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Asymptotic dynamics of monopole walls
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We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-
Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba.
In particular, we show that the monopole wall splits into subwalls when any of its moduli become large.
The long-distance gauge and Higgs field interactions of these subwalls are Abelian, allowing us to derive an
asymptotic metric for the monopole wall moduli space.
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I. INTRODUCTION

In 1931 [1], Dirac proposed a magnetic cousin to the
electron in classical electromagnetism, now referred to as
the Dirac magnetic monopole. Analogous to the classical
electron, it is a point particle and its magnetic field is
singular. Nearly five decades later, 't Hooft and Polyakov
[2,3] expanded the idea of the magnetic monopole by
identifying nonsingular solutions now called ’t Hooft-
Polyakov monopoles in non-Abelian Yang-Mills-Higgs
theory, in which the Yang-Mills gauge fields couple to a
scalar field with the usual symmetry-breaking Higgs
potential. Prasad and Sommerfield [4] found an explicit
static SU(2) solution for this theory in the massless Higgs
limit. In the time-independent and massless Higgs limits,
Bogmolny [5] derived his eponymous equation. Solutions
to the Bogomolny equation solve the Yang-Mills-Higgs
field equation and minimize energy. They are called BPS
(Bogomolny-Prasad-Sommerfield) monopoles.

Non-Abelian magnetic monopoles are interesting in their
own right, appearing as they do in many contestant grand
unified field theories. They have garnered attention in
recent decades, however, for their significance in relation
to certain supersymmetric Yang-Mills quantum field the-
ories. The nontrivial connection to these theories is via their
moduli spaces of vacua. The moduli space of BPS Yang-
Mills-Higgs monopoles (a set of solutions that share fixed
boundary conditions and which together form a manifold)
is isomorphic to the Coulomb branch moduli space of
vacua in the associated super Yang-Mills theory [6-8].
These moduli spaces are Calabi-Yau, specifically
hyperkidhler; i.e., they are kédhler manifolds which are
holomorphically symplectic.

In early studies of BPS monopoles, their moduli spaces
were used to determine monopole behavior. Manton
established [9] that the low-energy dynamics for BPS
monopoles can be approximated as geodesic motion on
their moduli space. In the modern context, monopole
moduli spaces have applications in quantum theories.
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Despite their importance, few metrics on monopole moduli
spaces are known. BPS solutions in which some or all of
the constituent monopoles are closely spaced represent
points in the interior of the moduli space. BPS solutions in
which the monopoles are very widely-spaced are points on
the moduli space in its asymptotic region. Long-range
Abelian approximations have been used to obtain the latter
type of solution and metrics have been calculated for the
corresponding asymptotic moduli spaces, but solutions of
the former type have been mostly illusive. Because of this,
most moduli space metrics that have been produced are
accurate only for the asymptotic portion of the moduli
space. The following paragraph enumerates these efforts.

Atiyah and Hitchin [10] derived a metric on the
full moduli space for two SU(2) BPS monopoles on R3.
Gibbons and Manton [11] then generalized to n BPS, well-
separated, indistinguishable SU(2) monopoles and found
the asymptotic moduli space metric. Lee, Weinberg, and Yi
derived a similar asymptotic metric for general gauge
symmetry [12]. Cherkis and Kapustin [13] used an approach
echoing Gibbons and Manton’s to determine the asymptotic
moduli space metric for an SU(2) monopole on R? x '
with n indistinguishable charges, as did Hamanaka, Kanno,
and Muranaka [14] for an SU(2) monopole on R x T2 with
n indistinguishable charges. As mentioned, these monop-
oles arise in classical Yang-Mills-Higgs theory. Their
moduli spaces are argued to be isometric to moduli spaces
of vacua for SU(n) super Yang-Mills quantum gauge
theories with boundary conditions and dimension particular
to each of the monopole periodicity cases. Seiberg and
Witten originally discovered the existence of these relation-
ships in [6], following work by Seiberg and Witten [15,16],
and Intriligator and Seiberg [17,18]. Chalmers, Hanany, and
Witten [7,8] explained these relationships using brane
dualities. Later Haghighat and Vandoren [19] examined
the compacitified five-dimensional quantum field theory
relevant to doubly periodic BPS monopoles, and the under-
lying theory connecting them.

For n monopoles on R3, this theory is related via the
relative moduli space metric to the Coulomb branch N = 4
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SU(n) super Yang-Mills vacuum in three dimensions [6].
For two such monopoles, the relative metric is called the
Atiyah-Hitchin metric. n periodic monopoles (on R? x S!,
called “monopole chains”) are related via their moduli
space metric to the Coulomb branch of vacua for N =2
SU(n) super Yang-Mills in four dimensions which has
been compactified on a circle [20]. Similarly, n doubly
periodic monopoles (on R x T2, called “monopole walls”
or “monowalls”) are related via their moduli space metric to
the Coulomb branch of vacua for N =1 SU(n) super
Yang-Mills in five dimensions which has been compacti-
fied on a two-torus [14,19,21].

