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When a continuous symmetry is spontaneously broken in nonrelativistic theories, there appear
Nambu-Goldstone (NG) modes, the dispersion relations of which are either linear (type I) or quadratic
(type II). We give a general framework to interpolate between relativistic and nonrelativistic NG modes,
revealing a nature of type-I and -II NG modes in nonrelativistic theories. The interpolating Lagrangians
have the nonlinear Lorentz invariance which reduces to the Galilei or Schrödinger invariance in the
nonrelativistic limit. We find that type-I and type-II NG modes in the interpolating region are accompanied
with a Higgs mode and a chiral NG partner, respectively, both of which are gapful. In the ultrarelativistic
limit, a set of a type-I NG mode and its Higgs partner remains, while a set of a type-II NG mode and its
gapful NG partner turns to a set of two type-I NG modes. In the nonrelativistic limit, the both types of
accompanied gapful modes become infinitely massive, disappearing from the spectrum. The examples
contain a phonon in Bose–Einstein condensates or helium superfluids, a phonon and magnon in spinor
Bose–Einstein condensates, a magnon in ferromagnets, and a kelvon and dilaton-magnon localized around
a Skyrmion line in ferromagnets.
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I. INTRODUCTION

When a continuous symmetry is spontaneously broken
in nonrelativistic theories, there appear Nambu-Goldstone
(NG) modes, the dispersion relations of which are either
linear (type I) or quadratic (type II). The numbers of type-I
and -II NG modes satisfy the Nielsen–Chadha inequality
[1]. After the crucial observation [2], the numbers of type-I
and -II NG modes were summarized as the Watanabe–
Brauner relation between those numbers and the rank of a
matrix consisting of the commutation relations of broken
generators evaluated in the ground state [3]. The relation
classifies types A and B instead of types I and II. This
relation was proved recently in the effective theory
approach [4,5], the Mori projection method [6], and later
by the Bogoliubov theory [7].
In the presence of topological solitons or defects, there

appear NG modes localized around them such as transla-
tional zero modes. When NG modes are normalizable such
as a domain wall [8] and Skyrmion line [9,10] in ferro-
magnets, localized type-B NG modes have usual quadratic
dispersion relations and are of type II. On the other hand,
when NG modes are non-normalizable such as a domain
wall in two-component Bose–Einstein condensates (BECs)
and a vortex in scalar BECs or 4He superfluid, type-B NG
modes have usual quadratic dispersion relations and are of
type II when the transverse system size is small compared
with the wavelength of NG modes (see, e.g., Refs. [7,11]),
but they have noninteger dispersion relations in infinite
system sizes [7,12,13]. The formulas of dispersion relations

interpolating small and large system sizes were recently
obtained in Ref. [14]. A relationship between the number of
NGmodes and the homotopy group for topological solitons
was also studied [15].
Other developments include, for instance, space-time

symmetry breaking [16], gauge symmetry breaking accom-
panied with the Higgs mechanism [17–19], finite temper-
ature and density [20], topological interaction [21], and
quasi-NG modes [22].
In general, it is usually said that only type-I NG modes

are possible in Lorentz invariant theories. It is, however, not
yet clear how NG modes are interpolated between relativ-
istic and nonrelativistic theories, in particular, how type-II
NG modes in nonrelativistic theories reduce to type-I
NG modes in relativistic theories when both the theories
are interpolated. In this paper, we clarify how NG modes
are interpolated between relativistic and nonrelativistic
theories, as summarized in Table I. We first consider
relativistic Lagrangians and introduce a chemical potential
for particles. The resulting Lagrangians, containing both
first- and second-order time derivative terms, interpolate
relativistic and nonrelativistic Lagrangians in the two
limits: the second time derivative vanishes in the non-
relativistic limit c → ∞ with the speed c of the light, while
the first time derivative vanishes in the relativistic limit
μ → 0, in which the chemical potential is sent to zero. The
latter case is often called ultrarelativistic, so we use this
terminology because the Lorentz invariance exists in the
intermediate region. We first point out that interpolating
Lagrangians have the nonlinear Lorentz invariance, which
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reduces to the Galilei or Schrödinger invariance in the
nonrelativistic limit c → ∞. The Lorentz invariance
becomes manifest in the ultrarelativistic limit μ → 0. We
find that there can exist either a type-I or type-II NG mode
in the intermediate Lagrangian, even in the presence of
the Lorentz invariance. Correspondingly, the Watanabe–
Brauner relation holds in the intermediate region even in
the presence of the Lorentz invariance; a commutator of
two generators does not vanish for a type-II NG mode. We
also find that each of either the type-I or type-II mode is
accompanied with a gapful mode. The gapful mode accom-
panied with a type-I NG mode can be identified with a
Higgs mode, while that accompanied with a type-II NG
mode can be referred as a “chiral partner” or a “gapful
NG partner.” In the ultrarelativistic limit, a set of a type-I
NG mode and its Higgs partner remains as it is, while a set
of a type-II NG mode and gapful NG partner becomes a
set of two type-I NG modes. On the other hand, in the
nonrelativistic limit, both the Higgs partner of a type-I NG
mode and gapful NG parter of a type-II NG mode become
infinitely massive and disappear from the spectrum, and
there remains only the type-I or type-II NG mode. This
mechanism reveals a nature of type-I and II NG modes. We
show these in typical examples of both bulk NG modes and
NG modes localized around a topological soliton. The bulk
examples contain a phonon in scalar BECs and a magnon
in ferromagnets, while soliton examples contain a kelvon
and dilaton-magnon localized around a Skyrmion line in
isotropic ferromagnets. An another example is a ripplon-
magnon localized around a domain wall in anisotropic
ferromagnets studied in Ref. [8]. In all examples, we give
two approaches: the effective theory and linear response
theory (the Bogoliubov–de Gennes equations).
The interpolating Lagrangians containing both first- and

