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We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving
around the center of the MilkyWay and the corresponding hypothesis about the existence of a supermassive
black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black
hole (assuming that the putative supermassive black hole is of this type), as well as the distance that
separates the black hole from the Earth, can be estimated in a relativistic way in terms of (i) the redshift and
blueshift of photons that are emitted by geodesic massive particles (stars) and travel along null geodesics
towards a distant observer (located at a finite distance), and (ii) the radius of these star orbits. As a concrete
example and as a first step towards a full relativistic analysis of the above-mentioned star orbits around the
center of our Galaxy, we consider stable equatorial circular orbits of stars and express their corresponding
redshift/blueshift in terms of the metric parameters (mass and angular momentum per unit mass) and the
orbital radii of both the emitter star and the distant observer. These radii are linked through the constants of
motion along the null geodesics followed by photons since their emission until their detection, allowing us
to get a closed expression for the orbital radius of the observer in terms of the emitter orbital radius, which is
known from observations, and the black hole parametersM and a. In principle, these expressions allow one
to statistically estimate the mass and rotation parameters of the Kerr black hole, and the radius of our orbit,
through a Bayesian fitting, i.e., with the aid of observational data: the redshift/blueshift measured at certain
points of stars’ orbits and their radii, with their respective errors, a task that we hope to perform in the near
future. We also point to several astrophysical phenomena, like accretion disks of rotating black holes,
binary systems and active galactic nuclei, among others, to which this formalism can be applied.
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I. INTRODUCTION

In past decades astrophysical observations point to
dynamical evidence supporting the existence of a super-
massive black hole, called SgrA*, at the center of the
Milky Way, as well as in the center of many other spiral
galaxies [1–4]. Nowadays, two teams of astronomers have
managed to track the orbits of several stars orbiting around
the center of our Galaxy [5,6]. These recent observational
data allowed the aforementioned teams to estimate the
putative black hole mass for SgrA* and the distance
from Earth to its center, rendering the following values
M∼4.3×106M⨀ and R0∼8.3kpc. These researchers have
computed these quantities by making use of a Newtonian
approach, i.e., namely, they use a Keplerian central poten-
tial that assumes that the black hole mass is concentrated in
a pointlike object and compute the mass of the black hole
and the distance from Earth to the center of SgrA*. Within
this Newtonian approach, it is not possible to compute the
black hole angular momentum. At the present stage of these

astrophysical measurements, observational data have not
indicated any effects of the spin on the orbiting stars.
As a complementary work, the rotation parameter has

been estimated and bounded using different indirect meth-
ods which lead to quite different but congruent results; for
instance, when using high-frequency quasiperiodic oscil-
lations, computations render a value around a ∼ 0.996M
[7], whereas when using flare emissions with a certain
period, calculations lead to the following estimation
0.70� 0.11M ≤ a ≤ M [8].
With the aim of getting more precise values for the above

referred parameters and quantities, and directly character-
izing the assumed black hole hosted at the center of our
Galaxy, in the near future there will be new experiments to
come: GRAVITY will track with more accuracy the orbits
of stars around the center of our Galaxy [9], whereas the
Event Horizon Telescope will focus on the black hole event
horizon looking for traces of its shadow measuring signals
in the infrared spectrum [10].
In 4D general relativity, neutral rotating black holes are

described by the Kerr solution and are completely charac-
terized by just two physical quantities: the mass M and the
angular rotation parameter a ¼ J=M, where J is the black
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hole angular momentum.We shall use this metric in order to
model the putative black hole hosted at the center of the
Milky Way (SgrA*). Therefore, the aim of this paper is to
provide amethod for determining theM and a parameters of
the Kerr black hole, as well as the distance from the black
hole to the Earth, in terms of the directly measured redshift
and blueshift of photons emitted by massive particles (stars
and gas) moving along geodesics around it, and the radius of
their orbits. Thus, our approach is completely relativistic and
allows us to compute the mass as well the rotation parameter
of the Kerr black hole, in addition to the distance that
separates the black hole from the Earth.
It should be mentioned that nowadays there is no direct

indication that the space-time geometry generated by the
black holes is described by the Kerr solution. In this
context, two kinds of studies attempt to test the black hole
geometry and constrain the possible deviations from the
Kerr metric: the fit of thermal spectrum of thin disks
[11–13] and the analysis of the Kα iron line profile [14–16].
We would like to point out as well that in these recent
works, the observer is positioned at spatial infinity, while in
our approach the detector is located at a finite distance.
The paper is organized as follows: In Sec. II, we consider