This paper continues and elaborates on the efforts listed.
Section II reviews Yang-Mills-Higgs theory, outlines our
objectives, and reviews the Higgs spectral curve with its
Newton polygon and amoeba. Section III begins with a BPS
solution to the Bogomolny equation on R x 72, a monowall,
and shows that if it possesses moduli (degrees of freedom)
then whenever a modulus becomes large the monowall can
be interpreted as a collection of constituent monowalls which
spread apart and become distinct, and their Higgs and
electromagnetic interactions are Abelian. In the case of
the singly periodic monopole, as in [20], the Nahm transform
maps the monopole onto a solution of the Nahm equations
[22], formulating the problem of interacting monopoles as a
Nahm system and validating the Abelian approximation in
the asymptotic regime. This approach is unsuccessful in the
case of the doubly periodic monopole, which is mapped to
another doubly periodic monopole under the Nahm trans-
form. Instead we study some key behaviors of the doubly
periodic monopole using the Higgs spectral curve
[13,21,23,24], which allows a geometrical treatment of the
monopole interactions in the BPS limit. We demonstrate that
if any monowall has moduli then taking a modulus to infinity
causes the monowall to break into subwalls. We model the
asymptotic behavior of a general monowall as Abelian
interactions among its well-separated subwalls. Section IV
generalizes the monopole of [14,21] from SU(2) to U(N) for
distinguishable subwalls. By modeling the interactions of
well-separated non-Abelian subwalls as the interactions of
Abelian monowalls, we determine an expression for a
hyperkahler asymptotic metric for subwalls widely spaced
in the noncompact dimension relative to the width of a single
subwall, and discuss the symmetries of the metric. Our
approach allows for subwalls which are Dirac monowalls
(singularities), which have no dynamics of their own, but
whose fields affect the motion of the remaining monowalls.

II. BACKGROUND AND SETUP

A. Yang-Mills-Higgs theory

In classical, 3 + 1-dimensional U(N) Yang-Mills-Higgs
theory the pure Yang-Mills action is augmented by that of a
scalar with the usual symmetry-breaking potential.
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We shall have both the gauge and Higgs fields antihermitian
in the adjoint representation. They can be expressed as linear
combinations of the antihermitian U(N) generators 7T':
¢ =¢"Ty, A, = AT, where b = 1,...,N?, and v is real.
The gauge covariant derivative is D,¢p = 0,¢ + [A,,., ¢] and
the field strength is F,, = 0,A, — 0,A, +[A,.A,].

The action-extremizing Yang-Mills-Higgs field equations
are easily derived, but we can more strongly constrain the
solutions by requiring time-independence (Jy = 0) and
taking the Higgs mass to be vanishingly small (i.e.
A — 0). Under these conditions, the energy is minimized
when the following equation, called the Bogomolny equa-
tion, is satisfied:

B; = +D;¢, (2)

where the magnetic field is found from the field strength:
B; = —j¢&; F/* and i = 1,2,3. These conditions are col-
lectively known as the BPS limit and solutions to the
Bogomolny equation are BPS magnetic monopoles [25].
In particular, we are interested here in exploring this theory in
a three-space with two coordinates x; and x, compactified on
a two torus, each with period 27: (x1,x,) ~ (x1 + 27, %, )~
(x1,%,+27), and x3 € R. Monopoles in such a space are
referred to as monopole walls, or monowalls.

Certain components of the gauge field gain mass because
the Higgs field is nonvanishing and because of the gauge field
holonomies associated with the periodic directions. As x3
grows large, we choose the Higgs field to approach diagonal
with at most linear growth, the gauge holonomies to approach
diagonals which are constant in space, and the U(N)
symmetry to be maximally broken to U(1)" in the asymp-
totic region. Then only diagonal gauge field components,
those representing the Cartan subalgebra of U(N), remain
massless. We identify the locations of magnetic charge with
positions at which partial or full gauge symmetry is restored
[26]. The massive gauge field components decay exponen-
tially with distance from such charge.

Now, a BPS solution is a static solution, i.e. the Higgs
and gauge field configurations are time-independent. For
fixed total charge and a given set of gauge and Higgs field
boundary conditions, there may be many such static
solutions. A monopole (or monowall) moduli space is
the set of BPS solutions for fixed total monowall charge
and boundary conditions that together form a manifold.
Each point on the manifold represents a BPS solution with
associated charge distribution. If the positions of localized
charge gain very small velocities, this motion can be
approximated by geodesic motion on the moduli space.
An additional effect comes with this small time-
dependence: these magnetic charges gain electric charge
and so altogether may interact magnetically, electrically,
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and via the scalar field. This effect is controlled by a
periodic phase modulus  associated with each charge [9].