second-order time derivatives that we consider in this paper
appear in various contexts of both theoretical and exper-
imental physics, and thereby our results yield suggestions
of several theoretical and experimental works. As we
denoted above, they describe relativistic field theories with
the finite chemical potential. In the quantum mechanical
framework, it is well known that these models naturally
give the complex probabilities in the path-integral formal-
ism as long as the chemical potential is finite [23,24], and
we can expect some qualitative change from zero to finite
chemical potentials. Even in the semiclassical framework
for symmetry-broken systems, our results show that there
is a drastic change of low-energy modes both in bulk and
topological defects: the coupling of the type-I NG mode

and Higgs mode or the coupling of two type-I NG modes
to one type-II NG mode. The interpolation between the
relativistic and nonrelativistic frameworks appears in vari-
ous ultracold atomic systems. Recently, the existence of the
Higgs mode in strongly interacting lattice bosons close to
the superfluid-Mott insulating transition point has been
theoretically [25–30] and experimentally [31] proposed and
confirmed. In this system, the first-order time derivative
term is prohibited, and the second-order time derivative
term becomes important at the transition point because of
the particle-hole symmetry, by which the Higgs mode can
be expected. In the superfluid phase far from the transition
point, it is well known that the first-order time derivative
term is dominant and the Higgs mode is absent. Our results
explain how the Higgs and NG modes are changed as
the parameter changes to the transition point. We show
two other examples. One is the charged fermionic systems
close to the BEC-BCS crossover point [32] that has been
theoretically predicted to contain the both first- and second-
ordered time derivative terms, predicting the existence of
the Higgs mode. The other example is the magnetic model
[33]. As already known, two type-I NG modes exist in
antiferromagnets, while one type-II NG mode exists in
ferromagnets. In a canted ferromagnet between the ferro-
magnet and antiferromagnet, it has been reported that there
appear one type-II NG mode and one gapful Higgs mode,
which is quite similar to what we obtain in the interpolating
region between relativistic and nonrelativistic models even
though the magnetic model itself is nonrelativistic.
This paper is organized as follows. In Sec. II, we discuss

bulk NG modes. We study phonons in a scalar BEC and
magnons in ferromagnets as examples of type-I and -II NG
modes in Secs. II A and II B, respectively. In Sec. III, we
discuss NG modes localized around topological solitons.
We study kelvons and dilaton-magnons localized around a
Skyrmion line in ferromagnets as examples of type-II NG
modes. Section IV is devoted to a summary and discussion.
In Appendix A, we give a further example of a spinor BEC
that contains both type-I and -II NG modes in the bulk.

II. NG MODES IN THE BULK

A. Interpolating type-I NG mode:
Phonons in scalar BEC

Let us consider the Lagrangian density for a single
complex scalar field ψ , interpolating relativistic and non-
relativistic theories,

TABLE I. Interpolation of type-I and type-II NG modes between nonrelativistic and ultrarelativistic theories.

Parameters Symmetry Type-I NG mode Type-II NG mode

Ultrarelativistic μ → 0 Lorentz 1 type-I þ 1 Higgs 2 type-I
Relativistic 0 < c; μ < ∞ Lorentz 1 type-I þ 1 Higgs 1 type-II þ 1 gapped
Nonrelativistic c → ∞ Galilei (Shrödinger) 1 type-I 1 type-II
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L ¼ j∂tψ j2
c2

þ iμðψ�∂tψ − ∂tψ
�ψÞ − j∇ψ j2 − g

2
ðjψ j2 − ρÞ2;

ð1Þ
where g is the coupling constant and ρ is the real
positive constant giving a vacuum expectation value.
This Lagrangian density interpolates between two extreme
cases; it reduces to the relativistic Goldstone model in the
ultrarelativistic limit μ → 0 and to the Gross–Pitaevskii
model in the nonrelativistic limit c → ∞. In the generic
region, the Lagrangian density is invariant under the
Lorentz transformation

t0 ¼ γ

�
t −

vx
c2

�
; x0 ¼ γðx − vtÞ;

∂t0 ¼ γ∂t þ γv∂x; ∂x0 ¼
γv
c2

∂t þ γ∂x;

ψ 0 ¼ eiSψ ; S ¼ −μc2
�
ð1 − γÞtþ γvx

c2

�
;

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ; ð2Þ

which reduces to the Galilei or Schrödinger transformation
in the nonrelativistic limit c → ∞. The equation of motion
for ψ� reads

−
1

c2
∂2
tψ þ 2iμ∂tψ ¼ −∇2ψ þ gðjψ j2 − ρÞψ ; ð3Þ

which has the static constant solution ψ0 ¼ ffiffiffi
ρ

p
.