stationary axisymmetric metrics, their Killing vector fields
and conserved quantities as well as the geodesic motion of
massive particles on this family of space-times. In Sec. III,
we introduce the Kerr metric, its Killing tensor field, and
compute the corresponding Carter constant of motion. In
Sec. IV, we consider photons which travel along null
geodesics from the emitter (the massive particle that
represents stars) to the detector (a far away located
observer, the Earth for practical purposes). In Sec. V, we
further compute the general expression for the redshift and
blueshift of these photons when taking into account the
light bending due to the axisymmetric stationary gravita-
tional field at the moment of detection by the observer. We
further compute these shifts for the Kerr metric and
particularize for circular and equatorial orbits of massive
particles and photons that travel in the equatorial plane
(θ ¼ π=2) in Sec. VI.
With these expressions at hand, we are in the position of

computing the mass, the rotation parameter of the source,
i.e., a Kerr black hole, as well as the distance from it to the
Earth in terms of the redshift/blueshift that these photons
experience and the radius of the emitter star orbits. We
finally make some final remarks in Sec. VII, where we also
discuss our results.

II. PARTICLES IN STATIONARY
AXISYMMETRIC SPACETIMES

In order to achieve our aim, we shall first consider a
massive test particle which follows a timelike geodesic path
on a rotating axially symmetric space-time. The most
general metric for a space-time of this kind with two
orthogonal planes reads:

ds2 ¼ gttdt2 þ 2gtφdtdφþ gφφdφ2 þ grrdr2 þ gθθdθ2;

ð1Þ
where we have chosen spherical coordinates xμðt; r; θ;φÞ
as well as the gauge grθ ¼ 0. Thus, all metric com-
ponents have the following dependence gμνðr; θÞ and
μ; ν ¼ t; r; θ;φ.
The metric (1) possesses two commuting Killing vector

fields ½ξ;ψ � ¼ 0:

ξμ ¼ ð1; 0; 0; 0Þ timelike Killing vector field; ð2Þ

ψμ ¼ ð0; 0; 0; 1Þ rotational Killing vector field: ð3Þ

Thus, the photons’ emitter is a probe massive particle
which geodesically moves around a rotating axisymmetric
source in the space-time represented by the metric (1) with
a 4-velocity

Uμ
e ¼ ðUt; Ur; Uθ; UφÞe; ð4Þ

which is normalized to unity uμuμ ¼ −1, rendering the
following relation:

−1 ¼ gttðUtÞ2 þ grrðUrÞ2 þ gφφðUφÞ2 þ gθθðUθÞ2
þ 2gtφUtUφ: ð5Þ

Due to the existence of the Killing vector fields (2) and
(3) there are two conserved quantities, the total energy and
the angular momentum per unit mass at rest of the test
particle:

E ¼ Ē
m

¼ −gμνξμUν ¼ −gttUt − gtφUφ; ð6Þ

L ¼ L̄
m

¼ gμνψμUν ¼ gφtUt þ gφφUφ: ð7Þ

From these relations we obtain the expressions for Ut

and Uφ in terms of the metric components and the
conserved quantities E and L:

Ut ¼ Egφφ þ Lgtφ
g2tφ − gttgφφ

; ð8Þ

Uφ ¼ −
Egtφ þ Lgtt
g2tφ − gttgφφ

: ð9Þ

By substituting these 4-velocity components in the expres-
sion (5) we obtain

grrðUrÞ2 þ gθθðUθÞ2 þ 1 −
E2gφφ þ 2ELgtφ þ L2gtt

ðg2tφ − gttgφφÞ
¼ grrðUrÞ2 þ Veff ¼ 0: ð10Þ
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It is worth mentioning that this equation has the form of the
energy conservation law for a nonrelativistic particle with
position dependent mass moving in an effective potential
Veff that depends on the conserved quantities E and L as
well as on the metric gμν. This effective potential must
possess a maximum, implying that the following conditions
must be obeyed for circular orbits [when Ur ¼ 0 in (10)]
[17,18]:

Veff ¼ 0; and V 0
eff ¼ 0; ð11Þ

where primes denote derivatives with respect to r. The
stability condition for these circular orbits leads to

V 00
eff < 0: ð12Þ

Additionally, we can also restrict our analysis to equatorial
orbits (θ ¼ π=2) implying thatUθ ¼ 0 and getting a further
simplification.

