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We give a consistent quantum description of time, based on Page and Wootters’s conditional
probabilities mechanism, which overcomes the criticisms that were raised against similar previous
proposals. In particular we show how the model allows one to reproduce the correct statistics of sequential
measurements performed on a system at different times.
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Time in quantum mechanics appears as a classical
parameter in the Schrödinger equation. Physically it
represents the time shown by a “classical” clock in the
laboratory. Even though this is acceptable for all practical
purposes, it is important to be able to give a fully quantum
description of time. Many such proposals have appeared in
the literature (e.g. [1–11]), but none seem entirely sat-
isfactory [6,12–16]. One of these is the Page and Wootters
(PaW) mechanism [5] (see also [2,17–20]), which con-
siders “time” as a quantum degree of freedom by assigning
to it a Hilbert space HT . The “flow” of time then consists
simply in the correlation (entanglement) between this
quantum degree of freedom and the rest of the system,
a correlation present in a global, time-independent state
jΨii. An internal observer will see such a state as
describing normal time evolution: the familiar system
state jψðtÞi at time t arises by conditioning (via projection)
the state jΨii to a time t (Fig. 1), it is a conditioned state.
The PaW mechanism was criticized in [6,12] and a
proposal that overcomes these criticisms [21,22] used
Rovelli’s evolving constants of motion [3,23] parametrized
by an arbitrary parameter that is then averaged over to
yield the correct propagators. Although the end result
matches the quantum predictions [24], the averaging
used there amounts to a statistical averaging which is
typically reserved to unknown physical degrees of freedom
rather than to parameters with no physical significance.
(A different way of averaging over time was also presented
in [25] to account for some fundamental decoherence
mechanism.)
Here we use a different strategy: we show that the same

criticisms can be overcome by carefully formalizing mea-
surements through the von Neumann prescription [26]
(which we extend to generalized observables, positive
operator valued measures [POVMs]). We show how this
implies that all quantum predictions can be obtained by
conditioning the global, timeless state jΨii: this procedure
gives the correct quantum propagators and the correct

quantum statistic for measurements performed at different
times, features that were absent in the original PaW
mechanism [6,16]. We also show how the PaW mechanism
can be extended to give the time-independent Schrödinger
equation and give a physical interpretation of the
mechanism.
What is the physical significance of the quantized time

in the PaW representation? One is free to consider the time
quantum degree of freedom either as an abstract purifica-
tion space without any physical significance or as a
dynamical degree of freedom connected to some system,
or collection of systems, that represents a clock that is used
to define time. The latter point of view may describe an
operational definition of time [27,28] that is appropriate
for proper time: it entails defining proper time as “what is
read on a clock,” where a clock is a specific physical
system (described by the Hilbert space HT). In what
follows we do not make a commitment on any of these
interpretations: our aim is only to elucidate some technical
aspects of the representation and to clarify how it can be
used to reproduce the predictions of standard quantum
mechanics.

FIG. 1. Pictorial representation of the global state jΨii. The
Hilbert space of the system HS is represented by the x; y axes,
the time Hilbert space HT by the horizontal axis. The state of the
system jψðt0Þi at time t0 of the conventional formulation of
quantum mechanics (dashed lines) is obtained by conditioning
jΨii to having time t0.
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I. REVIEW AND REVISION OF PaW

Our proposal is an extension of PaW’s mechanism
[5,16,29]. It consists in enlarging the Hilbert space HS
of the system under consideration to H ≔ HT ⊗ HS with
HT the space of an ancillary system T (we shall call it the
“clock” system) that we assume to be isomorphic to the
Hilbert space of a particle on a line (other choices are
possible [24,29]). The latter is equipped with canonical
coordinates T̂ and Ω̂ with ½T̂; Ω̂� ¼ i, which represent
position and momentum and (under the following restric-
tions) can be interpreted as the time and energy indicator of
the evolving system. Next we introduce what we may call
the constraint operator of the model, i.e.

Ĵ ≔ ℏΩ̂ ⊗ 1S þ 1T ⊗ ĤS; ð1Þ

with ĤS the system Hamiltonian, and 1S and 1T the identity
operators on HS and HT . By construction Ĵ is self-adjoint
and has a continuous spectrum that includes all possible
real values as generalized eigenvalues. Next we identify a
special set of vectors jΨii which we call the physical
vectors of the model and which, as will be clear in the
following, provides a compact, yet static, representation of
the full history of the system S. They are identified by the
eigenvector equation associated with the null eigenvalue of
Ĵ, i.e.

