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The recent observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two
solar masses imply strong constraints on the properties of dense matter in the core of compact stars.
Effective models of QCD aiming to describe neutron star matter can thereby be considerably constrained.
In this context, a chiral quark-meson model based on a SU(3) linear σ-model with a vacuum pressure and
vector meson exchange is discussed in this work. The impact of its various terms and parameters on the
equation of state and the maximum mass of compact stars are delineated to check whether pure quark stars
with two solar masses are feasible within this approach. Large vector meson coupling constant and a small
vacuum pressure allow for maximum masses of two or more solar masses. However, pure quark stars made
of absolutely stable strange quark matter, so-called strange stars, turn out to be restricted to a quite small
parameter range.
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I. INTRODUCTION

The core of a massive star which has exhausted its
thermonuclear fuel collapses in a supernova which is one of
the most extreme events known to occur in the Universe.
The relic in the aftermath of such a cataclysmic event
constitutes also one of the most extreme objects known to
exist in the Universe. Being more massive than our Sun, but
only around 20 to 30 kilometers in diameter, these so-called
neutron stars harbor the densest material known at present.
The density in the core of such an object can even exceed
nuclear density (ρ0 ≈ 2.5 × 1014 g=cm3).
For many decades it has been speculated that the material

in the core of neutron stars might consist of quark matter
[1,2]. Neutron stars, or better compact stars, with a core
consisting of quark matter are dubbed hybrid stars.
Compact stars which are entirely made of quark matter,
besides maybe a small layer of a crust of nuclei, are so-
called strange stars [3,4]. Strange stars can only be realized
in nature if strange quark matter is absolutely stable, i.e. the
true ground state of matter [5,6]. Hybrid stars as well as
strange stars have been usually modeled by using the MIT
bag model, see [7] for a review, also with corrections from
hard-dense-loop calculations [8]. The Nambu-Jona-Lasinio
(NJL) model has been adopted for describing quark matter
in compact stars by using scalar meson fields only in [9,10].
Vector meson fields have been added within the NJL model
in [11] showing that their contribution can substantially
increase the maximum mass of a compact star with quark
matter. Effects from color superconductivity have been also
considered for the properties of compact stars within
NJL-type models; see [12] for a review. We point out that
it was well known that hybrid stars can be as massive as two

solar masses in various approaches [13,14] and could even
masquerade as neutron stars [15].
The recent measurements of the masses of the pulsars

PSR J1614-2230 [16] and of PSR J0348þ 0432 [17] with
M ¼ 2.01� 0.04M⊙ impose considerable constraints on
the equation of state (EoS) for compact stars. Pure quark
stars based on the simple MIT bag model could be ruled out
on the basis of this measurement unless additional terms
from an effective one-gluon exchange or from color
superconductivity are incorporated [18,19]. However, the
MIT bag model fails in describing QCD lattice data at
nonvanishing temperature questioning its applicability for
describing dense quark matter [20]. Effective models of
QCD based on chiral symmetry are able to describe the
lattice data at nonvanishing temperatures, as the Polyakov-
loop extended versions of the NJL model [21] or the
Polyakov-loop quark-meson model [22–24]. NJL-type
models for hybrid stars have been investigated for being
compatible with a maximum mass of compact stars of at
least two solar masses by several groups [25–33]. Recently,
the connection between NJL-type models, the Schwinger-
Dyson approach and an extended version of the MIT bag
model with vectorlike interaction terms has been pointed
out in [34–36] for modeling compact star matter incorpo-
rating features of QCD. To our knowledge, the quark-
meson model has not been used to investigate the properties
of hybrid stars or quark stars so far, in particular not in
view of the now well established two solar mass limit for
compact stars.
In this work, a modified linear σ-model is used to

describe compact star matter consisting of quark matter
only. The linear σ-model is well suited to consider the chiral
symmetry breaking patterns of strong interactions [37]. The
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quark-quark interaction is mediated by the exchange of
meson fields. These interactions are conceptually different
from the NJL model which considers point coupling terms
between quarks. We consider scalar and vector meson
contributions to effectively model the attractive and repul-
sive character of the strong interaction. The maximum
masses of pure quark stars are calculated by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations for differ-
ent choices of the parameters of the quark-meson model.
We further investigate the parameter space required for the
existence of absolutely stable strange quark matter and
strange stars and confront these results with the new
maximum mass limit for compact stars. This model has
been studied in [38] for the properties of quark matter
under the conditions present in core-collapse supernovae.
However, the two solar mass constraint has not been
investigated so far.

