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We investigate some aspects of Bogomolny-Prasad-Sommerfield monopole solutions in the Yang-Mills-
Higgs theory with the exceptional gauge group G2 spontaneously broken to Uð1Þ × Uð1Þ. The
corresponding homotopy group is π2ðG2=Uð1Þ ×Uð1ÞÞ, and similarly to the SUð3Þ theory, the G2

monopoles are classified by two topological charges ðn1; n2Þ. In the fundamental representation, these yield
a subset of SOð7Þmonopole configurations. Through inspection of the structure of AlgðG2Þ, we propose an
extension of the Nahm construction to the ðn; 1ÞG2

monopoles. For the ð1; 1ÞG2
monopole, the Nahm data

are written explicitly.
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I. INTRODUCTION

Classical monopole solutions of spontaneously broken
Yang-Mills-Higgs theories have long been the objects of
detailed study.1 These topologically nontrivial field con-
figurations may exist in gauge theories for an arbitrary
semisimple compact Lie group [4,5]. The simplest example
is the ’t Hooft–Polyakov monopole in the SUð2Þ theory
[6,7]. In the Bogomolny-Prasad-Sommerfield (BPS) limit
[8,9], the potential of the scalar field is vanishing and the
monopole solution is given by the first-order equation
which is integrable. Furthermore, the Bogomolny equation
can be treated as a dimensionally reduced self-duality
equation, and there is a duality between the monopole
solutions of the Bogomolny equation and the matrix valued
Nahm data [10]. Nahm’s construction is a very powerful
tool for constructing various multimonopoles in different
models [11–16]; it also has a very interesting realization in
the context of the construction of D-branes [17].
Nahm’s construction can be generalized for all classical

groups, as SUðNÞ [14], symplectic and orthogonal groups
[15,16,18]. Here we will concentrate on the case of the
smallest simply connected compact exceptional group
with a trivial center G2. Topologically nontrivial boundary
conditions of the scalar field yield a nontrivial second
homotopy group of the vacuum where the symmetry is
broken to a residue group H, thus there are monopole
solutions of the G2 Yang-Mills-Higgs theory.
Gauge theories with symmetry group G2 have attracted

much attention recently [19–25]. One of the reasons is that
such a theory is similar to usual SUð3Þ gluodynamics; thus
it is useful to investigate how the center symmetry is
relevant for deconfinement phase transition in the latticeG2

gluodynamics [19,20,22,23]. Recently, it was shown that
in supersymmetric Yang-Mills theory, confinement-
deconfinement transition does not break the symmetry of

the G2 ground state although the expectation value of the
Wilson line exhibits a discontinuity [25].
On the other hand, the gauge group G2 is the auto-

morphism group of the division algebra of octonions. This
property allows one to construct an octonionic instanton
solution to the seven-dimensional G2 Yang-Mills theory
[24]. Also, the massless monopole states in the N ¼ 2
supersymmetric Yang-Mills theory with symmetry group
G2 were considered recently [21].
Note that the coupling of the gauge sector to the Higgs

field in the seven-dimensional fundamental representation
of G2 may break this symmetry to SUð3Þ; however, in this
case some fundamental monopoles, i.e. the monopoles
associated with simple roots of the gauge group G2,
become massless (see e.g. Ref. [2]). In this paper we will
mainly consider another, more simple situation, when the
gauge symmetry is broken maximally by an adjoint Higgs
mechanism to Uð1Þ ×Uð1Þ. In this case the monopoles
have two topological charges with respect to either of the
unbroken Abelian groups Uð1Þ; thus the monopoles can
be labeled by two integers ðn1; n2Þ.
The organization of the paper is as follows: Section II is a

review of the basic properties of the first exceptional group
G2; there we also review the Nahm formalism. Section III
contains our results of construction of the ð1; 1ÞG2

monop-
oles. In Sec. IV we conclude with some additional remarks.
In additional appendixes, we summarize the relevant
information about the g2 algebra and its representation.