ĴjΨii ¼ 0; ð2Þ

where the double-ket notation reminds us that jΨii is
defined on HT ⊗ HS. More precisely Eq. (2) defines
generalized eigenvectors which (as in the case of the
position operator of a particle) are not proper elements
of H but still possesses a scalar product with all the
elements of such space, inducing a representation of it.
One may interpret Eq. (2) as a constraint that forces

the physical vectors to be eigenstates of the total
“Hamiltonian” Ĵ with null eigenvalue, consistently with
a Wheeler-DeWitt equation [13,30]. Accordingly, in this
model the jΨii’s are “static” objects which do not evolve.
The conventional state jψðtÞiS of the system S at time t can
then be obtained by conditioning a solution jΨii of Eq. (2)
on having the time t via projection with the generalized
eigenvectors of the time operator T̂ (Fig. 1), i.e.

jψðtÞiS ¼ ThtjΨii; ð3Þ

with

T̂jtiT ¼ tjtiT; Tht0jtiT ¼ δðt − t0Þ: ð4Þ

By writing [5] in the “position” representation in HT , one
can easily verify that such a vector indeed obeys the
Schrödinger equation, i.e. [5,29]

ThtjĴjΨii ¼ 0⇔iℏ
∂
∂t jψðtÞiS ¼ ĤSjψðtÞiS; ð5Þ

where we used the fact that Ω̂ is described by the differ-
ential operator. In a similar way we can identify the
eigenvectors of ĤS by projecting jΨii on the (generalized)
eigenstates of Ω̂ (i.e. the vectors jωiT ¼ 1ffiffiffiffi

2π
p

R
dteiωtjtiT

with ω ∈ Re). Specifically, given

jψðωÞiS ¼ ThωjΨii; ð6Þ

with

Ω̂jωiT ¼ ωjωiT; Thω0jωiT ¼ δðω − ω0Þ; ð7Þ

we have that

ThωjĴjΨii ¼ 0⇔ĤSjψðωÞiS ¼ −ℏωjψðωÞiS; ð8Þ

which shows that the momentum representation (6) of a
physical vector jΨii that solves Eq. (2) obeys the
Schrödinger eigenvector equation—more precisely for ω
such that −ℏω equals an element of the spectrum of HS,
then jψðωÞiS is an eigenvector of HS at that eigenvalue,
otherwise jψðωÞiS ¼ 0.
Exploiting the fact that both fjtiTgt and fjωiTgω provide

a decomposition for the identity operator on HT , any
solution of Eq. (2) can be expressed as

jΨii ¼
Z

dtjtiT ⊗ jψðtÞiS ð9Þ

¼
Z

dμðωÞjωiT ⊗ jψðωÞiS; ð10Þ

with dμðωÞ a measure on the real axis which selects those
ω’s that admit a nontrivial solution for Eq. (8). The identity
(9) shows that the vectors jΨii provide a complete
description of the temporal evolution of the system S by
representing it in terms of correlations between the latter
and the degree of freedom of the ancillary system T. In
particular, introducing the unitary operator ÛSðtÞ ¼ e−

i
ℏĤSt

which solves Eq. (5), we get

jΨii ¼
Z

dtjtiT ⊗ ÛSðtÞjψð0ÞiS ð11Þ

¼ ÛjTimeLineiT ⊗ jψð0ÞiS; ð12Þ

where jψð0ÞiS is the state of S at time t ¼ 0, where
jTimeLineiT is the improper state of HT obtained by
superposing all vectors jtiT , i.e.

jTimeLineiT ≔
Z

dtjtiT ¼
ffiffiffiffiffiffi
2π

p
jω ¼ 0iT; ð13Þ

VITTORIO GIOVANNETTI, SETH LLOYD, AND LORENZO MACCONE PHYSICAL REVIEW D 92, 045033 (2015)

045033-2



and where Û is the unitary operator

Û ≔
Z

dtjtiThtj ⊗ ÛSðtÞ ð14Þ

¼ ÛSðT̂Þ ¼ e−iT̂⊗ĤS=ℏ: ð15Þ

Before proceeding further we comment on some impor-
tant technical aspects of the PaW representation.

A. The zero eigenvalue

In the construction of the PaW model, the zero eigen-
value of Ĵ seems to play a special role in identifying the
physical vectors jΨii, but this is not the case. Indeed up to
an irrelevant global phase, the physical vectors jΨii can be
identified also by imposing the constraint

ĴjΨii ¼ ϵjΨii; ð16Þ

with real ϵ. Indeed Eq. (16) can be cast in the form (2) by
rigidly shifting the spectrum of ĤS by ϵ.