III. THE KERR BLACK HOLE AND ITS
KILLING TENSOR FIELD

The Kerr black hole family in Boyer-Lindquist coor-
dinates is given by the metric (1) with the following
components:

gtt¼−
�
1−

2Mr
Σ

�
; gtφ¼−

�
2Marsin2θ

Σ

�
; grr¼

Σ
Δ
;

gφφ¼
�
r2þa2þ2Ma2rsin2θ

Σ

�
sin2θ; gθθ¼Σ; ð13Þ

where

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ;

and M2 ≥ a2. In terms of these coordinates we also
have

g2tφ − gφφgtt ¼ Δsin2θ: ð14Þ

The Kerr metric possesses a Killing tensor field given by

Kμν ¼ 2ΣlðμnνÞ þ r2gμν satisfying ∇ðαKμνÞ ¼ 0;

where the null vector fields lμ and nμðlμlμ ¼ nμnμ ¼ 0Þ
satisfy the relation lμnμ ¼ −1 and read

lμ ¼ r2 þ a2

Δ

� ∂
∂t
�

μ

þ a
Δ

� ∂
∂φ

�
μ

þ
� ∂
∂r

�
μ

;

nμ ¼ r2 þ a2

2Σ

� ∂
∂t
�

μ

þ a
2Σ

� ∂
∂φ

�
μ

−
Δ
2Σ

� ∂
∂r

�
μ

;

implying the existence of a constant of motion:

C ¼ KμνUμUν ¼ 2ΣðlμUμÞðnμUμÞ − r2 ¼ const

which is related to the Carter constant Q [19] as follows:

C≡ ðL − aEÞ2 þQ

¼ ½ðr2 þ a2ÞE − aL�2 − Σ2ðUrÞ2 − Δr2

Δ
: ð15Þ

From this relation we can obtain the following expression
for the radial velocity Ur:

Σ2ðUrÞ2 ¼ ½ðr2 þ a2ÞE − aL�2 − Δ½r2 þ ðL − aEÞ2 þQ�
≡ V2ðrÞ ð16Þ

which is a function of the r coordinate alone. By further
substituting this relation into (10) we get for the polar
velocity Uθ

Σ2ðUθÞ2 ¼ Q −
�
a2ð1 − E2Þ þ L2

sin2θ

�
cos2θ≡ Θ2ðθÞ;

ð17Þ

i.e., an expression depending only on the polar angle θ. In
order to give a physical interpretation to the Carter constant,
we rewrite Eq. (17) as

Q ¼ Σ2ðUθÞ2 þ
�
a2ð1 − E2Þ þ L2

sin2θ

�
cos2θ;

which gives us a measure of how much the path of the test
particle departs from the equatorial plane θ ¼ π=2 where
this quantity vanishes. Thus, for bounded orbits we have
[17,18]

E < 1 and Q ≥ 0; ð18Þ

while for unbounded orbits we get E ≥ 1.
Thus, the geodesic equations for a massive test particle

with given parameters E, L, Q and initial conditions xμ0 are
encoded in Uμ and are given by the relations (16) and (17)
together the following expressions:

Ut ¼ 1

ΔΣ
f½ðr2 þ a2Þ2 − Δa2sin2θ�E − ð2MarÞLg; ð19Þ

Uφ ¼ 1

ΔΣsin2θ
½ð2Marsin2θÞEþ ðΔ − a2sin2θÞL�: ð20Þ

It is worth noticing that for the Kerr metric, the
conditions (11), (12) and (18) render the following restric-
tions on r for circular equatorial orbits [17]:

r > 2M ∓ aþ 2
ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
M � a

p
; ð21Þ
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where the� signs respectively correspond to the corotating
and counterrotating source (emitter or detector) with
respect to the direction of the angular velocity of the
Kerr black hole. Moreover, when considering equatorial
circular orbits (Ur ¼ 0 ¼ Uθ), we must impose the follow-
ing condition in order to make them stable:

r > M½3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
�;

Z1 ≡ 1þ
�
1 −

a2

M2

�
1=3

��
1þ a

M

�
1=3

þ
�
1 −

a
M

�
1=3

�
;

Z2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
a2

M2
þ Z2

1

r
: ð22Þ

IV. DETECTION AND EMISSION OF PHOTONS
IN THE KERR BLACK HOLE

Let us now consider photons with 4-momentum, para-
metrized by kμ ¼ ðkt; kr; kθ; kφÞ, which move along null
geodesics kμkμ ¼ 0 outside the event horizon of the Kerr
black hole, a fact that can be expressed as