II. EXCEPTIONAL GROUP G2 AND THE
NAHM CONSTRUCTION

We start with some introductory remarks about the Lie
group G2. It is the smallest of the five exceptional simple
Lie groups with a trivial central element. Mathematically,
it can be thought as the group of automorphisms of the
octonions or as a subgroup of the real orthogonal group
SOð7Þ, which leaves one element of the eight-dimensional1For a review, see Refs. [1–3].
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real spinor representation invariant. It is one of three simple
Lie groups of rank two: SUð3Þ, Oð5Þ and G2. The
fundamental representation of G2 is seven-dimensional;
the number of generators of the corresponding algebra is 14
(we refer to Table I, Appendix A for details). Thus, the
Cartan subgroup contains two commuting generators
H1; H2. The roots and coroots of theG2 are shown in Fig. 1.
Explicitly, we can take the elements of the Cartan

subalgebra H

H1 ¼
1

4
diagð−1; 1;−2; 0; 2;−1; 1Þ;

H2 ¼
1

4
ffiffiffi
3

p diagð0;−1; 1; 0;−1; 1; 0Þ ð1Þ

so that the Killing form KðHi;HjÞ ¼ 1
2
δij.

Thereafter, we consider the Yang-Mills-Higgs theory in
the BPS limit. Then the monopoles are solutions of the
first-order Bogomolny equation

DkΦ ¼ Bk: ð2Þ

The asymptotic value of the Higgs field along the positive
direction of the third axis lies in the Cartan subalgebra:
Φ∞ ¼ h ·H. If the G2 symmetry is maximally broken to
Uð1Þ ×Uð1Þ, all roots have nonvanishing inner products
with vector h and, since π1ðG2Þ ¼ 0, the monopole
solutions are classified according to the homotopy group
π2ðG2=Uð1Þ × Uð1ÞÞ ¼ π1ðUð1Þ × Uð1ÞÞ ¼ Z × Z.
Recall that the magnetic field of the monopole configura-
tion asymptotically also lies in the Cartan subalgebra

Bk ¼ g ·H
rk

4πr3
: ð3Þ

Therefore, the quantized magnetic charge is

g ¼ 4π

e
ðn1α�

1 þ n2α�
2Þ; ð4Þ

where two integers n1; n2 are topological charges of the
monopoles given by embedding along the corresponding
simple roots, and there are two distinct charge-1 funda-
mental monopoles which correspond to embeddings along
the roots α1 and α2; they are (1,0) and (0,1), respectively.
Thus, any ðn1; n2Þ G2 monopole can be viewed as a
collection of n1 individual α1 fundamental monopoles
and n2 α2 fundamental monopoles.
Then, making use of an explicit seven-dimensional

representation of g2, the asymptotic of the Higgs field is
of the form

Φ ¼ diagð−s1 − s2;−s2;−s1; 0; s1; s2; s1 þ s2Þ

−
1

2er
diagð−n2;−n1 þ n2; n1 − 2n2; 0;−n1

þ 2n2; n1 − n2; n2Þ þOðr−1Þ; ð5Þ

where s2 > s1 > 0 to follow the conventional ordering.
The mass of the corresponding ðn1; n2Þ configuration is
given by

M ¼ 4π

e
½n1h · α�

1 þ n2h · α�
2�

¼ 4π

e
½8n1ðs2 − s1Þ þ 24n2s1�: ð6Þ

Let us briefly discuss the special case of nonmaximal
symmetry breaking. Clearly, there are two situations when
one of the G2 monopoles becomes massless, s1 ¼ s2 and
s1 ¼ 0. The first case corresponds to the situation when the
vector of the Higgs field is orthogonal to the long root α1

and the symmetry is broken to SUð2Þ ×Uð1Þ. In the
second case, the Higgs field is orthogonal to the short
root α2 and the symmetry is broken to Uð1Þ × SUð2Þ. The
total magnetic charge of these configurations is Abelian
when the configuration remains invariant with respect to
the transformations from the unbroken subgroup; such
configurations are ð½3n�; 2nÞ and ð2n; ½n�Þ, where the square
brackets denote the holomorphic charge which counts the
number of massless monopoles [26].
The Nahm construction can be considered as a duality

between the Bogomolny equation (2) inR3 and solutions of
the Nahm equation in one-dimensional space