B. Time-dependent Hamiltonians

The relevance of Hamiltonians ĤSðtÞ which exhibit an
explicit time dependence may be questioned at a funda-
mental level. Still it is well known that the possibility of
dealing with these models is extremely useful in simplify-
ing the analysis of systems where effective time-dependent
Hamiltonians arise from the interplay between the local
degree of freedom and an external, complex environment
characterized by a semiclassical behavior (e.g. a measure-
ment apparatus)—see e.g. [31] and references therein.
Notably the PaW representation can be extended to
incorporate also these examples by simply replacing the
constraint operator (1) with

Ĵ ≔ ℏΩ̂ ⊗ 1S þ ĤSðT̂Þ; ð17Þ

with ĤSðT̂Þ now an operator that acts not trivially on both
HS and HT , obtained by formally promoting the variable t
which appears in ĤSðtÞ into the canonical coordinate
operator T̂. Selecting the physical states jΨii as in
Eq. (2) it then follows that the decompositions (9), (11),
and (14) still hold with the operator ÛSðt; 0Þ defined as

ÛSðt; t0Þ ¼
(

⃖exp ½−ði=ℏÞ R t
t0
dt0ĤSðt0Þ� ∀ t ≥ t0;

~exp½ði=ℏÞ R t0
t dt0ĤSðt0Þ� ∀ t < t0;

ð18Þ

where ⃖exp ½R t
t0
dt0…� (respectively, ~exp½R t

t0
dt0…�) indicates

the time ordering (respectively, antiordering) of the asso-
ciated integral.

C. The initial time

The choice of t ¼ 0 as the reference time in Eqs. (11)
and (12) is just a matter of convention. Indeed an equivalent
way to express jΨii is the following:

jΨii ¼
Z

dtjtiT ⊗ ÛSðt; t0Þjψðt0ÞiS ð19Þ

¼ Ût0 jTimeLineiT ⊗ jψðt0ÞiS; ð20Þ

where now jψðt0Þi is the state of the system at time t0 and
where

Ût0 ≔
Z

dtjtiThtj ⊗ ÛSðt; t0Þ ¼ Û½1T ⊗ ÛSðt0; 0Þ� ð21Þ

[the identity is valid also in the case of time-dependent
Hamiltonian ĤSðtÞ].

D. Propagators

As anticipated, the physical vectors jΨii give a compact
description of the system dynamical evolution in terms of a
superposition of components, each associated with a differ-
ent time measured by an external clock described byHT. In
particular, suppose we want to calculate the propagator
between a state jIiS at time tI and a state jFiS at time tF, i.e.
the quantity GðF; tF; I; tIÞ ≔ ShFjÛSðtF; tIÞjIiS. In the
PaW formalism this can be obtained by simply identifying
t0 with the time tI and jψðt0ÞiS with jIiS in Eq. (19) (this
fixes the initial condition of the system trajectory) and then
projecting the associated jΨii on jtFiT ⊗ jFiS, i.e.

GðF; tF; I; tIÞ ¼ ðThtFj ⊗ ShFjÞjΨii: ð22Þ

One of the criticisms to the PaW mechanism is the fact that
it did not seem to be able to reproduce the correct
propagators [6]. Here we have shown how the correct
propagators can emerge.

E. About conditioning

In the PaW representation the physical vectors identified
by Eq. (2) ideally should describe a joint state of S and of
the clock system T. Accordingly, given fjaiSg a complete
orthonormal basis for S, the quantities ðThtj ⊗ ShajÞjΨii
should correspond to proper amplitude joint-probability
distributions associated with the probability of finding jaiS
on S and jtiT on T. In this framework it makes sense to
interpret the vector (3) as the conditioned state of S
obtained by forcing T to be on jtiT . Similarly one would
like to interpret ShajΨii as the state of the clock condi-
tioned by forcing S to be on jaiS. This last assumption
however is problematic because, being that jΨii is an
improper element of H, the vector ShajΨii and jðThtj ⊗
ShajÞjΨiij2 do not admit a proper normalization, forcing us
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to assign a uniform distribution to the time variable t—no
other choice being allowed by the representation. One can
fix this by replacing Eq. (11) with a normalized element of
H, i.e. with vectors of the form

jΦii ¼
Z

dtϕðtÞjtiT ⊗ jψðtÞiS; ð23Þ

with jψðtÞiS a normalized vector ofHS (i.e. ‖jψðtÞiS‖ ¼ 1)
and with ϕðtÞ a square integrable function that guarantees
the normalization condition for jΦii, i.e. ‖jΦii‖2 ¼R
dtjϕðtÞj2 ¼ 1. Note that jΦii of Eq. (23) is the most

general state of H ¼ HS ⊗ HT . Imposing the next jψðtÞiS
to describe the evolution of the initial state jψð0ÞiS
under the action of the system Hamiltonian ĤS we can
then write

jΦii ¼ ÛjϕiT ⊗ jψð0ÞiS; ð24Þ

which replaces Eq. (12) by substituting the improper
vector jTimeLineiT with the properly normalized state
jϕiT ≔