1. Low-energy effective theory

The low-energy dynamics around the static solution ψ0

can be discussed by considering the low-energy effective
theory. We introduce fluctuations of amplitude fðx; tÞ and
phase θðx; tÞ around ψ0:

ψ ¼ ψ0f1þ fðx; tÞgeiθðx;tÞ: ð4Þ

Inserting Eq. (4) into Eq. (1), we obtain the effective
Lagrangian density

Leff

ρ
¼

_f2 þ _θ2

c2
− 2μð1þ 2fÞ_θ − ð∇fÞ2 − ð∇θÞ2

− 2gρf2 þOððf; θÞ3Þ: ð5Þ

The low-energy dynamics of f and θ derived from the
Euler–Lagrange equations reads

f̈
c2

þ 2μ_θ −∇2f þ 2gρf ¼ 0;

θ̈

c2
− 2μ _f −∇2θ ¼ 0: ð6Þ

Typical solutions of Eq. (6) are f ¼ f0 cosðk · x − ωtþ δÞ,
θ ¼ θ0 sinðk · x − ωtþ δÞ with the dispersions

ωH
� ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2c2 þ k2 þ gρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ4c4 þ 4μ2c2ðk2 þ gρÞ þ g2ρ2

qr
;

ωNG
� ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2c2 þ k2 þ gρ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ4c4 þ 4μ2c2ðk2 þ gρÞ þ g2ρ2

qr
: ð7Þ

In the long-wavelength limit for k → 0, these dispersions
reduce to

ωH
� ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2c2 þ 2gρ

q
þOðk2Þ;

ωNG
� ¼ �ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρ

2c2μ2 þ gρ

r
þOðk2Þ; ð8Þ

giving rise to one gapful (ωH) and one gapless (ωNG) mode,
identified as Higgs and NG modes, respectively. The
amplitudes f0 for ωH

� and ωNG
� are obtained as

fH0� ¼ ∓ θ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2c2 þ gρ

p
ffiffiffi
2

p
μc

þOðk2Þ;

fNG0� ¼ � θ0μckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρð2μ2c2 þ g2ρ2Þ

p þOðk2Þ: ð9Þ

This is the relationship between amplitudes of fluctuations
for coupled dynamics of f and θ. In the long-wavelength
limit k → 0, we obtain fNG0� → 0, indicating that the
oscillation of f vanishes and there remains the oscillation
of θ as the pure phase mode.
In the ultrarelativistic limit μ → 0, the dynamics of f and

θ in Eq. (6) are independent of each other, and amplitudes
f0 and θ0 become independent variables with dispersions

ωH
� → �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2gρ

q
; ωNG

� → �ck: ð10Þ

The gapful dispersion ωH
� reduces to that for f, while the

gapless dispersion ωNG
� reduces that for θ; i.e., the Higgs

and NG modes get to pure amplitude and phase oscillations
respectively. In the nonrelativistic limit c → ∞, the Higgs
mode disappears with the divergent dispersion ωH

� → ∞.
The NG modes remain coupled oscillations of f and θ with
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ωNG
� →�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2gρ

p
2μ

; fNG0� →� θ0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2gρ

p : ð11Þ

In the long-wavelength limit k → 0, the NGmode is always
the pure phase mode with arbitrary μ.

2. Linear-response theory

In the linear-response framework, the dynamics of ψ can
be written as ψ → ψ0 þ uþ v� with fluctuations u and v�.
Here, rewriting u and v as u ¼ u0eiðk·x−ωtþδÞ, v ¼
v0eiðk·x−ωtþδÞ with u0; v0 ∈ R, and inserting ψ into
Eq. (3) leads to the Bogoliubov equation

�
ω2=c2 þ 2μω− k2 − gρ −gρ

−gρ ω2=c2 − 2μω− k2 − gρ

��
u0
v0

�

þOððu0; v0Þ2Þ ¼ 0 ð12Þ

with the dispersion relation ω ¼ ωH;NG
� . The fluctuation

δψ ¼ uþ v� becomes

δψ ∝ cosðk · x − ωH
�tþ δÞ

þ 2μ2c2 � μc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2c2 þ 2gρ

p
gρ

e−iðk·x−ωH
�tþδÞ þOðk2Þ

ð13Þ
for Higgs modes with the dispersion ωH

�, and

δψ ∝ i sinðk · x − ωNG
� tþ δÞ

� μckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gρð2μ2c2 þ gρÞ

p e−iðk·x−ωNG
� tþδÞ þOðk2Þ ð14Þ

for NGmodes with the dispersionωNG
� . Because the ground

state ψ0 ¼ ffiffiffi
ρ

p
has only the real part, the first terms of the

right-hand sides in Eqs. (13) and (14) can be regarded as
the amplitude and phase oscillations, respectively. Both the
second terms of the right-hand sides in Eqs. (13) and (14)
are coupled oscillations of the amplitude and phase. They
vanish in the ultrarelativistic limit, which reveals that the
Higgs and NG modes become purely amplitude and phase
oscillations, respectively. In the nonrelativistic limit, on the
other hand, the NG mode

