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We discuss the effective field theory for spacetime symmetry breaking from the local symmetry point of
view. By gauging spacetime symmetries, the identification of Nambu–Goldstone (NG) fields and the
construction of the effective action are performed based on the breaking pattern of diffeomorphism, local
Lorentz, and (an)isotropic Weyl symmetries as well as the internal symmetries including possible central
extensions in nonrelativistic systems. Such a local picture distinguishes, e.g., whether the symmetry
breaking condensations have spins and provides a correct identification of the physical NG fields, while the
standard coset construction based on global symmetry breaking does not. We illustrate that the local picture
becomes important in particular when we take into account massive modes associated with symmetry
breaking, the masses of which are not necessarily high. We also revisit the coset construction for spacetime
symmetry breaking. Based on the relation between the Maurer–Cartan one form and connections for
spacetime symmetries, we classify the physical meanings of the inverse-Higgs constraints by the coordinate
dimension of broken symmetries. Inverse Higgs constraints for spacetime symmetries with a higher
dimension remove the redundant NG fields, whereas those for dimensionless symmetries can be further
classified by the local symmetry breaking pattern.
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I. INTRODUCTION

Symmetry and its spontaneous breaking play an impor-
tant role in various areas of physics. In particular, the low-
energy effective field theory (EFT) based on the underlying
symmetry structures provides a powerful framework for
understanding the low-energy dynamics in the symmetry
broken phase [1].
For internal symmetry breaking in Lorentz invariant

systems, the EFT based on coset construction was estab-
lished in the 1960s [2,3]. When a global symmetry groupG
is broken to a residual symmetry group H, the correspond-
ing Nambu–Goldstone (NG) fields πðxÞ are introduced as
the coordinates of the coset space G=H, and the general
effective action can be constructed from the Maurer–Cartan
one form,

Jμdxμ ¼ Ω−1∂μΩdxμ with ΩðxÞ ¼ eπðxÞ ∈ G=H:

ð1:1Þ

Such a coset construction was also extended to spacetime
symmetry breaking [4,5] accompanied by the inverse-Higgs
constraints [6] and has been applied to various systems (see,
e.g., Refs. [7–19] for recent discussions). Although the coset
construction captures certain aspects of spacetime symmetry

breaking, its understanding seems incomplete compared to
the internal symmetry case and as a result has generated a
lot of recent research activities [7–29]. It would then be
helpful to revisit the issue of spacetime symmetry breaking
based on an alternative approach, providing a complemen-
tary perspective to the coset construction.
For this purpose, let us first revisit the identification of

NG fields for spacetime symmetry breaking. As in standard
textbooks, symmetry breaking structures are classified by
the type of order parameters, and their local transformations
generate the corresponding NG fields (we refer to this as
the local picture). In Lorentz invariant systems, since only
the condensation of scalar fields is allowed, we need not
pay much attention to the type of order parameters.
However, when Lorentz symmetry is broken or does not
exist, the type of order parameters becomes more impor-
tant. For example, when the order parameter is a non-
Abelian charge density, there appear NG modes with a
quadratic dispersion different from that in Lorentz invariant
systems [30–36]. In addition, if the charge density and the
other order parameter that break the same symmetry
coexist, some massive modes associated with the symmetry
breaking appear [11,37–39].1
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1In this paper we use the words “NG fields” to denote fields
which transform nonlinearly under broken symmetries. In gen-
eral, the NG fields can contain massive modes as well as massless
modes. We refer to the massless modes in NG fields as the NG
modes in particular.
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For spacetime symmetry breaking, the standard coset
construction based on global symmetry (referred to as the
global picture) does not distinguish the types of order
parameters. As is well-known in the case of conformal
symmetry breaking [5,6], a naive counting of broken space-
time symmetries based on the global picture contains redun-
dant fields and causes a wrong counting of NG modes (see,
e.g., Refs. [20,24,25]). The inverse-Higgs constraints are
introduced to compensate such a mismatch of NG mode
counting. As discussed in Refs. [11,13,14], the inverse-Higgs
constraints eliminate not only the redundant fields but also the
massive modes. Thus, to identify the physical NG fields, we
should take into account the massive modes associated with
the symmetry breaking in addition to the massless modes.
Such massive modes often play an important role, e.g., the
smectic-A phase of liquid crystals near the smectic-nematic
phase transition, in which the rotation modes are massive
[40]. In this paper, we would like to construct the effective
action including these modes based on the local picture.
To proceed in this direction, it is convenient to recall

the relation between the coset construction and gauge
symmetry breaking for internal symmetry. When a gauge
symmetry is broken, the NG fields are eaten by the
gauge fields, and the dynamics is captured by the unitary
gauge action for the massive gauge boson Aμ. Since
the gauge boson mass is given by m ∼ gv with the gauge
coupling g and the order parameter v, the unitary gauge is
not adequate to discuss the global symmetry limit g → 0,
which corresponds to the singular massless limit. Rather, it
is convenient to introduce NG fields by the Stückelberg
method as

Aμ → A0
μ ¼ Ω−1AμΩþΩ−1∂μΩ with ΩðxÞ ∈ G=H;

ð1:2Þ

where G and H are the original and residual symmetry
groups, respectively, and ΩðxÞ describes the NG fields.
In this picture, we can take the global symmetry limit
smoothly to obtain the same effective action constructed
from the Maurer–Cartan one form (1.1). As this discussion
suggests, the unitary gauge is convenient for constructing
the general effective action. Indeed, it is standard to begin
with the unitary gauge in the construction of the dilaton
effective action and the effective action for inflation [41].
Based on this observation, we apply the following recipe of
the effective action construction to spacetime symmetry
breaking in this paper:
(1) gauge the (broken) global symmetry;
(2) write down the unitary gauge effective action;
(3) introduce NG fields by the Stückelberg method, and

decouple the gauge sector.
Our starting point is that any spacetime symmetry can be

locally generated by Poincaré transformations and (an)
isotropic rescalings. Correspondingly, we can embed any
spacetime symmetry transformation into diffeomorphisms
(diffs), local Lorentz transformations, and (an)isotropic
Weyl transformations (see Tables I and II for concrete
embedding of global spacetime symmetry). We then would
like to gauge the original global symmetry to local ones.
First, diffeomorphism invariance and local Lorentz invari-
ance can be realized by introducing the curved spacetime
action with the metric gμν and the vierbein emμ .

2 On the other
hand, there are two typical ways to realize isotropic Weyl
invariance: Weyl gauging and Ricci gauging. In general, we
can gauge the Weyl symmetry by introducing a gauge field
Wμ and defining the covariant derivatives appropriately

TABLE I. Embedding of relativistic spacetime symmetries. In relativistic systems, spacetime symmetries can be
classified into isometric and conformal transformations, by requiring spacetime isotropy. They can then be
embedded into diffeomorphism, local Lorentz, and isotropic Weyl transformations.

Relativistic symmetry Diffeomorphism Local Lorentz Isotropic Weyl

Translation ✓

Isometry ✓ ✓

Conformal ✓ ✓ ✓

TABLE II. Embedding of nonrelativistic spacetime symmetries. One difference from the relativistic case is that nonrelativistic
spacetime symmetries should preserve the spatial slicing. The corresponding coordinate transformations are then foliation preserving
diffeomorphisms. Another difference is that nonrelativistic systems admit central extensions of spacetime symmetry algebras.
Correspondingly, we included the internal Uð1Þ gauge symmetry in the above table. See Appendix A for details.

Nonrelativistic symmetry Foliation preserving Local rotation (An)isotropic Weyl Internal Uð1Þ
Translation ✓

Galilean ✓ ✓ ✓

Schrödinger ✓ ✓ ✓ ✓

Galilean conformal ✓ ✓ ✓

2We use Greek letters for the curved spacetime indices and
Latin letters for the (local) Minkowski indices.
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(Weyl gauging), whereas we can introduce a Weyl invariant
curved space action if the original system is conformal
(Ricci gauging). The anisotropic Weyl symmetry can be
also gauged in a similar way. These procedures for
spacetime symmetry allow us to gauge all the global
symmetries together with the internal symmetries.
Once gauging global symmetry, we identify the broken

local symmetry from the condensation pattern

hΦAðxÞi ¼ Φ̄AðxÞ ð1:3Þ
and construct the effective action based on symmetry
breaking structures. Here and in what follows, we use
capital Latin letters for internal symmetry indices, and the
spin indices are implicit unless otherwise stated. When the
condensation is spacetime dependent, diffeomorphism
invariance is broken. On the other hand, local Lorentz
invariance, (an)isotropic Weyl invariance, and internal gauge
invariance are broken when the condensation has the Lorentz
charge (spin), scaling dimension, and internal charge,
respectively. If the symmetry breaking pattern is given, it
is straightforward to take the unitary gauge and construct the
effective action following the recipe. We will first apply our
approach to some concrete examples to illustrate the
importance of the local viewpoint of spacetime symmetry
breaking. We will then revisit the coset construction from
such a local perspective. One important difference from the
EFT for the internal symmetry breaking case in Lorentz
invariant systems is that the EFT constructed from the
unitary gauge contains not only massless modes but also
massive modes associated with spacetime symmetry break-
ing. These massive modes transform nonlinearly under the
broken symmetries; i.e., they are NG fields.
The organization of this paper is as follows. In Sec. II, we

explain our basic strategy in more detail. After reviewing the
EFT for internal symmetry breaking, we discuss how global
spacetime symmetry can be gauged. We then summarize
how to construct the effective action based on the local
symmetry breaking pattern. In Sec. III, we apply our
approach to codimension-1 branes to illustrate the difference
between the global and the local pictures of spacetime
symmetry breaking. In the global picture, one may character-
ize the branes by the spontaneous breaking of translation and
Lorentz invariance. In the local picture, on the other hand,
such a symmetry breaking pattern can be further classified
by the spin of the condensation forming the branes. We see
that the spectra of massive modes associated with symmetry
breaking depend on the spin of the condensation and the
mass of massive modes is not necessarily high. If the masses
are small compared with the typical energies of the system,
the modes play a role as low-energy degrees of freedom.
Therefore, the local picture becomes important in following
the dynamics of such massive modes appropriately. In
Sec. IV, we discuss a system with one-dimensional periodic
modulation, i.e., a system in which the condensation is
periodic in one direction, by applying the effective action

constructed in Sec. III. We find that the dispersion relations
of NGmodes for the broken diffeomorphism are constrained
by the minimum energy condition, in contrast to the
codimension-1 brane case. In Sec. V, such a discussion is
extended to the breaking of a mixture of spacetime and
internal symmetries. In Sec. VI, we revisit the coset
construction from the local symmetry picture. We first show
that the parametrization of NG fields in the coset construc-
tion is closely related to the local symmetry picture. We then
discuss the relation between theMaurer–Cartan one form and
the connections for spacetime symmetries.We finally classify
the physical meanings of the inverse-Higgs constraints based
on the coordinate dimension of the broken symmetries.
In Sec. VII, we make a brief comment on applications to
gravitational systems. The final section is devoted to a
summary. Details on the nonrelativistic case are summarized
inAppendixA.A derivation of theNambu-Goto action based
on our EFT approach is presented in Appendix B.

II. BASIC STRATEGY

In this section we outline our basic strategy to construct
the effective action for symmetry breaking including ones
that involve spacetime symmetry breaking. In Sec. II A, we
first review the relation between the coset construction and
gauge symmetry breaking for internal symmetry and explain
how the local picture can be used to construct the effective
action for global symmetry breaking. To extend this dis-
cussion to spacetime symmetry, in Secs. II B and II C, we
discuss how global spacetime symmetries can be embedded
into local ones. We then present our recipe for the effective
action construction in Sec. II D.

A. EFT for internal symmetry breaking

Let us first review how the coset construction for internal
symmetry breaking [2,3] can be reproduced from the
effective theory for gauge symmetry breaking. Suppose
that a global symmetry group G is spontaneously broken to
a subgroup H and the coset space G=H satisfying

g ¼ h ⊕ m with ½h;m� ¼ m; ð2:1Þ
where g and h are the Lie algebras ofG andH, respectively.
m represent the broken generators. In the coset construc-
tion, we introduce representatives of the coset space G=H
as Ω ¼ eπ with π ∈ m, of which the left G transformation
is given by

ΩðπÞ → Ωðπ0Þ ¼ gΩðπÞh−1ðπ; gÞ; ð2:2Þ
where g ∈ G and hðπ; gÞ ∈ H. In general, h−1ðπ; gÞ
depends on both g and π. The transformation from π to
π0 is nonlinear, so that it is called the nonlinear realization.
If g is the element of the unbroken symmetry H, g¼h∈H,
π linearly transforms: π0ðxÞ ¼ hπðxÞh−1. Here, it is useful
to introduce the Maurer–Cartan one form to construct the
effective Lagrangian, which is defined as
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Jμdxμ ≡ Ω−1∂μΩdxμ: ð2:3Þ

If we decompose Jμ into the broken component Jmμ ∈ m

and the unbroken component Jhμ ∈ h as Jμ ¼ Jmμ þ Jhμ,
each component transforms as

Jmμ → hJmμ h−1; Jhμ → hJhμh−1 þ h∂μh−1; ð2:4Þ

under G transformation. Here, note that the broken com-
ponent Jmμ transforms covariantly. In general, m is reduc-
ible underH transformation, and it can be decomposed into
direct sums, m ¼ m1 ⊕ m2 ⊕ � � � ⊕ mN . At the leading
order in the derivative expansion, the effective Lagrangian
for Lorentz invariant systems is given by3

L ¼
XN
a¼1

F2
atr½Jma

μ Jmaμ�; ð2:5Þ

where the trace is defined in a G-invariant way. Jma
μ and F2

a
are the components of the Maurer–Cartan one form and
the decay constant for each irreducible sector, respectively.
By construction, this Lagrangian is invariant under G
transformation.
We next move on to the effective action construction for

gauge symmetry breaking. In this case, it is convenient to
take the unitary gauge, where the NG fields are eaten by the
gauge field Aμ and do not fluctuate. The general effective
action can then be constructed only from the massive gauge
field Aμ in anH gauge invariant way. In relativistic systems,
the effective Lagrangian takes the form

L ¼ tr

�
1

2g2
FμνFμν þ v2aA

ma
μ Amaμ þ � � �

�
; ð2:6Þ

where g and va are the gauge coupling and the order
parameters for symmetry breaking, respectively, and
Am
μ ∈ m is the gauge field in the broken symmetry sector.

Note that, since we are considering the unitary gauge,
Eq. (2.6) is not invariant under G gauge transformation.
Because the gauge boson mass is given by m ∼ gva, the
global symmetry limit g → 0 for fixed va corresponds to
the singular massless limit, so that the unitary gauge is not
appropriate to discuss the global symmetry limit. To take
the global symmetry limit, it is convenient to introduce the
NG fields πðxÞ ∈ m by performing a field-dependent
gauge transformation (the Stückelberg method):

Aμ → Ω−1AμΩþ Ω−1∂μΩ with Ω ¼ eπðxÞ: ð2:7Þ

The G gauge invariance can be recovered by assigning a
nonlinear transformation rule on the NG fields πðxÞ, and we
can take the global symmetry limit g → 0 smoothly in this

picture. Since the gauge sector decouples from the NG
fields in the global symmetry limit, the effective action for
the NG fields can be obtained by the replacements:

v2a → F2
a; ð2:8Þ

Aμ → Jμ ¼ Ω−1∂μΩ: ð2:9Þ

The latter is nothing but the Maurar–Cartan one form. As
this discussion suggests, the unitary gauge is useful to
construct the general ingredients needed to obtain the
effective action for global symmetry breaking. Note that
Wess–Zumino terms in the coset construction are repro-
duced by Chern–Simons terms in the unitary gauge action.