R
dtϕðtÞjtiT—the operator Û is still defined as in

Eq. (14). For any assigned ϕðtÞ, the identity (3) is now
replaced by

jψðtÞiS ¼ ThtjΦii=ϕðtÞ; ð25Þ

which, by noticing that ϕðtÞ is the amplitude probability of
finding the clock on jtiS when measuring jΦii, makes
explicit the conditioning nature of jψðtÞiS: such a vector is
obtained as an application of a Bayes rule for probability
amplitudes, where the numerator gives the joint statistics of
measurement on S and on t and the denominator describes
the statistics of measurement on t only. At variance with the
state of Eq. (11), the representation (24) finally allows for a
proper definition of the state of the clock: the reduced
density matrix TrS½jΦiihhΦj� is now well behaved. These
considerations imply that ϕðtÞ is the weight that represents
the probability amplitude that the system is found at time t,
namely, in a sense, it is the probability amplitude that the
system “exists” at such time. [Clearly, a suitable regulari-
zation is implicit in the expression (25), to avoid Borel-
Kolmogorov-type paradoxes that arise when one conditions
on something that has null probability.]
In view of the above results, we can interpret the

representation jΦii of (24) as a regularized version of
the original PaW representation jΨii of (9), since it satisfies
the normalization hhΦjΦii ¼ 1 on the joint system, which
is the Stückelberg normalization [1]. In fact, following the
conventional technique used for regularizing the eigen-
states of operators with continuous spectrum, the PaW
state (9) can be replaced, for example, by a normalized
state (23) with Gaussian weight ϕðtÞ≡ ϕnðtÞ ¼
ð2=nπÞ1=4 expð−t2=nÞ. Then, using the Weyl criterion
[32], one can conclude that λ ¼ 0 is an essential eigenvalue
of the self-adjoint operator Ĵ, since

∥ðĴ − λÞjΦnii∥ → 0 for n → ∞; ð26Þ

where jΦnii ¼
R
dtϕnðtÞjtiT jψðtÞiS is a Weyl sequence

[33], i.e. a normalized sequence of Hilbert space vectors
that converges weakly to 0, namely, hhθjΦnii → 0 for
n → ∞ for all jθii ∈ HT ⊗ HS. Moreover, the unnormal-
ized PaW state jΨii is obtained for n → ∞ as
ðnπ=2Þ1=4jΦnii → jΨii.
The representation (24) allows for a constraint descrip-

tion analogous to (2) obtained by adding ĤS to the
non-Hermitian correction term i _ϕðT̂Þ=ϕðT̂Þ (the dot rep-
resenting time derivation) yielding

��
ℏΩ̂þ iℏ

_ϕðT̂Þ
ϕðT̂Þ

�
⊗ 1Sþ1T ⊗ ĤS

�
jΦii¼ 0; i:e:

ððϕðT̂ÞℏΩ̂þ½ϕðT̂Þ;ℏΩ�Þ⊗ 1SþϕðT̂Þ⊗ ĤSÞjΦii¼ 0:

ð27Þ

Alternatively, one can still retain the constraint equation (2)
if one supposes that the Schrödinger equation applies
also to non-normalized states jψ 0ðtÞi¼ϕðtÞjψðtÞi as
ĤSjψ 0ðtÞi¼ið∂=∂tÞjψ 0ðtÞi, in analogy to the action of
the momentum operator on non-normalized wave functions
(such as the components of spinors). Both of these
approaches are extensions of conventional quantum
mechanics, which deals only with states that are normalized
at all times.
We stress that, while working on this theoretical frame-

work may have some appeal, the approach is not fully
satisfactory as for instance the choice of ϕðtÞ is completely
arbitrary and there is no indication in the conventional
theory on how to fix it. The fact that ϕðtÞ is nonunique is a
consequence of the freedom that one has in quantum
mechanics to choose any vector of the Hilbert space as
representing a valid state of the system, as long as it does
not violate physical or dynamical constraints.

F. Physical interpretation

We briefly comment here on the physical interpretation
of the additional Hilbert space HT . One can interpret it as
an abstract “purification” space without physical relevance.
However, an operational definition of proper time [27] as
“such that is measured by a clock” requires some physical
system that acts as a clock. In contrast to the conventional
formulation of quantum theory, the above formalism
naturally accommodates it: HT is the Hilbert space of
such system. Clearly the particular form of HT employed
above is an idealization where the clock is isomorphic to a
particle on a line [10]. Other choices [24,29] are a
straightforward modification of the above theory. This
approach is consistent with a relational point of view,
where the only physically relevant quantities are events
defined as coincidences in spacetime [34] such as the