δψ ∝ i sinðk · x−ωNG
� tþ δÞ � kffiffiffiffiffiffiffiffi

2gρ
p e−iðk·x−ωNG

� tþδÞ þOðk2Þ

ð15Þ
remains to be a coupled amplitude and phase oscillation. In
the long-wavelength limit k → 0, the NG mode is always
the pure phase oscillation with arbitrary μ. Equations (13)
and (14) are consistent with the expansion of ψ¼ ffiffiffi

ρ
p f1þ

fH;NG0� cosðk·x−ωH;NG
� tþδÞgexpfiθ0sinðk·x−ωH;NG

� tþδÞg
around θ0 ¼ 0, which reveals that both the low-energy
effective theory and linear-response theory give the same
Higgs and NG modes. Similar behaviors of NG and Higgs

modes are theoretically reported for strongly interacting
lattice bosons close to the superfluid-Mott insulating
transition point [28–30].

B. Interpolating type-II NG mode:
Magnons in ferromagnets

We consider the interpolating Lagrangian density for the
continuum Heisenberg model or the Oð3Þ nonlinear sigma
(CP1) model,

L ¼ j _uj2
c2ð1þ juj2Þ2 þ

iμðu� _u − _u�uÞ
1þ juj2 −

j∇uj2
ð1þ juj2Þ2 ; ð16Þ

where u ∈ C is the complex projective coordinate of CP1,
defined as ϕT ¼ð1;uÞT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjuj2

p
with normalized two

complex scalar fields ϕ¼ðϕ1;ϕ2ÞT with jϕ1j2 þ jϕ2j2 ¼ 1.
This Lagrangian density is invariant under the following
Lorentz transformation:

t0 ¼ γ

�
t −

vx
c2

�
; x0 ¼ γðx − vtÞ;

∂t0 ¼ γ∂t þ γv∂x; ∂x0 ¼
γv
c2

∂t þ γ∂x; u0 ¼ eiSu;

∂tS ¼ −ð1 − γÞμc2ð1þ juj2Þ; ∂xS ¼ −γμvð1þ juj2Þ:
ð17Þ

This reduces to the Galilei or Schrödinger transformation in
the nonrelativistic limit c → ∞. The equation of motion for
u reads

ðjuj2 þ 1Þü − 2u� _u2

c2
− 2iμðjuj2 þ 1Þ _u

¼ ðjuj2 þ 1Þ∇2u − 2u�ð∇uÞ2; ð18Þ
which has the uniform and static solution u0 ¼ const.
Under the Hopf map for a 3-vector of real scalar fields

n ¼ ϕ†σϕwith the Pauli matrices σ, the Lagrangian density
(16) describes the isotropic Heisenberg ferromagnets,

L ¼ 1

c2

�j _nj2
4

þ μc2ð _n1n2 − n1 _n2Þ
1þ n3

�
−
j∇nj2
4

: ð19Þ

1. Low-energy effective theory

Here, we consider the low-energy effective theory for
the low-energy excitation, with fixing a uniform and
static solution u0 ¼ 0 and its fluctuation δu ¼ αþ iβ with
α; β ∈ R. In terms of n, u0 ¼ 0 is equivalent to n3 ¼ 1, and
α and β are the fluctuations of n1 and n2, respectively. The
effective Lagrangian density becomes

Leff ¼
_α2þ _β2

c2
þ 2μð _αβ−α_βÞ− ð∇α2þ∇β2ÞþOððα;βÞ3Þ:

ð20Þ

The low-energy dynamics of α and β becomes
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α̈

c2
þ 2μ_β −∇2α ¼ 0;

β̈

c2
− 2μ _α −∇2β: ð21Þ

As in the previous case for phonons in a scalar BEC,
the dynamics of α and β are independent of each other
only in the ultrarelativistic limit μ → 0. Typical solutions
are α ¼ α0 cosðk · x − ωtþ δÞ, β ¼ β0 sinðk · x − ωtþ δÞ,
with

ωH
� ¼ �cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2c2

q
þ μcÞ ¼ �

�
2μc2 þ k2

2μ

�
þOðk4Þ;

αH0� ¼∓βH0�;

ωNG
� ¼ �cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2c2

q
− μcÞ ¼ � k2

2μ
þOðk4Þ;

αNG0� ¼ �βNG0� : ð22Þ

The second solution is a type-II NG mode which is a
magnon, and the first one is its chiral massive partner which
we may call a “massive magnon.” In the ultrarelativistic
limit μ → 0, Eq. (22) reduce to ωH;NG

� ¼ �ck, and αH;NG0�
and βH;NG0� are independent of each other, which implies that
the type-II NG and Higgs modes reduce to two type-I NG
modes. In the nonrelativistic limit c → ∞, on the other
hand, it reduces to

ωH
� → ∞; ωNG

� → � k2

2μ
: ð23Þ

While the type-II NG mode remains gapless, the chiral
massive partner becomes infinitely massive and disappears
from the spectrum.