B. Local properties of spacetime symmetries

In the previous subsection, we saw that the unitary gauge
action for gauge symmetry breaking can be used to construct
the general effective action for global symmetry breaking.
We now would like to extend such a discussion to spacetime
symmetry breaking. For this purpose, let us recall the local
properties of (infinitesimal) spacetime symmetry transfor-
mations in this subsection.4 Any spacetime symmetry trans-
formation has an associated coordinate transformation

xμ → x0μ ¼ xμ − ϵμðxÞ; ð2:10Þ

and its local properties around a point xμ ¼ xμ� can be read
off by expanding the parameter ϵμðxÞ covariantly as

ϵμðxÞ ¼ ϵμðx�Þ þ ðxν − xν�Þ∇νϵ
μðx�Þ þOððx − x�Þ2Þ:

ð2:11Þ

The first term is the zeroth order in x − x� and describes
translations of the coordinate system. On the other hand,
deformations of the coordinate system are encoded in the
second term (the linear order in x − x�), which can be
decomposed as

∇μϵ
ν ¼ δνμλþ sμν þ ωμ

ν with sμμ ¼ 0;

sμν ¼ sνμ; ωμν ¼ −ωνμ: ð2:12Þ

The trace part λ and the symmetric traceless part sμν are
local isotropic rescalings (dilatations) and local anisotropic
rescalings, respectively. The antisymmetric part ωμν corre-
sponds to local Lorentz transformations. Any spacetime
symmetry can therefore be locally decomposed into
Poincaré transformations and isotropic/anisotropic rescal-
ings. Correspondingly, the symmetry transformations of
local fields are specified by their Lorentz charges and
isotropic/anisotropic scaling dimensions.

3For simplicity, we do not consider matter fields in this paper.

4Though we concentrate on infinitesimal transformations for
simplicity, extension to the finite case is straightforward.
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As is suggested by Eqs. (2.11) and (2.12), we can embed
global spacetime symmetry transformations into diffeo-
morphisms, local Lorentz transformations, and local iso-
tropic/anisotropic Weyl transformations. For simplicity,
let us consider the case of relativistic systems in this
section (see Appendix A for an extension to the non-
relativistic case). In relativistic systems, any spacetime
symmetry transformation can be locally decomposed into
the Poincaré part and the dilatation part because anisotropic
rescalings are incompatible with the Lorentz symmetry:

∇μϵ
ν ¼ δνμλþ ωμ

ν with ωμν ¼ −ωνμ: ð2:13Þ

Note that we have conformal transformations for general
functions λðxÞ and isometric transformations for λ ¼ 0
because the metric field transforms as

δgμν ¼ ∇μϵν þ∇νϵμ ¼ 2gμνλ: ð2:14Þ

The transformation rules of local fields are then determined
by their spin and scaling dimension. When a field ΦðxÞ
follows a representation Σmn of the Lorentz algebra and has
a scaling dimension ΔΦ, its symmetry transformation is
given by

ΦðxÞ → Φ0ðxÞ ¼ ΦðxÞ þ ΔΦλðxÞΦðxÞ

þ 1

2
ωmnðxÞΣmnΦðxÞ þ ϵμðxÞ∇μΦðxÞ:

ð2:15Þ

Here, the curved spacetime indices (Greek letters) and
the local Lorentz indices (Latin letters) are converted
by the vierbein emμ as ωmn ¼ emμ enνωμν. The covariant
derivative ∇μΦ is defined in terms of the spin con-
nection Smn

μ as

∇μΦ ¼ ∂μΦþ 1

2
Smn
μ ΣmnΦ with

Smn
μ ¼ emν ∂μeνn þ emλ Γλ

μνeνn; ð2:16Þ

with the Christoffel symbols Γλ
μν defined by

Γλ
μν ≡ gλρ

2
ð∂μgρν þ ∂νgμρ − ∂ρgμνÞ: ð2:17Þ

To identify the transformation (2.15) as local sym-
metries, it is convenient to rewrite it in the form,

Φ0ðxÞ ¼ ΦðxÞ þ ΔΦλðxÞΦðxÞ

þ 1

2
ðωmnðxÞ þ ϵμðxÞSmn

μ ðxÞÞΣmnΦðxÞ
þ ϵμðxÞ∂μΦðxÞ: ð2:18Þ

We then notice that the latter three terms can be thought
of as local Weyl transformations, local Lorentz trans-
formations, and diffeomorphisms, respectively. Since the
transformation rule of Φ, gμν, and emμ under each local
transformation is given by

local Weyl∶ δΦ ¼ ΔΦ
~λΦ; δgμν ¼ −2~λgμν; δemμ ¼ −~λemμ ; ð2:19Þ

local Lorentz∶ δΦ ¼ 1

2
~ωmnΣmnΦ; δgμν ¼ 0; δemμ ¼ ~ωm

nenμ; ð2:20Þ

diffeomorphism∶ δΦ ¼ ~ϵμ∂μΦ; δgμν ¼ ∇μ ~ϵν þ∇ν ~ϵμ; δemμ ¼ ∇μ ~ϵ
m − ~ϵνSmν nenμ; ð2:21Þ

we can reproduce the transformation (2.18) by the param-
eter choice

~λ ¼ λ; ~ωmn ¼ ωmn þ ϵμSmn
μ ; ~ϵμ ¼ ϵμ: ð2:22Þ

Note that the metric gμν and the vierbein emμ are invariant
under the original global transformation (2.22), although
they are not invariant under general local ones. Any global
spacetime symmetry in relativistic systems can therefore be
embedded into local Weyl transformations, local Lorentz
transformations, and diffeomorphisms.

C. Gauging spacetime symmetry

In the previous subsection, we discussed that any
spacetime symmetry transformation in relativistic systems

is locally generated by Poincaré and Weyl transformations.
Isometric transformations can be embedded in diffeomor-
phisms and local Lorentz transformations, whereas con-
formal transformations require local Weyl transformations
as well. Since NG fields correspond to local transforma-
tions of the order parameters for broken symmetries, we
would like to construct the effective action from this local
symmetry point of view. For this purpose, let us summarize
how we can gauge global spacetime symmetry to those
local symmetries.
When the system is isometry invariant before symmetry

breaking, we gauge the Poincaré symmetry by introducing
the curved spacetime action with the metric gμνðxÞ and the
vierbein emμ ðxÞ. For example, an action in a nongravita-
tional system on Minkowski space,
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S½Φ� ¼
Z

d4xL½Φ; ∂mΦ�; ð2:23Þ

can be reformulated as

S½Φ� → S½Φ; gμν; emμ � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L½Φ; eμm∇μΦ�; ð2:24Þ

where the covariant derivative ∇μ is given by Eq. (2.16).
From the viewpoint of the curved space action (2.24),
the original nongravitational system can be reproduced by
taking the metric gμν and the vierbein emμ as the Minkowski
ones with the gauge choice,

gμν ¼ ημν; emμ ¼ δmμ : ð2:25Þ

The original global Poincaré symmetry can be also under-
stood as the residual symmetries under the gauge con-
ditions (2.25). The same story holds for nongravitational
systems on curved spacetimes.
On the other hand, there are two typical ways to gauge

the Weyl symmetry: Weyl gauging and Ricci gauging (see,
e.g., Ref. [42]). When the system is conformal, we can
introduce a local Weyl invariant curved spacetime action,
essentially because the local Weyl invariance is equivalent
to the traceless condition of the energy-momentum tensor.
Such a procedure is called the Ricci gauging, and we need
not introduce additional fields in this case. When the Ricci
gauging is not applicable, we need to introduce a gauge
field Wμ for Weyl symmetry and the covariant derivative
Dμ defined by

DμΦ ¼ ∇μΦþ ðΔΦδ
ν
μ − Σμ

νÞWνΦ; ð2:26Þ

where Σμ
ν ¼ emμ Σm

neνn and the local Weyl transformation
rule is given by5

Φ → Φ0 ¼ eΔΦλΦ; gμν → g0μν ¼ e2λgμν;

emμ → e0mμ ¼ eλemμ ; Wμ → W0
μ ¼ Wμ − ∂μλ: ð2:28Þ

If the curved spacetime action is global Weyl invariant, a
local Weyl invariant action can be obtained by replacing the
covariant derivative ∇μ with the Weyl covariant derivative
Dμ. For example, Eq. (2.24) is reformulated as

S½Φ; gμν; emμ ;Wμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L½Φ; eμmDμΦ�: ð2:29Þ

Note that the original action (2.23) can be reproduced by
imposing the gauge condition

gμν ¼ ημν; emμ ¼ δmμ ; Wμ ¼ 0; ð2:30Þ

and symmetries of the action are reduced to the original
global ones. Also, while the first two conditions in
Eq. (2.30) are always invariant under the original global
symmetries, the condition Wμ ¼ 0 is not necessarily
invariant when the original system is conformal. Indeed,
it is not invariant under the special conformal transforma-
tion. Correspondingly, the Weyl gauge field Wμ appears in
a particular combination in the action. For example, the
action of a massless free scalar ϕ can be gauged as

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνð∂μ þWμÞϕð∂ν þWνÞϕ

¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð∂μϕÞ2 − ð∇μWμ −W2Þϕ2�; ð2:31Þ

where Wμ appears in a special conformal invariant combi-
nation ∇μWμ −W2.

D. EFT recipe

As we have discussed, all the global symmetries in
relativistic systems can be embedded into diffeomor-
phisms, local Lorentz symmetries, local Weyl symmetry,
and internal gauge symmetries. We can also gauge the
global symmetry by the use of the procedures in the
previous subsection and the standard internal gauging.
Similar discussions hold for nonrelativistic systems accom-
panied by local anisotropic Weyl symmetries and internal
symmetry associated with the possible central extension, as
we illustrate in Appendix A. We now extend the discussion
in Sec. II A for internal symmetry to spacetime symmetry.
First, the symmetry breaking patterns are classified by the
condensation patterns:

hΦAðxÞi ¼ Φ̄AðxÞ: ð2:32Þ

When the condensation is spacetime dependent, diffeo-
morphism invariance is broken. On the other hand, local
Lorentz invariance, local isotropic/anisotropic Weyl invari-
ance, and internal gauge invariance are broken when the
condensation has a Lorentz charge (spin), scaling dimen-
sion, and internal charge, respectively. Once we identify the
symmetry breaking pattern, we can construct the effective
action based on the following recipe just as in the case of
internal symmetry breaking:
(1) gauge the (broken) global symmetry;
(2) write down the unitary gauge effective action;
(3) introduce NG fields by the Stückelberg method, and

decouple the gauge sector.

5Note that the gauge field Wμ with an upper spacetime index
transforms as

Wμ ¼ gμνWν → W0μ ¼ e−2λgμνðWν − ∂μλÞ ¼ e−2λðWμ − ∂μλÞ:
ð2:27Þ
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The first step can be performed by introducing gauge fields
based on the procedure in Sec. II C (see also Table III). We
then take the unitary gauge, where the NG fields do not
fluctuate. Using the dynamical degrees of freedom in the
unitary gauge, we construct the general unitary gauge
effective action invariant under the residual symmetries.
Finally, we perform the Stückelberg method to introduce the
NG fields and restore the full gauge symmetry. By decou-
pling the gauge sector, we obtain the effective action for the
NG fields. In the following sections, we apply this recipe to
concrete examples for spacetime symmetry breaking.
We emphasize that the condensation pattern rather than

the breaking pattern of global symmetries plays an impor-
tant role in identifying the NG fields, unlike the case for
internal symmetry breaking in Lorentz invariant systems.
The breaking pattern of global symmetries itself cannot
distinguish the breaking of diffeomorphism, local Lorentz,
and Weyl symmetries. As will be seen in the next section,
this difference becomes important when we discuss the
massive modes originating from the symmetry breaking,
although the existence of massless modes does not depend
on the condensation pattern.

III. CODIMENSION-1 BRANE

In this section, we apply our approach to codimension-1
branes on the Minkowski space to illustrate the difference
between the global and the local picture of spacetime
symmetry breaking. In the global picture, one may char-
acterize the branes by the spontaneous breaking of the
translation and Lorentz invariance. In the local picture, on
the other hand, such a symmetry breaking pattern can be
further classified by the spin of the condensation forming
the brane (see also Fig. 1):

(1) Scalar brane:
When a scalar field forms a codimension-1 brane,

the only broken symmetry is the diffeomorphism
invariance in the z-direction orthogonal to the brane.
In particular, the local Lorentz symmetry is not
broken although the global one is.

(2) Nonzero spin branes:
When a nonzero spin field forms a codimension-1

brane and the condensation is aligned to the z-
direction, the local Lorentz invariance associated
with the z-direction is broken as well as the z-
diffeomorphism invariance.

Since those two cases are classified into the same category
in the global picture, the local picture is necessary to
distinguish them. In the rest of this section, we discuss in
which situation the difference becomes important, if we
take into account the massive modes associated with
symmetry breaking.
In Sec. III A, we first perform the tree-level analysis of

NG fields around scalar brane backgrounds, to illustrate our
strategy in the previous section concretely. In Secs. III B
and III C, we construct the general effective action for the
diffeomorphism symmetry breaking and apply it to single
scalar brane backgrounds. In Secs. III D and III E, we
include local Lorentz symmetry breaking in the effective
action construction and apply it to single nonzero spin
brane backgrounds. For single brane backgrounds, it turns
out that the dynamics in the low-energy limit results in
the same action regardless of the spin of the field that
condenses. However, we find that the degeneracy is
resolved beyond the low-energy limit and the resolving
scale is not necessarily high. We see that the effective action
based on the local picture can be used to investigate such an
intermediate scale.
Though discussion in this section is only for single brane

backgrounds, the effective action constructed in Secs. III B
and III D is applicable to more general setups. In Sec. IV,
we discuss periodic modulation and clarify the difference
from the single brane case.

A. Real scalar field model for scalar brane

To illustrate our strategy, let us begin with a real scalar
field model,

S ¼
Z

d4x

�
−
1

2
∂mϕ∂mϕ − VðϕÞ

�
with

V ¼ g2

2
ðϕ2 − v2Þ2; ð3:1Þ

TABLE III. Broken symmetries, condensation patterns, and gauge fields.