VITTORIO GIOVANNETTI, SETH LLOYD, AND LORENZO MACCONE PHYSICAL REVIEW D 92, 045033 (2015)

045033-4



correlations between observables and what is shown on a
local clock (e.g. [23], Sec. 2.3).
Is the above physical definition of proper time sufficient

to identify time, i.e. coordinate time? It is for Newtonian
mechanics (coordinate time ¼ proper time) and for special
relativity (coordinate time ¼ proper time of a static inertial
observer). In general relativity any observer can identify the
coordinate time from its own proper time if the metric is
known and considered as a classical degree of freedom
[28,35], even though the coordinate time has no physical
meaning [34] and it is impossible to synchronize local
clocks meaningfully (i.e. so that two clocks synchronized
to a master clock are synchronized among themselves)
[27]. The case in which the metric is considered as a
quantum degree of freedom is currently an open problem
and clearly beyond the scope of the present work.
When one considers time as a dynamical variable, an

apparent contradiction arises ([36], Sec. 8–6): if one
interprets momentum as the generator of space translations
and the Hamiltonian as the generator of time translations,
then one would expect that the Hamiltonian always
commutes with the momentum, since these two translations
are independent. Why is this untrue in general? In the
conventional formalism, time is not a dynamical variable,
so the unitary transformations generated by the
Hamiltonian are not symmetries of the system. In contrast,
in the PaW formalism, time is a dynamical variable, but the
generator of its translations is Ω̂, not the system
Hamiltonian ĤS, and Ω̂ indeed commutes with the system
momentum (it acts on a different Hilbert space). The above
apparent contradiction is thus resolved in a different
manner.

II. MEASUREMENTS

At variance with what is typically believed (e.g. [6,16]),
the PaW formalism appears to be particularly well suited to
describe in a compact form the statistics of measurements
which are performed sequentially on a system of interest.
To show this explicitly let us first analyze the case where

a measurement is performed at time t1 on the systemQ. We
begin adopting the von Neumann formulation of a meas-
urement apparatus [26], describing the process in terms of a
memory system M that is in a fiducial state “ready” jriM
before the measurement and which will be in a state jaiM
that contains the measurement outcome after. In other
words we describe the measurement as an instantaneous
transformation which at time t1 induces the following
unitary mapping:

jψðt1ÞiQ ⊗ jriM →
X
a

K̂ajψðt1ÞiQ ⊗ jaiM; ð28Þ

where fK̂ag are Kraus operators fulfilling the normaliza-
tion condition

P
aK̂

†
aK̂a ¼ 1̂. Projective nondegenerate

von Neumann measurements are the special case in which

K̂a ¼ jaihaj are projectors on the eigenspaces relative to
the eigenstates jai of the observable. In this specific case,
Eq. (28) becomes [26]

jψðt1ÞiQ ⊗ jriM →
X
a

ψaðt1ÞjaiQ ⊗ jaiM; ð29Þ

with ψaðt1Þ ≔ hajψðt1Þi. Accordingly, the probability of
getting the outcome a is given by

Pðajt1Þ ≔ ‖K̂ajψðt1ÞiQ‖2; ð30Þ

with ‖jvi‖ ¼ ffiffiffiffiffiffiffiffiffiffiffihvjvip
being the norm of the vector jvi, and

jϕaiQ ≔ K̂ajψðt1ÞiQ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðajt1Þ

p
; ð31Þ

is the vector which describes the state of the system Q
immediately after such event has been recorded by the
memory M. In the general setting, Eq. (28) defines the
statistical properties of a POVM, see e.g. [37].
The process described above can now be cast in the PaW

formalism by redefining S to include both the system to be
measured Q and the ancillary memory system M. In this
context we shall assume no interactions between Q and M
apart from a strong (impulsive) coupling between Q andM
at time t1 that is responsible for the mapping (28). Adopting
the time-dependent description (18) we write

ĤSðtÞ ¼ ĤQðtÞ þ δðt − t1ÞĥQM; ð32Þ

where ĤQðtÞ is the (possibly time-depedent) free
Hamiltonian of Q, where δðxÞ is the Dirac delta function,
while ĥQM is related to the unitary V̂QM responsible for the
mapping Eq. (28) via the identity V̂QM ≔ e−

i
ℏĥQM (since M

is a memory, we assume no free dynamics for it). With this
choice

ÛSðt; t0Þ ¼
�
ÛQðt; t0Þ ∀ t < t1;

ÛQðt; t1ÞV̂QMÛQðt1; t0Þ ∀ t > t1;
; ð33Þ

where ÛQðt; t0Þ is the operator which gives the free
evolution of Q defined as in Eq. (18) through the
Hamiltonian ĤQðtÞ [38]. Accordingly, Eq. (19) becomes

jΨii ¼
Z

t1

−∞
dtjtiT ⊗ jψðtÞiQ ⊗ jriM

þ
Z

∞

t1

dtjtiT ⊗
X
a

ÛQðt; t1ÞK̂ajψðt1ÞiQ ⊗ jaiM;

