
cKT

wμ ¼
ℏωμ

KT
: ð21Þ

These numbers are, for the vast majority of physical
systems, much less than 1 and a perturbative expansion

in ϖ of Eq. (15) is then feasible. They can give rise to
relevant corrections if the implied additional terms to the
ideal stress-energy tensor are some sizeable fraction thereof
or when these terms are comparable to the viscous tensor.
According to Eq. (21), this happens at very large accel-
erations or very low temperatures. Hence, let us define

R̂ðϖÞ≡ exp

�
−βμðxÞP̂μ þ 1

2
ϖμνĴ

μν
x þ ζQ̂

�

¼ exp

�
−βμðxÞP̂μ þ 1

2
ϖμνĴ

μν
x

�
exp½ζQ̂� ð22Þ

where, in the last equality, advantage has been taken of the
supposed commutation of the charge operator Q̂ with both
the P̂’s and Ĵ’s. At the second order in ϖ one can write

R̂ðϖÞ ¼ R̂ð0Þ þϖμνR̂
ð1Þμν þϖμνϖρσR̂

ð2Þμνρσ þ oðϖ2Þ
ð23Þ

and, by using the Poincaré group commutation relations, it
can be shown that (see Appendix A)

R̂ð0Þ ¼ e−β·P̂þζQ̂

R̂ð1Þμν ¼ 1

4
fe−β·P̂þζQ̂; Ĵμνg;

R̂ð2Þμνρσ ¼ 1

16
fe−β·P̂þζQ̂; ĴμνĴρσg þ 1

8
e−β·P̂þζQ̂βμβρP̂νP̂σ

− 1

12
e−β·P̂þζQ̂βμgνρP̂σ; ð24Þ

where the curly bracket expression f; g stands for the
anticommutator.
By using Eqs. (23) and (24), the mean value (15) can

be expressed as an expansion in ϖ with coefficients
which are calculated at the homogeneous thermodynamic
equilibrium:

TμνðxÞ ¼ trðR̂ðϖÞT̂μνðxÞÞ
trðR̂ðϖÞÞ ¼ hT̂μνðxÞiβðxÞ þ

1

2
ϖρσRehĴρσx ; T̂μνðxÞiβðxÞ

þϖρσϖλτ

�
1

8
RehĴρσx Ĵλτx ; T̂

μνðxÞiβðxÞ þ
1

8
βρðxÞβλðxÞhP̂σP̂τ; T̂μνðxÞiβðxÞ

− 1

12
βρðxÞgλσhP̂τ; T̂μνðxÞiβðxÞ− 1

4
RehĴρσx ; T̂μνðxÞiβðxÞhĴλτx iβðxÞ

�
þ oðϖ2Þ ð25Þ

where we have used the relations for two Hermitian operators Â; B̂,

RehÂ B̂i ¼ 1

2
hfÂ; B̂gi iImhÂ B̂i ¼ 1

2
h½Â; B̂�i

and the notation

hÂ; B̂i ¼ hÂ B̂i − hÂihB̂i
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has been introduced for the correlator between Â and B̂. The terms in Eq. (25) containing P̂ can be readily calculated taking
the derivative of hT̂iβ with respect to β. Indeed,

βρgλσ
∂
∂βτ hT̂

μνiβ ¼ −βρgλσhP̂τ; T̂μνiβ

βρβλ
∂2

∂βσ∂βτ hT̂
μνiβ ¼ βρβλðhP̂σP̂τ; T̂μνiβ − hP̂σ; T̂μνiβhP̂τiβ − hP̂τ; T̂μνiβhP̂σiβÞ: ð26Þ

Note that the two rightmost terms in the last equation
vanish once multiplied byϖρσϖλτ for, since hP̂iβ ∝ β, they
contain the symmetric combination βλβτ or βρβσ.
All mean values in Eq. (25) involving angular momen-

tum operators can be rewritten in a form which makes it
apparent that their dependence on x is only through the
value of the four-temperature, by taking advantage of
the translational invariance of the density operator. For
instance,

hĴρσx Ĵλτx ; T̂
μνðxÞiβðxÞ

¼ hT̂−1ðxÞĴρσx Ĵλτx T̂ðxÞ; T̂−1ðxÞT̂μνðxÞT̂ðxÞiβðxÞ
¼ hĴρσ Ĵλτ; T̂μνð0ÞiβðxÞ

and similarly for the others, where Eq. (14) has been used.
Then, it is convenient to decompose the tensor Ĵ into two
spacelike vector operators in the same fashion as for ϖ in
Eq. (16):

Ĵμν ¼ uμK̂ν − K̂μuν þ ϵμνρσ Ĵρuσ ð27Þ

where

K̂μ ¼ uρĴ
ρμ Ĵμ ¼ − 1

2
ϵμρστĴρσuτ:

The operators Ĵμ and K̂μ are simply the generators of the
rotation and boosts with respect to the reference frame with
time direction u. Using the invariance by rotation (in the
hyperplane orthogonal to u), parity and time reversal,

which are assumed to hold for our Hamiltonian, one readily
obtains that (see Appendix B)

RehĴρσ; T̂μνð0ÞiβðxÞ ¼ 0 hĴρσiβðxÞ ¼ 0:

Therefore, plugging the decomposition (27) into Eq. (25),
and using the relations (17) and (26) and after the removal
of the vanishing terms, Eq. (25) can be written as