II. THE CHIRAL QUARK-MESON MODEL

The quark-meson model is based on the linear σ-model
as discussed in detail in [37,39] and couples mesons and
quarks by utilizing chiral symmetry. The mesonic contri-
bution in this model is given by

LM ¼ trð∂μφÞ†ð∂μφÞ þ trð∂μVÞ†ð∂μVÞ
− λ1½trðφ†φÞ�2 − λ2trðφ†φÞ2
−m2

0ðtrðφ†φÞÞ −m2
vðtrðV†VÞÞ

− tr½Ĥðφþ φ†Þ� þ cðdetðφ†Þ þ detðφÞÞ ð1Þ

for SUð3Þ × SUð3Þ chiral symmetry incorporating the
scalar (φ) and vector (Vμ) meson nonet. Here, mv stands
for the vacuum mass of the vector mesons and λ1, λ2, m0,
and c are the standard parameters of the linear σ-model
to be fixed below. The matrix Ĥ describes the explicit
breaking of chiral symmetry. The quarks couple to the
meson fields via Yukawa-type interaction terms

LQ ¼ Ψ̄ði∂ − gφφ − gvγμVμÞΨ ð2Þ

with the coupling strengths gφ and gv for scalar and vector
mesons, respectively. Both contributions are forming the
SU(3) Lagrangian L ¼ LM þ LQ of the chiral quark-
meson model.
In the mean-field approximation, the matrix φ consists of

just the scalar nonstrange field σn and the strange field σs:

φ ¼ 1ffiffiffi
2

p

0
BB@

σnffiffi
2

p 0 0

0 σnffiffi
2

p 0

0 0 σs

1
CCA ð3Þ

and the vector fields are described by

V ¼ 1ffiffiffi
2

p

0
BB@

ωþρffiffi
2

p 0 0

0 ω−ρffiffi
2

p 0

0 0 ϕ

1
CCA ð4Þ

where ρ stands for the zeroth component of the isovector
vector field, ω for the nonstrange vector field and ϕ for the
strange vector field, assuming ideal mixing. Note that the
spatial components of Vμ vanish in the mean-field approxi-
mation in the static case to be considered here [40]. The
Lagrangian for the quark fields then reads

LFn;s
¼ Ψ̄nði∂ − gωγ0ω − gρ~τγ0ρ − gnσnÞΨn

þ Ψ̄sði∂ − gsσs − gϕγ0ϕÞΨs: ð5Þ

The indices n and s denote the nonstrange and strange
quark contributions. The quark fields couple to the scalar
and vector meson fields σn, σs, ω, ρ, and ϕ with the
respective coupling strength gi, which are related by SU(3)
flavor symmetry to one overall coupling constant for the
scalar meson gφ and to another one for the vector coupling
constant gv.
Considering stationary fields in mean-field approxima-

tion, the derivative terms in LM vanish and the Lagrangian
is given by

L ¼ LM þ LQ

¼ 1

2
ðm2

ωω
2 þm2

ρρ
2 þm2

ϕϕ
2Þ

−
λ1
4
ðσ2n þ σ2sÞ2 −

λ2
4
ðσ4n þ σ4sÞ

−
m2

0

2
ðσ2n þ σ2sÞ þ

ffiffiffi
2

p
σ2nσscþ hnσn þ hsσs − B

þ Ψ̄nði∂ − gωγ0ω − gρ~τγ0ρ − gnσnÞΨn

þ Ψ̄sði∂ − gsσs − gϕγ0ϕÞΨs: ð6Þ

Here, a vacuum energy term B has been introduced in
addition; see the discussion in [8,42,43]. The electrons will
be treated as a free noninteracting Fermi gas. The potential
of the Lagrangian (6) then reads

V ¼ −
1

2
ðm2

ωω
2 þm2

ρρ
2 þm2

ϕϕ
2Þ

þ λ1
4
ðσ2n þ σ2sÞ2 þ

λ2
4
ðσ4n þ σ4sÞ

þm2
0

2
ðσ2n þ σ2sÞ −

2σ2nσsffiffiffi
2

p · c − hnσn − hsσs þ B ð7Þ

for the meson fields.
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III. THE EQUATION OF STATE

The grand canonical potential is related to the partition
function via

Ω ¼ −
lnZ
β

¼ −p: ð8Þ

The partition function Z can be computed by a Feynman
path integral over the quark fields. Performing the inte-
gration in mean-field approximation, the classical station-
ary mesonic background fields can be replaced by their
nonvanishing vacuum expectation values:

Z¼
Z Y

a

DσaDπa

Z
DΨ̄DΨeð

R
β

0
dτ
R
V
d3~rðLþΨ̄γ0μΨÞÞ ð9Þ

and one arrives at

Ω ¼ V −
3

π2β

Z
∞

0

k2dk ·M ð10Þ

where V is the potential given in Eq. (7) and the shorthand
notation for M is

M ¼ ln
�
1þ e

−Euþμu−gωω−gρρ
T

�
þ ln

�
1þ e

−Eu−μuþgωωþgρρ
T

�
þ ln

�
1þ e

−Edþμd−gωωþgρρ
T

�
þ ln

�
1þ e

−Ed−μdþgωω−gρρ
T

�
þ ln

�
1þ e

−Esþμs−gϕϕ
T

�
þ ln

�
1þ e

−Es−μsþgϕϕ

T

�
ð11Þ

where the flavor dependent energy is

Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þ ðgfσfÞ2

q
: ð12Þ

Compact star matter can be treated in the zero temper-
ature limit T → 0. The equations of motion of the five
meson fields are given by minimizing the thermodynamic
potential:

∂Ω
∂σn ¼

∂Ω
∂σs ¼

∂Ω
∂ω ¼ ∂Ω

∂ρ ¼ ∂Ω
∂ϕ ¼! 0: ð13Þ

For the scalar mesons one finds the gap equations

∂Ω
∂σn ¼ λ1σnðσ2n þ σ2sÞ þ

λ2
2
σ3n þm2

σnσn − hn

þ 3g2nσn
π2

�Z
kuF

0

dk · k2

Eu
þ
Z

kdF

0

dk · k2

Ed

�
¼ 0 ð14Þ

and

∂Ω
∂σs ¼ λ1σsðσ2n þ σ2sÞ þ λ2σ

3
s þm2

σsσs − hs

þ 3g2sσs
π2

Z
ksF

0

dk · k2

Es
¼ 0 ð15Þ

and for the vector fields

∂Ω
∂ω ¼ −m2

ωωþ 3gω
π2

�Z
kuF

0

dk · k2 þ
Z

kdF

0

dk · k2
�

¼ 0

ð16Þ
∂Ω
∂ρ ¼ −m2

ρρþ
3gρ
π2

�Z
kuF

0

dk · k2 −
Z

kdF

0

dk · k2
�

¼ 0

ð17Þ
∂Ω
∂ϕ ¼ −m2

ϕϕþ 3gϕ
π2

Z
ksF

0

dk · k2 ¼ 0 ð18Þ

and the respective Fermi momenta are

ku ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μq −

2μe
3

− gωω − gρρ

�
2

− ðgnσnÞ2
s

ð19Þ

kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μq þ

μe
3
− gωωþ gρρ

�
2

− ðgnσnÞ2
s

ð20Þ

ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μq þ

μe
3
− gϕϕ

�
2

− ðgsσsÞ2
s

ð21Þ

to guarantee charge neutrality through the electron
chemical potential μe. Note that the source terms for
the vector fields are given by the vector number densities,
the isovector number densities and the strange number
densities due to SU(3) flavor symmetry.
The coupled equations of motion of the meson fields have

to be solved self consistently. Using Eq. (8) and the relation

ϵ ¼ Ω −
X
i

μini ð22Þ

the resulting field values then determine the EoS, which
serves as an input to solve the TOV equations:

dm
dr

¼ 4πr2ϵðrÞ
c2

ð23Þ

dp
dr

¼ −
GϵðrÞmðrÞ

ðcrÞ2 ð24Þ

×

�
1þ ρðrÞ

ϵðrÞ
��

1þ 4πr3pðrÞ
mðrÞc2

��
1 −

2GmðrÞ
c2r

�
−1

ð25Þ

for the mass-radius relation of compact stars.
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A. Parameter range