Diffeomorphism Local Lorentz Local Weyl Internal gauge

Spacetime dependence Spin Scaling dimension Internal charge
Metric gμν Vierbein emμ Weyl gauge field Wμ Gauge field Aμ

FIG. 1. Scalar vs nonzero spin branes. While the diffeomor-
phism symmetry is broken for both types of branes, the local
Lorentz symmetry is broken only for the nonzero spin case.
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and perform the tree-level analysis of NG fields around
domain-wall configurations. Here, g and v are constant
parameters, and the potential VðϕÞ has two minima at
ϕ ¼ �v. The equation of motion

□ϕ − V 0ðϕÞ ¼ 0 ð3:2Þ

has the following domain-wall solution with the boundary
conditions ϕðz ¼ �∞Þ ¼ �v:

ϕðxÞ ¼ ϕ̄ðzÞ ¼ v tanh βz; ð3:3Þ

where β ¼ gv characterizes the thickness of the brane.
Note that there exists a one-parameter family of domain-
wall solutions ϕðxÞ ¼ ϕ̄ðz − z0Þ parametrized by the brane
position z0 because of the translation invariance. The
domain-wall configuration Eq. (3.3) breaks the translation
invariance, and the corresponding NG field πðxÞ can be
obtained by promoting z0 to a field as6

ϕðxÞ ¼ ϕ̄ðzþ πðxÞÞ: ð3:4Þ

The action for the NG field is then given by

S ¼
Z

d4x

�
−
1

2
∂mϕ̄ðzþ πÞ∂mϕ̄ðzþ πÞ − Vðϕ̄ðzþ πÞÞ

�

¼
Z

d4x

�
−
ϕ̄0ðzþ πÞ2

2
∂mðzþ πÞ∂mðzþ πÞ − Vðϕ̄ðzþ πÞÞ

�
: ð3:5Þ

Using the integrated version of the equation of motion,7

ϕ̄00 − V 0ðϕ̄Þ ¼ 0 ↔
1

2
ϕ̄02 − Vðϕ̄Þ ¼ 0; ð3:6Þ

we can further reduce the action (3.5) to the form

S ¼
Z

d4x

�
−
ϕ̄0ðzþ πÞ2

2
ð∂mðzþ πÞ∂mðzþ πÞ þ 1Þ

�

¼ −
1

2

Z
d4xϕ̄0ðzþ πÞ2∂mπ∂mπ; ð3:7Þ

where we dropped total derivative terms at the second
equality.
Let us then reproduce the action (3.7) along the line of

our strategy. Following the EFT recipe in the previous
section, we first gauge the translation symmetry to the
diffeomorphism symmetry by introducing the curved
coordinate action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂μϕ − VðϕÞ

�
: ð3:8Þ

We next consider fluctuations around the domain-wall
background (3.3). Since z-coordinate transformations of
ϕ̄ðzÞ generate fluctuations of ϕðxÞ, we can take the unitary
gauge ϕðxÞ ¼ ϕ̄ðzÞ at least as long as fluctuations are
small. In other words, we can choose a coordinate frame

such that the constant-ϕ slices coincide with the constant-z
slices. In this coordinate frame, the action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gzzϕ̄0ðzÞ2 − Vðϕ̄Þ

�

¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ̄0ðzÞ2ð1þ gzzÞ; ð3:9Þ

where we used Eq. (3.6) in the second equality. Note
that the action (3.9) enjoys only the ð2þ 1Þ-dimensional
diffeomorphism symmetry along the t; x; y-directions

xμ → x0μ ¼ xμ − ϵμðxÞ with ϵz ¼ 0 ð3:10Þ

and the NG field is eaten by the metric gμν in this gauge. We
then restore the z-diffeomorphism invariance by the field-
dependent coordinate transformation (the Stückelberg
method)

z → ~z with ~zþ ~πð~xÞ ¼ z: ð3:11Þ

After the transformation, the action (3.9) takes the form

S¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ̄0ðzþ πÞ2ð1þ gμν∂μðzþ πÞ∂νðzþ πÞÞ;

ð3:12Þ

where we dropped the tilde for simplicity. The action (3.12)
is now invariant under the full diffeomorphism symmetry
by assigning the following nonlinear transformation rule on
the NG field π:

πðxÞ → π0ðx0Þ ¼ πðxÞ þ ϵzðxÞ with x0μ ¼ xμ − ϵμðxÞ:
ð3:13Þ

7In general, the integrated equation of motion takes the form
1
2
ϕ̄02 − Vðϕ̄Þ ¼ constant. However, the constant term vanishes for

the potential (3.1) and the solution (3.3) to obtain the second
equation in Eq. (3.6).

6Our parametrization of the NG field πðxÞ corresponds to the
transformation parameter ϵ in Eq. (2.15).
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Finally, we remove gauge degrees of freedom by taking the
Minkowski coordinate. Since we are working on the
Minkowski space, the full diffeomorphism invariance, non-
linearly realized by the NG fields, allows us to set the metric
fieldasgμν ¼ ημν.Theaction(3.12)isthenreducedtoEq.(3.7).
In this subsection, we illustrated our approach by

performing the tree-level analysis of NG fields around
domain-wall backgrounds in the model (3.1). As we have
seen, the introduction of the curved coordinate action
(3.9) allows us to impose the unitary gauge condition
ϕðxÞ ¼ ϕ̄ðzÞ, which breaks the z-diffeomorphism invari-
ance. The scalar ϕðxÞ is then eaten by the metric field gμν.
By performing the Stückelberg method and removing the
gauge degrees of freedom, we obtained the action for NG
fields. More generally, the action (3.1) can be modified
with higher derivative terms due to quantum corrections for
example. In the next subsection, we construct the general
effective action for NG fields by introducing the general
unitary gauge action consistent with the symmetry.

B. Effective action for z-diffeomorphism
symmetry breaking

We then construct the general effective action for the z-
diffeomorphism symmetry breaking, by introducing the
general unitary gauge action consistent with the symmetry.
Just as in the previous real scalar model, let us introduce
the metric field and work in the general coordinate system.
We can then impose the unitary gauge condition, which
prohibits fluctuations of the NG field and breaks the z-
diffeomorphism symmetry. In such a unitary gauge, the
dynamical degrees of freedom are the metric field gμν only (if
there are no additional matter degrees of freedom), and there
remains the ð2þ 1Þ-dimensional diffeomorphism symmetry.
Schematically, we write this unitary gauge setup as

gμνðxÞ þ ð2þ 1Þ-dim diffs: ð3:14Þ

The general effective action is then constructed from the
metric field in a ð2þ 1Þ-dimensional diffeomorphism invari-
ant way. This setup is essentially the same as the one in
single-field inflation [41]. Following the results there,
ingredients of the unitary gauge effective action are given by

scalar functions of z; gμν; Rμνρσ;

and their covariant derivatives: ð3:15Þ

The lowest few terms of the expansion in fluctuations
around the Minkowski metric, gμν − ημν, and derivatives
are given by

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½α1ðzÞ þ α2ðzÞgzz þ α3ðzÞðgzz − 1Þ2�:

ð3:16Þ

Here, αiðzÞ’s are scalar functions of z, which depend on the
details of the microscopic theory. Note that gzz arises from
∂μϕ∂μϕ ¼ ϕ̄02gzz in the previous real scalar model. One
may then identify α3 with higher derivative interactions in
the real scalar model.
We next introduce the NG field π for the z-diffeo-

morphism by the Stückelberg method. Just as we did in the
previous subsection, we perform a field-dependent coor-
dinate transformation (3.11). Practically, this transforma-
tion can be realized by replacing a function fðzÞ with
fðzþ πÞ [41], where we dropped the tilde for simplicity.
Correspondingly, the unitary gauge action (3.16) is trans-
formed as

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½α1ðzþ πÞ þ α2ðzþ πÞðgzz þ 2∂zπ þ ∂μπ∂μπÞ þ α3ðzþ πÞð2∂zπ þ ∂μπ∂μπÞ2�; ð3:17Þ

where we used

gzz ¼ gμνδzμδzν → gμν∂μðzþ πÞ∂νðzþ πÞ
¼ gzz þ 2∂zπ þ ∂μπ∂μπ: ð3:18Þ

The full diffeomorphism symmetry is now restored ac-
companied by the nonlinearly transformation rule (3.13).
We then would like to remove the gauge degrees of freedom
and construct the effective action for the NG field π only.
Since we are working on the Minkowski space, the full

diffeomorphism invariance, nonlinearly realized by the NG
fields, allows us to set the metric field as gμν ¼ ημν. In this
Minkowski coordinate system, the ingredients (3.15) are
given by

scalar functions of zþ π; gμν ¼ ημν; Rμνρσ ¼ 0;

and their derivatives; ð3:19Þ

and the effective action (3.17) can be expressed as

S ¼ −
1

2

Z
d4x½α1ðzþ πÞ þ α2ðzþ πÞð1þ 2∂zπ þ ∂mπ∂mπÞ þ α3ðzþ πÞð2∂zπ þ ∂mπ∂mπÞ2�; ð3:20Þ
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where Latin indices indicate that we use the Minkowski coordinate.
So far, we have not taken into account the background equation of motion. Indeed, Eq. (3.20) contains linear order terms

in π:

S ¼ −
1

2

Z
d4x½α1ðzÞ þ α2ðzÞ þ ðα01ðzÞ þ α02ðzÞÞπ þ 2α2ðzÞ∂zπ þOðπ2Þ�: ð3:21Þ

To remove such tadpole terms, we impose the background equation of motion α01ðzÞ ¼ α02ðzÞ. In the following, we use
α1 ¼ α2 because the constant shift of α1 does not change the action for π. Then, we obtain the action,

S ¼ −
1

2

Z
d4x½α1ðzþ πÞ∂mπ∂mπ þ α3ðzþ πÞð2∂zπðxÞ þ ∂mπ∂mπÞ2� − 1

2

Z
d4x

d
dz

A1ðzþ πÞ; ð3:22Þ

where A1ðzÞ ¼ 2
R
z dz0α1ðz0Þ and the second term is a total derivative. Note that the derivative with respect to z in the last

term of Eq. (3.22) acts not only explicitly on z but also on πðzÞ, i.e., dA1ðzþ πÞ=dz ¼ A0
1ðzþ πÞð1þ ∂zπÞ. Up to the

second order in π, the bulk action (the first term) can be expanded as

Sbulk ¼ −
1

2

Z
d4xα1ðzÞ½∂m̂π∂m̂π þ c2zðzÞð∂zπÞ2� with c2zðzÞ ¼ 1þ 4

α3ðzÞ
α1ðzÞ

; ð3:23Þ

where m̂ ¼ t; x; y and cz can be interpreted as the propa-
gating speed in the z-direction. On the other hand, the total
derivative term can be expanded as

St:d: ¼ −
1

2

Z
d4x

d
dz

½A1ðzÞ þ 2α1ðzÞπ þ α01ðzÞπ2 þOðπ3Þ�;

ð3:24Þ
where we note that there can arise linear order terms in π
from the total derivative term. We will revisit its physical
meaning in the next section.

C. Physical spectra for single scalar
domain wall

We next take a close look at the effective action (3.22)
and discuss physical spectra for a single scalar brane case.
For simplicity, let us consider the case α3ðzÞ ¼ 0 in this
subsection.8 Then, the brane profile is characterized by the
free function α1ðzÞ in the effective action. Generically,
α1ðzÞ is related to the order parameter ϕ̄0ðzÞ as

α1ðzÞ ∼ ϕ̄0ðzÞ2 ð3:25Þ
because the gzz operator in the unitary gauge action
typically arises from

gμν∂μϕ̄∂νϕ̄ ¼ ϕ̄02gzz: ð3:26Þ
To illustrate the physical spectra, it is convenient to take the
well-studied domain-wall profile obtained in Sec. III A,

ϕ̄ðzÞ ¼ v tanh βz; ð3:27Þ

and the corresponding function α1ðzÞ of the form

α1ðzÞ ¼ ϕ̄0ðzÞ2 ¼ β2v2

cosh4βz
: ð3:28Þ

Here, the constants v and β characterize the domain-wall
profile, and in particular, β specifies the thickness of the
brane. We then determine the physical spectra for the NG
field π. From the bulk action (3.23), the linear order
equation of motion follows as9

π00 − 4β tanh βzπ0 þ ∂2⊥π ¼ 0 ð3:29Þ

in the coordinate space. Here, the prime denotes the
derivative with respect to z, and ∂2⊥ ≡ ∂m̂∂m̂ ¼ −∂2

t þ
∂2
x þ ∂2

y. By the Fourier transformation in the xm̂ directions
along the brane, we rewrite it as

π00k⊥ − 4β tanh βzπ0k⊥ − k2⊥πk⊥ ¼ 0 with

πk⊥ðzÞ ¼
Z

d3x⊥πðxm̂; zÞe−ixm̂k⊥m̂ ;

ð3:30Þ

the linearly independent solutions of which are given by

πk⊥ ¼ 1; 12βzþ 8 sinh 2βzþ sinh 4βz for k2⊥ ¼ 0;

ð3:31Þ

and

8The assumption here is just for simplicity, and our result
should hold for more general setups qualitatively.

9Notice that the linear term in the total derivative term (3.24)
vanishes because α1ðzÞ ¼ 0 outside the domain wall jzj ≫ 1=β,
where the z-diffeomorphism invariance is unbroken. We will
revisit this point in Sec. IV.
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πk⊥ ¼ exp

 
�2βz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥

4β2

s !"�
1þ k2⊥

6β2

�
cosh 2βz∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥

4β2

s
sinh 2βzþ k2⊥

6β2

#
for k2⊥ ≠ 0: ð3:32Þ

We notice that only the constant mode, πk⊥ ¼ 1, has a finite value throughout the space, whereas the other modes diverge
outside the brane. Since the π field corresponds to the translational transformation parameter, the constant mode, πk⊥ ¼ 1,
generates a shift of brane position without changing the brane profile and can be interpreted as the standard gapless NG
mode propagating along the brane. It is also convenient to express the solutions in terms of the canonically normalized field
πck⊥ ¼ α1=21 πk⊥ :

πck⊥ ¼ βv
ð1þ cosh 2βzÞ=2 ; βv

12βzþ 8 sinh 2βzþ sinh 4βz
ð1þ cosh 2βzÞ=2 for k2⊥ ¼ 0; ð3:33Þ

and

πck⊥ ¼ βv exp

 
�2βz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥

4β2

s !�
1þ k2⊥

6β2

�
cosh 2βz∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥

4β2

q
sinh 2βzþ k2⊥

6β2

ð1þ cosh 2βzÞ=2 for k2⊥ ≠ 0: ð3:34Þ

This normalization provides how the energy of each mode
distributes in the z-direction. For example, it is clear that the
energy of the gapless NG mode localizes on the brane. We
also notice that the solutions in Eq. (3.34) have a finite
energy density for −k2⊥ > 4β2 as well as the first solution in
Eq. (3.33). More concretely, the two modes in Eq. (3.34)
behave like massive modes with the mass 2β outside the
brane jzj ≫ 1=β,

πck⊥ ∼ expð�ikzzÞ with k2⊥ þ k2z ¼ −4β2: ð3:35Þ

Also, gauge transformation parameters corresponding to
the two modes diverge outside the brane jzj ≫ 1=β, as is
suggested by Eq. (3.32). We therefore interpret them as
bulk propagations of the original scalar field ϕðzÞ, rather
than standard NG modes. In Appendix B, we show that the
low-energy effective action after integrating out those
gapped modes is nothing but the Nambu–Goto action.
To summarize, there exist two types of physical modes

around the single scalar brane background: the standard
massless NG mode localizing on the brane and the massive
modes propagating in the bulk direction. In particular, only
the standard localized NG mode is relevant in the low-
energy scale E ≪ β, and the standard coset construction
takes into account these degrees of freedom only.
Conversely, if β is much smaller than a typical scale of
excitation energy, the massive modes are not negligible,
and they should be included in the low-energy effective
theory.