TμνðxÞ ¼ hT̂μνðxÞiβðxÞ þ
1

2
αρασRehK̂ρK̂σ; T̂μνð0ÞiβðxÞ

þ 1

2
wρwσRehĴρĴσ; T̂μνð0ÞiβðxÞ

þ 1

2
αρwσRehfĴρ; K̂σg; T̂μνð0ÞiβðxÞ

þ 1

8
βρβλ

∂2

∂βσ∂βτ hT̂
μνðxÞiβðxÞ

þ 1

12
βρgλσ

∂
∂βτ hT̂

μνðxÞiβðxÞ þ oðϖ2Þ: ð28Þ

The derivative terms are easy to work out by using (2); they
will give rise to expressions involving the thermodynamic
functions pressure, energy density and their derivatives,
that is, specific heats. On the other hand, the correlators in
Eq. (28) cannot be expressed in terms of known thermo-
dynamic functions. In fact, they can be written as linear
combinations of new thermodynamic coefficients which
can be expressed in turn as correlators of specific compo-
nents of the stress-energy tensor and angular momentum or
boost operators Ĵ and K̂, that is,

1

2
RehfK̂ρ; K̂σg; T̂μνð0ÞiβðxÞ ¼ −uμuνΔρσktðT; ζÞ þ ΔμνΔρσkθðT; ζÞ þ

�
ΔμσΔρν þ ΔνσΔρμ − 2

3
ΔμνΔρσ

�
ksðT; ζÞ

1

2
RehfĴρ; Ĵσg; T̂μνð0ÞiβðxÞ ¼ −uμuνΔρσjtðT; ζÞ þ ΔμνΔρσjθðT; ζÞ þ

�
ΔμσΔρν þ ΔνσΔρμ − 2

3
ΔμνΔρσ

�
jsðT; ζÞ

RehfK̂ρ; Ĵσg; T̂μνð0ÞiβðxÞ ¼ ðuμuκϵκρσν þ uνuκϵκρσμÞlvðT; ζÞ ð29Þ

where

Δμν ≡ gμν − uμuν

is the projector onto the hyperplane orthogonal to u and
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ktðT; ζÞ ¼ RehK̂3K̂3; T̂00ð0ÞiT kθðT; ζÞ ¼
1

3
Re

X3
i¼1

hK̂3K̂3; T̂iið0ÞiT ksðT; ζÞ ¼ RehK̂1K̂2; T̂12ð0ÞiT

jtðT; ζÞ ¼ RehĴ3Ĵ3; T̂00ð0ÞiT jθðT; ζÞ ¼
1

3
Re

X3
i¼1

hĴ3Ĵ3; T̂iið0ÞiT jsðT; ζÞ ¼ RehĴ1Ĵ2; T̂12ð0ÞiT

lvðT; ζÞ ¼ RehfK̂1; Ĵ2g; T̂03ð0ÞiT: ð30Þ

In Eq. (30) the notation hiT has been introduced meaning
that the expectation value is calculated in the rest frame
where β ¼ ð1=T; 0Þ. The derivation of Eqs. (29) and (30)
can be found in Appendix B.
Finally, after having worked out the derivatives of the

stress-energy tensor and using Eqs. (29) and (2) in Eq. (28),
one obtains

TμνðxÞ ¼ ðρ − α2Uα − w2UwÞuμuν
− ðp − α2Dα − w2DwÞΔμν þ Aαμαν þWwμwν

þ Gðuμγν þ γμuνÞ þ oðϖ2Þ ð31Þ

where ρ; p are the usual homogeneous thermodynamic
equilibrium functions energy density and pressure, and the
functions U;D; A;W;G read

Uα ¼
1

24
T
∂ρ
∂T þ 1

4
ðρþ pÞ þ 1

2
kt Uw ¼ 1

2
jt

Dα ¼
1

24
ðρþ pÞ þ 1

2
kθ − 1

3
ks Dw ¼ 1

2
jθ − 1

3
js

A ¼ 1

4
ðρþ pÞ þ ks W ¼ js

G ¼ 1

2
lv − 1

12
ðρþ pÞ: ð32Þ

The vector γμ in Eq. (31) is defined as

γμ ¼ ðα ·ϖÞλΔλμ ¼ ϵμνρσwναρuσ ð33Þ

where the ϖ decomposition (16) has been used.
As it can be seen from Eq. (31), the stress-energy

tensor has corrections to its ideal form which depend on
quadratic combinations of the two vector fields, α and w
arising from the decomposition of the exterior derivative of
the temperature four-vector β. At thermodynamic equilib-
rium, according to the previous discussion and Eqs. (21),
they are proportional to the acceleration aμ and angular
velocity (or vorticity) ωμ, so that Eq. (31) can be rewritten
in the most suggestive fashion by restoring the natural
constants as

TμνðxÞ ¼
�
ρþ

�
ℏjaj
cKT

�
2

Uα þ
�
ℏjωj
KT

�
2

Uw

�
uμuν

−
�
pþ

�
ℏjaj
cKT

�
2

Dα þ
�
ℏjωj
KT

�
2

Dw

�
Δμν

þ A

�
ℏjaj
cKT

�
2

âμâν þW

�
ℏjωj
KT

�
2

ω̂μω̂ν

þ G
ℏ2jωjjaj
cðKTÞ2 ðu

μγ̂ν þ γ̂μuνÞ þ oðϖ2Þ ð34Þ

where jaj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi−aμaμp
and jωj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ωμω

μ
p

and â, ω̂ are
the corresponding unit vectors. In the expression (34)
the adimensional scales ℏa=cKT and ℏω=KT involving
acceleration and vorticity have been separated from the
thermodynamic functions U;A;W;D;G having the same
dimension as ρ and/or p making it easier to appreciate the
size of the correction to the ideal form.