B. Objectives

This paper pursues two goals. The first goal is to show
that a BPS monowall that has moduli (degrees of freedom)
will split into distinct, well-separated submonowalls (or
subwalls) if any of its moduli becomes large. The second
goal is to determine the moduli space metric corresponding
to the gauge field and Higgs interactions of n well-
separated, distinguishable, slow-moving submonowalls.

To accomplish the first objective, we will review the
construction of the Higgs spectral curve and analyze its
asymptotic behavior using the Newton polygon and
amoeba associated with the curve. The amoeba asymptotics
directly relate to the BPS monopole when its constituent
charges are widely spaced, so we will demonstrate that as
one of the monowall’s moduli becomes very large, the
monowall breaks into subwalls which move apart.
Furthermore, we show that the symmetry breaks from
U(N) to U(1)V at a determined distance from each sub-
wall. The subwalls then behave as distinct charges and their
gauge and Higgs field interactions are approximately
Abelian, with exponential precision.

We reach the second objective to calculate the moduli
space metric for n well-separated subwalls by modeling the
moving subwalls as Abelian planes with scalar, magnetic,
and electric charge interacting with one another and with a set
of background gauge and Higgs fields. For these subwalls the
Lagrangian reduces to purely kinetic in the slow-move limit.
Lagrange’s equations produce the geodesic equation for the
monowall moduli and we can read off the metric.

Here are the defining parameters of the moduli space we
will calculate. The Yang-Mills-Higgs Abelian asymptotic
field equations imply a harmonic Higgs field. Following
[21], we constrain the Higgs field of the U(N) monowall to
diverge no more than linearly, and its eigenvalues to behave
as follows when x3 — Foo:

5 = —i(GExy +vE) + O(x3"), (3)

where a = 1, ..., N indexes the N factors of U(1), i.e. the N
diagonal elements of the field matrices with which the Higgs
eigenvalues are in one-to-one correspondence. The left and
right magnetic charges of the monowall GF are rational
constants and the subleading terms v} are real constants.
Also fixed as x3 — F-oo are the holonomy eigenvalues e?«

and e®.« associated with the two periodic directions (x;, x, ).

We use the shorthand ;l;t = (di,.d3,.0), where the vector
symbol indicates the three spatial directions and
dZ; € [0,2x). Together with the locations of any singular
(called Dirac) monowalls, these constants (G, v, d;) fully
specify the moduli space. Cherkis and Ward [21] have
established consistency conditions which must be satisfied

if BPS solutions are to exist. These are determined using the
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Newton polygon construction, which will be described later
in this section. They determined [21] that the number of real
moduli is then four times the number of integer points on the
interior of the Newton polygon, which the next subsection
describes.

C. Higgs spectral curve

For each periodic coordinate, define the Higgs spectral
curve (or “monopole spectral curve”) [13,21,24]. We will
use this tool to explore behaviors of BPS solutions. The
x;-direction Higgs curve X, for example, is determined by
the characteristic equation for the holonomy of the differential
operator D + i¢p. The fields (A, ¢) are assumed to be BPS.
We will pursue the example of the x;-direction Higgs curve
but it should be noted that a different spectral curve could be
found by simply exchanging the spatial indices 1 and 2. These
curves share a Newton polygon, which we will shortly define
and describe. To define the holonomy, introduce a matrix
function V(xy, x,, x3) which solves the equation

(D) +i¢)V =0, (4)

with initial condition V(0,x,,x3) = 1. The holonomy of
(Dy + i) is W(xyp,x3) = V(2nx, x,, x3), which is a holo-
morphic function of x5 + ix, [21], given the B; = —D;¢ form
of the Bogomolny equation. Define a more convenient
coordinate s = e>**2, The eigenvalues of the holonomy
W(s) are finite and nonzero, the Higgs spectral curve is
described by the characteristic (eigenvalue) equation of W (s):

det(W(s)—t) = F(s,t) =0, where F(s,t) = ik,(s)tl.
1

(5)

Given finite eigenvalues ¢ and the boundary conditions set on
the fields in the previous section and in [21], F(s,¢) is a
polynomial in ¢ of degree N and the functions k;(s) are rational
functions of s. Without affecting the set of roots { (s, 7)} of F,
we can rescale by a common denominator polynomial in s to
obtain a polynomial in s and ¢, labeled f (s, ). This is referred
to as the spectral polynomial [21], or Higgs spectral poly-
nomial. The curve produced by f(s,f) =0 is the Higgs
spectral curve and lives in (C*)?, where C* is the complex
plane with the origin omitted, s is the coordinate in the first
factor of C* and ¢ is the coordinate in the second factor.