D. Inclusion of local Lorentz symmetry breaking

We then discuss the case when a nonzero spin field has a
space-dependent condensation. To illustrate the degrees of
freedom and residual symmetries in the unitary gauge, let

us consider a (spacelike) vector Am on the Minkowski
space as a concrete example. Suppose that a vector field Am
has a space-dependent condensation of the form

hAmðxÞi ¼ δ3mvðzÞ: ð3:36Þ

Here and in what follows, we use integers 0, 1, 2, 3
to denote the t-, x-, y-, and z-directions of the local
Lorentz index. Since AmðxÞ has a Lorentz charge, the
local Lorentz symmetry is broken as well as the z-
diffeomorphism invariance. Following the EFT recipe,
we then introduce the vierbein emμ to gauge the Lorentz
symmetry. Schematically, we write the degrees of freedom
and symmetries after introducing the vierbein as

AmðxÞ; emμ ðxÞ þ ð3þ 1Þ-dim diffs;

ð3þ 1Þ-dim local Lorentz: ð3:37Þ

To take the unitary gauge, it is convenient to note the
decomposition

AmðxÞ ¼ Λm
3ðxÞvðzþ πðxÞÞ with Λm

nðxÞ ∈ SOð3; 1Þ;
ð3:38Þ

whereΛm
3ðxÞ specifies the direction of Am and corresponds

to the NG field for the local Lorentz symmetry. On the other
hand, πðxÞ specifies the amplitude of Am and corresponds
to the NG field for the z-diffeomorphism. Using the local
Lorentz and diffeomorphism invariance, we can remove
those NG fields to set Λm

3 ¼ δ3m and π ¼ 0, at least as long
as the fluctuations are small. In such a unitary gauge, the
only dynamical degrees of freedom are the vierbein emμ , and
the residual symmetries are the ð2þ 1Þ-dimensional local
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Lorentz and diffeomorphism invariance along the t, x, and
y-directions. Schematically, we write this setup as

emμ ðxÞ þ ð2þ 1Þ-dim diffs; ð2þ 1Þ-dim local Lorentz:

ð3:39Þ

We then construct the effective action based on
these degrees of freedom and residual symmetries.
Schematically, let us decompose the effective action into
the three types of contributions as

S ¼ SP þ SL þ SPL: ð3:40Þ

Here, SP is the effective action (3.16) and breaks the
diffeomorphism invariance only:

SP ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½α1ðzÞ þ α2ðzÞgzz þ α3ðzÞðgzz − 1Þ2�:

ð3:41Þ

On the other hand, SL and SPL break the local Lorentz
invariance, and in particular, SL represents terms that may
exist even if the diffeomorphism is unbroken (the following
βi’s are constants when the diffeomorphism is unbroken).
At the lowest order with respect to fluctuations and
derivatives, they are given by10

SL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
β1ðzÞ
4

ð∇μe3ν −∇νe3μÞ2

−
β2ðzÞ
2

ð∇μe3μÞ2 −
β3ðzÞ
2

ðeν3∇νe3μÞ2
�
; ð3:42Þ

SPL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
γ1ðzÞðeμ3nμ − 1Þ; ð3:43Þ

where βiðzÞ and γ1ðzÞ are scalar functions depending
on z and the unit vector nμ ¼ δzμ=

ffiffiffiffiffiffi
gzz

p
breaks the

z-diffeomorphism invariance explicitly. We next introduce
the NG fields by the Stückelberg method and decouple
the gauge degrees of freedom. As in Sec. III B, we first
introduce the NG fields π for the z-diffeomorphism by the
field-dependent gauge transformation (3.11). Similarly, we
introduce NG fields ξm̂’s for the local Lorentz transforma-
tion in the 3-m̂ plane (m̂ ¼ 0, 1, 2) as

eμmðxÞ → ~eμmðxÞ ¼ Λm
nðxÞeμnðxÞ with

Λm
nðxÞ ¼ ðexp ½ξl̂ðxÞΣl̂3�Þmn ∈ SOð3; 1Þ; ð3:44Þ

where Σmn’s are generators of SOð3; 1Þ. In particular, eμ3ðxÞ
is transformed as

eμ3 → ~eμ3 ¼ Λ3
meμm

¼
�
δm3

�
1 −

1

2
ξm̂ξ

m̂

�
þ δmm̂ξ

m̂ þOðξ3Þ
�
eμm:

ð3:45Þ
Since the full diffeomorphism and local Lorentz invariance
can be restored by assigning nonlinear transformation rules
on the NG fields π and ξm̂, we can set emμ ¼ δmμ using the
full gauge degrees of freedom. After these procedures, SL
and SPL take the form

SL ¼
Z

d4x

�
−
β1ðzþ πÞ

4
ð∂mΛ3n − ∂nΛ3mÞ2

−
β2ðzþ πÞ

2
ð∂mΛ3

mÞ2 − β3ðzþ πÞ
2

ðΛ3
n∂nΛ3

mÞ2
�

¼
Z

d4x
�
−
β1ðzÞ
4

ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2 −
β2ðzÞ
2

ð∂m̂ξm̂Þ2

−
β1ðzÞ þ β3ðzÞ

2
ð∂zξm̂Þ2 þ � � �

�
; ð3:46Þ

SPL ¼
Z

d4xγ1ðzþ πÞ
�
Λ3

m δzm þ ∂mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2∂zπ þ ∂nπ∂nπ

p − 1

�

¼
Z

d4x

�
−
γ1ðzÞ
2

ðξm̂ − ∂m̂πÞ2 þ � � �
�
; ð3:47Þ

where the dots stand for the cubic and higher orders in
perturbations. Here, it should be noticed that SL contains
the kinetic terms for ξm̂, whereas SPL contains the mass
term for ξm̂ and mixing interactions between ξm̂ and π. Also
note that Eqs. (3.46) and (3.47) do not contain linear order
terms. The background equation of motion therefore
requires α01ðzÞ ¼ α02ðzÞ so that the tadpole terms in SP
vanish. The effective action for NG modes is then given by
Eqs. (3.22)–(3.24), (3.46), and (3.47).

E. Qualitative features of nonzero spin branes

We then apply the obtained effective action to single
brane backgrounds. For simplicity, let us concentrate on the
case α3 ¼ β2 ¼ β3 ¼ 0 and consider the following second
order action11:

10Note that there are some ambiguities in the expression of the
effective action. For example, we can use ez3 − 1 instead of
eμ3nμ − 1 to define SPL. However, the difference between the two
descriptions can be absorbed by the redefinition of αi ’s in (3.41),
and it turns out that the generic effective action at the lowest order
is given by (3.41), (3.42), and (3.43).

11Although we set several parameters to be zero for simplicity,
our results should hold for more general setups qualitatively. Also
note that the β2 coupling induces kinetic terms with a wrong sign
and such terms are prohibited by the stability of the background,
though it is not prohibited only from the symmetry point of view.

YOSHIMASA HIDAKA, TOSHIFUMI NOUMI, AND GARY SHIU PHYSICAL REVIEW D 92, 045020 (2015)

045020-12



S ¼
Z

d4x

�
−
α1ðzÞ
2

∂mπ∂mπ

−
β1ðzÞ
4

½ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2 þ 2ð∂zξm̂Þ2�

−
γ1ðzÞ
2

ðξm̂ − ∂m̂πÞ2
�
: ð3:48Þ

Among the three functions α1ðzÞ, β1ðzÞ, and γ1ðzÞ char-
acterizing the brane profile, α1ðzÞ and γ1ðzÞ are associated
with the breaking of z-diffeomorphism invariance. These
two functions therefore have support on the brane and
vanish outside, just as α1ðzÞ for a single scalar brane. On
the other hand, β1ðzÞ does not necessarily vanish outside
the brane and has a nonzero value as long as the local
Lorentz symmetry is broken. More concretely, it is con-
venient to introduce a function vðzÞ parametrizing the local
Lorentz symmetry breaking, just as we did in Eq. (3.36) for
vector condensation. In terms of vðzÞ, the three functions
are typically given by

α1ðzÞ ∼ γ1ðzÞ ∼ v0ðzÞ2; β1ðzÞ ∼ vðzÞ2; ð3:49Þ

where, for simplicity, we assumed that vðzÞ is the only field
breaking the z-diffeomorphism invariance. One important
point is that there exist several types of β1 profiles even for
single brane backgrounds. In the rest of this subsection, we
discuss how the low-energy dynamics depends on the β1
profile using two typical examples depicted in Fig. 2.
In the first case (the left figure), local Lorentz symmetry

is broken only on the brane. A typical vðzÞ profile is given
by

vðzÞ ¼ v0
cosh βz

; ð3:50Þ

and the functions α1ðzÞ, β1ðzÞ, and γ1ðzÞ vanish outside the
brane jzj ≫ 1=β. Similarly to the discussion in Sec. III C,
the NG modes π and ξm̂ cannot have a z-dependence at the
energy scale E ≪ β, because their kinetic terms vanish

outside the brane. The action (3.48) can then be reduced
effectively to the three-dimensional one,

S ¼
Z

d3x
�
−
A
2
∂m̂π∂m̂π −

B
4
ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2

−
C
2
ðξm̂ − ∂m̂πÞ2

�
; ð3:51Þ

where A, B, and C are constants defined by

A ¼
Z

∞

−∞
dzα1ðzÞ; B ¼

Z
∞

−∞
dzβ1ðzÞ;

C ¼
Z

∞

−∞
dzγ1ðzÞ: ð3:52Þ

In terms of the normalization factor v0 and the thickness
1=β, these parameters can be estimated as

A ∼ v20β; B ∼
v20
β
; C ∼ v20β: ð3:53Þ

Since ξm̂ acquires a massm ∼ β, the dynamics at the energy
scale E ≪ β is governed by the NG mode π for the z-
diffeomorphism. In particular, we can integrate out the ξm̂
field as

ξm̂ ¼ ∂m̂π þOðE2=β2Þ: ð3:54Þ

The low-energy dynamics is then reduced to the same one
as the scalar brane. As we revisit in Sec. VI D 2, Eq. (3.54)
corresponds to the inverse-Higgs constraint in the standard
coset construction.
We next consider the second case (the right figure),

where local Lorentz symmetry is broken also outside the
brane and a typical vðzÞ profile is given by

vðzÞ ¼ v̄ð1þ δ tanh βzÞ: ð3:55Þ

Since the functions α1ðzÞ and γ1ðzÞ localize on the brane,
these two contributions can be reduced to the three-
dimensional ones at the energy scale E ≪ β,

S ¼
Z

d4x
�
−
β1ðzÞ
4

½ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2 þ 2ð∂zξm̂Þ2�
�

þ
Z

d3x

�
−
A
2
∂m̂π∂m̂π −

C
2
ðξm̂ − ∂m̂πÞ2

�
; ð3:56Þ

where A and C can be estimated as

A ¼
Z

∞

−∞
dzα1ðzÞ ∼ v̄2δ2β; C ¼

Z
∞

−∞
dzγ1ðzÞ ∼ v̄2δ2β:

ð3:57Þ

Let us then consider the parameter region δ ≪ 1 in
particular,

FIG. 2 (color online). Two examples for nonzero spin branes. In
the first example (left figure), both of the diffeomorphism and
local Lorentz symmetries are broken only on the brane. On the
other hand, in the second example (right figure), the local Lorentz
symmetry is broken in the whole spacetime.
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S ∼ −v̄2
	Z

d4x½ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2 þ 2ð∂zξm̂Þ2�

þ δ2β

Z
d3x½∂m̂π∂m̂π þ ðξm̂ − ∂m̂πÞ2�



; ð3:58Þ

where we dropped some numerical coefficients for sim-
plicity. An interesting point is that there exists a hierarchy
in the energy scale. First, at the low-energy limit
E ≪ δβð≪ βÞ, the equations of motion inside the brane
are of the form

ξm̂ ¼ ∂m̂π þOðE2=ðδ2β2Þ · ξÞ;
∂2
m̂π ¼ 2∂m̂ðξm̂ − ∂m̂πÞ ¼ OðE3=ðδ2β2Þ · ξÞ; ð3:59Þ

which results in the equation of motion ∂2
m̂π ¼ 0 for a

massless field on the brane. Just as the first case, the
equation of motion for ξm̂ (inside the brane) corresponds to
the inverse-Higgs constraint, and the dynamics of π is
reduced to the same one as the scalar brane case. On the
other hand, at the energy scale δβ ≪ E ≪ β, the action
(3.58) can be further approximated as

S ∼ −v̄2
	Z

d4x½ð∂m̂ξn̂ − ∂ n̂ξm̂Þ2 þ 2ð∂zξm̂Þ2�

þ δ2β

Z
d3xð∂m̂π∂m̂π − ξm̂∂m̂πÞ



; ð3:60Þ

where ξm̂ and π can be thought of as massless fields
propagating in the fourth dimension and localizing on the
brane, respectively. The bulk field ξm̂ and the localized field
π then interact with each other by the ξm̂∂m̂π interaction.
The dynamics at this energy scale is different from both of
the single scalar brane case and the first example for single
nonzero spin branes.
In Fig. 3, we summarize the qualitative features of three

types of single brane backgrounds discussed in this section:
one for a single scalar brane and two for a single nonzero
spin brane. In the low-energy limit, the dynamics of π (after

integrating out ξm̂) in each setup results in the same one,
which can be captured by the standard coset construction
based on the global symmetry picture. However, this
degeneracy is resolved beyond the low-energy limit, and
the resolving energy scale is not necessarily high compared
with the scale β of the brane thickness. Such a scale can be
in our interests, and we need to specify the symmetry
breaking pattern based on the local symmetry picture to
investigate such an intermediate scale. This is one point of
our paper.

IV. ONE-DIMENSIONAL PERIODIC
MODULATION

As we discussed in the previous section, the effective
action for diffeomorphism symmetry breaking contains free
functions of coordinates, and their profiles are directly
related to the breaking pattern. For example, in the single
brane case, the z-diffeomorphism invariance is broken only
on the brane, and the functions αi’s in Eq. (3.20) are
localized on it. In this section, we discuss one-dimensional
periodic modulation, i.e., a system in which the condensa-
tion is periodic in one direction, by changing the profile of
those functions. As depicted in Fig. 4, such symmetry
breaking patterns are realized in condensed matter systems
such as the smectic-A phase of liquid crystals [40] and the
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase of the
superconductor [43,44]. With these types of applications in
mind, we extend our analysis to nonrelativistic systems in
Minkowski space and discuss generic features in the
dispersion relations of NG modes in the presence of
one-dimensional periodic modulation.
Let us first extend the previous effective action to non-

relativistic systems. There are several possibilities of gener-
alization to nonrelativistic systems.Here,we assume that the
system has spacetime translations and spatial rotational
symmetries. In particular, we do not consider Galilean
symmetry for simplicity.12 The rest of the discussions is
completely parallel to the relativistic case, and it is straight-
forward to perform the construction of the effective
action. The effective action for the z-diffeomorphism
symmetry breaking is then given by

SP ¼ 1

2

Z
d4x

�
~α1ðzþ πÞ _π2 − α1ðzþ πÞð∂iπÞ2

− α3ðzþ πÞð2∂zπðxÞ þ ð∂iπÞ2Þ2 −
d
dz

A1ðzþ πÞ
�
;

ð4:1Þ

FIG. 3 (color online). Physical spectra for three types of branes.
While the massless spectrum is the same between the three, the
massive spectrum depends on symmetry breaking patterns in the
local picture.

12When the system originally enjoys Galilean symmetry, some
modifications may be required. See also Appendix A. Under this
simplification, the only difference from the relativistic case is that
we consider spatial diffeomorphism, instead of the full diffeo-
morphism, to construct the effective action in the unitary gauge.
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where π is the NG field for the z-diffeomorphism and
A1ðzÞ ¼ 2

R
z dz0α1ðz0Þ. In contrast to the relativistic case,

the functions ~α1 and α1 in front of the temporal and spatial
kinetic terms are independent. Up to second order in π, the
bulkcontribution(thefirst threeterms)andthetotalderivative
contribution (the last term) can be expanded as

SP;bulk ¼
1

2

Z
d4x½ ~α1ðzÞ _π2 − α1ðzÞð∂iπÞ2 − 4α3ðzÞð∂zπÞ2�;

ð4:2Þ

SP;t:d: ¼ −
1

2

Z
d4x

d
dz

½A1ðzÞ þ 2α1ðzÞπ þ α01ðzÞπ2�;

ð4:3Þ

wherewenotethatSP;t:d:.containsalinearordertermifα1 ≠ 0

at the boundary. This feature will be important in the
following discussions.
We then discuss systems with one-dimensional periodic

modulation based on this effective action. Suppose that the
condensation is periodic in the z-direction and is charac-
terized by a discrete symmetry z → z0 ¼ zþ awith a being
the periodicity. Since the functions ~α1 and αi are periodic
because of the residual discrete symmetry, they generically
have support on the whole spacetime. In particular, α1ðzÞ, if
it exists, does not vanish at the boundary and leads to a
linear order term in Eq. (4.3), which is in sharp contrast to
the single brane case. Let us take a closer look at this linear
order term and discuss its implications for the dispersion
relations of NG modes. First, this linear order term is not
relevant as long as the NG field π decays at spatial infinity
limz→�∞πðxÞ ¼ 0 since it is a total derivative. It is
essentially because we impose the background (bulk)
equations of motion in the effective action construction,
which guarantee the stability of backgrounds under small
perturbations with a fixed boundary condition. However,
the boundary linear term becomes relevant if we consider a
configuration with limz→�∞πðxÞ ≠ 0 as this implies the
existence of configurations with a lower energy, just as

tadpoles in the bulk action. For example, let us consider a
configuration of the form