A. Relation with other second-order hydrodynamical
coefficient calculations

The appearance of extra terms in the stress-energy tensor
at thermodynamic equilibrium with respect to its ideal form
has, needless to say, several physical consequences. The
presence of nondissipative quadratic corrections in the
vorticity and gradients of temperature [hence accelerations
at equilibrium, according to Eq. (19)] was pointed out in
Refs. [3,4] and, being nondissipative in nature, defined as
thermodynamic in Ref. [6]. The calculation of such
coefficients has attracted much attention lately (see [12]
for a recent review), especially in conformal field theories
[13–15] with different techniques [16,17] (see also
Ref. [18]). The coefficients that we have denoted by Dα,
Dw, A andW are in the following relation with those known
as ξ3; ξ4; λ3; λ4 in the literature:

A
T2

¼ 9λ4
W
T2

¼ λ3

Dw

T2
¼

�
λ3
3
− 2ξ3

�
Dα

T2
¼ ð3λ4 − 9ξ4Þ: ð35Þ

Remarkably, the number of coefficients quoted in (34) is
larger than envisaged in Refs. [3,4] and the reason is that we
did not assume, as it is usually done in the Landau frame,
that the proper energy density ρ has the same functional
dependence on the temperature as at homogeneous
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thermodynamic equilibrium. This assumption proves to be
incorrect, and the extra coefficients cannot be reabsorbed
by a redefinition of temperature, as it will be discussed and
shown in Sec. VI.
Before tackling these issues, it is necessary to calculate

the coefficients U;D; A;W;G in some instance and we will
do it for the simplest case of a real scalar free field. As it
will be clear from the calculations shown in the next
section, they all have a classical expression in the massive
case, and, as a consequence, all the corrections in Eq. (34)
to the ideal form turn out to be of quantum origin, as they
vanish in the ℏ → 0 limit.

V. THE FREE SCALAR FIELD

The goal of this section is to calculate the coefficients
in Eq. (34) for a free real scalar field. This implies ζ ¼ 0 in
the density operator (1), yet it is quite easy to extend the
obtained results to the charged case with ζ ≠ 0 in the
Boltzmann limit of distinguishable particles.
The theory is described by the Lagrangian density:

L ¼ 1

2
∂μψ̂∂μψ̂ − 1

2
m2ψ̂2:

By adding the superpotential

−2ξ∂μðψ̂∂μψ̂Þ

a class of stress-energy tensors can be obtained as Noether
currents associated to space-time translations. Although
they are explicitly dependent on the parameter ξ, they differ
from each other by a divergence:

T̂μν
ξ ¼ ∂μψ̂∂νψ̂ − 1

2
gμνð∂λψ̂∂λψ̂ −m2ψ̂2Þ

þ 2ξ∂λðgμνψ̂∂λψ̂ − gλμψ̂∂νψ̂Þ; ð36Þ

thus they lead to the same generators of the Poincaré group.
For ξ ¼ 0 the tensor is the so-called canonical stress-
energy tensor, while for ξ ¼ 1=6 the tensor is the so-called
improved stress-energy tensor [19]. In the translationally
invariant homogeneous equilibrium (1) all mean values of
local operators are independent of x; thus the divergence in
the above expression vanishes, and hence ρ and p do not
depend on ξ. In fact, as we will show, this is not true in the
case of generalized equilibrium and the correlators in
Eq. (30) are explicitly dependent on ξ.
At the very beginning, it should be pointed out that in

principle one should use normal ordering in the calculation
of the mean values of T̂ in a free field theory to subtract zero
point infinity. However, this is not needed in the calculation
of a correlator such as hĴμνĴρσ; T̂αβð0ÞiT because ∶T̂∶ ¼
T̂ − h0jT̂j0i (T̂ being a quadratic operator in the fields) so
that the vacuum term cancels out in the subtrac-
tion hĴμνĴρσT̂αβð0ÞiT − hĴμνĴρσiThT̂αβð0ÞiT .

The basic tool we need in order to carry out the
calculation is the free field n-points Wightman thermal
function:

WðnÞ
T ðx1; x2;…; xnÞ ¼ hψ̂ðx1Þψ̂ðx2Þ…ψ̂ðxnÞiT

which can be written in terms of two-point thermal
functions according to a version of the Wick theorem
[20] suitable for thermal field theory. For an even n,

WðnÞ
T ðx1;…; xnÞ

¼
Xn
j¼2

½Wð2Þ
T ðx1; xjÞWðn−2Þ

T ðx2;…; xj−1; xjþ1;…; xnÞ�;

and if n is odd, WðnÞ
T ðx1;…; xnÞ ¼ 0. In the case of a free

real scalar field, the two-point Wightman thermal function
reads

Wð2Þ
T ðx; yÞ ¼ 1

ð2πÞ3
Z

d4ke−ikðx−yÞ½θðk0Þ þ nTðjk0jÞ�

× δðk2 −m2Þ;

where

nTðεÞ ¼
1

eε=T − 1

is the Bose-Einstein distribution. We then define

T μνjρσjαβ
T ðx; y; zÞ ¼ hT̂μνðxÞT̂ρσðyÞT̂αβðzÞiT

− hT̂μνðxÞT̂ρσðyÞiThT̂αβðzÞiT;
which can be calculated with the point-split procedure as

T μνjρσjαβ
T ðx; y; zÞ ¼ Θμν

x Θρσ
y Θαβ

z ½Wð6Þ
T ðx1; x2; y1; y2; z1; z2Þ

−Wð4Þ
T ðx1; x2; y1; y2ÞWð2Þ

T ðz1; z2Þ�;

where

Θμν
x ¼

	
ð1−2ξÞ∂μ

x1∂ν
x2 −2ξ∂μ

x2∂ν
x2 þ

1

2
gμν½ð4ξ−1Þ∂x1 ·∂x2

þ4ξ□x2 þm2�



x1;x2→x
:

The general expression of the correlators is then

hĴμνĴρσ; T̂αβð0ÞiT ¼
Z

d3xd3y½xμyρT 0νj0σjαβ
T ðx; y; 0Þ

− xνyρT 0μj0σjαβ
T ðx; y; 0Þ

− xμyσT 0νj0ρjαβ
T ðx; y; 0Þ

þ xνyσT 0μj0ρjαβ
T ðx; y; 0Þ� ð37Þ
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with x0 ¼ y0 ¼ 0 because the Ĵ’s are time independent.