dTi

ds
¼ 1

2
εijk½Tj; Tk�; ð7Þ

where the Nahm data TkðsÞ are matrix-valued functions of
a variable s over the finite interval given by the eigenvalues
of the Higgs field on the spatial boundary. The first step of
the Nahm construction is to find a solution of the linear
differential equation (7) which must satisfy certain boun-
dary conditions imposed on the end points of the interval of
values of variable s. The second step is to solve theFIG. 1. Root diagram of G2 theory.
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construction equation2 on the eigenfunctions ωðr; sÞ of the
linear operator which includes the Nahm data:�
−I2k

d
ds

þ ðriIk − TðkÞ
i Þ ⊗ σi

�
ωðr; sÞ þ ðvðkÞÞ†SðkÞðrÞ ¼ 0:

ð8Þ

Finally, the normalizible eigenfunctions allow us to recover
the spacetime fields of the BPS monopole as

Φnm ¼
Z

s2

s1

ds sω†
nðs; rÞωmðs; rÞ;

Ak
nm ¼ −i

Z
s2

s1

dsω†
nðs; rÞ∂kωmðs; rÞ; ð9Þ

where s1; s2 are the endpoints of the interval of values of
variable s.
This kind of duality was investigated in many papers;

for a review, see Ref. [2], especially in the case of the
gauge group SUð2Þ. In such a case it is possible to prove
the isometry between the hyper-Kähler metrics of the
moduli spaces of Nahm data and BPS monopoles. The
conjecture about general equivalence of the metric on

the moduli space of the Hahm data and the metric on the
monopole moduli space was used, for example, to
calculate the metric on the moduli space of (2,1) SUð3Þ
monopoles [12].
The Nahm approach can be generalized to all classical

groups [11,26]. The asymptotic Higgs field of the
SUðNÞ monopoles has N eigenvalues sp, p ¼ 1; 2…N,
where the usual ordering is imposed: s1 ≤ s2 ≤ … ≤ sN .
Thus, if the symmetry is broken to a maximal torus,
there are N − 1 fundamental monopoles and the dimen-
sion of the corresponding moduli space is 4ðN − 1Þ. The
Nahm data are defined over the interval s ∈ ½s1; sN �; this
range is subdivided into six subintervals ½sp; spþ1�, on
each of which the Nahm matrices TkðsÞ of dimension
np × np satisfy Eq. (7) [14]. Thus, each of these
subintervals corresponds to a different fundamental
monopole, the length of the subinterval defines its mass,
and the dimension of the matrices TkðsÞ yields the
number of monopoles of that type.
The boundary conditions on the endpoint of the sub-

intervals are
(1) np > npþ1: Tðpþ1Þ should have a well-defined limit

at spþ1, and

TðpÞ ¼
�Tðpþ1Þðspþ1Þ þOðs − spþ1Þ O½ðs − spþ1Þðnp−npþ1−1Þ=2�

O½ðs − spþ1Þðnp−npþ1−1Þ=2� − LðpÞ
s−spþ1

þOð1Þ

�
ð10Þ

near the boundary. Here the np × np matrix forms an
irreducible np-dimensional representation of SUð2Þ.
(2) np < npþ1: The roles of the left and right end points

of the subintervals are reversed, and the residue
submatrix LðpÞ appears in the upper-left corner.

(3) np ¼ npþ1: The Nahm data at the endpoint can be
discontinuous; one has to introduce the jumping data,
np × 2–sizedmatrixa, and require that at the junction

ðTðpþ1Þ
j − TðpÞ

j Þ
rs
¼ −

1

2
a†sαðσjÞαβaβr: ð11Þ

Here σj are the usual Pauli matrices.

III. CONSTRUCTION OF THE G2 MONOPOLES

Apart from simple embedding of the properly rescaled
SUð2Þmonopole in the 2 × 2 block of theG2 matrices, there
is another, less trivial embedding into G2. Indeed, as g2
algebra possessessuð3Þ subalgebra, it can be decomposed as

g2 ¼ suð3Þ ⊕ G; ð12Þ

with G forming a module under adjoint action of
suð3Þ, ½suð3Þ;G� ¼ G.
This observation leads to a curious consequence regard-

ing zero modes of the SUð3Þ embedded monopole con-
figuration. Indeed, let us consider the corresponding
linearized Bogomolny equation for monopole zero modes