πðxÞ ¼ ϵz ðϵ∶ constantÞ; ð4:4Þ

which corresponds to a rescaling z → z0 ¼ ð1 − ϵÞz. The
energy contributions Et:d:. from Eq. (4.2) and Ebulk from
Eq. (4.3) for this configuration are given by

Et:d: ∼ α1ϵV; Ebulk ∼ ðα1 þ 4α3Þϵ2V; ð4:5Þ

where V is the spatial volume. It then turns out that
there exists a low-energy direction along a small negative
ϵ. We therefore conclude that the α1 term is prohibited
when the background energy is a local minimum in the
configuration space and the effective action at the lowest
order derivative is

SP ¼ 1

2

Z
d4x½ ~α1ðzþ πÞ _π2

− α3ðzþ πÞð2∂zπðxÞ þ ð∂iπÞ2Þ2�

¼ 1

2

Z
d4x½ ~α1ðzÞ _π2 − 4α3ðzÞð∂zπÞ2 þOðπ3Þ�: ð4:6Þ

The corresponding dispersion relation for the NGmode π is

ω2 ¼ c1k2z ; ð4:7Þ

where ω is the energy, kz is the momentum in the first
Brillouin zone, jkzj ≤ π=a, and c1 is the coefficient depend-
ing on ~α1 and α3. It should be emphasized that the
momentum k2⊥ ¼ k2x þ k2y in the x- and y-directions does
not appear in the dispersion relation Eq. (4.7) up to this
order [45]. By including higher order terms in the effective
action, we can explicitly show that higher order derivative
corrections to the dispersion relations are schematically

ω2 ∼ c1k2z þ c2kzk2⊥ þ c3k4⊥ ð4:8Þ

FIG. 4 (color online). Examples of one-dimensional periodic modulation. In the smectic-A phase (the left figure), the layer structure
breaks the diffeomorphism symmetry on the whole spacetime. In the FFLO phase of superconductor (the center and right figures), the
chiral condensation arises in an inhomogeneous way.
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up to the second order in kz and k2⊥, where ci are
constants.13

It would be also interesting to illustrate that such higher
order correction terms can arise after integrating out
massive NG fields for local rotations. The effective action
for such a symmetry breaking pattern can be easily
obtained by extending the construction in the previous
section to nonrelativistic systems. Here, we again consider
that the system has spacetime translations and spatial
rotational symmetries. The second order action for NG
fields is then given by

SL ¼
Z

d4x

�
~β1 þ β1

2
ð∂tξîÞ2 −

β1
4
ð∂ îξĵ − ∂ ĵξîÞ2

−
β2
2
ð∂ îξîÞ2 −

β1 þ β3
2

ð∂zξîÞ2
�
; ð4:9Þ

SPL ¼
Z

d4x

�
−
γ1
2
ðξî − ∂ îπÞ2 þ

γ1
2
_π2 þ � � �

�
; ð4:10Þ

where î ¼ x; y and ξî’s are NG fields for rotations in
the î − z plane. Also we assume that ~β1, βi’s, and γ1 are
constants for simplicity, though they have z-dependence in
general. Just as in the relativistic case, SPL contains a mass
term of ξî and mixing interactions between π and ξî. In the
low-energy limit, the equation of motion for ξî is reduced to

ξî ¼ ∂ îπ: ð4:11Þ

Substituting it to Eq. (4.9), we obtain the effective
interaction of the form

Seff ¼
Z

d4x

�
~β1 þ β1

2
ð∂t∂ îπÞ2 −

β2
2
ð∂2

î
πÞ2

−
β1 þ β3

2
ð∂z∂ îπÞ2 þ

γ

2
_π2
�
; ð4:12Þ

which gives the corrections to the coefficients of k2z and k4⊥
in the dispersion relation.
To summarize, in the systems with one-dimensional

periodic modulation, the (locally) minimum energy con-
dition constrains the dispersion relations of NG modes
for the broken diffeomorphism as in Eq. (4.8). In particular,
the massive NG fields for local rotations can for example
induce higher derivative corrections in the dispersion
relations.
We note that such discussions on dispersion relations

suggest that the one-dimensional order can be realized only
at zero temperature. It is because the finite temperature

effect breaks the order parameter in the thermodynamic
limit; the contribution of the thermal fluctuation of the NG
mode to the order parameter is proportional to

hπ2ðxÞi ¼ T
Z

d2k⊥dkz
ð2πÞ3

1

k2z þ c2k4⊥
¼ T

4πc
ln
Λ
μ
; ð4:13Þ

where c ¼ β2=ð4α3Þ and we introduced UVand IR cutoffs,
Λ and μ. At μ → 0, this correction is logarithmically
divergent; it leads to the vanishing order parameter [45].
A typical example is a smectic-A phase of liquid crystals, in
which the order parameter vanishes, and the quasi-long
range order appears [46]. Also note that if there exists an
external field that explicitly breaks rotation symmetry such
as a magnetic field, the term k2⊥ appears in the dispersion
relation of π. As the result, the fluctuation of π to the order
parameter is suppressed, and the order parameter remains
finite [45].

V. MIXTURE OF INTERNAL AND SPACETIME
SYMMETRIES

Our approach to construct the effective action is appli-
cable not only to spacetime symmetry breaking but also
to the breaking of a mixture of spacetime and internal
symmetries. In this section, as a simplest example, we
discuss the case when a global internal Uð1Þ symmetry and
a translation symmetry are broken to the diagonal Abelian
symmetry.

A. Complex scalar field model

Let us begin with a complex scalar field model and
illustrate concretely the degrees of freedom and residual
symmetries in the unitary gauge. Suppose that a complex
scalar field follows the symmetry transformation rule

Uð1Þ∶ ϕðxÞ → ϕ0ðxÞ ¼ eiλϕðxÞ;
translation∶ ϕðxÞ → ϕ0ðxÞ ¼ ϕðxþ ϵÞ; ð5:1Þ

where the transformation parameters λ and ϵμ are constants.
When it has a background condensation

hϕðxÞi ¼ r0eiut ðr0 and u∶ real constantsÞ; ð5:2Þ

the internal Uð1Þ and time-translational symmetries are
broken to the diagonal one,

ϕðxÞ → ϕ0ðxÞ ¼ eiλϕðxþ ϵÞ with λ ¼ −uϵ0:ϵi ¼ 0:

ð5:3Þ

We then reinterpret this symmetry breaking from the local
symmetry point of view. For this purpose, let us gauge the
internal Uð1Þ and translation symmetry by introducing a
gauge field Aμ for the internal Uð1Þ symmetry and the
metric field gμν. Their Uð1Þ gauge transformations are

13Note that the counting of the scaling dimension changes
when the dispersion relation is anisotropic. For Eq. (4.8), kz and
k2⊥ have the same scaling dimension, so that the terms displayed
there are the lowest order in the derivative expansion.
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WAμðxÞ → A0
μðxÞ ¼ AμðxÞ − ∂μλðxÞ;

gμνðxÞ → g0μνðxÞ ¼ gμνðxÞ; ð5:4Þ

and their diffeomorphism transformations are

AμðxÞ → A0
μðxÞ ¼

∂ðxν þ ϵνÞ
∂xμ Aνðxþ ϵÞ;

gμνðxÞ → g0μνðxÞ ¼
∂ðxρ þ ϵρÞ

∂xμ
∂ðxσ þ ϵσÞ

∂xν gρσðxþ ϵÞ:
ð5:5Þ

Also the transformation rule of the scalar field ϕ is given
by replacing the transformation parameters λ and ϵμ in
Eq. (5.1) by local ones λðxÞ and ϵμðxÞ. Correspondingly, the
unbroken diagonal symmetry (5.3) is gauged as

ϕðxÞ → ϕ0ðxÞ ¼ eiλðxþϵðxÞÞϕðxþ ϵðxÞÞ with

λðxÞ ¼ −uϵ0ðxÞ; ϵi ¼ 0; ð5:6Þ

which is realized by performing the time diffeomorphism
ϵ0ðxÞ after the internal Uð1Þ gauge transformation λðxÞ.
The background (5.2) is then characterized by the sym-
metry breaking of the internal Uð1Þ gauge and diffeo-
morphism symmetries to the diagonal gauge symmetry
(5.6) and spatial diffeomorphism symmetries.
We next discuss the degrees of freedom and the

residual symmetries in the unitary gauge. First, the setup
before taking the unitary gauge can be schematically
written as

ϕðxÞ; AμðxÞ; gμνðxÞ þ internalUð1Þ gauge; diffs: ð5:7Þ

To take the unitary gauge, it is convenient to note the
decomposition

ϕðxÞ ¼ ðr0 þ σðxÞÞeiðutþπðxÞÞ; ð5:8Þ

where πðxÞ and σðxÞ are real scalar fields. Since internal
Uð1Þ gauge transformations and time diffeomorphisms
generate local shifts of πðxÞ, it can be identified with the
NG field, and we can impose the unitary gauge condition
πðxÞ ¼ 0. Just as the background (5.2), the gauge condition
πðxÞ ¼ 0 is invariant under the diagonal gauge transfor-
mations (5.6) and spatial diffeomorphisms. Schematically,
the dynamical degrees of freedom and the residual sym-
metries in the unitary gauge are given by

σðxÞ; AμðxÞ; gμνðxÞ þ diagonal gauge; spatial diffs:

ð5:9Þ

Note that σðxÞ is interpreted as a matter field, which cannot
be absorbed by gauge transformations and is generically
massive.

B. Construction of effective action

In the previous subsection, we illustrated the unitary
gauge setup using a complex scalar field model. More
generally, the dynamical degrees of freedom and the
residual symmetries in the unitary gauge for this type of
symmetry breaking are given by the minimal setup

AμðxÞ; gμνðxÞ þ diagonal gauge; spatial diffs ð5:10Þ

and possibly with additional matter fields such as σðxÞ in
Eq. (5.9). In this subsection, we construct the effective
action for the minimal setup (5.10) concretely.
First, just as the case of diffeomorphism symmetry

breaking, the ingredients of the effective action covariant
under spatial diffeomorphisms are given by

scalar functions of t; AμðxÞ; gμν; Rμνρσ;

and their covariant derivatives: ð5:11Þ

The general unitary gauge action is then constructed from
these ingredients in an invariant way under the diagonal
gauge transformation. To write down such an effective
action, it is convenient to note the diagonal gauge trans-
formation of the gauge field,

AμðxÞ → A0
μðxÞ ¼

∂ ~xν
∂xμ Aνð~xÞ þ u∂μϵðxÞ with

~xμ ¼ xμ þ δμ0ϵðxÞ: ð5:12Þ

Since the time coordinate t is invariant under the diagonal
transformation

t → t ¼ ~t − ϵðxÞ; ð5:13Þ

we can find the following combination covariant under the
diagonal transformation:

u∂μtþ AμðxÞ → u

� ∂~t
∂xμ − ∂μϵðxÞ

�
þ ∂ ~xν
∂xμ Aνð~xÞ þ u∂μϵðxÞ

¼ ∂ ~xν
∂xμ

�
u
∂~t
∂ ~xν þ Aνð~xÞ

�
: ð5:14Þ

Note that other ingredients such as the metric field gμν are
also covariant. We therefore conclude that the time coor-
dinate t and the gauge field Aμ can appear only in the form
u∂μtþ Aμ ¼ uδ0μ þ Aμ and therefore ingredients of the
unitary gauge effective action are

uδ0μ þ Aμ; gμν; Rμνρσ; and their covariant derivatives:

ð5:15Þ
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The lowest few terms in fluctuations and derivatives are
then given by

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½αðu2g00 þ 2uA0 þ AμAμÞ

þ βðu2ð1þ g00Þ þ 2uA0 þ AμAμÞ2�; ð5:16Þ

where α and β are constants independent of t. Also note
that we used gμνðuδ0μ þ AμÞðuδ0ν þ AνÞ ¼ u2g00 þ 2uA0þ
AμAμ.
We next introduce the effective action for NG field πðxÞ

by performing the Stückelberg method. For example, we
can introduce the NG field by a field-dependent Uð1Þ
gauge transformation,14

AμðxÞ → A0
μðxÞ ¼ AμðxÞ þ ∂μπðxÞ: ð5:17Þ

After this transformation, the ingredients (5.15) are given
by

uδ0μ þ ∂μπ þ Aμ; gμν; Rμνρσ;

and their covariant derivatives: ð5:18Þ

Note that the internal Uð1Þ gauge and diffeomorphism
invariance can be recovered by assigning the following
nonlinear transformation rule to the NG field:

Uð1Þ∶ πðxÞ → π0ðxÞ ¼ πðxÞ þ λðxÞ;
diffs∶ πðxÞ → π0ðxÞ ¼ πðxþ ϵðxÞÞ þ uϵ0ðxÞ: ð5:19Þ

We can now set that Aμ ¼ 0 and gμν ¼ ημν using the
nonlinearly realized full gauge symmetries. The ingredients
of the action for the NG field are then

uδ0μ þ ∂μπ; ημν; and their derivatives: ð5:20Þ

Also the effective action corresponding to the unitary gauge
action (5.16) is given by

S ¼ −
1

2

Z
d4x½αð−u2 − 2u∂0π þ ∂μπ∂μπÞ

þ βð−2u∂0π þ ∂μπ∂μπÞ2�

¼ α

2

Z
d4x

�
c−2s ð _π2 − c2sð∂iπÞ2Þ

þ ð1 − c−2s Þ
�
1

u
_π∂μπ∂μπ −

1

4u2
ð∂μπ∂μπÞ2

��
; ð5:21Þ

where we dropped temporal total derivatives and the
constant term. The propagating speed cs of the NG field

πðxÞ is given by c−2s ¼ 1 − 4βu2

α . Note that the obtained
effective action takes a similar form as that for time-
diffeomorphism symmetry breaking. The only difference is
that the coefficients are constant instead of functions of
time. In particular, because of this, there are no linear order
terms in Eq. (5.21), and the background equation of motion
is satisfied from the beginning. Also note that linear order
terms in temporal total derivatives, dropped in the second
line of Eq. (5.21), are not problematic in contrast to those in
spatial total derivatives. It is because temporal total
derivatives affect only initial conditions and they are not
relevant once we specify the initial conditions.

C. Comments on the breaking of spatial translation

Before closing this section, we would like to make a
comment on the case when spatial translation, rather than
time translation, is broken in a mixed way with a global
internal Uð1Þ symmetry. One typical condensation pattern
for such symmetry breaking is given by

hϕðxÞi ¼ r0eiuz ðr0 and u∶ real constantsÞ ð5:22Þ

in the complex scalar model of Sec. VA. This kind of
symmetry breaking is discussed in the context of dense
QCD matter [47–58] for example. The effective action for
this symmetry breaking can be constructed in a parallel way
to the construction in Sec. V B. If we work in the
nonrelativistic system and assume that Galilean symmetry
does not exist from the beginning, the effective action is

S ¼ 1

2

Z
d4x½ ~α _π2 − αðu2 þ 2u∂zπ þ ð∂iπÞ2Þ

− βð2u∂zπ þ ð∂iπÞ2Þ2�: ð5:23Þ

The important point is that the spatial total derivative term
in the action (5.23) contains a linear order term. Just as we
discussed in Sec. IV, such linear order terms in spatial total
derivatives are prohibited by the requirement that the
background energy is at a local minimum in the configu-
ration space. We then have α ¼ 0, and the dispersion
relation of the NG mode πðxÞ is schematically given by

ω2 ∼ c01k
2
z þ c02kzk

2⊥ þ c03k
4⊥ ð5:24Þ

14In the present symmetry breaking pattern, there are several
ways to introduce the NG field because both of the internal Uð1Þ
gauge and time-diffeomorphism symmetries are broken. For
example, we can perform a field-dependent time diffeomorphism
instead of the Uð1Þ gauge transformation. However, the resulting
effective action is equivalent up to field redefinition of the NG
field.
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up to the second order in kz and k2⊥, where c0i are
coefficients, and the last two terms on the right-hand
side come from higher derivative terms in the effective
action. For example, the NG mode in a model of the FFLO
phase indeed accommodates this type of dispersion rela-
tions [59–61]. We will revisit this issue via the symmetry
arguments of the present paper elsewhere [62].