Within the mean-field approximation the mesonic fields
will be treated as classical background fields. In the vacuum
they will be replaced by their vacuum expectation values. In
the scalar sector they are determined by the weak decay
constants

hσni ¼ fπ ¼ 92.4 MeV ð26Þ

hσsi ¼
2fK − fπffiffiffi

2
p ¼ 94.47 MeV ð27Þ

with fK ¼ 159.8=
ffiffiffi
2

p
MeV. The model incorporates four

free parameters. The constituent quark mass will be varied
in a range around mq ¼ 100 to 400 MeV. It determines the
scalar coupling for the nonstrange (28) and strange (29)
condensates via the Goldberger-Treiman relation

gu;d ¼ gn ¼
mq

fπ
ð28Þ

and from SU(3) symmetry

gs ¼ gn ·
ffiffiffi
2

p
: ð29Þ

The vector coupling is independent on the constituent
quark mass; it will be varied in a scale similar to the
one of the scalar coupling, gω ∼ gn, to study its influences
in an appropriate range [38]. The coupling constant of the
ϕ-meson is fixed again by SU(3) symmetry:

gω ¼ gρ ¼
gϕffiffiffi
2

p : ð30Þ

To fix the remaining parameters of the scalar mesons, the
following masses have been adopted:

mπ ¼ 138 MeV ð31Þ

mK ¼ 496 MeV ð32Þ

mη ¼ 547.5 MeV ð33Þ

mη0 ¼ 957.78 MeV: ð34Þ

The experimentally not well determined mass of the σ-
meson could cover a range from mσ ¼ 400 to 1000 MeV.
The explicit symmetry breaking terms are defined via the
Gell-Mann-Oakes-Renner relation [37] as follows:

hn ¼ fπm2
π ð35Þ

hs ¼
ffiffiffi
2

p
fKm2

K −
hnffiffiffi
2

p : ð36Þ

The parameter λ1 has to be determined via the relation [37]

m2
σðm2; λ1Þ ↔ m2

σðm2ðλ1Þ; λ1Þ ↔ m2
σðλ1Þ ð37Þ

and λ2 is given by

λ2 ¼
3m2

Kð2fK − fπÞ −m2
πð2fK þ fπÞ

ð3f2π þ 8fKðfK − fπÞÞðfK − fπÞ

−
2ðm2

η0 þm2
ηÞðfK − fπÞ

ð3f2π þ 8fKðfK − fπÞÞðfK − fπÞ
: ð38Þ

The large mass of the η0-meson (which, as a Goldstone
boson, should be nearly massless; see [44,45]) will be
implemented by the axial anomaly term with the coupling
strength c determined by

c ¼ m2
K −m2

π

fK − fπ
− λ2 · ð2fK − fπÞ: ð39Þ

The last free parameter is the vacuum pressure at vanishing
chemical potential B, which we choose to cover a range
from B1=4 ¼ 0 to 140 MeV. While varying one parameter in
the following, the other parameters will be held fixed at
some canonical values chosen to be mσ ¼ 600 MeV,
mq ¼ 300 MeV, gω ¼ 2 and B1=4 ¼ 120 MeV.

IV. RESULTS

A. Variation of the vector coupling constant gω
The vector coupling models the repulsive character of the

strong interaction. Analogous to the scalar coupling, which
is dependent on the constituent quark mass, the vector
coupling will be changed in a range from gω ¼ 1 to 7.
Figure 1 shows the nonstrange scalar condensates for

various values of gω. There is a crossover for values of
gω ≳ 4. For values of gω ≲ 4 there is a jump in the scalar
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FIG. 1 (color online). The nonstrange scalar condensate for
various values of the vector coupling constant gω at fixed values
of mq ¼ 300 MeV, mσ ¼ 600 MeV and B1=4 ¼ 120 MeV.
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condensate, which is present at smaller chemical potential
μq for smaller values of gω. The chiral transition for gω ¼
2.0 takes place at μ ∼ 325 MeV. Because of explicit
symmetry breaking, the condensate does not vanish entirely
in the chirally restored phase; see e.g. the discussion
in [37].
Note that the jump is also visible for the strange

condensate, which can be seen in Fig. 2. Because of the
larger mass of the strange quark the jump is not that
pronounced and the field changes rather smoothly staying
at larger values even in the chirally restored phase up to the
largest considered values of the chemical potential.
An increase of the repulsive coupling gω provokes the

scalar fields to increase too. This is due to the substraction
of the terms including the vector fields from the chemical
potential μq in Eqs. (19)–(21). Larger vector field terms
require larger chemical potential to compensate for their
impact.