DδA ¼ 0: ð13Þ
Since D is suð3Þ valued, these modes clearly separate into
purely suð3Þ-valued modes and purelyG-valued ones. The
former are just zero modes of the embedded SUð3Þ monop-
ole, while the latter appear since G2 is larger than SUð3Þ.
However, we can see that the norm of the Higgs field is not
affected by excitation of the G-valued zero modes:

δ
1

2
TrΦ2 ¼ TrΦδΦ: ð14Þ

ByWard’s formula for energy density of the BPSmonopoles
[27], the excitationof thesemodes does not change the energy
density distribution either. Note that physically these G-
valued zero modes correspond to the decay of a certain kind
of SUð3Þ monopoles into a pair of different G2 monopoles.
Let the simple roots of suð3Þ subalgebra be β1; β2. Their

corresponding coroots can be decomposed in coroots
of G2 as2Here we consider the SUðNÞ model.
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β�1 ¼ α�
1; β�2 ¼ α�

1 þ α�
2: ð15Þ

Thus, we can set a correspondence between the monopoles
as ðn1; n2ÞSUð3Þ → ðn1 þ n2; n2ÞG2

. In other words, the first
fundamental SUð3Þ monopole can be viewed as the first
fundamental G2 monopole, and the second as a stack of
both fundamental G2 monopoles. Such identification is
somewhat akin to the construction of the SO; Sp monop-
oles by restriction of the corresponding SUðNÞ configura-
tions [11]; however, the identification of some monopole
species in this case happens without a reduction in the
number of species.
This kind of embedding can be used to obtain some

nontrivial configurations. For instance, consider the embed-
ding ð1; 1ÞSUð3Þ → ð2; ½1�ÞG2

[for the second G2 monopole
to be massless, original SUð3Þ monopoles should be of
equal masses]. The result is the axially symmetric subset of
the ð2; ½1�ÞG2

configurations, i.e. two separated identical
monopoles with a cloud of minimal size. We immediately
arrive at the conclusion that ð2; ½1�ÞG2

moduli space
interpolates between Taub-NUT (which corresponds to
the case of the non-Abeian cloud of minimal size) and
Atiyah-Hitchin (the cloud of infinite size) geometries. The
same result was obtained earlier by another method in
Ref. [15] via the identification of certain species of the
SOð8Þ monopoles.
Axially symmetric ð2; ½1�ÞSUð3Þ configurations were

studied in detail in Ref. [28]. Such configurations can be
of two types. The first one corresponds to the trigonometric
axially symmetric Nahm data; it can be considered as the
system of two coincident monopoles surrounded by a non-
Abelian cloud of finite size. The configuration of the
second type corresponds to the hyperbolic axially sym-
metric Nahm data, in which case the system is composed of
two separated monopoles with a non-Abelian cloud of
minimal size. By the embedding ð1; 1ÞSUð3Þ → ð2; ½1�ÞG2

,
we obtain precisely the latter configuration. Calculation of
the energy density profile of the ð1; 1ÞSUð3Þ embedded
monopole then immediately yields the profile of the
corresponding axially symmetric ð2; ½1�ÞG2

configuration.
Apart from this simple embedding, there are different

G2 monopoles which can be constructed directly from the
Nahm data. First, let us overview how this formalism can be
extended to the classical groups other than SUðNÞ. Since
both SOðNÞ and SpðNÞ groups can be represented by
unitary matrices with a unit determinant, the corresponding
monopole configurations can be obtained by imposing
constraints on a general SUðNÞ solution. In effect, these
constraints force some species of SUðNÞ monopoles to
merge, reducing the total number of fundamental
monopoles.
Our approach to G2 monopoles is essentially the same.