We now introduce the Newton polygon and amoeba
for this polynomial, which can be written f(s,7) =
37 o a;s%tPi, where 6+ 1 is the number of terms in the
polynomial. The Newton polygon N (f) is the minimal
convex hull of the points {(e;, ;) } in Z?* for which a; # 0.
The concept generalizes to arbitrary dimension [21,27]. To
obtain the amoeba, project the Higgs spectral curve from
two complex dimensions down to two real dimensions by
taking the modulus of each factor of C* and applying the Log
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FIG. 1. Newton polygon and amoeba for f(s,t) = 1.3s¢> +
ust +4s> 4+ 55 — 1 with u = 1000.

map (s,7) — (log|s|,log |f|) = (x3,7). This yields a more
intuitive view of the nature of the curve, particularly in the
large-x; regime, as will be seen. Asymptotically, Eq. (4)
simplifies significantly when the commutator vanishes and
the Higgs field becomes approximately linear in x3. Itis clear
that x5 is the noncompact three-space coordinate and in this
region 7 corresponds to the xs-linear Higgs eigenvalue
magnitudes. When the Higgs curve is projected in this
manner, the result is called the amoeba A(f) € R? for its
distinctive appearance [28] (see, for example, Fig. 1)).

III. MONOWALL SPLITTING

Each polygon edge is associated with a set of external
amoeba legs stretching out to infinity. Each external leg is
normal to its associated polygon edge, and its position is
determined by the monomials of f (s, 7) associated with that
edge (their powers (a, 3) and coefficients). In order to keep
the boundary conditions on the fields fixed, the polynomial
coefficients corresponding to edge terms must be fixed
[21]. This constraint does not apply to points on the interior
of the Newton polygon, and we may consider the family of
polynomials with fixed external coefficients and a range of
values for internal coefficients. To this purpose, we begin
by allowing one internal point coefficient to vary, i.e. we
consider the family of polynomials for which the coef-
ficient of one internal point takes any value on the complex
plane except the origin, while the remaining coefficients are
each fixed in the complex plane. Rather than considering
each such polynomial individually, we may look at the
whole picture at once by treating the internal coefficient as
an independent variable on par with s and ¢. This effectively
increases the number of complex coordinates of the
polynomial function from two to three. We will choose
this varying internal coefficient # = a; to be associated
with the lattice point (ag,fy) and write the three-
dimensional Higgs polynomial (from now on referred to
as the Newton polynomial) with ¢ 4 1 terms as

f(s. t.u) = us®tbo + Z a;seitb. (6)
i1

) A(f) eR3  for

f(s,t,u) =0 also has externalities extending to infinity,

The three-dimensional amoeba
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FIG. 2. Three-dimensional Newton_ polygon and sketch of
three-dimensional amoeba core for f(s,t, u) = 1.3s¢> + ust+
457 + 55— 1.

known as the asymptotic three-dimensional amoeba.
According to Gelfand, Kapranov, and Zelevinski' [28]
and Viro [29], this three-dimensional amoeba asymptoti-
cally exponentially approaches the core of the amoeba,
which can be described in the following way: Normal to
each edge of the three-dimensional polytope for f(s, 7, u)
are a continuous set of directions which form plane wedges.
Wedges for different edges on a face of the Newton
polytope intersect at and terminate on the leg associated
with that face. The three-dimensional amoeba legs are a set
of cylinders each normal to a polytope face and having two-
dimensional amoeba cross sections [see Fig. 2]. Recall that
x3 = log |s| is the noncompact spatial coordinate and that
n = log || asymptotically corresponds to the Higgs eigen-
value magnitudes. The new, third component R = log |u| is
the noncompact modulus and its significance is seen in
the intersection of the three-dimensional amoeba with a
horizontal plane defined by a given height of R. This
intersection is precisely the two-dimensional amoeba
for f(s,t) [e.g. Fig. 3]. The Newton polygon for this
two-dimensional amoeba is the projection of the three-
dimensional Newton polytope onto the (a,f,0) lattice.
Each subwall corresponds to a face of the three-
dimensional polytope and corresponds to an edge of this
two-dimensional polygon.

For a horizontal plane positioned at very large R, its
intersection with the three-dimensional amoeba is as
follows: The plane intersections with the wedges of the
three-dimensional amoeba along straight lines, called
amoeba lines. Its intersections with the three-dimensional
amoeba legs, called junctions, are sections of two-
dimensional-amoeba cylinders and, importantly, have fixed
areas asymptotically which differ from the cylinder cross
sections by a constant factor. Each subwall, then, is
asymptotically associated with and its behavior determined
by a face of the Newton polytope. The separations/relative
positions of subwalls depend linearly on the modulus R.

lProposition 1.13, Ch. 6.
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FIG. 3.

Three-dimensional amoeba (white) and R plane (grey).
The intersection (black) gives the two-dimensional amoeba for a
given value of R.

In the 5 versus x; plane at R, the amoeba lines
correspond to regions in x3 where the Higgs eigenvalues
take values linear in x;, with degeneracy equal to the
denominator of the slope. As we will show, the U(N)
symmetry in these regions is maximally broken to U(1)Y
by the nonvanishing gauge field holonomies for the x; and
X, directions, and the fields are Abelian. The junctions
correspond to regions in which the Higgs field eigenvalues
are not linear in x5 and the gauge field holonomies cannot
be approximated well, and so we are unable to infer fully
broken symmetry; we interpret these regions as locations of
magnetic charges, or subwalls. It is necessary now to define
the widths of these subwalls, or the extents in x3 of their
non-Abelian interiors. We will define the subwalls to be
“well separated” when their separations are much greater
than the maximum subwall width and their interactions are
Abelian.

