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We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-
Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba.
In particular, we show that the monopole wall splits into subwalls when any of its moduli become large.
The long-distance gauge and Higgs field interactions of these subwalls are Abelian, allowing us to derive an
asymptotic metric for the monopole wall moduli space.
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I. INTRODUCTION

In 1931 [1], Dirac proposed a magnetic cousin to the
electron in classical electromagnetism, now referred to as
the Dirac magnetic monopole. Analogous to the classical
electron, it is a point particle and its magnetic field is
singular. Nearly five decades later, ’t Hooft and Polyakov
[2,3] expanded the idea of the magnetic monopole by
identifying nonsingular solutions now called ’t Hooft-
Polyakov monopoles in non-Abelian Yang-Mills-Higgs
theory, in which the Yang-Mills gauge fields couple to a
scalar field with the usual symmetry-breaking Higgs
potential. Prasad and Sommerfield [4] found an explicit
static SUð2Þ solution for this theory in the massless Higgs
limit. In the time-independent and massless Higgs limits,
Bogmolny [5] derived his eponymous equation. Solutions
to the Bogomolny equation solve the Yang-Mills-Higgs
field equation and minimize energy. They are called BPS
(Bogomolny-Prasad-Sommerfield) monopoles.
Non-Abelian magnetic monopoles are interesting in their

own right, appearing as they do in many contestant grand
unified field theories. They have garnered attention in
recent decades, however, for their significance in relation
to certain supersymmetric Yang-Mills quantum field the-
ories. The nontrivial connection to these theories is via their
moduli spaces of vacua. The moduli space of BPS Yang-
Mills-Higgs monopoles (a set of solutions that share fixed
boundary conditions and which together form a manifold)
is isomorphic to the Coulomb branch moduli space of
vacua in the associated super Yang-Mills theory [6–8].
These moduli spaces are Calabi-Yau, specifically
hyperkähler; i.e., they are kähler manifolds which are
holomorphically symplectic.
In early studies of BPS monopoles, their moduli spaces

were used to determine monopole behavior. Manton
established [9] that the low-energy dynamics for BPS
monopoles can be approximated as geodesic motion on
their moduli space. In the modern context, monopole
moduli spaces have applications in quantum theories.

Despite their importance, few metrics on monopole moduli
spaces are known. BPS solutions in which some or all of
the constituent monopoles are closely spaced represent
points in the interior of the moduli space. BPS solutions in
which the monopoles are very widely-spaced are points on
the moduli space in its asymptotic region. Long-range
Abelian approximations have been used to obtain the latter
type of solution and metrics have been calculated for the
corresponding asymptotic moduli spaces, but solutions of
the former type have been mostly illusive. Because of this,
most moduli space metrics that have been produced are
accurate only for the asymptotic portion of the moduli
space. The following paragraph enumerates these efforts.
Atiyah and Hitchin [10] derived a metric on the

full moduli space for two SUð2Þ BPS monopoles on R3.
Gibbons and Manton [11] then generalized to n BPS, well-
separated, indistinguishable SUð2Þ monopoles and found
the asymptotic moduli space metric. Lee, Weinberg, and Yi
derived a similar asymptotic metric for general gauge
symmetry [12]. Cherkis andKapustin [13] used an approach
echoing Gibbons andManton’s to determine the asymptotic
moduli space metric for an SUð2Þ monopole on R2 × S1

with n indistinguishable charges, as did Hamanaka, Kanno,
and Muranaka [14] for an SUð2Þmonopole onR × T2 with
n indistinguishable charges. As mentioned, these monop-
oles arise in classical Yang-Mills-Higgs theory. Their
moduli spaces are argued to be isometric to moduli spaces
of vacua for SUðnÞ super Yang-Mills quantum gauge
theories with boundary conditions and dimension particular
to each of the monopole periodicity cases. Seiberg and
Witten originally discovered the existence of these relation-
ships in [6], following work by Seiberg and Witten [15,16],
and Intriligator and Seiberg [17,18]. Chalmers, Hanany, and
Witten [7,8] explained these relationships using brane
dualities. Later Haghighat and Vandoren [19] examined
the compacitified five-dimensional quantum field theory
relevant to doubly periodic BPS monopoles, and the under-
lying theory connecting them.
For n monopoles on R3, this theory is related via the
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SUðnÞ super Yang-Mills vacuum in three dimensions [6].
For two such monopoles, the relative metric is called the
Atiyah-Hitchin metric. n periodic monopoles (on R2 × S1,
called “monopole chains”) are related via their moduli
space metric to the Coulomb branch of vacua for N ¼ 2
SUðnÞ super Yang-Mills in four dimensions which has
been compactified on a circle [20]. Similarly, n doubly
periodic monopoles (on R × T2, called “monopole walls”
or “monowalls”) are related via their moduli space metric to
the Coulomb branch of vacua for N ¼ 1 SUðnÞ super
Yang-Mills in five dimensions which has been compacti-
fied on a two-torus [14,19,21].
This paper continues and elaborates on the efforts listed.

Section II reviews Yang-Mills-Higgs theory, outlines our
objectives, and reviews the Higgs spectral curve with its
Newton polygon and amoeba. Section III begins with a BPS
solution to the Bogomolny equation onR × T2, a monowall,
and shows that if it possesses moduli (degrees of freedom)
then whenever a modulus becomes large the monowall can
be interpreted as a collection of constituentmonowallswhich
spread apart and become distinct, and their Higgs and
electromagnetic interactions are Abelian. In the case of
the singly periodicmonopole, as in [20], theNahm transform
maps the monopole onto a solution of the Nahm equations
[22], formulating the problem of interacting monopoles as a
Nahm system and validating the Abelian approximation in
the asymptotic regime. This approach is unsuccessful in the
case of the doubly periodic monopole, which is mapped to
another doubly periodic monopole under the Nahm trans-
form. Instead we study some key behaviors of the doubly
periodic monopole using the Higgs spectral curve
[13,21,23,24], which allows a geometrical treatment of the
monopole interactions in the BPS limit. We demonstrate that
if anymonowall hasmoduli then taking amodulus to infinity
causes the monowall to break into subwalls. We model the
asymptotic behavior of a general monowall as Abelian
interactions among its well-separated subwalls. Section IV
generalizes themonopole of [14,21] fromSUð2Þ toUðNÞ for
distinguishable subwalls. By modeling the interactions of
well-separated non-Abelian subwalls as the interactions of
Abelian monowalls, we determine an expression for a
hyperkähler asymptotic metric for subwalls widely spaced
in the noncompact dimension relative to thewidth of a single
subwall, and discuss the symmetries of the metric. Our
approach allows for subwalls which are Dirac monowalls
(singularities), which have no dynamics of their own, but
whose fields affect the motion of the remaining monowalls.

II. BACKGROUND AND SETUP

A. Yang-Mills-Higgs theory

In classical, 3þ 1-dimensional UðNÞ Yang-Mills-Higgs
theory the pure Yang-Mills action is augmented by that of a
scalar with the usual symmetry-breaking potential.