ð34Þ

where for t < t1, jψðtÞiQ ¼ ÛQðt; t0Þjψðt0ÞiQ is the state
of Q at time t prior to the measurement stage. In this
framework the probability that, at a given time t measured
by the ancillary system T, a certain outcome a will be
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registered by the memory M can be formally expressed
as [38]

PðajtÞ ¼ ‖ðThtj ⊗ MhajÞjΨii‖2: ð35Þ

As a consequence of the impulsive coupling we have
assumed in describing the measurement process, Eq. (35) is
a step function which exhibits a sharp transition at the
measurement time t ¼ t1: for smaller values of t, the
probability of getting a certain outcome a on M does
not depend upon Q yielding PðajtÞ ¼ jMhajriMj2, the
resulting statistics being only associated with the ready
state of the memory; for t > t1 instead, PðajtÞ coincides
with the value (30): it only depends upon the statistical
uncertainty of the state of the system Q at time t1 and it
remains constant in time due to the fact that we have
explicitly suppressed any dynamical evolution on M.
The above framework immediately extends to the case

where different measurements are performed at different
times, giving the correct transition probabilities. This was
lacking [6] in the PaW proposal. In fact, the global state of a
system where a measurement of A at time t1 and of B at a
later time t2 > t1 is performed can be expressed within the
formalism by adding an extra memory element M0 which
stores the information associated with the second meas-
urement. Accordingly, we replace Eq. (32) with

ĤSðtÞ ¼ ĤQðtÞ þ δðt − t1ÞĥQM þ δðt − t2ÞĥQM0 ; ð36Þ

with ĥQM0 responsible for the unitary coupling V̂QM0

associated with the measurement of B. With this choice
for all t > t2, Eq. (33) gets replaced by
ÛQðt; t2ÞV̂QM0ÛQðt2; t1ÞV̂QMÛQðt1; t0Þ, while the state
jΨii becomes

jΨii¼
Z

t1

−∞
þ
Z

t2

t1

þ
Z

∞

t2

dtjtiT

⊗
X
ab

ÛQðt;t2ÞK̂bÛQðt2;t1ÞK̂ajψðt1ÞiQ⊗jaiM⊗jbiM0 ;

ð37Þ

where the first two integrals have the same integrands as the
left-hand side of (34), M0 is the memory where the B
outcome is stored, and b and K̂b the corresponding out-
comes and Kraus operators. It is worth observing that the
probability PðajtÞ of getting an outcome a at time t is not
affected by the presence of the second measurement: this
quantity can still be computed by projecting jΨii onto
jtiT ⊗ jaiM and assumes the same value given in Eq. (35).
Similarly the joint probability that at time t the two
memories will record a certain outcome a and b, respec-
tively, can be computed as

Pðb; ajtÞ ¼ ‖ðThtj ⊗ Mhaj ⊗ M0 hbjÞjΨii‖2: ð38Þ

As in the case of Eq. (35) this is also a step function. In
particular for t ≥ t2 it assumes the value

Pðb; ajtÞ ¼ ‖K̂bÛQðt2; t1ÞK̂ajψðt1ÞiQ‖2
¼ ‖K̂bjϕaðt2; t1ÞiQ‖2‖K̂ajψðt1ÞiQ‖2; ð39Þ

where in the second line we used Eqs. (30) and (31) and
where jϕaðt2; t1ÞiQ ¼ ÛQðt2; t1ÞjϕaiQ is the evolved via
HQðtÞ of the state jϕaiQ ∝ K̂ajψðt1ÞiQ of the system Q
when the first measurement yields the outcome a. The
quantity ‖K̂bjϕaðt2; t1ÞiQ‖2 is nothing but that the condi-
tional probability P½ðbjtÞjðajt1Þ� of getting the outcome b
when measuring B on Q given that the outcome a was
registered by the first measurement performed at time t1.
Invoking Eq. (35) we notice that it obeys the identity

P½ðbjtÞjðajt1Þ� ¼
Pðb; ajtÞ
Pðajt1Þ

: ð40Þ

This allows us to identify Pðb; ajtÞ with the joint proba-
bility P½ðbjtÞ; ðajt1Þ� of getting b on M0 at time t and a on
M at time t1. In fact we have