Out of the 15 different diagrams stemming from the contractions of the six-point Wightman thermal function, in T some
are canceled by the subtraction term, leaving only the 12 diagrams in which T̂αβðzÞ is not a disconnected component. Since
hĴμνiT ¼ 0, in Eq. (37) the remaining 4 disconnected graphs in T do not contribute to the result. Therefore in (37) we can
replace T with its connected subset of 8 diagrams and we get

CμνjρσjαβT ðx; y; 0Þ ¼ 1

ð2πÞ9
Z

d4kd4pd4qe−iðkþpÞxe−iðq−kÞyPμνjρσjαβðk; p; qÞδðk2 −m2Þδðp2 −m2Þδðq2 −m2Þ

× ½θðk0Þ þ nTðjk0jÞ�½θðp0Þ þ nTðjp0jÞ�½θðq0Þ þ nTðjq0jÞ�;

with

Pμνjρσjαβðk; p; qÞ ¼ f−ð1 − 2ξÞðkμpν þ pμkνÞ þ 2ξðkμkν þ pμpνÞ − gμν½ð4ξ − 1Þk · pþ 2ξðk2 þ p2Þ −m2�g
× fð1 − 2ξÞðkρqσ þ qρkσÞ þ 2ξðkρkσ þ qρqσÞ − gρσ½−ð4ξ − 1Þk · qþ 2ξðk2 þ q2Þ −m2�g
× f−ð1 − 2ξÞðpαqβ þ qαpβÞ þ 2ξðpαpβ þ qαqβÞ − gαβ½ð4ξ − 1Þp · qþ 2ξðp2 þ q2Þ −m2�g:

The thermodynamic correlators in Eq. (30) can be found
by selecting the suitable indices in Eq. (37). For instance,
for the kt correlator,

ktðTÞ ¼
Z

d3xd3yx3y3C00j00j00T ðx; y; 0Þjx0¼y0¼0: ð38Þ

Using
Z

d3xd3yxiyjeiðkþpÞ·xeiðq−kÞ·y

¼ −ð2πÞ6∂pi
δðp − kÞ∂qjδðq − kÞ

and

δðk2 −m2Þ ¼ 1

2εk
½δðk0 þ εkÞ þ δðk0 − εkÞ�;

where εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, one can then integrate in x and y,

and thereafter in k0, p0, q0 so as to obtain

ktðTÞ ¼ − 1

ð2πÞ3
Z

d3kd3pd3q
1

8εkεpεq

× ðSþþþ þ � � � þ S−−−Þ∂p3
δðp − kÞ∂q3δðq − kÞ;

where the S terms correspond to the 8 possible combina-
tions of positive and negative frequency of the k, p and q
four-momenta. Thus, we have

Sþþþ ¼ P00j00j00
T ðkþ; pþ; qþÞ½1þ nTðεkÞ�½1þ nTðεpÞ�

× ½1þ nTðεqÞ�
S−þþ ¼ P00j00j00

T ðk−; pþ; qþÞnTðεkÞ½1þ nTðεpÞ�
× ½1þ nTðεqÞ�
� � �

S−−− ¼ P00j00j00
T ðk−; p−; q−ÞnTðεkÞnTðεpÞnTðεqÞ:

where k� ¼ �εk, and similarly for p and q. We can then
integrate in p and q to get

ktðTÞ ¼ − 1

ð2πÞ3
Z

d3k
1

8εk

∂2

∂p3∂q3
×

�
1

εpεq
ðSþþþ þ � � � þ S−−−Þ

�
p¼−k;q¼k

: ð39Þ

All the correlators in Eq. (30) can be calculated in a
similar fashion although it should be pointed out that the
case of kt is somewhat simpler because in Eq. (38) only one
term in Eq. (37) survived. Indeed, in general, one can have
up to four terms associated with different sets of indices.
Thus, the general correlator can be expressed as an integral
of a sum of terms analogous to that appearing in Eq. (39).
In the massless case, T is the only energy scale and, on

purely dimensional grounds, one finds that the correlators
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are of the form κðξÞT4. For instance, integrating the
Eq. (39) with m ¼ 0 one obtains

ktðTÞ ¼
�
− 1

30
π2 þ 1

6
− ξ

�
T4:

For the massive case, the integration is just a little
more involved. First, the angular part of the integration
in k can be readily carried out and one is left with
expressions like

1

2π2

Z
∞

0

dkIðk;m; TÞ: ð40Þ

where the function Iðk;m; TÞ is reported in Table I for the
various correlators. The integral in Eq. (40) can be
computed by setting k ¼ m sinh y, which makes it possible
to extract an m4 factor; the integral then depends on m and
T only through the ratio x ¼ m=T and one is then left with
an adimensional integral over y that can be turned into a
series of type (41) involving the modified Bessel functions
of the second type KnðxÞ:

TABLE I. The integrand functions Iðk;m; TÞ [see Eq. (40)] for the correlators in (30) of a free real scalar field.

Iðk;m; TÞ
kt k2

96T2εk
sinh−6ð εk

2TÞ sinhðεkT Þfk2ε2k þ T2½k2 þ 3ε2kð1 − 4ξÞ�½coshðεkT Þ − 1� − 2Tk2εk sinhðεkT Þg
kθ k2

288T2εk
sinh−6ð εk

2TÞ sinhðεkT Þfk4 þ 3T2½k2ð1 − 4ξÞ þ ε2kð8ξ − 1Þ�½coshðεkT Þ − 1� − 2Tk2εk sinhðεkT Þg
ks k2

480T2εk
sinh−6ð εk

2TÞ sinhðεkT Þfk2ε2k þ 15T2ε2kð1 − 2ξÞ½coshðεkT Þ − 1� − 5Tk2εk sinhðεkT Þg
jt k4

24εk
sinh−4ð εk

2TÞ sinhðεkT Þð1 − 4ξÞ
jθ k4

72εk
sinh−4ð εk

2TÞ sinhðεkT Þð8ξ − 1Þ
js k4

48εk
sinh−4ð εk

2TÞ sinhðεkT Þð2ξ − 1Þ
lv k4

24Tεk
sinh−3ð εk

2TÞ coshð εk2TÞ½2Tð2ξ − 1Þ þ εk cothð εk2TÞ�

TABLE II. The correlators (30) calculated for a free real scalar field with vanishing chemical potential. Also
shown are the well-known expressions of ρ and p.