To accomplish this, we must quantify the decay of the
noncommuting gauge field components which mediate
nonAbelian field interactions. Gauge field components
which do not commute with the Higgs field must decay
exponentially at a rate proportional to the separation of
Higgs eigenvalues.2 Here this decay rate amounts to the
Log of the ratio of eigenvalues, log(¢;/1;), for the hol-
onomy W(s, u) since nonvanishing gauge field holonomies
can asymptotically generate gauge field masses analo-
gously to the Higgs mechanism. At the point where these
noncommuting gauge field components have decayed by
some chosen fraction, we mark the edge of a subwall. We
define the subwall width as the distance at which the

*[30], [Theorem 10.5, Ch. IV].
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exponential rates for the decay of the non-Abelian gauge
field components are bounded from below by some small
value T, plus the distance 1/T at which the fields will
have decreased by a factor of 1/e.

While the Higgs eigenvalue behavior (as a function of
x3) is illustrated by the amoeba, the behavior of the gauge
field holonomy is not. We must therefore look to the
spectral polynomial to determine the various branches of
t = T(s, u), which locally satisfy f(s, T(s,u), u) = 0. This
is done by calculating the Newton-Puiseux expansion
[31,32] for T(s,u) with respect to s and u. If the
Newton polytope faces corresponding to two subwalls
are adjacent, then the fields between two subwalls are
governed primarily by the two monomials in the spectral
polynomial that are associated with the edge e joining the
two faces. There are also smaller contributions from the
remaining monomials. The resulting expansion will take
the following form and only the first two terms in the
expansion are of concern here:

Tj(S7 u) — Cljsyl uyfi + Czjsyljuyfij + PR

= Cljsyl u73(1 + (CZj/clj)Sylj_yl u}73j—3’3) 4 .. (7)

Briefly, for a direction w € R? within the normal cone of an
edge of the Newton polytope (see Fig. 4), the Newton-
Puiseux series is constructed iteratively. The first series
term solves the vanishing of the edge polynomial
us® TP 4 gs@TP = 0, so that in the first term in the series,
the coefficient is ¢,; = (—a)~"/ W) e?i/(h=h) | and the
powersare y; = —(a —ag)/ (B — Bo). and y3 = 1/(B = fo).
More formally, the powers y; and y5 are the negative of the
components of the slope vector S, = (%0 Z—z) =
—(y1,0,73) associated with the edge e = (a—a,
B —Po,—1), and the coefficient ¢, solves the equation

FIG. 4. The area above the grey partial planes is the normal
cone for edge e. The normal vector n’ is normal to the front right
face, while 7 is normal to the rear face. The vector w is normal to
edge e and lies in the wedge bounded by n and #’. It is defined as
a rotation if n through angle 6.
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Z,eea,c/f =0, excluding trivial solutions. The second
term, c,s"'u’* is found by repeating this process for the
Newton polytope for the polynomial f (s, Ty, u) =

~ 1

f(s, Ty + cys"u,u) = Z;’;Q a}s"‘} T/l}" , choosing an edge
e which maximizes —S; - w (called the order v of edge ¢
with respect to w) while satisfying —S; - w < S -w. The

coefficient ¢, solves the equation . a!

mas ({a;c?[}.{a,[})
le2] < (1 + et a )

tude [33].
Define 6 = (6,;,0,63;) = (71; —11.0.73; — v3), which
behave as follows in the asymptotic limits: For s—0

and u — o0, 6;; > 0 and &3; < 0; for s - co and u — oo,
03

c2 =0 and

=: C, is its maximum magni-

01; <0 and 83; < 0. In other words, the quantity s%u
decays in both of these limits of s and u. Given the first two
terms of the Newton-Puiseux series, the ratio of two

eigenvalues 7'; of the holonomy W (s, u) is written

T:(s,u Cii Cyi
f( i ) _ l_l_ﬁsfslju(%j_%sﬁlku(s}k
Ti(s,u)  ci cij Cik

+ O(Hlin(S25””253’))i:j.k- (8)

In this expression, every quantity but the first term ¢;;/c
decays in the asymptotic limits. Simplifying the ratio of
coefficients ¢;;/cy;, = 2U=K/F=F) the Log of Eq. (8)
becomes

(17 5.0

The first term in this series is constant, while in the
asymptotic limit the quantity in the curved brackets is
the largest decaying term in the series.