Making use of the fundamental seven-dimensional repre-
sentation, we have established the asymptotic behavior (5)

of G2 monopoles. From a Nahm construction point of
view, the leading term of (5) specifies the intervals on
which Nahm matrices are defined. The subleading term
tells us the number of fundamental SUð7Þ [or SOð7Þ, since
G2 ⊂ SOð7Þ] monopoles involved. That is, ðn1; n2ÞG2

monopoles lie in the ðn2; n1; 2n2; 2n2; n1; n2ÞSUð7Þ sector
[more precisely, its ðn2; n1; n2ÞSOð7Þ subsector]. Thus,
similarly to the case of an orthogonal group, we need to
merge further the ð1; 0; 0ÞSOð7Þ and ð0; 0; 1ÞSOð7Þ monopoles
to form the ð0; 1ÞG2

monopole.
Note that we can look at theG2 monopoles from both the

SUð7Þ and SOð7Þ points of view. The former approach
seems to be more natural in the context of Nahm con-
struction; however, the latter approach allows us to deal
with a lower number of moduli parameters. Also, G2 is a
subgroup of the group SOð7Þ.
Finally, knowing the intervals on which Nahm matrices

reside and their dimensions, we need to place a constraint
on the Nahm data directly to merge some monopole
species. The transition from SUð7Þ to SOð7Þ is well known;
the Nahm matrices should possess a reflection symmetry

Tjð−sÞ ¼ CðsÞTt
jðsÞC−1ðsÞ; ð16Þ

where the matrix CðsÞ satisfies Cð−sÞ ¼ −CtðsÞ. The
transition from SOð7Þ to G2, similar to the construction
of the SOðNÞ and SpðNÞ monopoles via restriction of the
SUðNÞ Nahm data, should relate the Nahm matrices
in the first and the third subintervals [since ð0; 1ÞG2

≅
ð1; 0; 1ÞSOð7Þ ≅ ð1; 0; 2; 2; 0; 1ÞSUð7Þ]. However, the matri-
ces in these intervals are of different sizes; thus, any
constraint of the type (16) will not be sufficient.
Some progress can be made if we consider the ðn; 1ÞG2

≅
ð1; n; 1ÞSOð7Þ sector. There is only one monopole each of
the first and of the third kind, and their coordinates enter the
Nahm data explicitly (due to reflection symmetry only, we
restrict ourselves to s ≤ 0):

TjðsÞ ¼ xj; s ∈ ½−s1 − s2;−s2�; ð17Þ

TjðsÞ ¼ I2yj þ � � � ; s ∈ ½−s1; 0�; ð18Þ

where the ellipsis denotes the traceless part, determined
by the moduli of the n monopoles of the second kind.
Coordinates of the monopoles to be nested are given by xj
and yj; it is natural to conjecture that the transition from
SOð7Þ to G2 is accomplished by setting xj ¼ yj. This
automatically leaves us with a correct number of monopole
moduli in the Nahm data.
Let us now see how the construction works for the

simplest nontrivial case, ð1; 1ÞG2
. The skyline diagram and

the corresponding Nahm matrices are given in Fig. 2. For
the sake of simplicity, the second monopole is placed at the
origin.
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Here σ0j ¼ UσjU†ðU† ¼ U−1Þ are rotated Pauli matrices.
The parameters of the rotation and the value s0 are fixed
by the matching condition across the boundaries of the
subintervals

ti ¼ −
1

2s0
ðσ0iÞ22 ¼

1

2s0
ðσ0iÞ11: ð19Þ

The Nahm matrices are supplemented by the jumping data

s ¼ 0∶ arα ¼
ffiffiffiffiffi
2

s0

s
U

�
0 −1
1 0

�
;

s ¼ −s2∶ aα ¼
ffiffiffiffiffiffiffiffi
2jtij

p �
sin θ=2e−iφ=2

− cos θ=2eiφ=2

�
;

s ¼ þs2∶ aα ¼
ffiffiffiffiffiffiffiffi
2jtij

p �
cos θ=2eiφ=2

sin θ=2eiφ=2

�
; ð20Þ

where θ and φ specify the direction of ti.
It is a trivial matter to carry out the construction in the

ti ¼ 0 case. The two fundamental G2 monopoles now
coincide; they are spherically symmetric. This case corre-
sponds to the SUð3Þ composite monopole embedded along
the root β3 ¼ β1 þ β2. Then the complete orthonormal set
of construction equation solutions can be taken to be

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
sinh vr

r
exp

�
sσi · ri −

rs2
2

�
ηdown− ;

ω2 ¼ 0; Sð−s2Þ ¼ 1;

ω3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
sinh vr

r
exp

�
sσi · ri þ

rs2
2

�
ηup− ;