S¼
Z

d4xTr

�
1

2
FμνFμν−ðDμϕÞðDμϕÞ−λðϕ2þv2Þ2

�
: ð1Þ

We shall have both the gauge and Higgs fields antihermitian
in the adjoint representation. They can be expressed as linear
combinations of the antihermitian UðNÞ generators Tb:
ϕ ¼ ϕbTb, Aμ ¼ Ab

μTb where b ¼ 1;…; N2, and v is real.
The gauge covariant derivative isDμϕ ¼ ∂μϕþ ½Aμ;ϕ� and
the field strength is Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�.
The action-extremizing Yang-Mills-Higgs field equations

are easily derived, but we can more strongly constrain the
solutions by requiring time-independence (∂0 ¼ 0) and
taking the Higgs mass to be vanishingly small (i.e.
λ → 0). Under these conditions, the energy is minimized
when the following equation, called the Bogomolny equa-
tion, is satisfied:

Bi ¼ �Diϕ; ð2Þ

where the magnetic field is found from the field strength:
Bi ¼ − 1

2
εijkFjk and i ¼ 1; 2; 3. These conditions are col-

lectively known as the BPS limit and solutions to the
Bogomolny equation are BPS magnetic monopoles [25].
In particular, we are interested here in exploring this theory in
a three-spacewith two coordinates x1 and x2 compactified on
a two torus, each with period 2π: ðx1;x2Þ∼ ðx1þ2π;x2Þ∼
ðx1;x2þ2πÞ, and x3 ∈ R. Monopoles in such a space are
referred to as monopole walls, or monowalls.
Certain components of the gauge field gain mass because

theHiggs field is nonvanishing andbecause of thegauge field
holonomies associated with the periodic directions. As x3
grows large, we choose the Higgs field to approach diagonal
with atmost linear growth, thegaugeholonomies to approach
diagonals which are constant in space, and the UðNÞ
symmetry to be maximally broken to Uð1ÞN in the asymp-
totic region. Then only diagonal gauge field components,
those representing the Cartan subalgebra of UðNÞ, remain
massless. We identify the locations of magnetic charge with
positions at which partial or full gauge symmetry is restored
[26]. The massive gauge field components decay exponen-
tially with distance from such charge.
Now, a BPS solution is a static solution, i.e. the Higgs

and gauge field configurations are time-independent. For
fixed total charge and a given set of gauge and Higgs field
boundary conditions, there may be many such static
solutions. A monopole (or monowall) moduli space is
the set of BPS solutions for fixed total monowall charge
and boundary conditions that together form a manifold.
Each point on the manifold represents a BPS solution with
associated charge distribution. If the positions of localized
charge gain very small velocities, this motion can be
approximated by geodesic motion on the moduli space.
An additional effect comes with this small time-
dependence: these magnetic charges gain electric charge
and so altogether may interact magnetically, electrically,
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and via the scalar field. This effect is controlled by a
periodic phase modulus θ associated with each charge [9].

B. Objectives

This paper pursues two goals. The first goal is to show
that a BPS monowall that has moduli (degrees of freedom)
will split into distinct, well-separated submonowalls (or
subwalls) if any of its moduli becomes large. The second
goal is to determine the moduli space metric corresponding
to the gauge field and Higgs interactions of n well-
separated, distinguishable, slow-moving submonowalls.
To accomplish the first objective, we will review the

construction of the Higgs spectral curve and analyze its
asymptotic behavior using the Newton polygon and
amoeba associated with the curve. The amoeba asymptotics
directly relate to the BPS monopole when its constituent
charges are widely spaced, so we will demonstrate that as
one of the monowall’s moduli becomes very large, the
monowall breaks into subwalls which move apart.
Furthermore, we show that the symmetry breaks from
UðNÞ to Uð1ÞN at a determined distance from each sub-
wall. The subwalls then behave as distinct charges and their
gauge and Higgs field interactions are approximately
Abelian, with exponential precision.
We reach the second objective to calculate the moduli

space metric for n well-separated subwalls by modeling the
moving subwalls as Abelian planes with scalar, magnetic,
and electric charge interactingwith one another andwith a set
of background gauge andHiggs fields. For these subwalls the
Lagrangian reduces to purely kinetic in the slow-move limit.
Lagrange’s equations produce the geodesic equation for the
monowall moduli and we can read off the metric.
Here are the defining parameters of the moduli space we

will calculate. The Yang-Mills-Higgs Abelian asymptotic
field equations imply a harmonic Higgs field. Following
[21], we constrain the Higgs field of the UðNÞmonowall to
diverge no more than linearly, and its eigenvalues to behave
as follows when x3 → �∞:

ϕ�∞
a ¼ −iðG�

a x3 þ v�a Þ þOðx−13 Þ; ð3Þ
where a ¼ 1;…; N indexes theN factors ofUð1Þ, i.e. theN
diagonal elements of the field matrices with which the Higgs
eigenvalues are in one-to-one correspondence. The left and
right magnetic charges of the monowall G�

a are rational
constants and the subleading terms v�a are real constants.
Also fixed as x3 → �∞ are the holonomy eigenvalues eid1;a

and eid2;a associated with the two periodic directions ðx1; x2Þ.
We use the shorthand ~d�a ¼ ðd�1;a; d�2;a; 0Þ, where the vector
symbol indicates the three spatial directions and
d�a;i ∈ ½0; 2πÞ. Together with the locations of any singular

(calledDirac)monowalls, these constants ðG�
a ; v�a ; ~d

�
a Þ fully

specify the moduli space. Cherkis and Ward [21] have
established consistency conditions which must be satisfied
if BPS solutions are to exist. These are determined using the

Newton polygon construction, which will be described later
in this section. They determined [21] that the number of real
moduli is then four times the number of integer points on the
interior of the Newton polygon, which the next subsection
describes.

C. Higgs spectral curve

For each periodic coordinate, define the Higgs spectral
curve (or “monopole spectral curve”) [13,21,24]. We will
use this tool to explore behaviors of BPS solutions. The
x1-direction Higgs curve Σ1, for example, is determined by
the characteristic equation for the holonomyof the differential
operatorD1 þ iϕ. The fields ðAμ;ϕÞ are assumed to be BPS.
We will pursue the example of the x1-direction Higgs curve
but it should be noted that a different spectral curve could be
found by simply exchanging the spatial indices 1 and2.These
curves share a Newton polygon, which wewill shortly define
and describe. To define the holonomy, introduce a matrix
function Vðx1; x2; x3Þ which solves the equation

ðD1 þ iϕÞV ¼ 0; ð4Þ

with initial condition Vð0; x2; x3Þ ¼ 1. The holonomy of
ðD1 þ iϕÞ is Wðx2; x3Þ ¼ Vð2π; x2; x3Þ, which is a holo-
morphic function of x3 þ ix2 [21], given theBi ¼ −Diϕ form
of the Bogomolny equation. Define a more convenient
coordinate s ¼ ex3þix2 . The eigenvalues of the holonomy
WðsÞ are finite and nonzero, the Higgs spectral curve is
described by the characteristic (eigenvalue) equation ofWðsÞ:

detðWðsÞ− tÞ ¼ Fðs; tÞ ¼ 0; where Fðs; tÞ ¼
XN
l

klðsÞtl:

ð5Þ

Given finite eigenvalues t and the boundary conditions set on
the fields in the previous section and in [21], Fðs; tÞ is a
polynomial in t of degreeN and the functions klðsÞ are rational
functions of s. Without affecting the set of roots fðs; tÞg of F,
we can rescale by a common denominator polynomial in s to
obtain a polynomial in s and t, labeled fðs; tÞ. This is referred
to as the spectral polynomial [21], or Higgs spectral poly-
nomial. The curve produced by fðs; tÞ ¼ 0 is the Higgs
spectral curve and lives in ðC�Þ2, where C� is the complex
plane with the origin omitted, s is the coordinate in the first
factor of C� and t is the coordinate in the second factor.
We now introduce the Newton polygon and amoeba

for this polynomial, which can be written fðs; tÞ ¼P
σ
i¼0 ais

αi tβi , where σ þ 1 is the number of terms in the
polynomial. The Newton polygon N ðfÞ is the minimal
convex hull of the points fðαi; βiÞg in Z2 for which ai ≠ 0.
The concept generalizes to arbitrary dimension [21,27]. To
obtain the amoeba, project the Higgs spectral curve from
two complex dimensions down to two real dimensions by
taking themodulus of each factor ofC� and applying the Log
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map ðs; tÞ → ðlog jsj; log jtjÞ ¼ ðx3; ηÞ. This yields a more
intuitive view of the nature of the curve, particularly in the
large-x3 regime, as will be seen. Asymptotically, Eq. (4)
simplifies significantly when the commutator vanishes and
theHiggs field becomes approximately linear in x3. It is clear
that x3 is the noncompact three-space coordinate and in this
region η corresponds to the x3-linear Higgs eigenvalue
magnitudes. When the Higgs curve is projected in this
manner, the result is called the amoeba AðfÞ ∈ R2 for its
distinctive appearance [28] (see, for example, Fig. 1)).

III. MONOWALL SPLITTING

Each polygon edge is associated with a set of external
amoeba legs stretching out to infinity. Each external leg is
normal to its associated polygon edge, and its position is
determined by the monomials of fðs; tÞ associated with that
edge (their powers ðα; βÞ and coefficients). In order to keep
the boundary conditions on the fields fixed, the polynomial
coefficients corresponding to edge terms must be fixed
[21]. This constraint does not apply to points on the interior
of the Newton polygon, and we may consider the family of
polynomials with fixed external coefficients and a range of
values for internal coefficients. To this purpose, we begin
by allowing one internal point coefficient to vary, i.e. we
consider the family of polynomials for which the coef-
ficient of one internal point takes any value on the complex
plane except the origin, while the remaining coefficients are
each fixed in the complex plane. Rather than considering
each such polynomial individually, we may look at the
whole picture at once by treating the internal coefficient as
an independent variable on par with s and t. This effectively
increases the number of complex coordinates of the
polynomial function from two to three. We will choose
this varying internal coefficient u ¼ a0 to be associated
with the lattice point ðα0; β0Þ and write the three-
dimensional Higgs polynomial (from now on referred to
as the Newton polynomial) with σ þ 1 terms as

~fðs; t; uÞ ¼ usα0tβ0 þ
Xσ
i¼1

aisαi tβi : ð6Þ

The three-dimensional amoeba ~Að ~fÞ ∈ R3 for
~fðs; t; uÞ ¼ 0 also has externalities extending to infinity,

known as the asymptotic three-dimensional amoeba.
According to Gelfand, Kapranov, and Zelevinski1 [28]
and Viro [29], this three-dimensional amoeba asymptoti-
cally exponentially approaches the core of the amoeba,
which can be described in the following way: Normal to
each edge of the three-dimensional polytope for ~fðs; t; uÞ
are a continuous set of directions which form plane wedges.
Wedges for different edges on a face of the Newton
polytope intersect at and terminate on the leg associated
with that face. The three-dimensional amoeba legs are a set
of cylinders each normal to a polytope face and having two-
dimensional amoeba cross sections [see Fig. 2]. Recall that
x3 ¼ log jsj is the noncompact spatial coordinate and that
η ¼ log jtj asymptotically corresponds to the Higgs eigen-
value magnitudes. The new, third component R ¼ log juj is
the noncompact modulus and its significance is seen in
the intersection of the three-dimensional amoeba with a
horizontal plane defined by a given height of R. This
intersection is precisely the two-dimensional amoeba
for fðs; tÞ [e.g. Fig. 3]. The Newton polygon for this
two-dimensional amoeba is the projection of the three-
dimensional Newton polytope onto the ðα; β; 0Þ lattice.
Each subwall corresponds to a face of the three-
dimensional polytope and corresponds to an edge of this
two-dimensional polygon.
For a horizontal plane positioned at very large R, its

intersection with the three-dimensional amoeba is as
follows: The plane intersections with the wedges of the
three-dimensional amoeba along straight lines, called
amoeba lines. Its intersections with the three-dimensional
amoeba legs, called junctions, are sections of two-
dimensional-amoeba cylinders and, importantly, have fixed
areas asymptotically which differ from the cylinder cross
sections by a constant factor. Each subwall, then, is
asymptotically associated with and its behavior determined
by a face of the Newton polytope. The separations/relative
positions of subwalls depend linearly on the modulus R.

FIG. 1. Newton polygon and amoeba for fðs; tÞ ¼ 1.3st2 þ
ustþ 4s2 þ 5s − 1 with u ¼ 1000.

FIG. 2. Three-dimensional Newton polygon and sketch of
three-dimensional amoeba core for ~fðs; t; uÞ ¼ 1.3st2 þ ustþ
4s2 þ 5s − 1.