κðξÞ arðx; ξÞ
ρ 1

30
π2 −ðrxÞ−2K2ðrxÞ þ ðrxÞ−1K3ðrxÞ

p 1
90
π2 ðrxÞ−2K2ðrxÞ

kt − 1
30
π2 þ 1

6
− ξ 1

12
f½r2 − 1þ 24ξx−2�K2ðrxÞ þ 3½rð1 − 8ξÞ − 3r−1�x−1K3ðrxÞg

kθ − 1
90
π2 − 1

18
þ 1

3
ξ 1

12
f8ð1 − 5ξÞx−2K2ðrxÞ þ ½rð16ξ − 3Þ − 3r−1�x−1K3ðrxÞg

ks − 1
90
π2 þ 1

12
− 1

2
ξ − 1

4
f2ð1 − 2ξÞx−2K2ðrxÞ þ ½rð4ξ − 1Þ þ r−1�x−1K3ðrxÞg

jt
1
6
ð1 − 4ξÞ ð1 − 4ξÞx−2K2ðrxÞ

jθ 1
18
ð8ξ − 1Þ 1

3
ð8ξ − 1Þx−2K2ðrxÞ

js 1
12
ð2ξ − 1Þ 1

2
ð2ξ − 1Þx−2K2ðrxÞ

lv 1
135

π2 þ 1
18
þ 1

3
ξ 1

6
½ð12ξ − 6Þx−2K2ðrxÞ þ ð2rþ r−1Þx−1K3ðrxÞ�

TABLE III. The coefficients of the stress-energy tensor in Eq. (34) calculated for a free real scalar field with vanishing chemical
potential.

κðξÞ arðx; ξÞ fðm; tÞ
Uα

1
12
ð1 − 6ξÞ 1

24
½ðr2 þ 24ξx−2ÞK2ðrxÞ þ 3ð1 − 8ξÞrx−1K3ðrxÞ� 1

24
m2T−1 þ 1

8
mð1 − 8ξÞ þ ð 5

16
− 3

2
ξÞT þ oðTÞ

Uw
1
12
ð1 − 4ξÞ 1

2
ð1 − 4ξÞx−2K2ðrxÞ ð1

2
− 2ξÞT þ oðTÞ

Dα
1
18
ð6ξ − 1Þ 1

24
½ð12 − 48ξÞx−2K2ðrxÞ þ ð24ξ − 5Þrx−1K3ðrxÞ� mðξ − 5

24
Þ þ ð1

2
ξ − 1

48
ÞT þ oðTÞ

Dw
1
6
ξ ξx−2K2ðrxÞ ξT þ oðTÞ

A 1
12
ð1 − 6ξÞ 1

4
½ð4ξ − 2Þx−2K2ðrxÞ þ ð1 − 4ξÞrx−1K3ðrxÞ� mð1

4
− ξÞ þ ð1

8
− 3

2
ξÞT þ oðTÞ

W 1
12
ð2ξ − 1Þ 1

2
ð2ξ − 1Þx−2K2ðrxÞ ðξ − 1

2
ÞT þ oðTÞ

G 1
36
ð1þ 6ξÞ 1

6
½ð6ξ − 3Þx−2K2ðrxÞ þ rx−1K3ðrxÞ� 1

6
mþ ðξ − 1

12
ÞT þ oðTÞ
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m4

2π2
X∞
r¼1

arðx; ξÞ; ð41Þ

where, as has been mentioned, x ¼ m=T. The final
expression of functions a and κ can be found in Table II.
With the correlators calculated, we are now in a position

to write down the coefficients of Eq. (32), reported in
Table III alongside their nonrelativistic limit m=T¼ x≫ 1,
factorized as nfðm; TÞ, where

n ¼ m3

2π2
X∞
r¼1

ðrxÞ−1K2ðrxÞ ð42Þ

is the particle density at the homogeneous equilibrium.
The nonrelativistic limit can be extracted by simply
taking the asymptotic expansion of the r ¼ 1 term of each
series.
As it can be seen from Table III, all the coefficients

U;A;D;W;G have a finite nonrelativistic limit with the
dimension of an energy per unit volume. Consequently, as
it has been mentioned, all the corrections to the stress-
energy tensor in Eq. (34) are of quantum origin as they
linearly depend on ℏ.
The coefficient W ¼ λ3=T2 for the massless case turns

out to be in agreement with the calculation in Ref. [6] for
ξ ¼ 0. However, unlike therein argued, we found that it has
an explicit dependence on ξ, that is, on the stress-energy
tensor form.

VI. THERMODYNAMICAL INEQUIVALENCE,
FRAME DEPENDENCE AND EQUATION

OF STATE

We are now going to discuss some physical conse-
quences of the general form of the stress-energy tensor (34)
which we rewrite here:

TμνðxÞ ¼ ½ρþ ā2Uα þ ω̄2Uw�uμuν
− ½pþ ā2Dα þ ω̄2Dw�Δμν þ Aā2âμâν

þWω̄2ω̂μω̂ν þ Gā ω̄ðuμγ̂ν þ γ̂μuνÞ þ oðϖ2Þ
ð43Þ

where the shorthands ā ¼ ℏjaj=cKT and ω̄ ¼ ℏjaj=KT
for the adimensional scales related to acceleration and
vorticity.
The first remarkable consequence is that, as pointed

out in Refs. [21,22], the mean stress-energy tensor in a
general thermodynamic equilibrium depends on the fun-
damental stress-energy tensor operator written in terms of
the quantum fields. This is at variance with the familiar
homogeneous equilibrium, and it is made apparent by the
dependence of the thermal functions other than ρ and p in
Table III on the parameter ξ. If one were able to measure
one of the coefficients multiplying ā2 or ω̄2 with a

thermodynamics experiment, one would obtain information
about the true, physical stress-energy tensor operator, and
hence on the correct gravitational theory, a conclusion
already drawn in Ref. [21].
The second consequence is that, as it is apparent from