ω4 ¼ 0; Sð0Þ ¼ 1;

ω5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
sinh vr

r
exp

�
sσi · ri þ

rs2
2

�
ηdownþ ;

ω6 ¼ 0; Sðs2Þ ¼ 1;

ω7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
sinh vr

r
exp

�
sσi · ri −

rs2
2

�
ηupþ ; ð21Þ

where ηup=down� are the usual eigenvectors of σ · r. These
solutions give rise to the Higgs field of the G2 monopole

Φ ¼ s2diag

�
−
1

2
;−1;

1

2
; 0;−

1

2
; 1;

1

2

�

þ 1

2

�
ð2s1 þ s2Þ cothð2s1 þ s2Þr −

1

r

�
× diagð−1; 0;−1; 0; 1; 0; 1Þ: ð22Þ

One can readily recognize the Higgs profile of a spherically
symmetric monopole in the string gauge. We obtain the
fields of an embedded SUð2Þ monopole, just as expected.
For nonzero separation, the construction equation can be

solved analytically; however, picking an orthonormal basis
of its solutions is a technically difficult task.
In this simple case we can check the correctness of the

construction indirectly. The ð1; 1ÞG2
solution is obtained by

placing a constraint on a generic ð1; 1; 1ÞSOð7Þ monopole.
Both configurations contain no more than one monopole of
each kind. Thus, the corresponding asymptotic metrics,
which include monopole coordinates xi and phases ξi, turn
out to be exact. This conclusion can be proven rigorously
for two monopoles, since hyper-Kähler structure and
asymptotic interaction completely determine the metric
on the moduli space. On the other hand, the constraint
we imposed selects a submanifold in ð1; 1; 1ÞSOð7Þ moduli
space (by setting x1 ¼ x3), and hence gives us an expres-
sion for the metric of ð1; 1ÞG2

. Direct computation confirms
that the metric obtained by such identification is the
correct one.

IV. CONCLUSIONS

The main purpose of this work was to present the
application of the Nahm construction to the case of
the BPS monopoles in the Yang-Mills-Higgs theory with
the exceptional gauge group G2 spontaneously broken to
Uð1Þ ×Uð1Þ. As a particular example we considered the
Abelian spherically symmetric ð1; 1ÞG2

monopole. We have
shown that the G2 monopoles can be constructed by
identification of certain set of SUð7Þ [or SOð7Þ] funda-
mental monopoles; in particular, the first G2 fundamental
monopole (1,0) represents a set of two nested SUð7Þ
monopoles location and orientation of those coincide,
while the second G2 fundamental monopole (0,1) repre-
sents another collection of six aligned and nested SUð7Þ
monopoles.
Perhaps the most interesting feature of the Nahm

construction is its realization in the terms of Dirichlet
branes. It was pointed out by Diakonesky [17] that there is
one-to-one correspondence between the SUðNÞ monopole
embedded along the simple roots as g ¼ 4π

e

P
iniα

�
i and the

one-branes stretching between the three-branes separated in
a transverse direction. This sort of duality has been
explicitly realized in N ¼ 4 SUðNÞ super-Yang-Mills
theory [29]. From that point of view, the construction of
the Nahm data for G2 monopoles corresponds to the

FIG. 2. Skyline diagram of ð1; 1ÞG2
monopole and its Nahm

data.
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configuration of the D-branes, some of which must be
identified according to the restrictions (15) [30].
There are various possible applications of the G2

monopole solutions discussed in this work. An interesting
task would be to study the contribution of these configu-
rations in the confinement-deconfinement phase transi-
tions. Note that this transition in the supersymmetric G2

Yang-Mills theory recently was discussed in Ref. [25]. In
particular, it was shown that deconfinement transition does
not break the symmetry of the G2 ground state, although
the expectation value of the Wilson line exhibits a
discontinuity.
Certainly, this is a first step towards comprehensive

study of the monopoles in the gauge models with excep-
tional groups. As a direction for future work, it would
be interesting to study in more detail the moduli space of
G2 monopoles, considering in particular various cases
of nonmaximal symmetry breaking. It would allow us to
better understand the role of the corresponding massless
G2 monopoles (non-Abelian clouds). Explicit construction
of the ðn1; n2ÞG2

moduli space metric, which determines
the low energy of the monopoles, remains our first goal. We
hope to report elsewhere on these problems.
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APPENDIX A: g2 ALGEBRA AND ITS
REPRESENTATION