1Proposition 1.13, Ch. 6.
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In the η versus x3 plane at R, the amoeba lines
correspond to regions in x3 where the Higgs eigenvalues
take values linear in x3, with degeneracy equal to the
denominator of the slope. As we will show, the UðNÞ
symmetry in these regions is maximally broken to Uð1ÞN
by the nonvanishing gauge field holonomies for the x1 and
x2 directions, and the fields are Abelian. The junctions
correspond to regions in which the Higgs field eigenvalues
are not linear in x3 and the gauge field holonomies cannot
be approximated well, and so we are unable to infer fully
broken symmetry; we interpret these regions as locations of
magnetic charges, or subwalls. It is necessary now to define
the widths of these subwalls, or the extents in x3 of their
non-Abelian interiors. We will define the subwalls to be
“well separated” when their separations are much greater
than the maximum subwall width and their interactions are
Abelian.
To accomplish this, we must quantify the decay of the

noncommuting gauge field components which mediate
nonAbelian field interactions. Gauge field components
which do not commute with the Higgs field must decay
exponentially at a rate proportional to the separation of
Higgs eigenvalues.2 Here this decay rate amounts to the
Log of the ratio of eigenvalues, log ðtj=tkÞ, for the hol-
onomy ~Wðs; uÞ since nonvanishing gauge field holonomies
can asymptotically generate gauge field masses analo-
gously to the Higgs mechanism. At the point where these
noncommuting gauge field components have decayed by
some chosen fraction, we mark the edge of a subwall. We
define the subwall width as the distance at which the

exponential rates for the decay of the non-Abelian gauge
field components are bounded from below by some small
value T0, plus the distance 1=T0 at which the fields will
have decreased by a factor of 1=e.
While the Higgs eigenvalue behavior (as a function of

x3) is illustrated by the amoeba, the behavior of the gauge
field holonomy is not. We must therefore look to the
spectral polynomial to determine the various branches of
t ¼ Tðs; uÞ, which locally satisfy ~fðs; Tðs; uÞ; uÞ ¼ 0. This
is done by calculating the Newton-Puiseux expansion
[31,32] for Tðs; uÞ with respect to s and u. If the
Newton polytope faces corresponding to two subwalls
are adjacent, then the fields between two subwalls are
governed primarily by the two monomials in the spectral
polynomial that are associated with the edge e joining the
two faces. There are also smaller contributions from the
remaining monomials. The resulting expansion will take
the following form and only the first two terms in the
expansion are of concern here:

Tjðs; uÞ ¼ c1jsγ1uγ3 þ c2js~γ1ju~γ3j þ � � �
¼ c1jsγ1uγ3ð1þ ðc2j=c1jÞs~γ1j−γ1u~γ3j−γ3Þ þ � � � ð7Þ

Briefly, for a direction w ∈ R3 within the normal cone of an
edge of the Newton polytope (see Fig. 4), the Newton-
Puiseux series is constructed iteratively. The first series
term solves the vanishing of the edge polynomial
usα0Tβ0 þ asαTβ ¼ 0, so that in the first term in the series,
the coefficient is c1j ¼ ð−aÞ−1=ðβ−β0Þe2πi·j=ðβ−β0Þ, and the
powers are γ1 ¼ −ðα − α0Þ=ðβ − β0Þ, and γ3 ¼ 1=ðβ − β0Þ.
More formally, the powers γ1 and γ3 are the negative of the
components of the slope vector Se ¼ ðe1e2 ; 0;

e3
e2
Þ ¼

−ðγ1; 0; γ3Þ associated with the edge e ¼ ðα − α0;
β − β0;−1Þ, and the coefficient c1 solves the equation

FIG. 3. Three-dimensional amoeba (white) and R plane (grey).
The intersection (black) gives the two-dimensional amoeba for a
given value of R.

FIG. 4. The area above the grey partial planes is the normal
cone for edge e. The normal vector n0 is normal to the front right
face, while n is normal to the rear face. The vector w is normal to
edge e and lies in the wedge bounded by n and n0. It is defined as
a rotation if n through angle θ.2[30], [Theorem 10.5, Ch. IV].
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P
i∈eaic

βi
1 ¼ 0, excluding trivial solutions. The second

term, c2s~γ1u~γ3 is found by repeating this process for the
Newton polytope for the polynomial ~f1ðs; T1; uÞ ¼
~fðs; T1 þ c1sγ1uγ3 ; uÞ ¼

P
σ1
i¼0 a

1
i s

α1i T
β1i
1 , choosing an edge

~e which maximizes −S~e · w (called the order ~ν of edge ~e
with respect to w) while satisfying −S~e · w < −Se · w. The
coefficient c2 solves the equation

P
i∈~ea

1
i c

β1i
2 ¼ 0 and

jc2j ≤ ð1þ max ðfjaicN1 jg;fjaijgÞ
min ðfjaicN1 jg;fjaijgÞ

Þ ≕ C2 is its maximum magni-

tude [33].
Define δ ¼ ðδ1j; 0; δ3jÞ ¼ ð~γ1j − γ1; 0; ~γ3j − γ3Þ, which

behave as follows in the asymptotic limits: For s → 0
and u → ∞, δ1j > 0 and δ3j < 0; for s → ∞ and u → ∞,
δ1j < 0 and δ3j < 0. In other words, the quantity sδ1juδ3j

decays in both of these limits of s and u. Given the first two
terms of the Newton-Puiseux series, the ratio of two
eigenvalues Tj of the holonomy ~Wðs; uÞ is written

Tjðs; uÞ
Tkðs; uÞ

¼ c1j
c1k

�
1þ c2j

c1j
sδ1juδ3j −

c2k
c1k

sδ1kuδ3k
�

þOðminðs2δ1iu2δ3iÞÞi¼j;k: ð8Þ

In this expression, every quantity but the first term c1j=c1k
decays in the asymptotic limits. Simplifying the ratio of
coefficients c1j=c1k ¼ e2πiðj−kÞ=ðβ−β0Þ, the Log of Eq. (8)
becomes

log

�
Tj

Tk

�
ðs; uÞ ¼ 2πiðj − kÞ

β − β0
þ
�
c2j
c1j

sδ1juδ3j −
c2k
c1k

sδ1kuδ3k
�

þOðminðs2δ1iu2δ3iÞÞi¼j;k: ð9Þ

The first term in this series is constant, while in the
asymptotic limit the quantity in the curved brackets is
the largest decaying term in the series.
The expansion direction w ∈ R3 comes explicitly into

play when determining the relative sizes of the quantities
sδ1 and uδ3 . Along the direction w, the variables behave as
ðs0; t0; u0Þ → ðs0ew̄1 ; t0ew̄2 ; ew̄3Þ relative to some initial
values ðs0; t0; 1Þ [29], where w̄ is the vector w multiplied
by a coefficient so that its third component is w̄3 ¼ R: w̄ ¼
R
w3
w for R ∈ Rþ. Also define the extended face normal

vector n̄ ¼ R
n3
n. We have not said very much so far about

the direction vector w except that it must lie within the
normal cone of the edge e. Define it in terms of the normal
vector n for one of the edge’s adjacent faces [see Fig. 4].
For angle θ, we define the expansion direction as a rotation
of the nearest of the two adjacent face normal vectors:

w ¼ n cos θ þ ðe×nÞ
jej sin θ þ eðe·nÞ

jej2 ð1 − cos θÞ. The third term
vanishes since the face normal n is orthogonal to the edge
vector and e · n ¼ 0. Applying this form for the vector w,
the largest decaying terms in Eq. (9) are

sδ1juδ3j ¼ s
δ1j
0 eð~ν−νÞR=w3 ¼ s

δ1j
0 e−jw̄1−n̄1j=λ; ð10Þ

where the denominator λ≔ jðe×nÞ1−ðe×nÞ3n1=n3j
jðe×nÞ·δj is j-indepen-

dent, and the powers are δ ¼ ðδ1j; 0; δ3jÞ for any j. The
difference in orders of the secondary edge ~e and the original
edge e is ð~ν − νÞ ¼ w · δ and it is j independent. The vector
component n̄1 ¼ x3l − x03l is the x3 distance between the
subwall’s position x3l and its reference position x03l, i.e. the
linearly extrapolated position of the wall when R ¼ 0. We
identify the subwall initial position for edge e with the
greatest magnitude as max jx03;lj and that with the smallest
magnitude as min jx03lj for l ¼ 1;…; n.
For a UðNÞ monowall, we find that beyond a distance