Eq. (43), uν ¼ Tβν is not an eigenvector of Tμν if γ is
nonvanishing, that is, if the three vectors α; w; u (or a;ω; u)
are linearly independent, as it can be seen from Eq. (34).
This is what happens for the rigid rotation, where a,ω and u
are orthogonal to each other. In this case, the u vector does
not coincide with the Landau definition of four-velocity,
and should then be taken as defining a new hydrodynamical
frame, dubbed the β frame, as it has been extensively
discussed in Ref. [9].
The third, and perhaps the most striking consequence, is

that the dependence of energy density and pressure on the
temperature and chemical potential are modified with
respect to the homogeneous equilibrium case. Also, there
are more second-order coefficients in the expansion of the
stress-energy tensor than previously envisaged. Looking
at Eq. (43) it can be realized that, with respect to the
expansions presented in Refs. [3,4,6], there are three new
coefficients, that is, G;Uα; Uw, and two of them imply a
modification of the energy density. One could argue that
they would disappear by going to the Landau frame. Yet, in
the diagonalization of the stress-energy tensor in Eq. (43),
it can be readily shown that, retaining only quadratic terms
in ā and ω̄,

ρeff ¼ ρþ ā2Uα þ ω̄2Uw þ oðϖ2Þ

peff ¼ pþ ā2
�
Dα þ

1

3
A
�
þ ω̄2

�
Dw þ 1

3
W
�
þ oðϖ2Þ;

ð44Þ

where the effective pressure has been defined as the mean
of the eigenvalues of the spacelike eigenvectors. Therefore,
the energy density and the pressure coincide, in this
approximation, with those in the β frame and the coef-
ficients Uα and Uw survive. One may wonder whether the
modification of the energy density could be reabsorbed by a
redefinition of the temperature other than the length of the β
vector in the density operator in Eq. (6), which is based on
the maximization of entropy with macroscopic constraints
[9]. In fact, a redefinition would cure only one of the
eigenvalues of the stress-energy tensor, unless the coef-
ficients U;D; A;W fulfilled some peculiar relations. In all
other cases, the relation between the eigenvalues of the
stress-energy tensor, or the relation between energy density
and pressure, in other words the equation of state peffðρeffÞ,
is modified with respect to the homogeneous equilibrium
case. For instance, in the nonrelativistic limit of the massive
casem ≫ T one has, according to Table III, that the leading
corrections are those in ā2, and restoring the natural
constants
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ρeff ≃ρþ 1

24

mc2

KT
ρā2¼

�
1þ 1

24

mℏ2jaj2
ðKTÞ3

�
ρ

peff ≃pþ
�
2

3
ξ−1

8

�
mc2ā2n¼p

�
1þ

�
2

3
ξ−1

8

�
mℏ2jaj2
ðKTÞ3

�

ð45Þ

where ρ ¼ mn and p ¼ nKT are the usual nonrelativistic
expressions for the ideal Boltzmann gas and n has the
well-known approximate expression

n≃
�
mT
2π

�
3=2

e−m=T:

We note in passing that the relations (45) should hold in
the case of a charged scalar field in the nondegenerate
Boltzmann limit with a chemical potential, that is,

n≃
�
mT
2π

�
3=2

eðμ−mÞ=T;

and negligible antiparticle contribution.
If it were possible to redefine T to a new T 0 ¼ T þ

bðTÞā2 such that ρ ¼ mnðT 0Þ and p ¼ T 0nðT 0Þ, then the
coefficients in the ā2 expansion of the functions would be
the same. This can be shown by taking into account that
∂n=∂T ≃ ðm=T2ÞnðTÞ in the nonrelativistic m ≫ T limit,
so that

ρðT 0Þ ¼ mnðT 0Þ≃mnðTÞ þ ∂n
∂T ðT 0 − TÞ

¼ mnðTÞ
�
1þ m

T2
bā2

�

pðT 0Þ ¼ T 0nðT 0Þ≃ TnðTÞ þ nðTÞ
�
1þm

T

�
bā2

≃ TnðTÞ
�
1þ m

T2
bā2

�
:

However, it can be seen by comparing the above equation
with (45) that in general this is not the case, except when
ξ ¼ 1=4 which is neither the canonical nor the improved
tensor.
Furthermore, in general, the redefinition of a temperature

would be mass dependent and it would then be troublesome
to define thermodynamic equilibrium at a common temper-
ature of a mixture of gases. Let

ρeffðT; ā; ω̄Þ ¼ ρðT 0ðT; ā; ω̄ÞÞ;

where ρ is the familiar homogeneous energy density.
Expanding the new temperature in ā and ω̄ the leading
order corrections must be of the second order:

T 0 ¼ T þ TāðTÞā2 þ Tω̄ðTÞω̄2 þ oðϖ2Þ;

where Tā and Tω̄ are proportional to the second derivatives
of T 0ðT; ā; ω̄Þ with respect to ā and ω̄ respectively. These
unknown functions can be obtained by comparing with
Eq. (44):

ρþ ∂ρ
∂T ðTāā2 þ Tω̄ω̄

2Þ ¼ ρþ ā2Uα þ ω̄2Uw þ oðϖ2Þ;

implying

T 0 ¼ T þ Uα

∂ρ=∂T ā2 þ Uw

∂ρ=∂T ω̄2 þ oðϖ2Þ:

Looking at Tables II and III, it can be realized that the
coefficients of ā2 and ω̄2 are nontrivial functions of the
mass and temperature.
Going now back to the properly defined T ¼ 1=

ffiffiffiffiffi
β2

p
, we

observe that in the nonrelativistic limit the relation between
the effective energy density and pressure gets modified into

peff ≃ ρeff
KT
m

�
1þ

�
2

3
ξ − 1

6

�
mℏ2jaj2
ðKTÞ3

�
:

Therefore, the effective equation of state depends on the
acceleration besides the temperature. This could be sur-
prising, but in fact in general global equilibrium all
parameters, including acceleration and angular velocity,
play the role of thermodynamic variables on the same
footing as temperature and chemical potential. It can be
seen that in the nonrelativistic nondegenerate limit the
quantum correction to the relations (44) and the equation of
state becomes more important at low proper temperature,
being proportional to 1=T3. Of course this applies as long
as the acceleration is such that mℏ2jaj2=ðKTÞ3 ≪ 1 so that
the expansion method holds3; for very low temperatures,
one would have to take more and more terms into account
and eventually the exact solution would be needed.

VII. CONCLUSIONS

In conclusion, we have demonstrated that the relativistic
stress-energy tensor in general states of global thermody-
namic equilibrium features quantum corrections with
respect to its ideal form (2) depending on the local values
of acceleration and vorticity, besides proper temperature
and chemical potential. We have calculated the coefficients
of the additional terms of the stress-energy tensor in the
appropriate quantum-statistical framework at the second
order of an expansion in the parameters ℏa=cKT and
ℏω=KT for the simplest case of a real scalar field. We have
found that more terms exist with respect to previous

3For a proton and jaj ¼ g one has that the ratio becomes Oð1Þ
for T ≈ 10−8 K.
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assessments; our calculated coefficientW for the real scalar
field agrees with previous calculations [6].
We have emphasized three major physical consequences

of this finding:
(1) The coefficients explicitly depend on the form of the

quantum stress-energy tensor operator, which was
already argued in Refs. [21,22].

(2) The effective energy density—defined as the eigen-
value of the stress-energy tensor—is also modified
by terms involving acceleration and vorticity which
cannot be reabsorbed by means of a redefinition of
the temperature.

(3) The equation of state and the relation between
effective pressure and effective energy density are
also modified by the presence of vorticity and
acceleration.

In principle, these findings could be extended to matter in
local thermodynamic equilibrium in flat spacetime, as well
as to matter in global/local equilibrium in a curved space-
time. In this case, it is well known that β in Eq. (6) must be a
Killing vector which can have a nonvanishing exterior
derivative ∂μβν − ∂νβμ and, consequently, additional terms
of the stress-energy tensor with respect to its ideal form (2).
This might be of phenomenological relevance for the study
of the equilibrium of self-gravitating objects.
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APPENDIX A: R̂ EXPANSION

To derive the expressions of R̂ðnÞ, we can disregard, for
the sake of simplicity, the conserved charge in (22) for it
commutes with both P̂ and Ĵ operators. Defining

Â ¼ −βμP̂μ B̂ ¼ 1

2
ϖμνĴ

μν; ðA1Þ

and applying the known Poincaré algebra relations, we find

½Â; B̂� ¼ −iβμϖμνP̂
ν;

½½Â; B̂�; Â� ¼ 0;

½½Â; B̂�; B̂� ¼ βμϖμνωρσgνρP̂
σ;

½½½½Â; B̂�; B̂�;…�; B̂� ¼ −ðiÞnβμðϖ ·ϖ ·… ·ϖÞμνP̂ν:

Now, using the Baker-Campbell-Hausdorff formula to
expand exp½Âþ B̂� and retaining only the nonvanishing
terms; taking into account that any commutator involving
Â, B̂ or commutators thereof will in turn commute with Â,
being proportional to four-momentum operators, we
obtain

R̂ðβ;ϖÞ ¼ eÂþB̂ ≃ eB̂eÂe
1
2!
½Â;B̂�e 1

3!
½½Â;B̂�;B̂�e 1

4!
½½½Â;B̂�;B̂�;B̂�…

¼ eB̂eÂþ 1
2!
½Â;B̂�þ 1

3!
½½Â;B̂�;B̂�þ 1

4!
½½½Â;B̂�;B̂�;B̂�þ���

ðA2Þ

and its expansion up to second order in B̂ (which is
tantamount to a second order in ϖ) reads

R̂ðβ;ϖÞ≃ eÂ þ
�
B̂þ 1

2
½Â; B̂�

�
eÂ

þ
�
1

2
B̂2 þ 1

3
B̂½Â; B̂� þ 1

6
½Â; B̂�B̂þ 1

8
½Â; B̂�2

�
eÂ

ðA3Þ

where advantage has been taken of the fact that exp½Â�
commutes with both the commutators ½Â; B̂� and ½½Â; B̂�; B̂�.
Now, by using the relation

e−ÂB̂eÂ ¼ B̂ − ½Â; B̂�

which is a known corollary of the Baker-Campbell-
Hausdorff formula for our case, Eq. (A3) can be rewritten
as

R̂ðβ;ϖÞ≃ eÂ þ eÂ
�
B̂− 1

2
½Â; B̂�

�

þ eÂ
�
1

2
B̂2 − 1

6
B̂½Â; B̂�− 1

3
½Â; B̂�B̂þ 1

8
½Â; B̂�2

�
:

ðA4Þ

We can now take the half-sum of (A3) and (A4) to obtain

R̂ðβ;ϖÞ≃ eÂ þ 1

2
feÂ; B̂g þ 1

4
feÂ; B̂2g − 1

8
eÂ½Â; B̂�2

− 1

12
eÂ½½Â; B̂�; B̂�: ðA5Þ

Inserting the expressions of Â and B̂ in Eq. (A1) in Eq. (A5)
one can read off the operators in Eq. (23), which are quoted
in Eq. (24).