VI. COSET CONSTRUCTION REVISITED

In this section, we revisit the coset construction for
spacetime symmetry breaking, based on our discussion. In
the first two subsections, we introduce a nonlinear reali-
zation for broken spacetime symmetries [4,5] and show
that the parametrization of NG fields in a nonlinear
realization is closely related to the local symmetry picture.
In Sec. VI C, we summarize the general ingredients of the
effective action for spacetime symmetry breaking. In
particular, we discuss the relation between the Maurer–
Cartan one form and connections for spacetime sym-
metries. We also comment on the difference from the
internal symmetry case. In Sec. VI D, we revisit the role of
the inverse-Higgs constraints, focusing on the relation to
our approach based on the local picture. We classify the
physical meaning of the inverse-Higgs constraints based on
the coordinate dimension of broken symmetries.
Throughout this section, for simplicity, we concentrate

on symmetry breaking in the case of the Minkowski space
and assume that the system originally enjoys translation
symmetries in all directions.

A. Local decomposition of spacetime symmetries

In the first two subsections we introduce nonlinear
realization for broken spacetime symmetries and discuss
its properties. For this purpose, it is convenient to consider
a local field ΦðxÞ that belongs to a linear irreducible
representation of spacetime and internal symmetries, which
can be related to a field Φð0Þ at the origin by a translation:

ΦðxÞ ¼ ΩPðxÞΦð0Þ with ΩPðxÞ ¼ ex
mPm; ð6:1Þ

where Pm is the translation generator. Correspondingly, we
can relate symmetry transformations of ΦðxÞ to those of
Φð0Þ. For example, we can rewrite the special conformal
transformations of ΦðxÞ as15

bmKmΦðxÞ ¼ ΩPðxÞ½ð−2xnxlbl þ x2bnÞPn þ 2bmxnLmn

þ 2bmxmDþ bmKm�Φð0Þ; ð6:3Þ

where Lmn, D, and Km are generators of Lorentz
transformations, dilatations, and special conformal trans-
formations, respectively. Since the origin x ¼ 0 is invariant
under Lorentz transformations, dilatations, and special
conformal transformations, the last three terms in the
brackets act linearly on Φð0Þ. Moreover, when Φ is a
primary field, the special conformal generator Km acts
trivially on Φð0Þ,

bmKmΦðxÞ ¼ ΩPðxÞ½ð−2xnxlbl þ x2bnÞPn þ 2bmxnLmn

þ 2bmxmD�Φð0Þ: ð6:4Þ

It is then natural to identify the last two terms in the
brackets as local Lorentz and local Weyl transformations at
the point x. More explicitly, one may rewrite (6.4) as

bmKmΦðxÞ ¼ ð−2xnxlbl þ x2bnÞPnΦðxÞ
þΩPðxÞ½2bmxnLmn þ 2bmxmD�Ω−1

P ðxÞΦðxÞ
¼ ½1þ ΩPð~xÞ½2bm ~xnLmn þ 2bm ~xmD�
×Ω−1

P ð~xÞ�Φð~xÞ − ΦðxÞ þOðb2Þ; ð6:5Þ

where ~xn ¼ xn − 2xnxlbl þ x2bn þOðb2Þ. The expres-
sion (6.5) corresponds to the local decomposition of
spacetime symmetries discussed in Sec. II: the first term
is the Lorentz transformation and dilatation around the
point xm. Note that the transformation x → ~x is identified
with an inverse transformation of x→x0n¼xnþ2xnxlbl−
x2bnþOðb2Þ if we use the notation in Sec. II.
More generally, the decomposition (6.1) allows us to

express arbitrary spacetime symmetry transformations in
terms of diffeomorphisms, local Lorentz transforma-
tions, and local (an)isotropic Weyl transformations, just
as we did in Sec. II. Suppose that the spacetime and
internal symmetry algebra contains symmetry generators
with the coordinate dimension n ≥ 0 as well as the
translation symmetry generators gP. Let us also intro-
duce the Lie algebra gn of symmetry generators with the
coordinate dimension n, which satisfies the commuta-
tion relations

½gm; gn� ¼ gmþn: ð6:6Þ

When the space and time coordinates have the same
scaling dimension, gn’s are schematically represented in
the coordinate space as

∼xm1xm2…xmnþ1∂m and ∼ xm1xm2…xmnTa; ð6:7Þ

and gP ¼ g−1 in particular. Here, Ta is a generator of
Lie algebra. Note that when the internal symmetry

15We define the symmetry generators such that

½D;Pm� ¼ −Pm; ½D;Km� ¼ Km;

½Km; Pn� ¼ 2ðηmnDþ LmnÞ;
½Lmn; Pl� ¼ −ηmlPn þ ηnlPm; ½Lmn; Kl� ¼ −ηmlKn þ ηnlKm;

½Lmn; Lrs� ¼ −ηmrLns þ 3 terms ð6:2Þ

and other commutators vanish.
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belongs to an Abelian group the spacetime and internal
symmetry may mix.16 Just as we did for infinitesimal
transformations above, we can rewrite any spacetime
symmetry transformation g in the form

gΦðxÞ ¼ Ω0ðx0−1ðxÞ; gÞΩ1ðx0−1ðxÞ; gÞ…Φðx0−1ðxÞÞ;
ð6:8Þ

where x0−1ðxÞ is the inverse function of x0ðxÞ associated
with the coordinate transformation, x → x0 ¼ x0ðxÞ.
Ωnðx; gÞ is the element of the Lie group G with gn
around the point x. In general, Ωnðx; gÞ depends on both
x and g. When Φ is a primary field, Ωnðx; gÞ with n ≥ 1
acts on ΦðxÞ trivially, so that we have

gΦðx0Þ ¼ Ω0ðx; gÞΦðxÞ: ð6:9Þ

We can then identify Ω0ðx; gÞ as the local Lorentz, local
(an)isotropic Weyl, and internal transformations. In this
way, the expression (6.1) provides the local decom-
position of spacetime symmetries.

B. Nonlinear realization

We then introduce a nonlinear realization for broken
spacetime and internal symmetries [4,5] and discuss its
relation to the local decomposition in the previous sub-
section. Suppose that an original global symmetry group G
is broken to a subgroup H, where G and H include both of
internal and spacetime symmetries. To construct the effec-
tive action, it is convenient to decompose the symmetry
generators as

g ¼ gP ⊕ ĝ ¼ gP ⊕ g0 ⊕ g1 þ � � � ; ð6:10Þ

where gP and ĝ are for translation and nontranslational
symmetry generators. The nontranslational part ĝ is made
from subalgebras of gn of spacetime and internal symmetry
generators with the coordinate dimension n. We further
decompose them into the residual symmetry parts h’s and
the broken symmetry parts m’s as

g ¼ h ⊕ m; gP ¼ hP ⊕ mP; ĝ ¼ ĥ ⊕ m̂;

gn ¼ hn ⊕ mnðn ≥ 0Þ: ð6:11Þ

In contrast to the internal symmetry case, Eq. (2.1), we
assume that

½ĥ; gP ⊕ m̂� ¼ gP ⊕ m̂ ð6:12Þ

rather than ½h;m� ¼ m in the following.17 In this case,
we need to employ all the translation generators in
addition to broken ones for parametrizing the coordinate
of the coset space. Correspondingly, we use representa-
tives of the coset G=Ĥ rather than G=H to realize the
original symmetry group G [4,5],

Ω ¼ ΩPΩ0Ω1… with ΩP ¼ eY
mðx̄ÞPm;

Ωn ¼ eπnðx̄Þðn ≥ 0Þ; ð6:13Þ

where πnðx̄Þ ∈ mn are NG fields for broken nontransla-
tional symmetries and xmðx̄Þ’s are the Minkowski
coordinates. We note that x̄μ’s are not the Minkowski
coordinates but rather the unitary gauge coordinates, as
we will see.18 One useful choice of the unitary coor-
dinate is19

Ym̂ðx̄Þ ¼ x̄m̂; Yaðx̄Þ ¼ x̄a þ πaðx̄Þ; ð6:14Þ

where the indices m̂ and a denote directions with
and without translation invariance, respectively, and
πa’s are NG fields for broken translation symmetries.
Under a global left G transformation, the representative
transforms as

ΩðY; πÞ → ΩðY 0; π0Þ ¼ gΩðY; πÞh−1ðπ; gÞ: ð6:15Þ

For the translation x → x0 þ a, the NG fields transform
as Y 0mðx̄Þ ¼ Ymðx̄Þ − am, and πn

0ðx̄Þ ¼ πnðx̄Þ. In general,
the NG fields π0n transform nonlinearly. Here, we notice
that the expression (6.13) takes a similar form as the
local decomposition (6.8) of spacetime symmetries.
Indeed, from the global left G transformation property
of Ω, it turns out that NG fields πn are identified with
transformation parameters for gn transformations around
the point Ymðx̄Þ. In particular, π0ðx̄Þ should be under-
stood as NG fields for local Lorentz and local (an)
isotropic Weyl transformations, rather than those for
global ones. Also, πn’s with n ≥ 1 correspond to
redundant NG fields because primary fields at a point
Ymðx̄Þ are invariant under the gn transformations around
the same point Ymðx̄Þ for n ≥ 1.
Such identification can be also understood from the

Maurer–Cartan one form

16A typical example is the Galilean boost generator, which is
expressed as t∂m − xmmT0. Here, m is the mass of the particle,
and T0 is the Abelian generator corresponding to the particle
number. See Appendix A for details.

17In most of the symmetry breaking patterns in our interests,
½ĥ; m̂ ⊕ gP� ¼ m̂ ⊕ gP, but ½h;m� ≠ m. For example, when
rotation symmetries are broken, we have ½hP;m� ¼ hP.18In this section,we employ the bar symbol for the unitary gauge
coordinates to distinguish those with Minkowski’s.

19If we are not interested in dynamics in x̄a-directions, we set
Ymðx̄Þ ¼ ðx̄m̂; πaÞ and define NG fields as x̄a-independent fields.
Though such a simplification is often performed in the literature,
we keep x̄a-dependence for generality.
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Jμ ¼ Ω−1∂μΩ ¼ Ω̂−1ð∂μYmPmÞΩ̂þ Ω̂−1∂μΩ̂ with

Ω̂ ¼ Ω0Ω1…; ð6:16Þ

where we used ½ĝ; ĝ� ¼ ĝ. In the coset construction, its gp-
component is used as the vierbein,

emμ ¼ ½Jμ�Pm
¼ ½Ω̂−1ð∂μYnPnÞΩ̂�Pm

¼ ½Ω−1
0 ð∂μYnPnÞΩ0�Pm

;

ð6:17Þ

where ½A�Pm
denotes the Pm-component of A and we used

½gm; gn� ¼ gmþn at the last equality. We notice that the
vierbein (6.17) depends on Ym and Ω0 only, and it is
independent of Ωn’s with n ≥ 1. Also, Ω0 just transforms
the vierbein without changing the Minkowski coordinate
Ym. Such properties are again consistent with the inter-
pretation that Ω0 represents NG fields for local symmetry
transformations and Ωn’s with n ≥ 1 do not generate
physical degrees of freedom.
To summarize, the representative of the coset space

(6.13) is closely related to the local symmetry picture,
rather than the global one. In particular, all the NG fields
can be described by Ym, Ω0 only, and their identification
should be based on the local picture.

C. Ingredients of the effective action

We next take a closer look at the ingredients of the
effective action based on the identification of NG fields in
the previous subsection. For simplicity, we concentrate on
the relativistic case in the following. Suppose that local
fields ΦA have background condensations,

hΦAðxÞi ¼ Φ̄AðxÞ; ð6:18Þ

where A denotes both the internal and local Lorentz indices
and Φ̄A’s are spacetime dependent in general. Just as we
usually do for internal symmetry breaking (see, e.g.,
Ref. [63]), let us decompose ΦA into the NG field part
and the matter part ~ΦA as

ΦAðxÞ ¼ ΩPðπÞ½Ω0ðx; π0Þ�AB ~ΦBðxÞ; ð6:19Þ

where Ω0ðx; π0Þ ¼ ΩintΩLΩD with Ωint, ΩL, and ΩD being
representatives for broken internal, local Lorentz, and local
Weyl symmetries, respectively.20 Note that Ωn’s with n ≥ 1
do not appear here because they are redundant NG fields
and do not transform ΦA’s. It is also useful to introduce the
unitary gauge coordinate x̄μðxÞ ¼ xμ þ πμðxÞ and rewrite
Eq. (6.19) to

ΦAðxÞ ¼ ½Ω0ðx̄; π0Þ�AB ~ΦBðx̄Þ: ð6:20Þ

From Eq. (6.9), Φ0AðxÞ transforms under G as

Φ0Aðx0Þ ¼ gΦAðx0Þ ¼ ½Ω0ðx̄0; gÞΩ0ðx̄0; π0Þ�AB ~ΦBðx̄0Þ
¼ ½Ω0ðx̄0; π00ðπ; gÞÞ�AB ~Φ0Bðx̄0Þ ð6:21Þ

with x̄0ðx0Þ ¼ x̄ðxÞ, ~Φ0Aðx̄0Þ ¼ ½hðπ; gÞ�AB ~ΦBðx̄Þ, which
follow the same transformation rule as those of the coset
construction (6.15). In this unitary gauge coordinate, the
Minkowski coordinate is expressed by the inverse function
Ymðx̄Þ such that Ymðx̄ðxÞÞ ¼ xm. Then, the vierbein emμ is
given by

emμ ¼ ∂μYmðx̄Þ: ð6:22Þ

Just as the internal case, the Maurer–Cartan type one form
arises from the derivative of ΦA as

∂μΦA ¼ ½ΩintΩLΩD�AB½ðΩ−1
int∂μΩint

þ Ω−1
L ∂μΩL þΩ−1

D ∂μΩDÞBC ~ΦC þ ∂μ
~ΦB�; ð6:23Þ

which suggests that the three terms in the parentheses play
the role of connections. Indeed, if we introduce the internal
gauge field Aμ and the Weyl gauge field Wμ, the inverse
local transformation ðΩintΩLΩDÞ−1 maps the configuration
Aμ ¼ Wμ ¼ 0 to the configuration

Aμ ¼ Ω−1
int∂μΩint; Wμ ¼ Ω−1

D ∂μΩD: ð6:24Þ

Similarly, the vierbein (6.22) and the corresponding spin
connection Sμ ¼ 1

2
Smn
μ Lmn are mapped to

emμ ¼ ½Ω−1
D Ω−1

L ð∂μYmPmÞΩLΩD�Pm
;

Sμ ¼ Ω−1
L ∂μΩL þ 1

2
ðemμ enν − enμemν ÞWνLmn: ð6:25Þ

Note that, via those identifications, Eq. (6.23) can be
reduced to the Weyl covariant derivative (2.26) as

∂μΦA ¼ ½ΩintΩLΩD�ABDμ
~ΦB: ð6:26Þ

Also note that thevierbein coincideswith thePm-component
(6.17) of the Maurer–Cartan one form. In this way, the
Maurer–Cartan one form (6.16) withΩn ¼ 1 (n ≥ 1) can be
identified with connections and the vierbein.
Just as the internal symmetry case, the above decom-

position provides ingredients of the effective action. To
illustrate the difference from the internal symmetry case, let
us consider constructing the effective action for NG fields
without matter fields, the ingredients of which can be
obtained by setting that ~ΦA ¼ Φ̄A. The original fields ΦA’s
and their derivatives are then given by

20Though we keep Ωint, ΩL, and ΩD in our discussions, we
turn on NG fields only for broken symmetries. For example, if the
Lorentz symmetry is not broken, we set ΩL ¼ 1.
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ΦA ¼ ½ΩintΩLΩD�ABΦ̄B; ð6:27Þ

∂μΦA ¼ ½ΩintΩLΩD�AB½ðΩ−1
int∂μΩint þΩ−1

L ∂μΩL

þ Ω−1
D ∂μΩDÞBCΦ̄C þ ∂μΦ̄B�: ð6:28Þ

One difference from the internal symmetry case is that local
Lorentz indices can be coupled to the translation generator
Pm at the same time as they are representations of local
Lorentz symmetry. For example, when the condensation
has a local Lorentz index, Φ̄n, there can be a coupling of the
form

tr½ðemμ PmÞðΦnPnÞ�; ð6:29Þ

of which the expression after the inverse local trans-
formation ðΩintΩLΩDÞ−1 is given by

tr½ðemμ PmÞðΦ̄nPnÞ� ¼ emμ Φ̄m with

emμ ¼ ½Ω−1
D Ω−1

L ð∂μYmPmÞΩLΩD�Pm
;

ð6:30Þ

where the trace for Pm is defined as tr½PmPn� ¼ ηmn.
Another difference is that Φ̄A can be spacetime dependent.
For example, when the condensation is inhomogeneous in
the z-direction, Φ̄Aðz̄Þ, we obtain functions of z̄ from terms
without derivatives like

ΦAΦA → Φ̄Aðz̄ÞΦ̄Aðz̄Þ: ð6:31Þ

Similarly, the derivative ∂μΦA leads to functions of z̄ and
their derivatives as well as the Maurer–Cartan-type one
form

∂μΦA ¼ ½ΩintΩLΩD�AB½ðΩ−1
int∂μΩint þΩ−1

L ∂μΩL

þ Ω−1
D ∂μΩDÞBCΦ̄C þ δz̄μ∂ z̄Φ̄B�: ð6:32Þ

With those modifications to the internal symmetry case, the
general effective action can be constructed from the one
forms Ω−1

int∂μΩint, Ω−1
L ∂μΩL, and Ω−1

D ∂μΩD; the vierbein
emμ ; and functions of coordinates in the inhomogeneous
directions. Note that the volume element also contains a
NG field through the determinant of the vierbein. Since
those one forms are related to the connections Sμ, Wμ, and
Aμ, it is obvious that those ingredients are the same as the
ones in the approach based on the local picture.