2. Linear-response theory

We consider the dynamics of magnons in the
linear-response theory framework: u ¼ aþeiðk·x−ωtþδÞ þ
a−e−iðk·x−ωtþδÞ with a� ∈ R. Inserting this ansatz into the
dynamical equation (18), we obtain the Bogoliubov equation

�
ω2

c2
� 2μω

�
a� ¼ k2a� þOða2�Þ; ð24Þ

giving the dispersion relation ωH∓ and ωNG∓ in Eq. (22) with
arbitrary a� ≠ 0. The gapful mode for aH∓e∓iðk·x−ωH

�tþδÞ and
NG mode for aNG� e�iðk·x−ωNG

� tþδÞ propagate in the direction
parallel to k for the upper sign and antiparallel to k for the
lower sign, respectively, where their chiralities are opposite
to each other. In the ultrarelativistic limit, ωH

� ¼ ωNG
� ¼

�ck leads aH∓fe∓iðk·x−ωH
�tþδÞþe�iðk·x−ωNG

� tþδÞg¼2aH∓cosðk·
x∓cktþδÞ with aH∓ ¼ aNG� and aH∓fe∓iðk·x−ωH

�tþδÞ−
e�iðk·x−ωNG

� tþδÞg¼∓2iaH∓sinðk·x∓cktþδÞwith aH∓¼−aNG� ,
which give purely real and imaginary modes. These results
completely agree with those obtained in the low-energy
effective theory.

III. NG MODES LOCALIZED AROUND SOLITONS

A. Kelvon and dilaton-magnon of a Skyrmion

We start from the CP1 Lagrangian density L in Eq. (16).
Instead of the uniform u, we consider a straight Skyrmion-
line solution [34] extending along the z axis,

usðx; y; zÞ ¼
r̄eiðθ̄þθÞ

Rs þ R
; r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − XÞ2 þ ðy − YÞ2

q
;

θ̄ ¼ tan−1
y − Y
x − X

; ð25Þ

as the static solution. Here, Rs ∈ Rþ is the characteristic
size of the Skyrmion line, and X, Y ∈ R, 0 ≤ θ ≤ 2π, and
R ∈ R are the translational, phase, and dilatation moduli of
the Skyrmion line, respectively.

1. Low-energy effective theory

To discuss the low-energy dynamics of the Skyrmion
line, we use the moduli approximation [35]; we introduce
the z and t dependences of these four moduli and integrate
the Lagrangian density in the xy-plane with radius L:

Z
L

−L
dx

Z ffiffiffiffiffiffiffiffiffi
L2−x2

p

−
ffiffiffiffiffiffiffiffiffi
L2−x2

p dyL

¼ −2π þ π

�
_X2 þ _Y2

c2
− ðX2

z þ Y2
zÞ þ 2μð _XY − X _YÞ

�

þ 2π log

�
L
Rs

��
_R2 þ R2

s
_θ2

c2
− ðR2

z þ R2
sθ

2
zÞ

þ 2μðR2
s
_θ þ 2RsR_θÞ

�
þOððX; Y; θ; RÞ3Þ: ð26Þ

The first 2π term in the right-hand side is the tension
(the energy per unit length) of the Skyrmion line. The
low-energy dynamics of X, Y, θ, and R derived from the
Euler–Lagrange equation becomes

Ẍ ¼ c2Xzz − 2μc2 _Y; Ÿ ¼ c2Yzz þ 2μc2 _X; ð27aÞ

Rsθ̈¼ c2Rsθzz − 2μc2 _R; R̈¼ c2Rzzþ 2μc2Rs
_θ: ð27bÞ

Equation (27a) has the same form as Eq. (21) with rewri-
ting ∇ → ∂z, α1 → X, and α2 → Y. Typical solutions
X ¼ X0 cosðkz − ωtþ δÞ and Y ¼ Y0 sinðkz − ωtþ δÞ are
therefore the same as those in Eq. (22). As long as μ ≠ 0,
the two translational moduli X and Y couple to each other,
forming gapless and gapful helical modes with X0 ¼ Y0

and X0 ¼ −Y0 propagating along the z direction helically
and antihelically. The former is nothing but a helical
Kelvin wave or a helical kelvon if quantized as a particle,
while the latter may be called a “massive helical kelvon.”
The moduli fields θ and R have the solution
θ ¼ θ0 cosðkz − ωtþ δÞ, R ¼ R0 sinðkz − ωtþ δÞ with
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the dispersion shown in Eq. (22). The phase and dilatation
moduli θ and R couple to each other, forming gapless and
gapful modes with θ0 ¼ R0=Rs and θ0 ¼ −R0=Rs propa-
gating along the z direction helically and antihelically. We
called the former a “dilaton-magnon” [10], and the latter
may be called a “massive dilaton-magnon.” In the ultra-
relativistic limit μ → 0, the four modes for X, Y, θ, and R
propagate independently of each other with the linear
dispersion ck as wavy kelvons for X and Y, Uð1Þ magnon
for θ, and dilaton for R.
Here, we note that the dilatation symmetry is not the

symmetry of the Lagrangian density (16) but the symmetry
of the stationary state of the dynamical equation for the
Lagrangian, and the dilaton is not the NG mode but a
so-called quasi-NG (QNG) mode [22], while wavy kelvons
and phonons are NG modes. The dilaton-magnon is
also regarded as coupled NG–QNG mode, while a helical
kelvon is a coupled NG mode. In the nonrelativistic limit
c → ∞, the massive helical kelvon and massive dilaton-
magnon disappear because of the divergent dispersion
relation.
In Ref. [8], NG modes localized around a domain wall

in ferromagnets with one easy axis were studied. The
model is a nonrelativistic version of the massiveCP1 model
often studied in the supersymmetric context [36]. The
domain wall breaks the translational symmetry transverse
to the wall as well as the internal Uð1Þ symmetry. There
appear an associated ripple mode and Uð1Þ NG modes,
coupled to each other. The interpolation between ultra-
relativistic and nonrelativistic theories is parallel to the case
of a Skyrmion line.