λ log j cjkeN=λπ

π=N j from the wall’s position, the exponential
decay rates of the off-diagonal gauge field components
are bounded by j logðTj=TkÞj ≥ π=N, where the mixed-

index coefficient is defined cjk≔ðc2jc1j
s
δ1j
0 − c2k

c1k
sδ1k0 Þ and the

power of s0l is bounded by 1=N2 ≤ jδ1jj ≤ N2. The

bounded Newton-Puiseux coefficients satisfy jc2j ≤
ð1þ max ðfjaicN1 jg;fjaijgÞ

min ðfjaicN1 jg;fjaijgÞ
Þ ≕ C2 and jc1j ≥ maxfjaijg−ρ ≕

C1, where ρ ¼ N if maxfjaijg is greater than unity and
ρ ¼ 1=N if it is less than unity. The coefficient cjk is then

limited by jcjkj ≤ 2 C2

C1
ex

0
3
δ1. We find the following is the

maximum subwall width for a UðNÞ monopole on R × T2

where each torus period is 2π:

l
2
¼ log j

�
2NC2

πC1

�
λ

j þmax jx3jjN2λþ N
π

þ ðmaxðx03jÞ −minðx03jÞÞ; ð11Þ

where λ≔ jðe×nÞ1−ðe×nÞ3n1=n3j
jðe×nÞ·δj . No subwall of a UðNÞ mono-

wall may have a width greater than l. Recall that the
subwall separations are linear in R. In order to consider the
subwalls to be well separated and their interactions
Abelian, we require of the noncompact modulus

R ≫ l ð12Þ

for each UðNÞ subwall.
In this section, we described the asymptotic behavior of a

BPSUðNÞmonowall using the Higgs spectral curve and its
Newton polygon and amoeba. By allowing a coefficient in
the interior of the polygon to vary, we introduced a modulus
R ¼ log juj for the monowall. Using the Newton-Puiseux
series for the eigenvalues Tjðs; uÞ of the holonomy ~Wðs; uÞ
to characterize the off-diagonal gauge field decay rates, we
showed that when the modulus R is very large, the
monowall breaks into subwalls whose separations increase
with R. For R ≫ l, the subwall interactions reduce to N
Abelian interactions (i.e. UðNÞ breaks to Uð1ÞN) up to
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corrections exponentially small in R. In the following
section, we will derive an asymptotic moduli space metric
for these well-separated subwalls using their Abelian scalar,
magnetic, and electric interactions.

IV. ASYMPTOTIC MODULI SPACE

A. Lagrangian and fields

We have established that a monowall splits into subwalls
when a modulus becomes large. We will now consider the
regime in which the monowall is split into n subwalls
which have no internal moduli, and the subwall Higgs and
gauge interactions are Abelian. In order to model these
Abelian long-distance interactions, we contrive a system of
n Abelian monowalls in a linear Higgs background which
have scalar, magnetic, and electric interactions with one
another and with the background. The interactions of one of
these Abelian monowalls with the background and the
n − 1 remaining Abelian monowalls mimics the long-
distance interactions of one of the non-Abelian subwalls
with the n − 1 remaining subwalls. We will from here
forward refer to these model Abelian monowalls simply as
subwalls. We describe the Abelian monowall interactions
using Lorentz-invariant Maxwell electromagnetism with a
scalar field. We write the Lagrangian and consider only
very small subwall velocities. We then Legendre transform
from the electric charge qi, which is a momentum, to its
canonical coordinate, which is a periodic phase modulus θi.
The Lagrangian reduces to purely kinetic under these
conditions. We will then read the monowall moduli space
metric off of this kinetic Lagrangian.
Recall that we choose a gauge in which the Higgs field is

diagonal and we have demonstrated that it is x3-linear for
large x3. The off-diagonal gauge fields gain mass and are
exponentially small and therefore negligible, while the
diagonal gauge field components remain massless. We will
represent the generators of the Cartan subalgebra as the N
generators fHag of N × N imaginary diagonal matrices,
and write the asymptotic fields as ϕ ¼ ϕaHa and Aμ ¼
Aa
μHa where ðϕa; Aa

μÞ are real and a ¼ 1;…; N. We employ

an additional, adjoint dual gauge potential ~Aμ ¼ ~Aa
μHa to

model magnetic interactions. This dual gauge field can be

related to ~Aμ via the usual dual field strength
~Fμν ¼ ∂μ

~Aν − ∂ν
~Aμ þ ½ ~Aμ; ~Aν�, which is defined as

~Fμν ¼ − 1
2
εμνρσFρσ. The relativistic Lagrangian for the

ith wall interacting with the gauge, dual gauge, and
Higgs fields ðϕ; Aμ; ~AμÞ of the n − 1 remaining subwalls
and background is

Li ¼ −iTr½4πϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ q2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~V2

i

q
− 4πqiA0 þ 4πqi ~Vi · ~A

− 4πgi ~A
0 þ 4πgi ~Vi ·

~~A�; ð13Þ

where the three-space velocity is ~Vi ¼ _~xi and we use the
dotted time-derivative notation _x ¼ dx

dt. The magnetic,
electric, and scalar charges of the ith subwall are interpreted
as ðgi; qi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ q2i

p
Þ; respectively, where this form of the

scalar charge follows from the BPS conditions under which
the static forces cancel for well-separated subwalls [11].
Note that the electric charges qi are momenta associated
with the phase degrees of freedom θi for subwalls. The
electric charges of the subwalls are subject to net electric
charge conservation, and individual electric charge con-
servation when the subwalls are well separated as they
are here.
Recall that we allow gauge field holonomies to have

nonzero, spatially uniform, linearly time-dependent
values asymptotically. Define the linearly time-dependent
terms in the asymptotic holonomies (phases) ~aðtÞ ¼
sgnðx3Þða; b; 0ÞðtÞ associated with each of the periodic

spatial directions, and their dual vector ~~aðxÞ such that
_~a ¼ ~∇ × ~~a. The effect of the phase velocities _~a is equiv-
alent to that of the transverse spatial velocities _x1i and _x2i:
~Vi ¼ ð− _bi; _ai; _x3iÞ. For later use, define two dual functions
uðx3Þ and ~wðxÞ such that ~∇u ¼ ~∇ × ~w.