0 ¼ gttðktÞ2 þ 2gtφðktkφÞ þ gφφðkφÞ2 þ grrðkrÞ2
þ gθθðkθÞ2: ð23Þ

The movement of these photons is such that the following
quantities are preserved:

Eγ ¼ −gμνξμkν ¼ −gttkt − gtφkφ; ð24Þ

Lγ ¼ gμνψμkν ¼ gφtkt þ gφφkφ; ð25Þ

along with a relation involving the Carter constant Qγ:

Cγ ≡ ðLγ − aEγÞ2 þQγ ¼ Kμνkμkν ¼ 2ΣðlμkμÞðnμkμÞ:

Therefore, the geodesic equations of photons with given
parameters Eγ , Lγ , Qγ and yμo are parametrized by kμ in the
following way:

kt ¼ 1

ΔΣ
f½ðr2 þ a2Þ2 − Δa2 sin2 θ�Eγ − ð2MarÞLγg;

ð26Þ

kφ ¼ 1

ΔΣ sin2 θ
½ð2Mar sin2 θÞEγ þ ðΔ − a2 sin2 θÞLγ�;

ð27Þ

Σ2ðkrÞ2 ¼ ½ðr2 þ a2ÞEγ − aLγ�2 − Δ½ðLγ − aEγÞ2 þQγ�;
ð28Þ

where the right-hand side is again a function of the radial
coordinate alone, and

Σ2ðkθÞ2 ¼ Qγ −
�
−a2E2

γ þ
L2
γ

sin2θ

�
cos2θ; ð29Þ

where now we got a relation depending only on the polar
coordinate in the right-hand side.

V. REDSHIFT/BLUESHIFT OF
EMITTED PHOTONS

In order to compute the redshift/blueshift that emitted
photons by massive particles experience while traveling
along null geodesics towards an observer located far away
from their source we shall mainly follow and generalize the
results presented in [20], where a general stationary
axisymmetric metric was employed. Here we should
mention that this approach analyzes the problem on the
basis of the directly measured quantities: the gravitational
redshift/blueshift, in contrast to the tangential velocities,
which are coordinate dependent observables. Moreover,
this approach enables us to keep track of the effect of the
underlying made assumptions, and to be aware of when
they are no longer valid.
In general, the frequency of a photon measured by an

observer with proper 4-velocity Uμ
C at point PC reads

ωC ¼ −kμU
μ
CjPC

; ð30Þ

where the index C refers to the emission ðeÞ and/or
detection ðdÞ at the corresponding space-time point PC.
Thus, the frequency of light signals measured by an

observer comoving with the test particle at the emission
point ðeÞ is

ωe ¼ −ðkμUμÞ∣e;
whereas the frequency detected ðdÞ by an observer located
far away from the source is given by

ωd ¼ −ðkμUμÞ∣d;
where the 4-velocities of the emitter and the detector
respectively are

Uμ
e ¼ ðUt; Ur; Uθ; UφÞ∣e; ð31Þ

Uμ
d ¼ ðUt; Ur; Uθ; UφÞ∣d: ð32Þ

In the special case in which the detector is located far
enough from the source, we can consider that the observer
is at infinity ðr → ∞Þ, rendering the following 4-velocity:

Uμ
d ¼ ð1; 0; 0; 0Þ; ð33Þ

where we have taken into account that when r → ∞ the
4-velocities Ur

d, U
θ
d and Uφ

d vanish, while Ut
d tends to
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E ¼ 1, as it can be directly checked from (16), (17) and
(20), and from (19), respectively. Here it is worth recalling
that if we indeed suppose that the orbits of the emitter are
located on the equatorial plane, i.e., in the θ ¼ π=2 plane,
meaning that the orbiting body does not move along the θ-
direction, then necessarily Uθ ¼ 0 identically.
On the other hand, a photon which is emitted or detected

at point PC possesses a 4-momentum

kμC ¼ ðkt; kr; kθ; kφÞC: ð34Þ

Again, if the photons are considered to move along null
geodesics in the equatorial plane θ ¼ π=2, then kθ will
necessarily vanish.
Thus, the frequency shift associated to the emission and

detection of photons is in general given by either of the
following relations:

1þ z ¼ ωe

ωd

¼ ðEkt − Lkφ − grrUrkr − gθθUθkθÞ∣e
ðEkt − Lkφ − grrUrkr − gθθUθkθÞ∣d

¼ ðEγUt − LγUφ − grrUrkr − gθθUθkθÞ∣e
ðEγUt − LγUφ − grrUrkr − gθθUθkθÞ∣d ; ð35Þ

where we have taken into account the relations (6) and (7)
for the constants E and L in the second line, and the
relations (24) and (25) for the constant of motion Eγ and Lγ

in the third line, together with the frequency definition (30)
and the expressions (31) and (32) for the 4-velocity of the
emitter and the detector, respectively, as well as the relation
(34) for the 4-momentum of the emitted photons.
This is the most general expression for the redshift/

blueshift that light signals emitted by massive particles
experience in their path along null geodesics towards a distant
observer (ideally located at spatial infinity, in particular).
This equation for the redshift/blueshift includes stable

orbits of any kind for the stars: circular, elliptic, irregular,
equatorial, nonequatorial, etc.
In general, the redshift/blueshift represent a function F

of the form

1þ z ¼ ωe

ωd
¼ Fðr; θ; E; b; B; q; s; a;MÞ ð36Þ

which is independent of the energy constant of motion
of the emitted photons from the orbiting body Eγ; the
parameters b; B; q; s are defined by the following quotients:

b≡ Lγ

Eγ
; B≡ L

E
; q≡Qγ

E2
γ
; s≡ Q

E2
:

Here we should stress that there are two different fre-
quency shifts which correspond to the maximum and

minimum values of ωe related to the light propagation along
the sameand theopposite directionwith respect to themotion
of the emitter of photons orbiting a black hole, i.e., the
frequency shifts corresponding to a receding (redshift) and to
an approaching (blueshift) photon source, respectively.
These maximum and minimum values of the frequency shift
are reached for bodies whose position vector r, with respect
to the black hole center, is orthogonal to the detector’s line of
sight, i.e., along the plane where kr vanishes for an observer
located far away from the source of light signals; in other
words, at the maximum distance of the star orbit from the
black hole center in the equatorial sky plane.

VI. THE REDSHIFT/BLUESHIFT OF PHOTONS
IN CIRCULAR AND EQUATORIAL ORBITS

AROUND THE KERR BLACK HOLE

We shall further restrict ourselves to the study of circular
and equatorial orbits (Ur ¼ Uθ ¼ 0) to give an example of
how the above developed formalism can be applied to the
determination of the mass and rotation parameters of the
Kerr black hole from the measured redshift/blueshift of
photons detected far away from the source. Propagation of
high frequency radiation emitted by a source in equatorial
circular orbits around an extreme Kerr black hole was
considered in [21].
In this case the expression for the redshift/blueshift of

light signal becomes

1þ z ¼ ωe

ωd
¼ ðEγUt − LγUφÞje

ðEγUt − LγUφÞjd
¼ Ut

e − beU
φ
e

Ut
d − bdU

φ
d
; ð37Þ

where we introduced the apparent impact parameter b≡ Lγ

Eγ
,

where Eγ and Lγ are defined by (24) and (25), respectively.
Since the constants of motion Eγ and Lγ are preserved
along the null geodesics followed by the photons from
emission till detection, therefore be ¼ bd, i.e., this quantity
is also constant along the whole photons path. Here we
should note that this relation is quite important since it links
the observed radius of star/gas orbits with the radius of the
observers orbit, i.e., with the distance to the black hole
source (see below).
We shall further consider the kinematic redshift/blueshift

of photons either side of the central value b ¼ 0, this
renders two values for b different in magnitude which are
generated by the rotational character of the gravitational
field, see (40) below. In order to accomplish this, we need
to compute the gravitational redshift corresponding to a
photon emitted by a static particle located at b ¼ 0:

1þ zc ¼
Ut

e

Ut
d
; ð38Þ

and to subtract this quantity from (37) in order to define the
kinematical redshift
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zkin ≡ z − zc ¼
Ut

eU
φ
dbd −Ut

dU
φ
e be

Ut
dðUt

d − bdU
φ
dÞ

: ð39Þ

Actually, this analysis can be performed in the same way
without subtracting the magnitude zc from z. Of course, this
change will modify the obtained values for z1 and z2 (see
below). However, some astronomers report their data in
terms of the kinematical redshifts, i.e., with the redshift of
the Galaxy subtracted from z.
We further need to take into account the light bending

due to the gravitational field generated by the rotating black
hole, in other words, we need to construct a mapping
between the apparent impact parameter b and the location
of the emitter r given by its vector position r with respect to
the center of the source, i.e., the mapping bðrÞ. Following
[22,23], we shall choose the maximum value of z at a fixed
distance from the observed center of the source (at a fixed
b). From (39) it follows that if the prefactor that multiplies
b is a monotonically decreasing function with increasing r,
then the maximum observed value of zkin corresponds to
the minimum value of r along the null geodesic of the
photons. This minimum value of r corresponds to the
position of the orbiting object either side of the center of
the source, where the photon is emitted with a kr ¼ 0
component.
Thus, from the expression (39), it follows that the