2. Linear-response theory

We consider the dynamics of the kelvon wave and
dilaton-magnon in the linear-response theory frame-
work: u ¼ usðR ¼ θ ¼ X ¼ Y ¼ 0Þ þ aþeiðk·x−ωtþδÞþ
a−e−iðk·x−ωtþδÞ. Inserting this ansatz into the dynamical
equation (18), we obtain the Bogoliubov–de Gennes
equation,

�
ω2

c2
�2μω

�
a�¼

�
ðk2−∇2

r Þþ
4ðr∂r� i∂θÞ

r2þR2
s

�
a�þOða2�Þ;

ð28Þ

where,∇r ¼ ð∂x; ∂yÞ denotes the derivative in the xy plane.
By expanding a� as a� ¼ P

la�;leilθ, we obtain

�
ω2

c2
� 2μω

�
a�;l ¼

�
ðk2 − ∂2

r − ∂r=rþ l2=r2Þ

þ 4ðr∂r∓lÞ
r2 þ R2

s

�
a�;l þOða2�Þ: ð29Þ

There are two characteristic solutions: a�;0 ∝ 1 with l ¼ 0
and a�;1 ∝ r=Rs with l ¼ 1 with the dispersion relation
shown in Eq. (22). As long as μ ≠ 0, there are a gapless
NG mode with ωNG

� and gapful Higgs mode with ωH
�, and

the solution becomes

uNG�;0 ¼
reiθ

Rs
− X0e�iðkz−ωNG

� tþδÞ;

uH�;0 ¼
reiθ

Rs
− X0e∓iðkz−ωH

�tþδÞ ð30Þ

for l ¼ 0 and

uNG1 ¼ reiθ

Rs
þ iθ0re�iðkz−ωNG

� tþδÞ

Rs
;

uH1 ¼ reiθ

Rs
þ iθ0re∓iðkz−ωH

�tþδÞ

Rs
ð31Þ

for l ¼ 1. uNG�;0, u
H
�;0, u

NG
�;1, and uH�;1 are equivalent to the

solution (25) with moduli X, Y, θ, and R for helical kelvon,
massive helical kelvon, dilaton-magnon, and massive
dilaton-magnon, respectively, in the first order of X0 and
θ0. In the ultrarelativistic limit μ → 0, both ωNG

� and ωH
�

have linear dispersion relations �ck, giving wavy kelvons
as the linear combination of uNG�;0 and uH�;0 and the Uð1Þ
magnon and dilaton as the linear combination of uNG�;1

and uH�;1.
We shortly note other solutions having the same dis-

persions ωNG
� and ωH

�. With l ¼ 0 and l ¼ 1, solutions a�;0

and a�;1 have their anomalous pairs a�;0 ∝ ðr=RsÞ4 þ
4ðr=RsÞ2 þ 4 logðr=RsÞ and a�;1 ∝ ðr=RsÞ3 − ðRs=rÞþ
8ðr=RsÞ logðr=RsÞ, which are the modes changing the
Skyrmion charge of the total volume in which we are
not interested. For higher l ≥ 2, there are also solutions
a�;l≥2 ∝ ðr=RsÞl. They do not change the state around the
Skyrmion at the center but change the bulk state far from
the Skyrmion, giving bulk magnons with ωNG

� and a bulk
massive magnon with ωH

� propagating along arbitrary
directions. For lower l < 0, solutions a�;l<0 ∝ ðRs=rÞ−l
give the Skyrmion-splitting modes from 1 Skyrmion at the
center with the chargeþ1 to 1 Skyrmion with the charge −l
at the center and ðlþ 1Þ Skyrmions with the charge þ1
around the center. As well as the dilaton, these Skyrmion-
splitting modes do not come from the symmetry of the
Lagrangian density, and can be regarded as QNGmodes and
their massive partners.