D. Inverse-Higgs constraint

In the coset construction for spacetime symmetry break-
ing, one imposes the so-called inverse-Higgs constraints to
remove the redundant NG fields [5,6] and the massive
degrees of freedom [11,13,14]. For a broken (global)
symmetry generator A ∈ m, we compute its commutator

with the translation generator Pm, which contains both the
broken and unbroken symmetry generators in general:

½Pm; A� ∼ Bþ C with B ∈ m; C ∈ h: ð6:33Þ

When the commutator contains broken symmetry gener-
ators, B ≠ 0, we remove the NG field for A by imposing a
certain constraint in a consistent way with the symmetry
structure. Typically, we require that the B-component of the
Maurer–Cartan one form is zero,

½Ω−1∂μΩ�B ¼ 0; ð6:34Þ

which generically relates the NG field for A to a derivative
of the NG field for B. The effective action is then
constructed from the Maurer–Cartan one form with the
condition (6.34) imposed. At the end of this section, we
revisit the role of such inverse-Higgs constraints and
redundant NG fields, focusing on their counterparts in
the approach based on the local symmetry viewpoint. In
particular, we show that its physical meaning is different
between the case A ∈ gðnÞ with n ≥ 1 and the case A ∈ gð0Þ.

1. Redundant NG fields for special conformal symmetry

An illustrative example for the first case is the redundant
NG fields for special conformal symmetry [5,6,20,64,65].
Suppose that the conformal symmetry group is broken to its
subgroup. To perform the coset construction, let us first
classify the symmetry generators by the coordinate dimen-
sion as

g−1 ¼ fPmg; g0 ¼ fLmn;Dg; g1 ¼ fKmg:
ð6:35Þ

Based on this classification, we introduce the representative
of the coset space Ω as

Ω ¼ eY
mPmΩ0Ω1 with Ω0 ¼ ΩLΩD; Ω1 ¼ ΩK:

ð6:36Þ

Here, ΩK ¼ eχ
mKm describes NG fields for special con-

formal transformations, which should be interpreted as
redundant ones as we have discussed. We then calculate
the corresponding Maurer–Cartan one form Jμ ¼ Ω−1∂μΩ.
First, its gP-component is the vierbein

emμ Pm ¼ Ω−1
0 ∂μYmPmΩ0: ð6:37Þ

On the other hand, the g0-component is given by

Ω−1
0 ∂μΩ0 − ½χmKm; enμPn�
¼ Ω−1

L ∂μΩL þ Ω−1
D ∂μΩD − 2χmemμ D − 2ðχmenμÞLmn;

ð6:38Þ
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which is reduced to the connections in (6.23) if we set
χm ¼ 0. The g1-component is given by

½∂μχ
m þ χ2emμ þ ½Ω−1

L ∂μΩL�Lmn
χn

þ ð½Ω−1
D ∂μΩD�D − 2χnenμÞχm�Km; ð6:39Þ

which vanishes when χm ¼ 0. Using the relations (6.24)
and (6.25), we can rearrange the g0- and g1-components in
terms of the spin connection Smn

μ and the Weyl gauge field
Wμ as

½Jμ�Lmn
¼ Smn

μ − ðemμ Wn − enμWmÞ þ 2ðemμ χn − enμχmÞ;
ð6:40Þ

½Jμ�D ¼ Wμ − 2χμ; ð6:41Þ

½Jμ�Km
¼ ∇μχ

m þWmχμ þ ðχ2 −WνχνÞemμ
þ ðWμ − 2χμÞχm; ð6:42Þ

where ∇μχ
m ¼ ∂μχ

m þ Smn
μ χn, and the local Minkowski

indices and the global coordinate indices are converted
to each other by the vierbein (6.37) as χμ ¼ emμ χm
and Wm ¼ emμ Wμ.
We now discuss the role of inverse-Higgs constraints.

Suppose that the special conformal symmetry is broken,
and for simplicity, let us assume that the translation
symmetry is unbroken. The commutator relevant to
inverse-Higgs constraints is then

½P;K� ∼Dþ L: ð6:43Þ

Since at least one of the dilatation symmetry and the
Lorentz symmetry is broken if the special conformal
symmetry is broken, we remove the NG field χm for the
special conformal transformation by imposing the inverse-
Higgs constraint. This statement corresponds to the fact
that χm is a redundant NG field and does not generate
physical degrees of freedom [5,6,20]. We then take a closer
look at the inverse-Higgs constraints in the following
two cases.
(1) Broken dilatation and unbroken Lorentz:

Let us first consider the case when the dilatation
symmetry is broken but the Lorentz symmetry is
unbroken. In this case, the inverse-Higgs constraints
[6] can be stated as

½Jμ�D ¼ 0 ↔ χμ ¼
1

2
Wμ: ð6:44Þ

Using this constraint, the Lmn-component (6.40) is
reduced to the spin connection

½Jμ�Lmn
¼ Smn

μ : ð6:45Þ

On the other hand, the Km-component (6.42)
becomes

½Jμ�Km
¼ emν 1

2

�
∇μWν þWμWν −

1

2
gμνW2

�
:

ð6:46Þ

As discussed in Ref. [42], the Weyl transformations
of the combination in the parentheses can be related
to those of the Ricci tensor Rμν as

Δ
�
∇μWν þWμWν −

1

2
gμνWρWρ

�

¼ Δ
�

1

2 − d

�
Rμν −

1

2ðd − 1Þ gμνR
��

; ð6:47Þ

where Δ denotes Weyl transformations and d is the
spacetime dimension. Since the metric constructed
from the vierbein (6.37) is conformally flat, we can
further rewrite (6.46) in terms of the Ricci tensor as

½Jμ�Km
¼ emν

2ð2 − dÞ
�
Rμν −

1

2ðd − 1Þ gμνR
�
: ð6:48Þ

In this way, the Km-component reproduces the Ricci
tensor in the unitary gauge [9]. To summarize, the
Lmn- and Km- components of the Maurer–Cartan
one form reproduce the spin connection and the
Ricci tensor, and we have a vanishingD-component.
In particular, the Weyl gauge field Wμ does not
appear explicitly.
This is indeed consistent with the local symmetry

picture. As we mentioned earlier, any conformal
system on the Minkowski space can be reformulated
in a local Weyl invariant way by introducing an
appropriate curved spacetime action (the Ricci
gauging). The unitary gauge effective action should
then be written without using Weyl gauge fields
explicitly.

(2) Broken Lorentz and broken dilatation:
We next consider the case when both the dilatation

and the Lorentz symmetry are broken. For concrete-
ness, let us assume that the Lorentz symmetry
associated with the 3-direction, i.e., L3n̂ ¼ −Ln̂3
with n̂ ≠ 3, is broken. We now have two types of
inverse-Higgs constraints:

½Jμ�Lmn
¼ Smn

μ − ðemμ Wn − enμWmÞ
þ 2ðemμ χn − enμχmÞ ¼ 0;

½Jμ�D ¼ Wμ − 2χμ ¼ 0: ð6:49Þ
Since the role of the inverse-Higgs constraints here
is to remove redundant NG fields consistently, we
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do not have to impose both conditions. Indeed, the
global transformation does not mix the two con-
straints, so that we can impose one of them alone.
By imposing the second condition

½Jμ�D ¼ 0 ↔ χμ ¼
1

2
Wμ; ð6:50Þ

the other components of the Maurer–Cartan one
form can be reduced to

½Jμ�Pm
¼ emμ ; ½Jμ�Lmn

¼ Smn
μ ;

½Jμ�Km
¼ emν

2ð2 −DÞ
�
Rμν −

1

2ðD − 1Þ gμνR
�
:

ð6:51Þ

Just as the first example, the inverse-Higgs con-
straint guarantees that theWeyl gauge field does not
appear explicitly in the unitary gauge effective
action.

To summarize, the role of inverse-Higgs constraints of
this type is to remove redundant NG fields. In particular,
in the relativistic case, they are closely related to whether
the original system permits the Ricci gauging or not.
Correspondingly, the inverse-Higgs constraints convert
the Weyl gauge fields into the Ricci tensors, so that the
obtained action does not contain Weyl gauge fields
explicitly.

2. Single brane revisited

An illustrative example for the second case is the single
brane, which we discussed in Sec. III. From the global
symmetry point of view, all the examples there are
characterized by the symmetry breaking from the
ð1þ 3Þ-dimensional Poincaré symmetry to the ð1þ 2Þ-
dimensional one. In the coset construction, we then
introduce NG fields for both the broken translation and
broken (global) Lorentz symmetries. The representative of
the coset space and the nonzero components of the Maurer–
Cartan one form are

Ω ¼ ΩPΩL; ½Jμ�Pm
¼ emμ ; ½Jμ�Lmn

¼ Smn
μ : ð6:52Þ

Notice that, accompanied by functions of z and matters,
general ingredients of the effective action for nonzero spin
branes in Sec. III D can be obtained. As we have discussed,
the NG fields in the nonlinear realization are identified with
the local symmetry transformation parameters, and they
generate physical degrees of freedom only when the
corresponding local symmetries are broken. Therefore,
NG fields for the Lorentz symmetries are physical ones
for the nonzero spin branes but redundant ones for the
scalar branes in this construction. It is in a sharp contrast to

the first case discussed in Sec. VI D 1, where NG fields for
higher-dimensional generators are always redundant ones.
We next discuss the role of inverse-Higgs constraints.

The relevant commutators here are those of broken Lorentz
symmetry generators, and translation generators given by

½Pm; L3n̂� ¼ η3mPn̂ − ηn̂mP3; ð6:53Þ

which contains the broken generator, P3, on the right-hand
side. This commutator suggests that the mass term of NG
fields for Lorentz symmetries and their mixing interaction
with NG fields for diffeomorphisms can be constructed
from the P3 component of the Maurer–Cartan one form
[11,13,14]. In our construction, there are several options for
the inverse-Higgs constraints,21

½Jμ�P3
¼ e3μ ¼ nμ; ½Jμ�P3

¼ e3μ ¼ δ3μ; ð6:54Þ

where nμ ¼ δzμffiffiffiffi
gzz

p is a unit vector perpendicular to the brane.

Both of the conditions are satisfied by the background
configuration, π ¼ 0, and are also consistent with the
original symmetry. Also, the second condition is equivalent
to a combination of the first one, e3μ ¼ nμ, and gzz ¼ 1.
Finally, let us illustrate their physical interpretations:
(1) Condition e3μ ¼ nμ:

This condition provides three constraints that
make three NG fields for local Lorentz symmetries
freeze out. Indeed, it exactly coincides with the
procedure in Sec. III E to integrate out the massive
Lorentz NG fields, because the interaction (3.43)
leads to the constraint nμe3μ ¼ 1 ↔ e3μ ¼ nμ in the
low-energy limit. It should be noticed that the
removed NG fields are physical massive ones for
the nonzero spin brane case but redundant ones for
the scalar brane case.

(2) Condition gzz ¼ 1:
It is nothing but the condition (B9) to remove

the gapped modes in the diffeomorphism NG field.
The resulting effective action then turns out to be the
Nambu–Goto action for the gapless NG mode
localizing on the brane. Note that the ambiguity
in (6.54) corresponds to the choice whether we
integrate out the gapped modes in the diffeomor-
phism NG field or not.

In this way, the inverse-Higgs constraints for nonzero spin/
scalar branes remove massive/redundant NG fields for
Lorentz symmetries and gapped modes in the diffeomor-
phism NG field.
It might be useful to note that the general effective action

for diffeomorphism symmetry breaking in Sec. III B can be

21In particular the conditions are different from Eq. (6.34). It is
because we chose the unitary gauge coordinate as Eq. (6.14) and
the Maurer-Cartan one form does not vanish even if NG fields
vanish, π ¼ 0.
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constructed without introducing redundant NG fields for
Lorentz symmetries. Consider the following representative
of the coset space and the corresponding Maurer–Cartan
one form:

Ω ¼ ΩP; ½Jμ�Pm
¼ emμ : ð6:55Þ

Ingredients of the effective action are then this Maurer–
Cartan one form, functions of the coordinate z, matter
fields, and their covariant derivatives. It is obvious that
those ingredients reproduce the general ingredients dis-
cussed in Sec. III B. We can then construct the effective
action for scalar branes before integrating out gapped
modes for example.
To summarize, the conventional inverse-Higgs con-

straints can be classified into the following three types
by their physical meanings:
(1) When spacetime symmetries of the coordinate di-

mension n ≥ 1, gn with n ≥ 1, are broken, the role of
inverse-Higgs constraints is to remove redundant
NG fields. In particular, in the relativistic systems, it
is closely related to whether the original system
permits the Ricci gauging or not.

(2) When global spacetime symmetries of the coordi-
nate dimension zero, g0, are broken as well as
translation symmetries, we introduce NG fields
for g0 in the coset construction. However, if the
broken local symmetries are only diffeomorphisms,
NG fields for g0 are redundant ones, and the inverse-
Higgs constraints remove them. Also, we do not
necessarily have to introduce NG fields for g0 in our
construction, as long as we include gapped modes in
the effective action.

(3) On the other hand, when local Lorentz or local (an)
isotropic Weyl symmetries are broken (as well as
diffeomorphism symmetries), the corresponding
physical NG fields acquire a mass. Under certain
conditions, the inverse-Higgs constraint can be
identified with the procedure to take the low-energy
limit and integrate out massive NG fields.

VII. APPLICATION TO GRAVITATIONAL
SYSTEMS

Before closing this paper, we would like to make a brief
comment on the applications of our formulation to gravi-
tational systems. As we mentioned in the Introduction, the
EFT approach for inflation [41] is based on the symmetry
argument in the unitary gauge. In the unitary gauge, the
relevant degrees of freedom in single-field inflation are the
metric gμν only, and the residual symmetries are the time-
dependent spacial diffeomorphisms. This setup is essen-
tially the same as the scalar branes, and indeed our
discussion in Sec. III B is parallel to that of Ref. [41];
the only differences between the two cases are the back-
ground spacetime and whether we decouple the gravity

sector or not. By keeping the gravity sector without
decoupling, we can apply our strategy in Sec. II to
gravitational systems. We will apply our approach to
gravitational systems such as inflationary models with
different symmetry breaking patterns elsewhere.