Our choice of simple roots is α1 ¼ g1;−2 (long root) and
α2 ¼ g−2 (short root); hα�

1
¼ h1, hα�

2
¼ h2 − h1. The rep-

resentation is chosen in such a way that the elements of the
Cartan subgroup h with α1;2ðhÞ ≥ 0 have properly ordered
eigenvalues.

h1 ¼ −e22 þ e33 − e55 þ e66;

h2 ¼ −e11 − e33 þ e55 þ e77;

g1;−2 ¼ −e32 þ e65;

g1;−3 ¼ e61 − e72;

g2;−3 ¼ e51 − e73;

g1 ¼ e13 −
ffiffiffi
2

p
e24 þ

ffiffiffi
2

p
e46 − e57;

g2 ¼ −e12 −
ffiffiffi
2

p
e34 þ

ffiffiffi
2

p
e45 þ e67;

g3 ¼
ffiffiffi
2

p
e41 þ e52 − e63 −

ffiffiffi
2

p
e74;

g2;−1 ¼ ðg1;−2ÞT;
g3;−1 ¼ ðg1;−3ÞT;
g3;−2 ¼ ðg2;−3ÞT;
g−1 ¼ −ðg1ÞT;
g−2 ¼ −ðg2ÞT;
g−3 ¼ −ðg3ÞT;

where enm is a 7 × 7 matrix with the only nonzero
element ðenmÞnm ¼ 1.

TABLE I. The generators of the g2 algebra.

h1 h2 g1;−2 g2;−3 g3;−1 g2;−1 g3;−2 g1;−3 g1 g2 g3 g−1 g−2 g−3
h1 0 0 2g1;−2 −g2;−3 −g3;−1 −2g2;−1 g3;−2 g1;−3 −g1 þg2 0 g−1 −g−2 0
h2 0 −g1;−2 2g2;−3 −g3;−1 g2;−1 −2g3;−2 g1;−3 0 −g2 g3 0 g−2 −g−3
g1;−2 0 g1;−3 −g3;−2 h1 0 0 −g2 0 0 0 g−1 0
g2;−3 0 g2;−1 0 h2 0 0 −g3 0 0 0 g−2
g3;−1 0 0 0 −h−1 − h2 0 0 −g1 g−3 0 0
g2;−1 0 g3;−1 −g2;−3 0 −g1 0 g−2 0 0
g3;−2 0 −g1;−2 0 0 −g2 0 g−3 0
g1;−3 0 −g3 0 0 0 0 −g−1
g1 0 2g−3 −2g−2 2h1 þ h2 3g2;−1 3g3;−1
g2 0 2g−1 3g1;−2 −h1 þ h2 3g3;−2
g3 0 3g1;−3 3g2;−3 −h1 − 2h2
g−1 0 2g3 −2g2
g−2 0 2g1
g−1 0
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APPENDIX B: REPRESENTATION OF suð3Þ SUBGROUP

The representation is chosen so that the vacuum expectation value of the Higgs field has properly ordered eigenvalues.

h1 ¼

0
B@

−1 0 0

0 1 0

0 0 0

1
CA; h2 ¼

0
B@

0 0 0

0 −1 0

0 0 1

1
CA; g2;−1 ¼

0
B@

0 1ffiffi
2

p 0

0 0 0

0 0 0

1
CA; g1;−2 ¼

0
B@

0 0 0
1ffiffi
2

p 0 0

0 0 0

1
CA;

g3;−2 ¼

0
B@

0 0 0

0 0 1ffiffi
2

p

0 0 0

1
CA; g2;−3 ¼

0
B@

0 0 0

0 0 0

0 1ffiffi
2

p 0

1
CA; g3;−1 ¼

0
B@

0 0 1ffiffi
2

p

0 0 0

0 0 0

1
CA; g1;−3 ¼

0
B@

0 0 0

0 0 0
1ffiffi
2

p 0 0

1
CA:
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