The EoS for various values gω is plotted in Fig. 3. For a
larger value of the vector coupling constant, the repulsion
between quarks increases, the slope of the EoS increases
and the EoS becomes stiffer, i.e. quark matter requires more
pressure to be compressed to a given energy density.
The corresponding solutions of the TOV equations can

be seen in Fig. 4. With a stiffer EoS the maximum mass
increases. This increase in the maximum mass is due to the
repulsive character of the vector mesons which gives a
higher pressure at a given energy density (see Fig. 3) and
therefore quark matter is able to stabilize more mass against
the pull of gravity. With the choice of gω ¼ 4.0 and the
other parameters held fixed at mq ¼ 300 MeV, mσ ¼
600 MeV and B1=4 ¼ 120 MeV one reaches a maximum
mass of ∼2.1M⊙ at a radius of 10 km. Smaller values of the
vector coupling constant result in compact star configura-
tions with a maximum mass smaller than 2M⊙ which is in
conflict with observations. Hence, the vectorlike inter-
actions between quarks are necessary in the model used
to achieve the 2M⊙ mass limit in a physically reasonable
range of our parameters.

B. Variation of the constituent quark mass

Raising the value of the constituent quark mass increases
the scalar coupling; see Eqs. (28)–(29). The values of the
scalar condensate have been checked with the results of
[39] and found to be in accordance.
We find that a crossover transition is present for values of

μq ≲ 300 MeV, whereas for values μq ≥ 300 MeV a first
order phase transition emerges, and the chiral condensate
jumps. For even higher values, the strength of the first order
chiral phase transition increases.
The EoS shown in Fig. 5 displays a softening for

increasing values of mq, leading to smaller maximum
masses of the compact star configuration, as can be seen
in Fig. 6. The trend of the curve of the EoS for
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FIG. 2 (color online). The strange scalar condensates for
various values of the vector coupling constant gω at fixed
mq ¼ 300 MeV, mσ ¼ 600 MeV and B1=4 ¼ 120 MeV.
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FIG. 3 (color online). The EoS for various values of the vector
coupling constant gω at fixed mq ¼ 300 MeV, mσ ¼ 600 MeV
and B1=4 ¼ 120 MeV.
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FIG. 4 (color online). The mass-radius relation for various
values of the vector coupling constant gω at fixed mq ¼
300 MeV, mσ ¼ 600 MeV and B1=4 ¼ 120 MeV.
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mq ≥ 300 MeV shows a slightly different behavior. For
mq ¼ 100 MeV the 2M⊙ limit is exceeded. In this case the
scalar condensates would exhibit a smooth crossoverlike
behavior as a function of the chemical potential.

C. Variation of the σ-meson mass

We find that with increasing σ-meson mass mσ the phase
transition becomes a crossover (mσ ≥ 800 MeV), whereas
values of mσ ≤ 800 MeV lead to first order phase tran-
sitions at μq ≃ 300 MeV. For mσ ¼ 600 MeV the first
order phase transition takes place at μq ∼ 330 MeV. The
behavior of the nonstrange and strange condensates is
found to be similar to the discussion in Sec. IVA.
The resulting EoS is shown in Fig. 7. The EoS softens

with increasing scalar meson mass mσ . Hence, one expects
a mass-radius relation which is located at smaller values of
the mass and radius for increasing the σ-meson mass, which

can clearly be observed in Fig. 8. So a smaller value of mσ

leads to higher maximum masses of the compact star.
The mass of the sigma meson mσ is directly related to

the parameters λ1 and λ2, according to (37)–(38). These
parameters are, among others in the SU(3) case, mainly
responsible for the potential depth for spontaneous sym-
metry breaking. The impact of the sigma meson mass on
the chiral condensate and the EoS is nontrivial. A simple
explanation might be that for a higher mass of the scalar
meson more energy is needed to overcome the barrier and
reach the second minimum of the potential, which leads
also to a shift of the chiral phase transition to a larger
chemical potential μq and a crossoverlike behavior of the
chiral condensates at high densities.

D. Variation of the vacuum constant

Figure 9 shows the equation of state for various values of
the vacuum constant B1=4. The equation of state does not
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FIG. 5 (color online). The EoS while varying mq with fixed
gω ¼ 2.0, mσ ¼ 600 MeV and B1=4 ¼ 120 MeV.
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FIG. 7 (color online). The EoS for various values of mσ at fixed
gω ¼ 2.0, mq ¼ 300 MeV and B1=4 ¼ 120 MeV.
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FIG. 6 (color online). The mass-radius relation for various
values of mq at fixed gω ¼ 2.0, mσ ¼ 600 MeV and B1=4 ¼
120 MeV.
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FIG. 8 (color online). The mass-radius relation for various
values of mσ at fixed gω ¼ 2.0, mq ¼ 300 MeV and B1=4 ¼
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change significantly when varying the vacuum constant.
The vacuum constant B drops out in the equations of
motion (13) so that it does not affect the values of the
meson fields.
The slopes of the curves are very similar to each other.