apparent impact parameter b must also be maximized; this
quantity can be calculated from the geodesic equation of
the photons (or, equivalently, from the kμkμ ¼ 0 relation
taking into account that kr ¼ 0 and kθ ¼ 0) and is given by

b� ¼ −
gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gtt

; ð40Þ

where we got two values, b− and bþ (either evaluated at the
emitter or detector position, since this quantity is preserved
along the null geodesic trajectories of the photons, i.e.,
be ¼ bd) that respectively give rise to two different shifts,
z1 and z2, of the emitted photons corresponding to a
receding and to an approaching object with respect to a
far away positioned observer:

z1 ¼
Ut

eU
φ
dbd− − Ut

dU
φ
e be−

Ut
dðUt

d −Uφ
dbd−Þ

; ð41Þ

z2 ¼
Ut

eU
φ
dbdþ − Ut

dU
φ
e beþ

Ut
dðUt

d −Uφ
dbdþÞ

: ð42Þ

In general, jz1j ≠ jz2j as can be easily seen from (40)–
(42) because of two reasons: the light bending experienced
by the emitted photons either side of the geometrical center
of the source, and the differential rotation experienced
by the detector codified by Uφ

d and Ut
d. In fact, the second

term in the denominator of (41) and (42) encodes the

contribution of the movement of the detector’s inertial
frame. If this quantity is negligible in comparison to the
contribution coming from the Ut

d component (Uφ
d ≪ Ut

d),
then the detector can be considered static at spatial infinity.
Let us define

Uφ
d

Ut
d
¼ dφ

dt
≡Ωd ð43Þ

as the angular velocity of a detector located far away from
the photon source. Thus, when this quantity is small,
Ωd ≪ 1, the detector can be treated as static, neglecting
its relative movement. In terms of Ωd, the z1 and z2 read

z1 ¼
Ut

eΩdbd− − Uφ
e be−

Ut
dð1 − Ωdbd−Þ

; ð44Þ

z2 ¼
Ut

eΩdbdþ − Uφ
e beþ

Ut
dð1 −ΩdbdþÞ

: ð45Þ

It is easy to see that when Ωd ≪ 1, the z1 and z2 are still
different in magnitude, since these quantities are respec-
tively proportional to be− and beþ .
When we drop indeed the rotational metric component

gtφ in (40) we recover the spherically symmetric light
bendings given by b� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gφφ=gtt
p

, which differ each
other in sign but possess the same magnitude.
Thus, the gravitational rotation bends the light in a

different way for approaching and receding photon sources.
In order to get a close expression for the gravitational

redshift/blueshift experienced by the emitted photons we
shall express the required quantities in terms of the Kerr
black hole metric. Thus, the Uφ and Ut components of the
4-velocity for circular equatorial orbits read

Uφðr; π=2Þ ¼ ð2MaÞEþ ðr − 2MÞL
rðr2 þ a2 − 2MrÞ ; ð46Þ

Utðr; π=2Þ ¼ ðr3 þ a2rþ 2Ma2ÞE − ð2MaÞL
rðr2 þ a2 − 2MrÞ ; ð47Þ

whereas the constants of motion E and L are

E ¼ r3=2 − 2Mr1=2 � aM1=2

r3=4ðr3=2 − 3Mr1=2 � 2aM1=2Þ1=2 ; ð48Þ

L ¼ ð�Þ M1=2ðr2 ∓ 2aM1=2r1=2 þ a2Þ
r3=4ðr3=2 − 3Mr1=2 � 2aM1=2Þ1=2 ; ð49Þ

where the � signs again correspond to the corotating and
counterrotating objects (either the emitter or the detector)
with respect to the direction of the angular velocity of the
Kerr black hole [17]. By substituting (48) and (49) into the
expressions for (46) and (47) we finally obtain for the latter
quantities
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Uφðr; π=2Þ ¼ �M1=2

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 − 3Mr1=2 � 2aM1=2

p ; ð50Þ

Utðr; π=2Þ ¼ ðr3=2 � aM1=2Þ
r3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 − 3Mr1=2 � 2aM1=2

p : ð51Þ

With these quantities at hand it is straightforward to
compute the angular velocity of a source orbiting around
the Kerr black hole