The expansion direction w € R® comes explicitly into
play when determining the relative sizes of the quantities
s and u%. Along the direction w, the variables behave as
(50, to, tg) = (s0€™1, 19€™2, €™) relative to some initial
values (sg, fy, 1) [29], where w is the vector w multiplied
by a coefficient so that its third component is w3 = R: w =

%w for R € R*. Also define the extended face normal

— M + <ﬁ sOLi%i — ﬁsélkuéﬂc)
B = Po Cyj Cik

+ (’)(min(s251fu253f)),»:j’k. 9)

vector i1 = n%n. We have not said very much so far about

the direction vector w except that it must lie within the
normal cone of the edge e. Define it in terms of the normal
vector n for one of the edge’s adjacent faces [see Fig. 4].
For angle 0, we define the expansion direction as a rotation
of the nearest of the two adjacent face normal vectors:

w=ncosf + (em") sin @ + eT IZ) (1 — cos @). The third term
vanishes since the face normal 7 is orthogonal to the edge

vector and e - n = 0. Applying this form for the vector w,
the largest decaying terms in Eq. (9) are

PHYSICAL REVIEW D 92, 045029 (2015)

$Oyy — sgl.fe(f/—u)R/m _ sglje—|w1—h1|//l’ (10)

where the denominator /1::%

dent, and the powers are § = (8;;,0,65;) for any j. The
difference in orders of the secondary edge e and the original
edge e is (U —v) = w - § and it is j independent. The vector
component 71; = X3 — x(3)1 is the x5 distance between the
subwall’s position x3; and its reference position x3,, i.e. the
linearly extrapolated position of the wall when R = 0. We
identify the subwall initial position for edge e with the
greatest magnitude as max |xJ | and that with the smallest
magnitude as min [x},| for [=1,....n

Fora U (N ) monowall, we find that beyond a distance

Alog | == /ke

decay rates of the off-diagonal gauge field components
are bounded by |log(T;/Ty)| > z/N, where the mixed-

. L 5 5
index coefficient is defined c —(ﬁ So. — 2 sg") and the

power of sy is bounded by 1/N2 < |51 | < N2 The

is j-indepen-

| from the wall’s position, the exponential

bounded Newton-Puiseux coefficients

(1+ min ([l ) {aqp)) = C2 and

C,, where p = N if max{|a;|} is greater than unity and
p = 1/N if it is less than unity. The coefficient ¢ is then

limited by |cj| < 26- 3%, We find the following is the

maximum subwall w1dth for a U(N) monopole on R x 7
where each torus period is 2z:

satisfy  |c,| <

e1] = max{la ]} =

4 2NC,\* N
3= log |< 7z612> | + max |x3j|N21+;
+ (max(x3;) — min(x3))), (11)

where A:= W No subwall of a U(N) mono-

wall may have a width greater than #. Recall that the
subwall separations are linear in R. In order to consider the
subwalls to be well separated and their interactions
Abelian, we require of the noncompact modulus

R>¢ (12)

for each U(N) subwall.

In this section, we described the asymptotic behavior of a
BPS U(N) monowall using the Higgs spectral curve and its
Newton polygon and amoeba. By allowing a coefficient in
the interior of the polygon to vary, we introduced a modulus

= log |u| for the monowall. Using the Newton-Puiseux
series for the eigenvalues T';(s, u) of the holonomy W(s,u)
to characterize the off-diagonal gauge field decay rates, we
showed that when the modulus R is very large, the
monowall breaks into subwalls whose separations increase
with R. For R > ¢, the subwall interactions reduce to N
Abelian interactions (i.e. U(N) breaks to U(1)Y) up to
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corrections exponentially small in R. In the following
section, we will derive an asymptotic moduli space metric
for these well-separated subwalls using their Abelian scalar,
magnetic, and electric interactions.

IV. ASYMPTOTIC MODULI SPACE
A. Lagrangian and fields

We have established that a monowall splits into subwalls
when a modulus becomes large. We will now consider the
regime in which the monowall is split into n subwalls
which have no internal moduli, and the subwall Higgs and
gauge interactions are Abelian. In order to model these
Abelian long-distance interactions, we contrive a system of
n Abelian monowalls in a linear Higgs background which
have scalar, magnetic, and electric interactions with one
another and with the background. The interactions of one of
these Abelian monowalls with the background and the
n — 1 remaining Abelian monowalls mimics the long-
distance interactions of one of the non-Abelian subwalls
with the n —1 remaining subwalls. We will from here
forward refer to these model Abelian monowalls simply as
subwalls. We describe the Abelian monowall interactions
using Lorentz-invariant Maxwell electromagnetism with a
scalar field. We write the Lagrangian and consider only
very small subwall velocities. We then Legendre transform
from the electric charge ¢;, which is a momentum, to its
canonical coordinate, which is a periodic phase modulus 6;.
The Lagrangian reduces to purely kinetic under these
conditions. We will then read the monowall moduli space
metric off of this kinetic Lagrangian.