~wðxÞ ¼ ~wð−xÞ ¼ 1

2
sgnðx3Þ½−x2x̂1 þ x1x̂2�;

~aðtÞ ¼ sgnðx3ÞðaðtÞx̂1 þ bðtÞx̂2Þ;
uðx3Þ ¼ uð−x3Þ ¼ jx3j;
~~aðxÞ ¼ sgnðx3Þ½− _bx1 þ _ax2�x̂3: ð14Þ

In addition to fields generated by subwalls, which we
will write next, we include static field backgrounds for each
factor of Uð1Þ. For convenience, we split these back-
grounds into constant terms ðdaμ; ~daμ;−vaÞ and a back-
ground linear Higgs ϕ0 with the associated linear gauge
fields ðAμ;0; ~Aμ;0Þ required by Bogomolny’s equation:

ðdμ; ~dμ;−vÞ ¼ ðdaμHa; ~d
a
μHa;−vaHaÞ;

A0;a
0 ðxÞ ¼ 0;

ϕa
0ðx3Þ ¼ −ga0x3;

~Aa
0ðxÞ ¼

ga0
2
½−x2x̂1 þ x1x̂2�;

~~A
a

0ðxÞ ¼ 0;

~A0;a
0 ðxÞ ¼ −ga0x3: ð15Þ

The gauge and Higgs fields for the jth wall moving with

velocity ~Vj are Lorentz boosted versions of those for the
stationary wall. We keep only terms up to quadratic in
velocities and electric charge in the Lagrangian, so in the
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fields ~A and ~~A discard terms which are higher order
than linear in velocities. Similarly, in the scalar expressions
ϕ, A0, ~A0 discard terms which are higher order than
quadratic in velocities. This requires approximation of

the Liénard-Wiechert denominator ð~x2 − ð~x × ~VÞ2Þ1=2 as
j~xj since the denominator would appear in the scalar-type
quantities with coefficients linear in velocity, resulting in
negligible terms cubic in velocity [11,20]. In this approxi-

mation, a subwall moving at velocity ~Vj with respect to the

origin generates the following fields ðϕa
j ; A

a
μ;j; ~A

a
μ;jÞ.

ϕa
j ðx3Þ ¼ −uðx3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgaj Þ2 þ q2j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~V2

j

q
;

A0;a
j ðxÞ ¼ −qjuðx3Þ þ gaj ð~wðxÞ · ~VjÞ − gaj ð~a · ~VjÞ;
~A0;a
j ðxÞ ¼ −gaj uðx3Þ − qjð~wðxÞ · ~VjÞ − gaj ð~~ajðxÞ · ~VjÞ;
~Aa
j ðxÞ ¼ gaj ~wðxÞ − gaj ~a;

~~A
a

j ðxÞ ¼ −qj ~wðxÞ − gaj ~~ajðxÞ − gaj uðx3Þ~Vj: ð16Þ

The net gauge fields must respect the periodic boundary
conditions on R × T2 and so we require that, for a
coordinate shift in one of the periodic directions, the fields
be gauge-shifted under the Uð1Þ symmetry, with gauge
functions given here.

x1 → x1 þ 2π;

θj → θj þ πgjsgnðx3Þx2;
x2 → x2 þ 2π;

θj → θj − πgjsgnðx3Þx1: ð17Þ

B. Two-monowall interactions

Using these fields, we may now write the Lagrangian in a
convenient form and begin by doing so for two subwalls.
For a pair of walls, define the following relative position,
phase, and charge quantities:

~x ¼ ~x1 − ~x2; qa ¼ q1
ga1

−
q2
ga2

;

ga ¼ ga1 − ga2; ~a ¼ ~a1 − ~a2;

~~a ¼ ~~a1 − ~~a2; Ga ¼
X2
i¼1

gai : ð18Þ

Neglecting constant terms, suppressing the index a for
Uð1Þ factors, the symmetrized Lagrangian for each set
of Uð1Þ interactions takes the form

L
4π

¼ v
2G

��X2
i¼1

gi ~Vi

�2

þ g1g2 ~V
2

�

−
v
2G

��X2
i¼1

gi
qi
gi

�2

þ g1g2q2
�
þ
X2
i¼1

qi ~Vi · ~d

−
X2
i¼1

qid0 þ
X2
i¼1

gi ~Vi ·
~~dþ

X2
i¼1

g0gix3;i
2

�
~V2
i −

q2i
g2i

�

þ
X2
i¼1

g0gi
qi
gi
ð~wðxÞ · ~ViÞ þ

�
g1g2uðx3Þ

2
ð~V2 − q2Þ

þ g1g2qð~wðxÞ · ~VÞ þ g1g2½~~a − q~a� · ~V
�
: ð19Þ

To find the full Lagrangian, we add up all N of these Uð1Þ
Lagrangians. This splits into the center of mass Lagrangian
and the remainder Lagrangian, L ¼ LCM þ Lrem. We inte-
grate here over the periodic coordinates x1 and x2 from −π
to π. Because the terms with ~wðxÞ · ~V and ~~aðxÞ · ~V are
linear in x1 and x2 positions, these terms vanish after
integration.3 Here is the result after separating the center of
mass and remainder components of the Lagrangian, with
implicit sum over the suppressed index a:

LCM

4π
¼ v

2G

��X2
i¼1

gi ~Vi

�2

−
�X2

i¼1

gi
qi
gi

�2�

þ 1

2

�X2
i¼1

qi
gi

��X2
j¼1

gj ~Vj · ~d
�

−
�X2

i¼1

gi
qi
gi
d0
�
þ
�X2

i¼1

gi ~Vi ·
~~d

�
;

Lrem

4π
¼ g1g2

2

�
v
G
þ uðx3Þ

�
ð~V2 − q2Þ

þ
X2
i¼1

g0gix3;i
2

�
~V2
i −

q2i
g2i

�

− g1g2ð~a · ~VÞqþ
~d
2
· ðg1 ~V1 − g2 ~V2Þq: ð20Þ

Maintaining the low-velocity approximation, the
Lagrangian is purely kinetic since q behaves as a velocity.
We now apply the fixed asymptotic boundary conditions
constraint, which is equivalent to fixing the sums of
the three-space and periodic positions of the subwalls
(i.e. fixing the center of mass, or its analog). Incidentally,
there is a physical motivation for fixing the boundary
conditions. Because the fields diverge as x3 → �∞, so too
does the energy. Changing the boundary conditions on the

3Altering the integration bounds of x1 and x2 yields different
but physically equivalent forms of the Lagrangian.
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fields would require infinite kinetic energy. After fixing the
center of mass, the Lagrangian reduces to the remainder
Lagrangian (from now on referred to simply as the
Lagrangian).
Currently, the Lagrangian is written in terms of the x3

positions of the subwalls, their phases ~a, and their electric
charges. The electric charge is not itself a modulus but is a
momentum conjugate to a periodic modulus θ. A Legendre
transform, changing coordinates from q to _θ, produces the

Lagrangian written explicitly in terms of the monowall
moduli.