The pressure vanishes at lower energy densities for a
smaller vacuum constant. Note that the curve for the
vacuum constant B1=4 ¼ 40 MeV is not simply shifted
but the jump in the energy density is in this case at a small,
but nonvanishing value of the pressure. This can be
observed in the inlay of Fig. 9. This property leads to
an additional stable branch in the mass-radius relation
shown in Fig. 10. For B1=4 ¼ 40 MeV there are two stable
branches: one up to 0.6 M⊙ at a radius of ≃19 km and a
second branch between ≃14 and ≃12 km radius and up to

a maximum mass of ∼2M⊙. These so-called twin star
solutions [8,42] are beyond the scope of this article and are
discussed in more detail in [8,46–52] and in the forth-
coming publication [53]. See [46] for a detailed discussion
on stability.
The mass-radius relation depicted in Fig. 10 demon-

strates that larger maximum masses can be achieved for
smaller values of the vacuum constant B. We point out that
the standard choice of the vacuum pressure in Refs. [8,42]
was a value of B1=4 ¼ 120 MeV. For this value the
resulting mass-radius relation has a maximum mass around
1.6M⊙ at a radius of around 9 km, when fixing the other
parameters of the model at their standard values. The
vacuum constant has a strong influence on the mass-radius
relation, and the maximum mass of a compact star can
easily reach values of 2M⊙. Choosing B1=4 ¼ 40 MeV the
resulting compact star configurations have a maximum
mass of ∼2M⊙ at a radius of 12 km.

E. Stability considerations

The properties of quark matter have to fulfil certain
conditions in order to allow for the possibility of pure quark
matter stars studied above.
Normal matter, consisting of ordinary nuclei, is stable on

cosmological time scales, so it does not decay to quark
matter with its quark constituents of up quarks and down
quarks. This observation implies that two flavor quark
matter cannot be more stable than ordinary nuclear matter,
meaning that the energy per baryon has to be higher than
that of the most stable known element in nature: 56Fe. We
adopt a value of energy per baryon of E=A ¼ 930 MeV for
nuclei and add a 4 MeV correction due to surface effects of
lumps of quark matter balls as discussed in [54]. Hence the
critical condition for two-flavor quark matter reads

E
3A

����
p¼0

¼ ϵ

nq

����
p¼0

≳ 311 MeV: ð40Þ

This condition guarantees the stability of atomic nuclei,
meaning that atomic nuclei do not dissolve into their
constituent quarks.
On the other hand three-flavor quark matter, i.e. quark

matter consisting of up, down and strange quarks, could be
more stable than ordinary nuclei which is the Bodmer-
Witten hypothesis [5,6]. Ordinary nuclear matter cannot
decay to strange quark matter, as there is a barrier between
these two states of matter due to strangeness conversion
via weak interactions with a corresponding conversion
time scale much longer than the age of the Universe. The
presence of the new degree of freedom, the strange quark,
in quark matter lowers the overall energy per baryon, so
that this state could be energetically favorable compared to
nuclear matter. Hence, the condition for absolutely stable
strange quark matter of E=A < 930 MeV can be recast in
the form
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FIG. 10 (color online). The mass-radius relation for various
values of the vacuum constant B1=4 with fixed values of
mσ ¼ 600 MeV, gω ¼ 2.0 and mq ¼ 300 MeV. The maximum
mass increases significantly for a lower value of the vacuum
constant B.
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FIG. 9 (color online). The equation of state for various values of
the vacuum constant B1=4 at fixed values of mσ ¼ 600 MeV,
gω ¼ 2.0 and mq ¼ 300 MeV.
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E
3A

����
p¼0

¼ ϵ

nq

����
p¼0

≤ 310 MeV: ð41Þ

In the following we denote the physical condition for two-
flavor quark matter, Eq. (40), the two-flavor condition (or
two-flavor line in the plots) and the one for three-flavor
quark matter, Eq. (41), the three-flavor condition (or three-
flavor line in the plots).
Figures 11–12 depict the maximum masses in depend-

ence of the parameters B1=4, mσ and gω. In general, smaller
values of the vacuum constant B and higher values for the
vector coupling constant gω lead to higher maximum
masses.