Recall that we choose a gauge in which the Higgs field is
diagonal and we have demonstrated that it is x3-linear for
large x3. The off-diagonal gauge fields gain mass and are
exponentially small and therefore negligible, while the
diagonal gauge field components remain massless. We will
represent the generators of the Cartan subalgebra as the N
generators {H,} of N x N imaginary diagonal matrices,
and write the asymptotic fields as ¢ = ¢“H, and A, =
AfH , where (¢*, Aj}) arerealand a = 1, ..., N. We employ

an additional, adjoint dual gauge potential 1:\” = ;\ZHa to
model magnetic interactions. This dual gauge field can be

related to ;X” via the wusual dual field strength
F w = 8MAD - 81,;1” + [AM,AD], which is defined as
F,, = —%eﬂypaF/’”. The relativistic Lagrangian for the

ith wall interacting with the gauge, dual gauge, and
Higgs fields (¢,A,.A,) of the n — 1 remaining subwalls
and background is

L; = —iTr[4zd\/ > + ¢>\/ 1 — Vi - 4dnq,A° + 472'q,-\7i A

- 47tg,»A0 + 47rg,»‘7,- ;\], (13)
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where the three-space velocity is ‘71' = X; and we use the
dotted time-derivative notation x = %. The magnetic,
electric, and scalar charges of the ith subwall are interpreted
as (9i, qi» /97 + q?), respectively, where this form of the
scalar charge follows from the BPS conditions under which
the static forces cancel for well-separated subwalls [11].
Note that the electric charges g; are momenta associated
with the phase degrees of freedom 6, for subwalls. The
electric charges of the subwalls are subject to net electric
charge conservation, and individual electric charge con-
servation when the subwalls are well separated as they
are here.

Recall that we allow gauge field holonomies to have
nonzero, spatially uniform, linearly time-dependent
values asymptotically. Define the linearly time-dependent
terms in the asymptotic holonomies (phases) a(t) =
sgn(x3)(a, b,0)(r) associated with each of the periodic

spatlal dlrectlons and their dual vector a(x) such that
@ =V x . The effect of the phase velocities a is equlv—
alent to that of the transverse spatial velocities x;; and x»;:
V; = (=b;. ;. x3;). For later use, define two dual functions

u(x3) and w(x) such that Vu =V x .

= sgn(x3)[=bx, + ax,)i;. (14)

In addition to fields generated by subwalls, which we
will write next, we include static field backgrounds for each
factor of U(1). For convenience, we split these back-
grounds into constant terms (dz,d,‘j,—v ) and a back-
ground linear Higgs ¢, with the associated linear gauge

fields (A, .4, ) required by Bogomolny’s equation:

(d“H d“H

— as #

( i) ’,[7 - qu)9

) =

AO a(x)

( 3) = —gox;,
o(x) =

= [—X25€1 + X%,

AT (x) = —gixs. (15)

The gauge and Higgs fields for the jth wall moving with

velocity \7j are Lorentz boosted versions of those for the
stationary wall. We keep only terms up to quadratic in
velocities and electric charge in the Lagrangian, so in the
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fields A and A discard terms which are higher order
than linear in velocities. Similarly, in the scalar expressions
¢, A°, AY discard terms which are higher order than
quadratic in velocities. This requires approximation of
the Liénard-Wiechert denominator (¥*> — (X x V)?)'/2 as
|x| since the denominator would appear in the scalar-type
quantities with coefficients linear in velocity, resulting in
negligible terms cubic in velocity [11,20]. In this approxi-
mation, a subwall moving at velocity V; with respect to the

origin generates the following fields (¢, Ay, j’AZ, i)

9(x3) = —u(x3)y [ (69)* + g3/ 1= V3,
AV (x) = —qju(xs) + g (W(x) - V) — gi(a- Vi)
A09(x) = —gtu(xs) — q;((x) - V,) = (3, (x) - V).
Af(x) = ¢tw(x) — gia.

(16)

Aj(x) = —g;w(x) — gia;(x) = gju(xs)V;.

The net gauge fields must respect the periodic boundary
conditions on R x 72 and so we require that, for a
coordinate shift in one of the periodic directions, the fields
be gauge-shifted under the U(1) symmetry, with gauge
functions given here.

x| — x; + 2x,
0; = 6; 4 mg;sgn(x3)x,,
Xy = Xp + 271',

0, = 6; — mg;sgn(x;)x;.