IV. SUMMARY AND DISCUSSION

In summary, we have revealed how relativistic and
nonrelativistic NG modes are interpolated. We have found
that type-I and type-II NG modes in the interpolating
Lagrangians with the Lorentz invariance are accompanied
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with a gapful Higgs mode and gapful chiral NG partner,
respectively. In the ultrarelativistic limit, the type-I NG and
Higgs partner remain, and the type-II NG mode and gapful
NG partner become two type-I NG modes. In the non-
relativistic limit, the accompanied gapful modes become
infinitely massive, disappearing from the spectrum. In the
whole region, the commutation relation holds consistently,
showing that the Lorentz invariance does not forbid type-II
NG modes.
While we have studied a kelvon localized around a

Skyrmion line in ferromagnets, we have not studied a
kelvon localized around a vortex line in scalar BECs. In the
latter case, the dispersion relation of the kelvon depends
on the transverse system size. When the size is finite, the
dispersion relation is quadratic, but it is not an integer
anymore for infinite system size. Recently, the interpolating
formula of the dispersion relation of the kelvon for an
arbitrary transverse system size was obtained in Ref. [14].
Extending to the case of a kelvon of a vortex in an arbitrary
system size for interpolating relativistic and nonrelativistic
systems is an interesting future work that would be
important for the Mott insulator transition point in BECs
in the optical lattice.
One of the related topics is the relaxation dynamics of

topological defects generated through the Kibble–Zurek
mechanism after the temperature quench. It has been
predicted [37] that the relaxation dynamics is universal
and dependent only on a small number of factors such as
conserved quantities, external currents, viscosity, and off
criticality. For one of the future problems in this topic, we
can consider the dependence of the relaxation dynamics
on the dispersion relation of NG modes excited along the
topological defects in the interpolation between relativistic
and nonrelativistic regions, which is expected to be an
essential problem in the phase-ordering dynamics of Uð1Þ
bosons with the finite chemical potential [38].
Finally, let us mention quantum corrections of NG

modes in lower dimensions. In the nonrelativistic limit,
type-II NG modes remain gapless under nonperturbative
quantum corrections [39], as opposed to type-I NG modes
that become gapful to be consistent with the Coleman–
Mermin–Wargner theorem. It is interesting to see whether
quantum corrections give gaps to type-II NG modes in the
intermediate region.
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APPENDIX: SPINOR BEC

Here, we discuss a ferromagnetic F ¼ 1 spinor BEC
which contains both type-I and -II NG modes simulta-
neously. We see that it contains further a pair of gapful
modes. The interpolating Lagrangian is

L ¼ 1

c2
j∂tψ j2 þ iμðψ†∂tψ − ∂tψ

†ψÞ − j∇ψ j2

−
g0
2

�
jψ j2 − ðg0 − g1Þρ

g0

�
2

þ g1
2
ðψ†F̂ψÞ2; ðA1Þ

where ψ ¼ ðψ1;ψ0;ψ−1ÞT is the three-component
(spinor-1) complex scalar fields and F̂ is the triplet of the
3 by 3 SOð3Þ generators (spin-1 spin matrices). Besides the
Lorentz transformation given in Eq. (2) for all components
ψ�1 and ψ0, this Lagrangian is invariant under the shift
of the overall phase ψ → ψeiθ and the SOð3Þ spin rotation
ψ → ψe−iF̂·s. When the two coupling constants g0 and g1
satisfy g0 > g1 ≥ 0, there exists a stable and static solution
ψg¼ð ffiffiffi

ρ
p

;0;0ÞT for F¼ψ†F̂ψ¼ð0;0;ρÞ as the ground state.
As well as the previous examples, we consider the

following low-energy excited state,

ψ ¼ ffiffiffi
ρ

p ðð1þ f1Þeiθ1 ; α0 þ iβ0; α−1 þ iβ−1ÞT; ðA2Þ

where f1 and θ1 are fluctuations of the amplitude and phase
of the first component of ψ and αm and βm are the real and
imaginary parts of fluctuations of the mth component
(m ¼ 0;−1) of ψ . Inserting Eq. (A2) into Eq. (A1), we
get the effective Lagrangian
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L
ρ
¼

_f21þ _θ21þ _α20þ _β20þ _α2−1þ _β2−1
c2

−2μfð1þ2f1Þ_θ1þα0 _β0− _α0β0þα−1 _β−1− _α−1β−1g
−ðj∇f1j2þj∇θ1j2þj∇α0j2þj∇β0j2
þj∇α−1j2þj∇β−1j2Þ−2ðg0−g1Þρf21−2g1ρðα2−1þβ2−1Þ
þOððf1;θ1;α0;β0;α−1;β−1Þ3Þ: ðA3Þ

The low-energy dynamics becomes

f̈1
c2

þ 2μ_θ1 −∇2f1 þ 2ðg0 − g1Þρf1 ¼ 0;

θ̈1
c2

− 2μ_θ1 −∇2θ1 ¼ 0; ðA4aÞ

α̈0
c2

þ2μ_β0−∇2α0¼ 0;
β̈0
c2

−2μ _α0−∇2β0¼ 0; ðA4bÞ

α̈−1
c2

þ 2μ _β−1 −∇2α−1 þ 2g1ρα1 ¼ 0;

β̈−1
c2

− 2μ _α−1 −∇2β−1 þ 2g1ρβ1 ¼ 0: ðA4cÞ

Equation (A4a) has the same form as Eq. (6) with
rewriting f → f1, θ → θ1, and g → g0 − g1. Therefore, as
long as μ ≠ 0, dynamics of f1 and θ1 are coupled as f1 ¼
f10 cosðk · x − ωtþ δÞ and θ1 ¼ θ10 sinðk · x − ωtþ δÞ
with the dispersions shown in Eqs. (7) and (9): one gapful
Higgs mode with ωH