Figure 11 shows as a contour plot the dependencies of
the maximum mass of pure quark star configurations on the
vacuum constant B1=4 and the vector coupling constant gω.
For B1=4 ¼ 120 MeV and gω ¼ 2.0 one finds a maximum
mass of about 1.6M⊙, which can be cross-checked with
Figs. 4, 6, 8 and 10.
The two-flavor line indicates the two-flavor constraint

(40) and the three-flavor line the three-flavor constraint
(41). In the area above the two-flavor line the condition (40)
is fulfilled, i.e. normal matter cannot decay to two-flavor
quark matter as observed in nature. For a vanishing vector
repulsion the vacuum constant has to be larger than B1=4 >
60 MeV in order for quark matter to obey the two-flavor
constraint. The critical value for B1=4 decreases towards
B1=4 ¼ 20 MeV with increasing vector coupling constant.
Hybrid star configurations are located in the parameter
range above the two-flavor line.
In the area below the three-flavor line the condition (41)

is fulfilled. Within the chosen parameters the three-flavor
line is nearly independent on the vector coupling constant
gω being between B1=4 ∼ 28 MeV for a vanishing vector
coupling constant and B1=4 ∼ 20 MeV for gω ¼ 9.0. The
vacuum pressure dictates at which energy density ϵ0 the
pressure vanishes, which determines via the Hugenholtz-
van Hove theorem the binding energy of quark matter:
EB=A ¼ μB ¼ ϵ0=nB. As there is no region where both
conditions (40) and (41) are fulfilled simultaneously, no pure
quark star configurations emerge in the contour plot for the
chosen parameters ofmσ ¼ 600 MeV andmq ¼ 300 MeV.
Figure 12 shows the maximum masses and the quark

matter constraints (40)–(41) in the parameter plane of the
vacuum constant B1=4 and the σ-meson mass mσ. The two-
flavor line starts at B1=4 ¼ 115 MeV for mσ ¼ 400 MeV,
with the three-flavor line being slightly below the two-
flavor line. Both lines decrease in a similar manner with
increasing mass of the σ-meson. At B1=4 ¼ 26 MeV and
mσ ¼ 725 MeV both lines intersect and from that point on
the three-flavor line is above the two-flavor line. This
means that from there on, in a small parameter space (the
small area enclosed by both lines), pure quark star
configurations are stable. The corresponding highest maxi-
mum mass for pure quark stars in Fig. 12 with gω ¼ 2 and
mq ¼ 300 MeV held fixed is located atmσ ∼ 725 MeV and
B1=4 ∼ 26 MeV with a value of ∼1.8M⊙ which is not
compatible with the recent pulsar mass measurements.
A high mass of the sigmameson seems to be necessary in

order to fulfil the constraints for pure quark star configura-
tions, i.e. Eqs. (40)–(41), in contrast to the variation of the
vector coupling constant.Aprojectionon the gω-mσ planeon
the other hand (with a fixed value ofB1=4 ¼ 120 MeV) leads
to a null result for pure quark star configurations due to the
high value of the vacuum constant. Only a small value of the
vacuum constant leads to pure quark star configurations.
As the two solar mass limit for pure quark stars with

gω ¼ 2.0 is not reached, we increase the repulsive vector

FIG. 12 (color online). Maximum masses for three-flavor pure
quark stars in the plane of the vacuum constant B1=4 and the
sigma meson mass mσ . The two-flavor and three-flavor lines
delineate the region for hybrid stars (above the two-flavor line)
and pure quark stars (below the three-flavor line). Pure quark star
configurations are possible for a small window at large values of
the sigma meson mass mσ (here gω ¼ 2 and mq ¼ 300 MeV are
held fixed).

FIG. 11 (color online). Maximum masses for three-flavor pure
quark stars in the plane of the vacuum constant B and the vector
coupling constant gω. The two-flavor and three-flavor lines
delineate the region for hybrid stars (above the two-flavor line)
and pure quark stars (below the three-flavor line). Pure quark star
configurations do not appear for the parameters chosen
(mσ ¼ 600 MeV and mq ¼ 300 MeV).
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interaction gω in the following to a value of gω ¼ 3.0. The
resulting maximum masses and lines of constraints are
shown in Fig. 13. There is an overall increase of the
maximum mass as expected for a greater repulsive inter-
action. Surprisingly, for mσ ≥ 600 MeV the maximum
mass increases with the σ meson mass again, which cannot
be seen in Fig. 12. This behavior indicates a switch in the
dominance of the scalar and vector field contributions to
the stiffness of the equation of state. Above a certain
value, around gω ∼ 2.75, the repulsive fields gain on their
influence on the maximum masses compared to the
attractive scalar fields. A combination of gω ≳ 2.75 and
mσ ≥ 600 MeV leads then to higher maximummasses with
increasing σ-meson mass instead.
The lines of the two constraints intersect at B1=4 ∼