APPENDIX B: CALCULATION OF
ANGULAR MOMENTUM-STRESS ENERGY

TENSOR CORRELATORS

The density operator (1), which is used to calculate the
mean values denoted as hiβ can be written as Λ̂ρ0Λ̂−1 where
Λ̂ is the Lorentz transformation turning β0 ¼ ð1=T; 0Þ into
β. Hence, the mean value of a general tensor can be
expanded as

hÔμ1;…;μN iβðxÞ ¼ Λμ1
ν1…ΛμN

νN hÔν1;…;νN iT ðB1Þ
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where hiT , as has been mentioned in the text, stands for the
mean value with the density operator 1

Z exp½−β0 · P̂� ¼
1
Z exp½−Ĥ=T�. Note that

Λμ
0 ¼ β̂μ

X3
i;j¼1

Λμ
iΛ

ν
jg

ij ¼ gμν − β̂μβ̂ν ¼ Δμν: ðB2Þ

Since exp½−Ĥ=T� is invariant by rotation, only scalars
under spatial rotation, either components or contractions
of the tensor Oν1;…;νN , may have a nonvanishing value.
Furthermore, we assume that the Hamiltonian operator is
symmetric under parity and time reversal transformations,
so that also pseudoscalars and scalars which are odd under
time reversal will have vanishing mean value.
For instance, for a symmetric tensor operator Ŝμν one can

write

hŜμνiT ¼ δμ0δ
ν
0Aþ ~ΔμνB ðB3Þ

where ~Δμν is the transverse projector in the rest frame,
i.e. ~Δμν ¼ gμν − δμ0δ

ν
0. Of course, Eq. (B3) becomes the

well-known

hŜμνiβ ¼ Aβ̂μβ̂ν þ ΔμνB

by using (B1) and (B2). The coefficients A and B can be
calculated from the mean values by selecting the compo-
nents in Eq. (B3) which make all terms vanishing except
one. Thereby,

A ¼ hŜ00iT B ¼ −hŜiiiT:
This general procedure can be applied to the calculations

of tensors of any rank. Indeed, in view of Eq. (B2), any time
a time component or 0 index is selected in hÔν1;…;νN iT in
Eq. (B1) a δν0 will appear eventually turning into a u after
boosting, while for a space contraction of indices a ~Δ
projector will eventually turn into a Δ like in Eq. (B2).
We can first apply the above argument to the calculation

of hĴμνT̂ρσiβ. By using the decomposition (27) and taking
into account (B1), the only possible nonvanishing contri-
butions read

RehK̂iT̂
0iiT RehĴiT̂0iiT:

Yet, they both vanish because they are odd under time
reversal and parity respectively. No scalar can be formed
with hĴμνiT and so the mean value of the angular momen-
tum hĴμνiβ vanishes too.
Let us now move to the more complicated case of

correlators involving two angular momentum operators,
starting from

hfK̂ρ; K̂σg; T̂μνiT:

In the rest frame, fK̂ρ; K̂σg is a symmetric tensor with
vanishing time components, so it has one spin-0 component
obtained with the contraction of the indices ρ and σ and one
spin-2 component under rotation which can be obtained by
applying the projector

Pρσ
αβ ¼

1

2

�
~Δρ
α
~Δσ
β þ ~Δσ

α
~Δρ
β − 2

3
~Δρσ ~Δαβ

�

to the tensor itself. In order to construct a rotation singlet,
we need to combine the above components with the
corresponding components of T̂μν. The spin-0 components
can only contract with T̂00 and its spatial trace, so one
obtains two contributions:

− ~Δρσδμ0δ
ν
0kt ~Δρσ ~Δμνkθ

whereas the contraction of the spin-2 component of
fK̂ρ; K̂σg with the one of T̂ gives rise to

�
~Δρμ ~Δσν þ ~Δρν ~Δσμ − 2

3
~Δμν ~Δρσ

�
ks:

Altogether

1

2
RehfK̂ρ; K̂σg; T̂μνiT
¼ − ~Δρσδμ0δ

ν
0kt þ ~Δρσ ~Δμνkθ

þ
�
~Δρμ ~Δσν þ ~Δρν ~Δσμ − 2

3
~Δμν ~Δρσ

�
ks ðB4Þ

which in the observer frame reads

1

2
RehfK̂ρ; K̂σg; T̂μνiβ
¼ −Δρσuμuνkt þ ΔρσΔμνkθ

þ
�
ΔρμΔσν þ ΔρνΔσμ − 2

3
ΔμνΔρσ

�
ks:

To find a compact expression of the coefficients kt; kθ; ks
one can select the indices making all terms on the right-
hand side of (B4) vanishing except the one of interest. One
can check that all indices in the definitions (30) are properly
chosen (notice how in ks we avoided the symmetrization in
μ↔ν associated with the anticommutator since we know
that the antisymmetric part will not contribute). For the
jt; jθ; js the procedure is precisely the same outlined above
with the replacement K̂ → Ĵ.
In fact, the correlator hfK̂ρ; Ĵσg; T̂μνiT is a somewhat

special case because fK̂ρ; Ĵσg is odd under parity and time
reversal. Therefore, the only nonvanishing contraction is
between the two spin-1 components of the tensors fK̂ρ; Ĵσg
and T̂μν respectively. The spin-1 components can be
obtained by means of the projectors
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Pρσ
αβ ¼ − 1

2
ϵ0ρστϵ0αβτ

and

Pμν
αβ ¼

1

2
δμ0 ~Δ

ν
αδ

0
β þ δν0 ~Δ

μ
αδ

0
β

respectively. Hence

RehfK̂ρ; Ĵσg; T̂μνiT ¼ ðϵ0ρστδμ0 ~Δν
τ þ ϵ0ρστδμ0 ~Δ

ν
τÞlv

¼ ðδ0κϵκρσνδμ0 þ δ0κϵ
κρσμδν0Þlv

which, once boosted, reads

RehfK̂ρ; Ĵσg; T̂μνiβ ¼ ðuκϵκρσνuμ þ uκϵκρσμuνÞlv:
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