L0 ¼ Lþ q_θ: ð21Þ

After implementing the Legendre transform, we write the
metric in Lee-Weinberg-Yi form [12] in terms of absolute
rather than relative coordinates.

ds2

4π
¼

XN
a¼1

1

2
Uij;ad~xi · d~xj þ

1

2
½U−1�ij;a½dθi þ ~Wik

a · d~xk�½dθj þ ~Wjl
a · d~xl� ð22Þ

with the following tensors defined for two subwalls:

Uii;a ¼ g0agiax3i þ
X2
j¼1
j≠i

giagja

�
va
Ga

þ jx3i − x3jj
�
;

~Wii
a ¼

~da
2
gia −

X2
j¼1
j≠i

giag
j
að~ai − ~ajÞ;

Uij;a ¼ −giagja
�
va
Ga

þ jx3i − x3jj
�
;

~Wij
a ¼ −

~da
2
gja þ giag

j
að~ai − ~ajÞ: ð23Þ

where the third components of the following vectors vanish
d3a ¼ Wii

3a ¼ Wij
3a ¼ 0 and the three-space differential is

expressed d~x ¼ ð−db; da; dx3Þ. The index a ¼ 1;…; N
runs over the factors of Uð1Þ. This metric retains the
Uð1Þ symmetries, and symmetry under the SLð2;ZÞ action
on the x1 and x2 phases ða; bÞ.

C. Multimonowall interactions and moduli relations

The metric (22) holds for the extension to n subwalls.
The n-subwall tensors are

Uii;a ¼ g0agiax3i þ
Xn
j¼1
j≠i

giagja

�
va
Ga

þ jx3i − x3jj
�
;

~Wii
a ¼

~da
n
gia −

Xn
j¼1
j≠i

giag
j
að~ai − ~ajÞ;

Uij;a ¼ −giagja
�
va
Ga

þ jx3i − x3jj
�
;

~Wij
a ¼ −

~da
n
gja þ giag

j
að~ai − ~ajÞ: ð24Þ

where d3a ¼ Wii
3;a ¼ Wij

3;a ¼ 0 and d~x ¼ ð−db; da; dx3Þ.
The index a ¼ 1;…; N again runs over the factors
of Uð1Þ.
When the consistency conditions of [21] are applied, the

number of independent moduli reduces from 4n to 4Γ,
where Γ is the number of internal points in the Newton
polygon. To illustrate this for the above BPS monowall
moduli space, we first consider the case of one varying
internal coefficient. We use the modulus R to parameterize
the values of x3 and ϕ in the R-plane corresponding to each
of the n amoeba junctions. This is done by finding the lines
in R3 along which two adjacent three-dimensional amoeba
wedges intersect and using these to define subwall posi-
tions for each value of R. Wewill from here forward refer to
the two-dimensional amoeba, which is the amoeba for the
projection of the three-dimensional Newton polytope onto
the ðα; β; 0Þ lattice. For each value of R, there is a different
two-dimensional amoeba. Recall that each subwall corre-
sponds to a face of the three-dimensional polytope and
therefore each subwall now corresponds to an edge of this
two-dimensional polygon. The relationships between R and
ðx3;ϕÞ at the junctions are linear:

dxi3 ¼ midR; dϕi ¼ nidR: ð25Þ

The coefficients ðmi; niÞ can be found by direct examina-
tion of the amoeba since ni=mi is the slope of the ith
external amoeba leg. They can be expressed in terms of the
perimeter points of the Newton polygon. Let the lattice
coordinates of the ith vertex in the Newton polygon be
written ðαi; βiÞ ∈ Z2, with i ∈ Z=n running counterclock-
wise over the n vertices of the Newton polygon.
Asymptotically, each subtriangle in the Newton polygon
triangulation represents a subwall and, as we will show, can
be used to determine its motion. We choose a triangulation
such that each subtriangle contains an internal point
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ðα0; β0Þ, and label the remaining two vertices ðαi; βiÞ and
ðαiþ1; βiþ1Þ for the ith subtriangle.
Under the Log map, the set of solutions to the poly-

nomials for each of the subtriangle edges containing
ðα0; β0Þ form wedges which intersect along a line. This
line represents the set of positions the associated subwall
may occupy in the x3 − η plane for all values of the
modulus R ∈ Rþ. The set of common solutions can be
found by simultaneously solving the polynomials for two
of its edges. In the following linear equation, the first row
corresponds to the subtriangle edge connecting ðα0; β0Þ to
ðαi; βiÞ, and the second row corresponds to ðα0; β0Þ and
ðαiþ1; βiþ1Þ. We define a reference point ðx03; η0Þ by solving
this equation for the case R ¼ 0. Then, we can relate xi3 and
ηi to each modulus R in the following way:

dR

�
1

1

�
¼

�
αi − α0 βi − β0

αiþ1 − α0 βiþ1 − β0

��
dx3
2πdϕ

�
i

;

dxi3 ¼ βiþ1−βi
deti dR;

dϕi ¼ −ðαiþ1−αiÞ
2π deti dR;

ð26Þ

where deti ¼ ðβiþ1 − β0Þðαi − α0Þ − ðβi − β0Þðαiþ1 − α0Þ.
Extending these arguments to the case of Γ > 1 internal
points in the polygon positioned at lattice points ðατ0; βτ0Þ for
τ ¼ 1;…;Γ, the monowall has Γ independent noncompact
moduli, and the junction positions xi3 asymptotically
depend linearly on each noncompact modulus:

xi3 − xi3;0 ¼
XΓ
τ¼1

mi
τRτ; ϕi − ϕi

0 ¼
XΓ
τ¼1

niτRτ;

mi
τ ¼

βiþ1 − βi
detτi

; niτ ¼ −
ðαiþ1 − αiÞ
2πdetτi

; ð27Þ

where detτi¼ðβiþ1−βτ0Þðαi−ατ0Þ−ðβi−βτ0Þðαiþ1−ατ0Þ. The
same arguments extend to the remaining types of moduli.
The ith subwall has a set ofN magnetic charges gia which

are determined by the Newton polygon and its triangula-
tion. The charge of a subwall is determined by the differ-
ence in slope of the Higgs eigenvalues (which correspond
to nonvertical amoeba lines) to either side of the subwall.
The magnetic field due to a single, stationary subwall is
~Biðx3Þ ¼ − ~∇ϕi ¼ gisgnðx3 − xi3Þ. External amoeba lines
have slopes ð− αiþ1−αi

βiþ1−βi
Þ normal to the corresponding Newton

polygon edge and the slopes are triangulation-independent.