Ω� ¼ �M1=2

ðr3=2 � aM1=2Þ ð52Þ

in a circular and equatorial orbit. It is worth mentioning that
this angular velocity corresponds to either the emitter or the
detector of photons, in which case the subscripts e and d
must be respectively used [see definition (43) for the
detector case]. The � signs correspond to corotating and
counterrotating objects with the angular velocity of the Kerr
black hole.
On the other side, for the Kerr black hole metric, Eq. (40)

renders the following expression for the mapping bðrÞ,
responsible for the gravitational light bending, for circular
and equatorial orbits:

b� ¼ −2aM � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − 2Mr

p

r − 2M
; ð53Þ

where we have taken into account its maximum character,
i.e., the fact that the photons are emitted at the point where
kr ¼ 0. It turns out that the quantities z1 and z2 correspond
to the redshift and blueshift, zred and zblue, respectively,
according to the plots of z1 and z2 in terms of the radial
coordinate r and the Kerr black hole parameters M and a.
Therefore, for the Kerr black hole case we can write the

redshift and blueshift (44) and (45), respectively, as

zred ¼
r
3
4

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2

d − 3Mr
1
2

d � 2aM
1
2

q
Ωd�ðΩd�bd− −Ωe�be−Þ

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q
Ωe�ð1 −Ωd�bd−Þ

;

zblue ¼
r
3
4

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2

d − 3Mr
1
2

d � 2aM
1
2

q
Ωd�ðΩd�bdþ −Ωe�beþÞ

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q
Ωe�ð1 −Ωd�bdþÞ

;

where now re and rd stand for the radius of the emitter’s
and detector’s orbits, respectively, and the � subscripts
correspond, as before, to the corotating and counterrotating
source with respect to the direction of the angular velocity
of the Kerr black hole.
These expressions can be written as well in terms of the

Kerr black hole parameters, M and a, and the detector
radius, rd, as follows:

zred ¼�M
1
2

r
3
4

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2

d − 3Mr
1
2

d � 2aM
1
2

q
ðr32d − r

3
2
eÞ

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q
ðr32d � aM

1
2Þ

×
ð2aMþ re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p
Þ

½r32dðre − 2MÞ � aM
1
2re �M

1
2re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p
�
;

ð54Þ

zblue ¼�M
1
2

r
3
4

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2

d − 3Mr
1
2

d � 2aM
1
2

q
ðr32d − r

3
2
eÞ

r
3
4
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q
ðr32d � aM

1
2Þ

×
ð2aM − re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p
Þ

½r32dðre − 2MÞ � aM
1
2re ∓M

1
2re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p
�
;

ð55Þ

where the radii of the orbits of stars, denoted by re, are
given data obtained from observations, and we have made
use of the relation be ¼ bd.
Here we should point out that in the special case of

circular and equatorial orbits around the Kerr black hole,
the redshift and blueshift now constitute simplified func-
tions Fðrd; a;MÞ in comparison to (36).
Remarkably, from the fact that the constants of motion

Eγ and Lγ , and hence the apparent impact parameter b, are
preserved along the whole trajectory followed by photons,
the latter quantity is the same when evaluated either at the
emitter or detector position, rendering the following rela-
tion be ¼ bd. Therefore, this equation links the emitter and
detector radii:

rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
be − a

3

r �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M2ðbe − aÞ þ ðbe þ aÞ3

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M2ðbe − aÞ

q �1
3

þ ðbe þ aÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27M2ðbe − aÞ þ ðbe þ aÞ3
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M2ðbe − aÞ

q �
−
1

3

�
ð56Þ

rendering an expression for calculating rd once the emitter
radius has been measured and the mass and rotation
parameters have been estimated.
Thus, for a given set of constant data re which character-

izes the radius of circular paths of orbiting emitters (stars
and galactic gas/dust) around the Kerr black hole, together
with the measured redshift and blueshift, zred and zblue,
experienced by the emitted photons at the points where b�
is maximized, we can determine the mass and rotation
parameters, M and a, of the Kerr black hole as well as the
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distance from the detector to the source codified by rd,
through the exact relations (54)–(56).
In the particular case when the detector is located far

away from the source and the following condition is
fulfilled rd ≫ M ≥ a, the redshift and blueshift respec-
tively become

zred ¼
�M

1
2

�
2aM þ re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p �

r
3
4
eðre − 2MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q ; ð57Þ

zblue ¼
�M

1
2

�
2aM − re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − 2Mre þ a2

p �

r
3
4
eðre − 2MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
3
2
e − 3Mr

1
2
e � 2aM

1
2

q : ð58Þ

In this special case the mass and rotation parameters
of the Kerr black hole can be obtained from the measured
redshift and blueshift of the photons emitted by the stars
through Eqs. (57) and (58). In principle, one could be
tempted to algebraically express the mass and rotation
parameter from the latter equations. However, even though
it is easy to extract a closed expression for the rotation
parameter

a2 ¼ r3eðre − 2MÞðzred þ zblueÞ2
4M2ðzred − zblueÞ2 − r2eðzred þ zblueÞ2

;

the equation to solve for the mass is of eighth order and
cannot be solved exactly:

½16reM3 − ð4βM2 − αr2eÞðre − 2MÞðre − 3MÞ�2
¼ 4αr2eMðre − 2MÞ3ð4βM2 − αr2eÞ;

where we have introduced α≡ ðzred þ zblueÞ2 and
β≡ ðzred − zblueÞ2. Thus, one must turn to a Bayesian
fitting in order to compute this quantities from observa-
tional data.

A. More general cases

The apparent impact parameter b for the Kerr black hole
family can also be calculated in the case in which the
considered orbits depart from the equatorial plane and,
hence, θ ≠ π=2; again, this quantity is computed from the
kμkμ ¼ 0 relation just taking into account its maximum
character, i.e., that kr ¼ 0, and reads

b� ¼ −2aMr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ½r4 − qðr2 − 2MrÞ�

p
r2 − 2Mr

; ð59Þ

which renders the expression (53) when the Carter constant
Qγ (or q) vanishes.
It is worth mentioning that recently published

observational data (see [4] for instance) reveal that the

orbits of stars seem to be ellipses which do not lie in the
equatorial plane and therefore the physically relevant
problem involves calculations of the redshift/blueshift with
θ ≠ π=2.
With regard to this point, there are some papers that

compute in closed analytic form the timelike geodesics of
nonspherical polar and equatorial noncircular orbits of stars
moving around a Kerr black hole [24,25] with and without
a cosmological constant. These orbits were calculated
within the framework of gravitational lensing but could
be useful for the calculation of black hole parameters as
well after computing the corresponding redshift/blueshift
experienced by photons in these generalized black hole
space-times.

VII. DISCUSSION AND FINAL REMARKS

In this paper we have shown that the relativistic
stationary axisymmetric formalism previously constructed
for the galactic rotation curve’s problem presented in [20]
can also be applied to the study of black hole rotation
curves, leaving the galactic framework considered in
that paper.
As an application of this formalism, we can determine

the Kerr black hole parameters M and a (and hence its
angular momentum) as well as the radius of the detector’s
orbit rd in terms of directly measured quantities, namely,
the orbital radius of the emitter star re, and the redshift and
blueshift of photons, zred and zblue, that travel along null
geodesics and are emitted by massive bodies orbiting
around the black hole following arbitrary paths (black
hole rotation curves) like the recently reported closed orbits
around the center of our Galaxy [4], for instance.
As an explicit example, we computed the redshift and

blueshift experienced by photons emitted by massive
objects orbiting the Kerr black hole in equatorial and
circular orbits and following null geodesics towards a
distant observer.
Moreover, the aforementioned expressions for the red-

shift/blueshift allow one to statistically estimate the Kerr
black hole parameters M and a as well as the radius of the
detector’s orbit rd by means of a Bayesian fitting, i.e., by
giving random data for the redshift/blueshift and their
respective errors. This analysis will allow us to know the
level of precision which is required to measure the red/blue
shifts in a real experiment. We really do hope to perform
this analysis in the near future.
We should also mention that this formalism can be

applied as well to a wider range of astrophysical phenom-
ena like accretion disks of rotating black holes, binary
systems and active galactic nuclei where the magnitude of
the effects are less restrictive in comparison to the rotation
curves around the center of our Galaxy. Moreover, this
method can also be implemented to metrics that depart
from the Kerr solution within the framework of modified
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theories if gravity (see [15,16], for instance), a work which
is in progress.
As a further research line, we can generalize the present

approach to the case of more general orbits: nonequatorial
circular paths, elliptic equatorial orbits, elliptic nonequa-
torial ones, nonelliptic trajectories, etc. This situation is
significantly important to characterize in a relativistic way
the putative black hole hosted at the center of our Galaxy on
the basis of measured orbital data; more generally, this
research will shed more light on the hypothesis of the
existence of supermassive black holes in the center of
several galaxies.
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