� and one type-I gapless NG mode with
ωNG
� . In the relativistic limit, two dynamics of f1 and θ1 are

independent of each other, giving a Higgs mode for f1 and
a type-I NG mode for θ1. In the nonrelativistic limit, the
Higgs mode vanishes with a diverging spectrum.
Equation (A4b) has the same form as Eq. (21), and the

solutions α0 ¼ α00 cosðk · x − ωtþ δÞ and β0 ¼ β00 sinðk ·
x − ωtþ δÞ exactly behave as α and β: one Higgs mode
with ω ¼ ωH

� and β00 ¼ ∓α00 and one type-II NG mode
with ω ¼ ωNG

� and β00 ¼ �α00 having opposite chiralities
as long as μ ≠ 0. In the ultrarelativistic limit, the Higgs and
type-II NGmodes are degenerated, giving rise to two type-I
NG modes. In the nonrelativistic limit, the Higgs mode
vanishes with a diverging spectrum. The modes α0 and β0
can be considered as fluctuations of the spin rotation
around F ¼ ð0; 0; ρÞ. Fluctuations for Fx and Fy can be
written as e−iF̂ysψg ¼ ffiffiffi

ρ
p ð1; s= ffiffiffi

2
p

; 0ÞT þOðs2Þ and
eiF̂xsψg ¼ ffiffiffi

ρ
p ð1; is= ffiffiffi

2
p

; 0ÞT þOðs2Þ. The real and imagi-
nary parts α0 and β0 therefore correspond to fluctuations of
Fx and Fy, respectively, which is consistent with α and β in
Eq. (20) as fluctuations of n1 and n2.

For Eq. (A4c), typical solutions are α−1 ¼ α−10 cosðk ·
x − ωtþ δÞ and β−1 ¼ β−10 sinðk · x − ωtþ δÞ as long as
μ ≠ 0 with the dispersion

ωG1
� ¼�cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þμ2c2þ2g1ρ

q
þμcÞ

¼�c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c2þ2g1ρ

q
þμcþ k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc2þ2g1ρ

p
�
þOðk4Þ;

αH−10�¼∓βH−10�;

ωG2
� ¼�cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þμ2c2þ2g1ρ

q
−μcÞ

¼�c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c2þ2g1ρ

q
−μcþ k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc2þ2g1ρ

p
�
þOðk4Þ;

αH−10�¼�βH−10�: ðA5Þ

Being different from ωNG
� and ωH

� for α0 and β0, both ωG1
�

and ωG2
� are gapful as long as g1 > 0. In the nonrelativistic

limit c → ∞, ωG1
� diverges as well as ωH

�, and only the
gapful mode with ωG2

� survives. In the ultrarelativistic limit
μ → 0, α−1 and β−1 are independent of each other with the
dispersion

ωG1
� ¼ ωG2

� ¼ �c

� ffiffiffiffiffiffiffiffiffi
2g1ρ

p
þ k2

2
ffiffiffiffiffiffiffiffiffi
2g1ρ

p
�
þOðk4Þ; ðA6Þ

which remains gapful. Defining new operators

F̂p1 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; F̂p2 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; ðA7Þ

we can write the modes corresponding to α−1 and β−1
as e−iF̂p2sψg ¼ ffiffiffi

ρ
p ð1; 0; sÞT þOðs2Þ and eiF̂p1sψg ¼ffiffiffi

ρ
p ð1; 0; isÞT þOðs2Þ. Because we can obtain the non-
magnetic polar state ψp ¼ ffiffiffi

ρ
p ð1; 0; eiδÞT= ffiffiffi

2
p

with F̂p1 and
F̂p2 as e−iðF̂p2 cos δ−F̂p1 sin δÞπ=4ψg ¼ ψp, we can regard α−1
and β−1 as the fluctuation from the ferromagnetic state to
the polar state.
In the case of g1 ¼ 0, the number of NG modes changes

as follows. In this case, two dispersions ωG1
� and ωG2

�
become equivalent to ωH

� and ωNG
� for α0 and β0, respec-

tively, and α−1 and β−1 also contribute to the type-II NG
and Higgs modes. This is a consequence of the fact that the
symmetry of the Lagrangian is enlarged from Uð1Þ ×
SOð3Þ to Uð3Þ and broken generators for ψg included in
uð3Þ are F̂x;y;z;p1;p2, which have been just consid-
ered above.
We finally refer to the linear-response theory, which

gives the same results as those from the low-energy
effective theory as well as other examples in the main
part. The Bogoliubov equation can be obtained by
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substituting the fluctuations ψ → ψg þ ueiðk·x−ωtþδÞ þ
v�e−iðk·x−ωtþδÞ to the original Lagrangian (A1),

�
ω2=c2 þ 2μω − k2 − F −G

−G ω2=c2 − 2μω − k2 − F

��
u

v

�

þOððu; vÞ2Þ ¼ 0; ðA8Þ

where F and G are given in the ferromagnetic ground state
ψg as

F ¼ ρ

0
B@

g0 − g1 0 0

0 0 0

0 0 2g1

1
CA; G¼ ρ

0
B@

g0 − g1 0 0

0 0 0

0 0 0

1
CA:

ðA9Þ

We obtain the same dispersion relations as those discussed
in the low-energy effective theory.
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