Internal amoeba lines have slopes ð− αi−ατ0
βi−βτ0

Þ normal to lines

of triangulation and are therefore triangulation-dependent.
A subwall which has no effect on the ath eigenvalue has
zero charge gia ¼ 0with respect to the ath factor ofUð1Þ. A
subwall which alters the slope of the ath Higgs eigenvalue
ϕaðx3Þ has charge gia equal to half the change in slope.
Through the amoeba, the Newton polygon and its triangu-
lation yield precise information about the various asymp-
totic Higgs eigenvalues fϕaðx3Þg. The lattice height N of
the Newton polygon is the number ofUð1Þ factors from the
maximally broken UðNÞ, and each horizontal strip of the
lattice is associated with a Uð1Þ factor (see Fig. 5). A
subwall whose subtriangle has lattice height h and occupies
h horizontal strips is magnetically charged with respect to
each of those h factors of Uð1Þ. A Higgs eigenvalue with
slope k=l in some region actually represents l degenerate
Higgs eigenvalues. To see this illustrated, see Figure 5. For
example, in Fig. 5, the charges for subwall 1 are g11 ¼ − 1

4

and g12 ¼ 1
4
. For contrast, subwall 2 has charges g21 ¼ 0

and g22 ¼ − 1
2
.

Define the vectors ~A ¼ ðA;B; 0Þ, d~X ¼ ð−dB; dA; dRÞ.
In terms of the four types of moduli ðA;B; R;ΘÞ which
correspond respectively to ða; b; x3; θÞ, the metric may be
written in the Lee-Weinberg-Yi form:

FIG. 5. Left: Newton polygon (black lines) with a regular triangulation (grey lines). Right: Sketch of the amoeba for the associated
Uð2Þ monowall, with the two asymptotic Higgs eigenvalues shown in dotted and dashed lines over a range in x3.
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ds2

4π
¼

XN
a¼1

1

2
Uij;ad~xi · d~xj þ

1

2
½U−1�ij;a½dθi þ ~Wik

a · d~xk�½dθj þ ~Wjl
a · d~xl� ð28Þ

with the following tensors defined:

Uii;a ¼ g0agiax3i þ
Xn
j¼1
j≠i

giagja

�
va
Ga

þ jx3i − x3jj
�
;

~Wii
a ¼

~da
n
gia −

Xn
j¼1
j≠i

giag
j
að~ai − ~ajÞ;

Uij;a ¼ −giagja
�
va
Ga

þ jx3i − x3jj
�
;

~Wij
a ¼ −

~da
n
gja þ giag

j
að~ai − ~ajÞ;

~xi ¼
XΓ
τ¼1

mi
τ
~Xτ þ xi3;0x̂3;

~ai ¼
XΓ
τ¼1

mi
τ
~Aτ; θi ¼

XΓ
τ¼1

mi
τΘτ: ð29Þ

Here, a indexes the N Uð1Þ factors. The asymptotic
parameters of the metric and the monowall itself, the
constant background Higgs, constant background gauge
holonomies, the x3 and phase centers of mass, the total
magnetic charge, and the slope of the linear background

Higgs fðva; ~da; ðx3Þcma ; ~acma ; Ga; g0aÞg relate to the boundary
conditions fðG�

a ; v�a ; ~d
�
a Þg, which are the left and right

charges, Higgs background and holonomy background.
The relations are as follows:

g0a ¼
1

2
ðGþ

a þ G−
a Þ; va ¼

1

2
ðvþa þ v−a Þ;

~da ¼
1

2
ðdþa þ d−a Þ; Ga ¼

1

2
ðGþ

a −G−
a Þ;

xcm3;a ¼ −
1

2Ga
ðvþa − v−a Þ; ~acma ¼ −

1

2Ga
ðdþa − d−a Þ:

ð30Þ

In summary, we have in this section approximated the
asymptotic BPS monowall moduli space metric by model-
ing its asymptotics as Abelian interactions of its n well-
separated submonowalls in a linear Higgs background.
Rather than the general 4n moduli, consistency conditions
reduce the number of moduli to four times the number of
internal points in the Newton polygon. We gave the explicit
example for one internal point, in which the BPS monowall
has but four moduli ðA;B; R;ΘÞ. Each regular Newton
polygon triangulation [28] yields a set of subwall magnetic

charges and therefore each regular triangulation corre-
sponds to a different sector of the moduli space. With
the parameters listed above, the monowall asymptotics in
each of the N factors of Uð1Þ are determined by the Higgs
spectral curve and Newton polygon. The metric (28) gives
the dynamics of well-separated submonowalls in terms of
the moduli of the monowall.

V. CONCLUSIONS

A doubly periodic magnetic monopole, known as a
monowall, is a magnetic monopole on R × T2 with internal
phase degrees of freedom whose excitations generate
electric charge in the monowall. In UðNÞ classical Yang-
Mills-Higgs gauge theory we employ the Higgs curve, its
Newton polygon, and its amoeba to establish the asymp-
totic behavior of a monowall that has moduli. These tools
give us an intuitive picture of the monowall in terms of its
constituent charges, or subwalls, and of the symmetries
when the charges are widely spread apart. When a modulus
of the monowall becomes large, the monowall breaks up
into subwalls whose separations vary linearly with respect
to the modulus. The subwalls are positioned at locations of
partially or fully restored gauge symmetry, a condition that
can be inferred from the amoeba. The size of a subwall is
the width of the region outside of which gauge and Higgs
field interactions can be effectively approximated as
Abelian. Once the walls are widely separated with respect
to this width, their gauge and Higgs interactions are
approximated as N Uð1Þ interactions and emulate classical
electromagnetism with a massless Higgs. We proceed to
treat the subwalls as uniformly electrically, magnetically
and scalar charged planes and write the relativistic
Lagrangian, including background gauge and Higgs fields
which satisfy a prescription of boundary conditions. For
small velocities, this Lagrangian reduces to purely kinetic
and we can read off the monowall moduli space metric.
Subwall interactions yield hyperkähler moduli space

metrics and hyperkähler asymptotic moduli space metrics
in the limit that the subwalls are well separated. The moduli
space of a monowall is important in its own right: for small
velocities, the subwall dynamics can be approximated as
geodesic motion on the moduli space. This moduli space
has additional importance to supersymmetric Yang-Mills
quantum gauge theory, since moduli spaces of monowalls
in Yang-Mills-Higgs theories can be mapped to the
Coulomb branch moduli spaces of vacua in the associated
five-dimensional quantum field theories.
The asymptotic moduli space of well-separated doubly

periodic monopoles has been addressed previously [14],
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and we expand on this work. In [14], the asymptotic
monowall moduli space metric was determined for sub-
walls of identical magnetic charge in SUð2Þ theory with
spatially uniform background fields. We generalize from
SUð2Þ theory to UðNÞ for subwalls of arbitrary magnetic
charge and linear background Higgs field, and addition-
ally justify the Abelian long-distance approximation by
analyzing the Higgs curve and amoeba for large values of
a modulus. Still, the approach here is limited to well-
separated subwalls. While asymptotic moduli spaces
have been derived for a variety of monopoles, periodic

and nonperiodic, the interiors of such moduli spaces
remain obscure. The corresponding supersymmetric sys-
tems, and in the case of periodic monopoles, the Higgs
curve construction, may play important roles in future
efforts to derive the full moduli space metrics of
monopoles.
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