32 MeV and mσ ∼ 760 MeV. From this point on pure
quark star configurations are realized between the two lines
of constraint as discussed above. Note that in Fig. 13 results
are shown for σ-meson masses of up to mσ ¼ 1000 MeV.
At the intersecting point at B1=4 ∼ 32 MeV and mσ ∼
760 MeV the maximum mass of the quark star would be
∼2.7M⊙, being smaller for larger values of the σ-meson
mass mσ and larger values of the vacuum constant. A pure
quark star with a maximum mass of ∼2.0M⊙ can be found
at a vacuum constant of B1=4 ¼ 70 MeV for σ-meson
masses between 900 ≤ mσ ≤ 1000 MeV.

F. Comparison with other models

In the following we compare our findings with other
approaches for studying pure quark stars, i.e. self-bound
strange stars. For hybrid stars not discussed here a low-
density hadronic equation of state needs to be augmented
for a thorough discussion, which is beyond the scope of the
present investigation but will be addressed in [53].
Coelho et al. [55] use a SU(2)-flavor symmetric NJL

model with a repulsive vector coupling. For a large vector
coupling their EoS stiffens like in our model calculations
leading to higher masses at given radii.

Weissenborn et al. [19] use an extended quark bag
model. Strange stars can reach maximum masses beyond
2M⊙ in their work if additional terms compared to the
standard MIT bag model are introduced, either in the form
of some effective interaction motivated from one-gluon
exchange or from a large gap motivated from color super-
conductivity. They found a maximummass for a pure quark
star to be at 2.54M⊙, which is in the same order of
magnitude as in this work.
In the work by Torres and Menezes [56] pure quark stars

would have maximum masses of 2.29M⊙. They use a
model, where the quark masses are assumed to have a
certain given density dependence causing a stiffening of the
EoS compared to the standard MIT bag model.

V. SUMMARY

In this work a chiral quark-meson model in SU(3)-flavor
symmetry has been studied for the description of compact
stars consisting of pure quark matter. The thermodynamical
properties have been calculated via the grand potential in
the zero temperature limit. The gap equations were solved
self consistently to determine the EoS, which serves as an
input to solve the TOV equations and compute the mass-
radius relations. The EoS and the dependence on the four
free parameters of the model, the vector coupling constant,
the constituent quark mass, the sigma meson, and the
vacuum constant, were systematically investigated.
The variation of the vector coupling constant showed the

highest impact on the EoS. The higher its value, the stiffer
the EoS, leading to maximum masses in excess of 2M⊙.
The dependence of the EoS with the constituent quark mass
mq in vacuum, which fixes the scalar coupling constant, is
such that the smaller the mq, the stiffer the EoS. The mass
of the σ-meson studied covers a range from 400 to
1000 MeV. For a smaller mass of the σ-meson the EoS
becomes stiffer. Finally, the vacuum constant does not
affect the values of the meson fields; it just shifts the
energy density at a given pressure. The EoS substantially
stiffens when decreasing the vacuum constant so that for
small values of B1=4 ≲ 40 MeV maximum masses of up to
≥ 2M⊙ could easily be reached.
The stability of two-flavor and three-flavor quark matter

has been checked as well, to see whether or not the model
parameter space allows for physically reasonable quark
matter properties in the SU(3)-flavor approach. The 2M⊙
limit set by the recently discovered millisecond pulsars
PSR J1614-2230 [16] and PSR J0348þ 0432 [17] could be
reached. Having considered the stability constraints in
Eqs. (40)–(41), most choices of the parameter space were
found to be hybrid stars. Nonetheless, pure quark star
configurations with ∼2M⊙ can be realized in a small
physically reasonable parameter range. A sizable additional
repulsion mediated by the exchange of vector mesons as
well as a nonvanishing vacuum pressure seems to be crucial

FIG. 13 (color online). Maximum masses and stability con-
figurations for pure quark star configurations as in Fig. 12 for a
slightly larger vector coupling constant of gω ¼ 3.0.
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to allow for maximum mass configurations of quark stars
compatible with the recent pulsar mass measurements.
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