P½ðbjtÞ; ðajt1Þ� ¼ P½ðbjtÞjðajt1Þ�Pðajt1Þ ¼ Pðb; ajtÞ; ð41Þ

where in writing the first identity we used the Bayes rule. It
is worth stressing that Eq. (38) can also be applied for times
t prior than t2. In this case we get Pðb; ajtÞ ¼
PðajtÞjM0 hbjriM0 j2 with PðajtÞ as in (35) and with
jM0 hbjriM0 j2 accounting for the statistical distribution of
the ready state of M0. Similarly we can extend Eq. (41) for
t ∈�t2; t1�—indeed one can easily verify that in this case
P½ðbjtÞ; ðajt1Þ� ¼ Pðb; ajtÞ ¼ Pðb; ajt1Þ.
From the above expressions we can finally compute the

probability PðbjtÞ of getting an outcome b at time t ≥ t2,
irrespective of the outcome of the A measurement. This is
given by the marginal distribution obtained by tracing
Pðb; ajtÞ with respect to the a variable, i.e.

PðbjtÞ ¼
X
a

Pðb; ajtÞ ¼ ‖ðThtj ⊗ M0 hbjÞjΨii‖2; ð42Þ

where the second identity is a consequence of the fact that
fjaiMg is a complete set forM. For t < t2 (i.e. prior then to
the measurement event B) this is just PðbjtÞ ¼ jM0 hbjriM0 j2,
while for t > t2 [see Eq. (39)] we get

PðbjtÞ ¼
X
a

‖K̂bÛQðt2; t1ÞK̂ajψðt1ÞiQ‖2: ð43Þ

Equations (35), (38), and (42) are the main results of this
section and are summarized in Table I.
More generally, consider the case where Q undergoes to

a sequence of measurements A1; A2;…; AN performed at
times t1; t2;…; tN which, for convenience, we can assume
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to be ordered so that tnþ1 > tn for all n ¼ 1; 2;…; N. We
describe this by adding N memory systems M1;M2;…;
MN , each initialized into a ready state jriMn

and which
couple with Q though the time-dependent Hamiltonian

ĤSðtÞ ¼ ĤQðtÞ þ
XN
n¼1

δðt − tnÞĥQMn
: ð44Þ

Via Eqs. (18) and (19) this defines the physical vector jΨii
of the problem. In this context the joint probability that at
time t the memory will register a certain string ~a ≔
ða1; a2;…; aNÞ of outcomes can then be computed as

Pð~ajtÞ ¼ ‖ðThtj ⊗ h~ajÞjΨii‖2; ð45Þ

with j~ai ≔ ja1iM1
⊗ ja2iM2

⊗ � � � ⊗ jaNiMN
. Exploiting

the Bayes rule argument one can also observe that, given
a collection of times t10 < t20 < � � � < tN 0, Eq. (45) pro-
vides the joint probability associated with the events of
obtaining the outcome an at time tn0, i.e.

P½ða1jt01Þ; ða2jt02Þ;…; ðaN jt0NÞ� ¼ Pð~ajt0NÞ: ð46Þ

Similarly given a subset Mj1 ;Mj2 ;…;MjK formed by
K ≤ N different memories, the joint probability
Pð~aðKÞjtÞ that at time t they will record certain events
~aðKÞ ≔ ðaj1 ; aj2 ;…; ajK Þ is obtained by considering the
associated marginal of (45), i.e.

Pð~aðKÞjtÞ ¼
X

Pð~ajtÞ ¼ ‖ðThtj ⊗ h~aðKÞjÞjΨii‖2; ð47Þ

where in the first identity the sum is performed over all
components of ~a which are not involved in the definition of
~aðKÞ and where j~aðKÞi≔ jaj1iMj1

⊗ jaj2iMj2
⊗���⊗ jajKiMjK

.

III. OVERCOMING CRITICISMS

Here we give an overview of the main criticisms of the
PaW mechanism and to the conditional probability inter-
pretation and show how our proposal overcomes them.
There are two main criticisms of the PaW mechanism

[6,12,21]. The first refers to superselection [39–41]: the
observables of a theory must commute with the theory’s
constraints. Whenever one of the constraints is the total
energy, such as in canonical general relativity, then all
observables must be stationary as they commute with the
Hamiltonian. In the Schrödinger picture this translates into
static physical states, which contrasts with obvious exper-
imental evidence and is the root of the problem of time
[6,13,14]. The second refers to the fact that the PaW
mechanism is not able to provide the correct propagators, or
the correct two-time correlations [6]: after the first time
measurement, the clock remains “stuck.” We have already
shown how these criticisms can be overcome: the first is
solved by using a global state jΨii that is independent of
time and observing that internal observers will use con-
ditioned states, the second by using conditioning through a
von Neumann description of the measurement interaction.
In a sense, our prescription fulfills Page’s desiderata [16] in
showing that the second objection can be overcome by
interpreting a measurement at two different times (or,
equivalently, a preparation followed by a measurement)
as a single measurement that acts both on the system and on
the degrees of freedom that store the earlier measurement
outcome. It is a sort of purification of the time measure-
ments and implements Wheeler’s operationalist stance that
“the past has no existence except as it is recorded in the
present.” [16,42].
Further criticisms were proposed in [12], where it was