B. Two-monowall interactions

Using these fields, we may now write the Lagrangian in a
convenient form and begin by doing so for two subwalls.
For a pair of walls, define the following relative position,
phase, and charge quantities:

- = > «a_ D 9

X =X = X2, 4 =27
g9 9

g =919, a=aj —da,

(18)

Neglecting constant terms, suppressing the index a for
U(1) factors, the symmetrized Lagrangian for each set
of U(1) interactions takes the form

PHYSICAL REVIEW D 92, 045029 (2015)
2
5 (am) von?]
— =5 9iVi| +919V
4 26 |\ &
v 20 4\’
3G [(Z i —> + 9192q2:| +

i
-1 Yi

2 - -
q;Vi-d

i=1

2 o2 i (2 @
— d° V.-d L) - _ 1
;qz +;gzz +; 5 i

2
qi - °, glgzu(xs) o2 )
E ) V. T2 e
+ - 909i 0 (w(x)-V;)+ [ 3 ( q°)

-

01920 (3(x) - V) + 91907 — gl - ﬂ . (19)

To find the full Lagrangian, we add up all N of these U(1)
Lagrangians. This splits into the center of mass Lagrangian
and the remainder Lagrangian, L = Lcy + L. We inte-
grate here over the periodic coordinates x; and x, from —z

to z. Because the terms with w(x) - V and cjz(x) .V are
linear in x; and x, positions, these terms vanish after
integration.3 Here is the result after separating the center of
mass and remainder components of the Lagrangian, with
implicit sum over the suppressed index a:

2 909iX3,i [ o2 q2
20973 (2 _ Ti
= ( ’ 9?)

-

I
—gi19(a-V)q+ 3 (@1 Vi=9Va)g. (20)

Maintaining the low-velocity approximation, the
Lagrangian is purely kinetic since g behaves as a velocity.
We now apply the fixed asymptotic boundary conditions
constraint, which is equivalent to fixing the sums of
the three-space and periodic positions of the subwalls
(i.e. fixing the center of mass, or its analog). Incidentally,
there is a physical motivation for fixing the boundary
conditions. Because the fields diverge as x3 — o0, so too
does the energy. Changing the boundary conditions on the

3Altering the integration bounds of x; and x, yields different
but physically equivalent forms of the Lagrangian.
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fields would require infinite kinetic energy. After fixing the
center of mass, the Lagrangian reduces to the remainder
Lagrangian (from now on referred to simply as the
Lagrangian).

Currently, the Lagrangian is written in terms of the x3
positions of the subwalls, their phases a, and their electric
charges. The electric charge is not itself a modulus but is a
momentum conjugate to a periodic modulus . A Legendre

transform, changing coordinates from ¢ to 0, produces the

PHYSICAL REVIEW D 92, 045029 (2015)

Lagrangian written explicitly in terms of the monowall
moduli.

L' =L+ q0. (21)

After implementing the Legendre transform, we write the
metric in Lee-Weinberg-Yi form [12] in terms of absolute
rather than relative coordinates.

* AR [de + W dx)) (22)

with the following tensors defined for two subwalls:

2
vu

Uiia = 909ia¥3i + Zgiagja <G_ + |3 — x3j|>,
7 “

Zia i 2 i J(7i_ 7

Tga_;gag{l(a —a )’

J#

vll
Uiju = —YiaYja (— + |3 — x3j|>’

=i
W, =

G,

-

=t

ij dg i J(7i_ 7
{ = =5 gt dugh(@ ~ ). (23)

where the third components of the following vectors vanish
dz, = Wi = W3 =0 and the three-space differential is
expressed dx = (—db,da,dx;). The index a=1,...,N
runs over the factors of U(1). This metric retains the
U(1) symmetries, and symmetry under the SL(2, Z) action
on the x; and x, phases (a,b).

C. Multimonowall interactions and moduli relations

The metric (22) holds for the extension to n subwalls.
The n-subwall tensors are

n v

Uiia = 99Giax3i + 5 YiaYja (G—a + |3 = x3j|>’
=1 a
J#i

sod s
Wi ==tgo=_dugal@ ).
J=1

J#

v
ij.a iaYja Ga 3i 3j
/i ‘}a i i (i _ 7
W) == gl + guh(@ — ). (24)

I
where dj = Wi =Wy, =0 and dx = (—db.da,dx;).
The index a=1,...,N again runs over the factors
of U(1).

When the consistency conditions of [21] are applied, the
number of independent moduli reduces from 4n to 4T,
where I' is the number of internal points in the Newton
polygon. To illustrate this for the above BPS monowall
moduli space, we first consider the case of one varying
internal coefficient. We use the modulus R to parameterize
the values of x5 and ¢ in the R-plane corresponding to each
of the n amoeba junctions. This is done by finding the lines
in R? along which two adjacent three-dimensional amoeba
wedges intersect and using these to define subwall posi-
tions for each value of R. We will from here forward refer to
the two-dimensional amoeba, which is the amoeba for the
projection of the three-dimensional Newton polytope onto
the (a, 8, 0) lattice. For each value of R, there is a different
two-dimensional amoeba. Recall that each subwall corre-
sponds to a face of the three-dimensional polytope and
therefore each subwall now corresponds to an edge of this
two-dimensional polygon. The relationships between R and
(x3,¢) at the junctions are linear:

dxi = m'dR, d¢' = n'dR. (25)

The coefficients (m', n') can be found by direct examina-
tion of the amoeba since n;/m; is the slope of the ith
external amoeba leg. They can be expressed in terms of the
perimeter points of the Newton polygon. Let the lattice
coordinates of the ith vertex in the Newton polygon be
wri