noted that (i) interpretive problems cannot be alleviated
incorporating observers into the theory; (ii) in a constrained
theory where one of the constraints is the energy (such as
the Hamiltonian formulation of general relativity), all
observables commute with the Hamiltonian and no time
dependence is possible. This is true also for two-time
correlation functions and propagators [6]; (iii) no dynami-
cal variable can correlate monotonically with “Heraclitian”
time if the Hamiltonian is lower bounded; (iv) only time is
appropriate for conditioning the state: for example, space
may be inappropriate for setting the conditions since a
system may occupy the same position multiple times
or never.
Our mechanism replies to (ii) by indeed carefully

incorporating the observers into the theory, thereby over-
turning (i). In fact, there are two points of view: the external
observer (clearly, a hypothetical entity whenever the whole
Universe is considered) and the internal observer. The
Hamiltonian constraint refers to the external observer’s
point of view, who sees the whole laboratory (or Universe)
as a static system whose state is an eigenstate of its global
Hamiltonian. That, however, does not prevent the internal

TABLE I. Probability distribution associated with two meas-
urement events. The first of the identities holds irrespective of the
ordering of the events (i.e. first A and then B, or first B and
then A). The last two instead assume a specific ordering, i.e. first
A and then B.

Joint probability of getting b and a at time t:
Pðb; ajtÞ ¼ ‖ðThtj ⊗ Mhaj ⊗ M0 hbjÞjΨii‖2

Probability of getting a at time t:
PðajtÞ ¼ P

bPðb; ajtÞ ¼ ‖ðThtj ⊗ MhajÞjΨii‖2
Probability of getting b at time t:

PðbjtÞ ¼ P
aPðb; ajtÞ ¼ ‖ðThtj ⊗ M0 hbjÞjΨii‖2

Joint probability of getting b at time t00 and a at time t0ð< t00Þ:
P½ðbjt00Þ; ðajt0Þ� ¼ Pðb; ajt00Þ ¼ ∥ðTht00j ⊗ Mhaj ⊗ M0 hbjÞjΨii∥2
Conditional probabilityof gettingb at time t00 givena at time t0ð<t00Þ:

P½ðbjt00Þjðajt0Þ� ¼ Pðb;ajt00Þ
Pðajt0Þ ¼ ‖ðT ht00 j⊗Mhaj⊗

M0 hbjÞjΨii‖2
‖ðT ht0 j⊗MhajÞjΨii‖2
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observer from observing evolving systems, time-dependent
measurement outcomes and Born-rule induced wave func-
tion collapses, as shown above. In a sense, the “relativity”
philosophy is extended also to quantum mechanics: states
and measurements are relative to the observer [43,44], just
as time and space are relative. Indeed, we showed above
how internal observers recover the correct two-time corre-
lations and propagators. As regards to objection (iii),
indeed if we want to describe a nonperiodic time variable
that takes all values (the Heraclitian time), we must use
an unbounded Hamiltonian: if one considers Eq. (2) as a
sort of Wheeler-DeWitt equation, that Hamiltonian is
unbounded (it contains a “momentum” operator Ω̂). We
remark that other choices may lead to “periodic time”
coordinates, but that is acceptable in specific cosmologies:
it is certainly not surprising that a system with finite global
energy will have periodic evolution. In these cases, except
as an approximation internal observers will not be able to
use a Schrödinger equation, as predicted in [12]. They must
employ a more general dynamical equation. In regards to
point (iv), time’s role in the conditioning to achieve
conventional quantum mechanics is made transparent by
our formulation, which can be used to show its identical
role to space regarding conditioning. In fact, just as for
space, it is possible that a system never occupies a given
time, or that it occupies the same time at two different

locations if it follows a closed timelike curve, whose
existence is predicted by general relativity [45] and studied
also in the context of quantum mechanics [46]. So, while
time is the appropriate quantity on which to condition for
obtaining the conventional theory, quantizing time with our
mechanism is a viable pathway to the unconditioned theory.

IV. CONCLUSIONS

Here we modified the PaW mechanism to give a
quantization of time, and showed how the conventional
quantum mechanics and the correct quantum predictions
(e.g. regarding propagators and measurement statistics)
arise from a quantum Bayes rule by conditioning the global
state jΨii to a specific time. We emphasize that our
approach can quantize time for completely arbitrary
quantum systems jψðtÞiS. As such, we can also provide
a description of quantum field theory with a quantum
clock.
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