VIII. SUMMARY

In this paper, we discussed the EFT approach for
spacetime symmetry breaking from the local symmetry
point of view. The identification of NG fields and the
construction of the effective action are based on the local
picture of symmetry breaking, i.e., the breaking of diffeo-
morphism, local Lorentz, and (an)isotropic Weyl sym-
metries as well as the internal symmetries including
possible central extensions in nonrelativistic systems.
This picture distinguishes, e.g., whether the condensations
have Lorentz charges (spins), while the standard coset
construction based on the global symmetry breaking
picture with the inverse-Higgs constraints does not. The
distinction enable us to provide a correct identification of
the physical NG fields because they are generated by local
transformations of condensations.
To illustrate the difference between the global and local

pictures of spacetime symmetry breaking, in Sec. III, we
discussed codimension-1 branes, in which global trans-
lation and rotation symmetries are broken. In the global
picture, the low-energy degrees of freedom are the NG field
for the broken translation. In the local picture, these degrees
of freedom correspond to the NG fields for the broken
diffeomorphism. For scalar branes, both pictures give the
same EFT. However, the situation is different for nonzero
spin branes. In this case, the condensation has a spin, so
that, in addition to the NG field for diffeomorphism
breaking, there appear massive NG fields associated with
local Lorentz symmetry breaking as the physical degrees of
freedom, which nonlinearly transform under global broken
symmetry. One might think such massive modes are
irrelevant in the low-energy EFT. This is true for the
EFT at the low-energy scale compared with the mass, and
the EFT will be the same as that in the global picture.
However, when the scale of order parameters for translation
and rotation breaking have different scales, the mass could
be smaller than other typical mass scales of the system, and
thus the massive modes may become relevant as the low-
energy degrees of freedom. For example, in cosmology,
massive fields with the Hubble scale mass affect the
cosmological perturbations (see, e.g., Refs. [66–68] for
recent discussions), so that massive modes associated with
symmetry breaking can be relevant when they have a mass
less than or comparable to the Hubble scale.
In Secs. IV and V, we also discussed a system in which

the condensation is periodic in one direction. We found that
the dispersion relations of NG modes for the broken
diffeomorphism are constrained by the minimum energy
condition, in contrast to the codimension-1 brane case.
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Such a property would be important, e.g., in the inhomo-
geneous chiral condensation phase [62].
In Sec. VI, we revisited the coset construction from the

local symmetry point of view. It was pointed out that the
inverse-Higgs constraints have two physical meanings
[11,13,14]: removing redundant NG fields and massive
fields. The standard coset construction does not distinguish
these two. Based on the relation between the Maurer–
Cartan one form and connections for spacetime sym-
metries, we classified these meanings of inverse-Higgs
constraints by the coordinate dimension of broken sym-
metries. Inverse-Higgs constraints for spacetime sym-
metries with a higher dimension remove redundant NG
fields, and in particular, those for the special conformal
symmetry are closely related to the fact that the original
system admits Ricci gauging. Those for dimensionless
symmetries can be further classified by the local symmetry
breaking pattern, just as the codimension-1 brane case in
Sec. III.
Although we mainly focused on the relativistic case, it

would be interesting to extend the discussion to the
nonrelativistic case. It would be also interesting to include
supersymmetry in our discussion. We defer such studies to
future work.

ACKNOWLEDGMENTS

We would like to thank Luca Delacrétaz, Tomoya
Hayata, Katsumi Ito, Kazuhiko Kamikado, Takuya
Kanazawa, and Yu Nakayama for valuable discussions.
Y. H. and T. N. also thank Institute for Advanced Study at
the Hong Kong University of Science and Technology,
where a part of this work was done. Y. H. is partially
supported by JSPS KAKENHI Grant No. 24740184 and by
the RIKEN iTHES Project. T. N. is supported in part
by Special Postdoctoral Researchers Program at RIKEN
and the RIKEN iTHES Project. G. S. is supported in
part by DOE Grant No. DE-FG-02-95ER40896 and the
HKGRC Grants No. HKUST4/CRF/13G, No. 604213, and
No. 16304414.

APPENDIX A: SPACETIME SYMMETRY IN
NONRELATIVISTIC SYSTEMS

In this Appendix, we extend the discussion in Sec. II to
nonrelativistic systems. After some geometrical prelimi-
naries, we discuss local properties of nonrelativistic space-
time symmetries. We then summarize how they can be
gauged and embedded into local symmetries.

1. Geometrical preliminaries

a. 3þ 1 decomposition

In nonrelativistic systems, there exists a particular time
direction, and constant-time slices specify a spatial foliation
structure. Correspondingly, spacetime symmetries in non-
relativistic systems should preserve the foliation structure.

To discuss such systems and symmetries, it is convenient to
introduce a timelike vector field nμ perpendicular to the
spatial slices normalized as

gμνnμnν ¼ −1: ðA1Þ
The induced metric hμν on the slices is then given by

hμν ¼ gμν þ nμnν: ðA2Þ
We also introduce the projectors onto the temporal and
spatial directions as

temporal projector∶ − nμnν;

spatial projector∶ hμν : ðA3Þ
In the following, we often write the temporal component
and spatial projection of a vector vμ as

v∥ ¼ nμvμ; vμ⊥ ¼ hμνvν: ðA4Þ

b. Decomposition of local Lorentz indices

It is also convenient to decompose local Lorentz indices
into the temporal and spatial directions in a similar way.
Using the projectors,

temporal projector∶ δm0 δ
0
n;

spatial projector∶ δmn − δm0 δ
0
n; ðA5Þ

we decompose the vierbein eμm as

eμm ¼ hμνeνnðδnm − δn0δ
0
mÞ þ hμνeν0δ

0
m − nμnνeν0δ

0
m

− nμnνeνnðδnm − δn0δ
0
mÞ; ðA6Þ

where the second and the fourth terms mix the temporal/
spatial coordinate indices and the spatial/temporal local
Lorentz indices. Such terms can be eliminated by perform-
ing local Lorentz boost transformations such that the
temporal directions of the global coordinate and the local
Lorentz frame coincide with each other. Indeed, we can
always impose the gauge condition

eμ0 ¼ nμ ðA7Þ

to obtain the vierbein of the form

eμm ¼ ~eμm þ nμδ0m with ~eμm ¼ hμνeνnðδnm − δn0δ
0
mÞ: ðA8Þ

Note that the gauge condition (A7) is invariant under
diffeomorphisms and local rotations. In the rest of this
Appendix, we impose the gauge condition (A7) and use the
expression (A8) of the vierbein.
The spatial projection ~eμm can then be identified with the

spatial dreibein. First, its square reproduces the spatial
induced metric:
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~eμm ~eνnηmn ¼ hμν; ~eμm ~eνnhμν ¼ ~eμm ~eνngμν ¼ ηmn þ δ0mδ
0
n:

ðA9Þ

Also the relations

~emμ ¼ ðδmn − δm0 δ
0
nÞenμ ¼ emν hνμ;

nμδ0m ¼ −nμnνeνm ¼ eμnδn0δ
0
m ðA10Þ

guarantee that the decomposition of coordinate indices and
that of local Lorentz indices are consistent. More con-
cretely, we can use the notation vm⊥ with the local Lorentz
index consistently:

vm⊥ ¼ ðδmn − δm0 δ
0
nÞvn ¼ emν vν⊥ ¼ ~emν vν⊥: ðA11Þ

The temporal projection is also consistent between the two:

v∥ ¼ nμvμ ¼ nμe
μ
mvm ¼ v0 ¼ −v0: ðA12Þ

2. Local properties of nonrelativistic spacetime
symmetries

We now discuss local properties of nonrelativistic
spacetime symmetries under some plausible assumptions
on the foliation structure and symmetry transformations.

a. Nonrelativistic ansatz

When we take a nonrelativistic limit of relativistic
systems, the time direction is typically identified with that
in a rest frame of massive free particles. It would then be
natural to assume that the timelike vector nμ generates
timelike geodesics and satisfies

nν∇νnμ ¼ 0: ðA13Þ

As we mentioned earlier, spacetime symmetries in non-
relativistic systems should preserve the foliation structure.
Coordinate transformations preserving the foliation struc-
ture (foliation preserving diffeomorphism transformations)
can be defined as22

xμ → x0μ ¼ xμ − ϵμðxÞ with

hλμLϵnλ ≡ hλμðϵν∇νnλ þ nν∇λϵ
νÞ ¼ 0; ðA16Þ

whereLϵ is the Lie derivative along ϵμ. From Eq. (A13), we
obtain hνμ∂νϵ∥ ¼ 0, which guarantees that the time compo-
nent of the transformation parameter is constant on each
slice. In the rest of this Appendix, we assume that the
timelike vector nμ satisfies the geodesic assumption (A13)
and the nonrelativistic spacetime symmetries satisfy the
condition (A16).

b. Local decomposition

As we discussed in Sec. II B, local properties of
spacetime symmetry are determined by the covariant
derivative of the corresponding coordinate transformation
parameter ϵμ. In nonrelativistic systems, it is convenient to
decompose ∇μϵν using the projectors (A3) as

∇μϵν ¼ −∇μðnνϵ∥Þ þ∇μϵ⊥ν

¼ −Kμνϵ∥ − nν∂μϵ∥ þ∇μϵ⊥ν

¼ −Kμνϵ∥ þ nμnνðnρ∂ρϵ∥Þ þ∇μϵ⊥ν; ðA17Þ

where Kμν ¼ hρμ∇ρnν is the extrinsic curvature on the
spatial slices, and we used the geodesic condition (A13)
and the foliation preserving condition, hνμ∂νϵ∥ ¼ 0, at the
second and the third equalities, respectively. The last term
can be further decomposed as

∇μϵ⊥ν ¼ hαμh
β
ν∇αϵ⊥β − hαμnνnβ∇αϵ⊥β − nμnα∇αϵ⊥ν

¼ hαμh
β
ν∇αϵ⊥β þ Kμρϵ

ρ
⊥nν − nμh

ρ
νnα∇αϵ⊥ρ;

ðA18Þ

where we used nαϵα⊥ ¼ 0 and the geodesic condition (A13)
at the second equality. We then have

∇μϵν ¼ nμnνðnρ∂ρϵ∥Þ þ ðhαμhβν∇αϵ⊥β − Kμνϵ∥Þ
þ ðKμρϵ

ρ
⊥nν − nμh

ρ
νnα∇αϵ⊥ρÞ; ðA19Þ

where the first term represents local rescalings in the
temporal direction. For later use, we define

λ∥ ¼ −nμ∂μϵ∥: ðA20Þ

The second term in Eq. (A19) describes deformations of
spatial coordinates, and it can be decomposed as

hαμh
β
ν∇αϵ⊥β − Kμνϵ∥ ¼ ω⊥μν þ s⊥μν þ λ⊥hμν; ðA21Þ

where the antisymmetric part ω⊥μν, the symmetric traceless
part s⊥μν, and the trace part λ⊥ generate local rotations,
anisotropic spatial rescalings, and isotropic spatial

22If we choose the coordinate system such that xt coincides
with the time direction, a concrete form of nμ is given by

nμ ¼ −
δtμffiffiffiffiffiffiffiffi
−gtt

p : ðA14Þ

Correspondingly, the geodesic condition (A13) and the foliation
preserving condition (A16) can be stated as

∂igtt ¼ ∂iϵ
t ¼ 0: ðA15Þ
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rescalings, respectively. Spatial isotropy requires that
s⊥μν ¼ 0 to obtain

hαμh
β
ν∇αϵ⊥β − Kμνϵ∥ ¼ ω⊥μν þ λ⊥hμν: ðA22Þ

The last term in Eq. (A19) mixes the temporal and spatial
directions. If we introduce parameters b�μ as

b�μ ¼ −hμνnρ∇ρϵ
ν⊥ � Kμνϵ

ν⊥; ðA23Þ

we can rewrite the last term in Eq. (A19) as

Kμρϵ
ρ
⊥nν − nμhνρnα∇αϵρ⊥

¼ 1

2
nμðbþν þ b−ν Þ þ

1

2
nνðbþμ − b−μ Þ: ðA24Þ

Here, note that nμb�μ ¼ 0. It should be also noted that when
the extrinsic curvature is zero bþμ ¼ b−μ is the temporal
derivative of ϵμ⊥. As it suggests, b�μ can be thought of as
local Galilei boosts.
To summarize, using the quantities introduced above, we

can decompose ∇μϵν for nonrelativistic spacetime sym-
metries as

∇μϵν ¼ ω⊥μν þ
1

2
nμðbþν þ b−ν Þ þ

1

2
nνðbþμ − b−μ Þ

− λ∥nμnν þ λ⊥hμν; ðA25Þ

where ω⊥μν, λ∥, and λ⊥ describe local rotations, temporal
rescalings, and spatial rescaling, respectively. The param-
eters b�μ are associated with local Galilei boosts.

c. Transformation rule of nμ, hμν, and ~eμm
To understand the physical interpretation of the above

decomposition, it would be useful to note the transforma-
tion rule of the unit vector nμ, the induced metric hμν, and
the spatial dreibein ~eμm under infinitesimal foliation pre-
serving diffeomorphisms. First, their general coordinate
transformations are given by

δnμ ¼ −nρ∇ρϵ
μ þ ϵρ∇ρnμ; ðA26Þ

δhμν ¼ −ðhμρ∇ρϵ
ν þ hνρ∇ρϵ

μÞ þ ϵρ∇ρhμν; ðA27Þ

δ~eμm ¼ −~eνm∇νϵ
μ þ ϵρ∂ρ ~e

μ
m þ ϵρΓμ

ρν ~eνm: ðA28Þ

By using the geodesic condition (A13) and the foliation
preserving condition (A16), they can be reduced to the
form23

δnμ ¼ −λ∥nμ þ bμþ; δhμν ¼ −2λ⊥hμν;

δ~eμm ¼ ωμ
⊥ ν ~e

ν
m − λ⊥ ~eμm − ϵρ ~Sρm

n ~eμn; ðA29Þ

where we defined

~Smn
μ ¼ ðδmr − δm0 δ

0
rÞSrsμ ðδns − δn0δ

0
sÞ ¼ ~emν ∂μ ~eνn þ ~emλ Γλ

μν ~eνn:

ðA30Þ

Note that the transformations of spatial quantities hμν

and ~eμm (with upper indices) depend only on the spatial
components ω⊥μν and λ⊥. In particular, the spatial metric
hμν (and hij also) is invariant under transformations with
λ⊥ ¼ 0. Such properties are consistent with the interpre-
tation that ω⊥μν and λ⊥ generate local rotations and spatial
rescalings.

3. Examples: Galilean, Schrödinger, and Galilean
conformal symmetries

Before discussing the embedding of nonrelativistic
spacetime symmetries into local ones, let us perform the
local decomposition for concrete nonrelativistic spacetime
symmetries in this subsection. As illustrative examples, we
consider Galilean, Schrödinger, and Galilean conformal
symmetries on the Minkowski space.

a. Galilean symmetry

Galilean symmetry is generated by translations Pμ,
rotations Jij, and Galilei boosts Bi. Their algebras can
be obtained by taking the nonrelativistic limit of the
Poincaré algebra, except for a possible central extension
in the commutator of spatial translations and Galilei boosts,

½Pi; Bj� ¼ −δijM; ðA31Þ

where the central charge M is associated with the mass
energy and it can be identified with the internal Uð1Þ
charge associated with the particle number conservation.
As is suggested by the commutator (A31), the Galilei boost
generates internal Uð1Þ transformations as well as the
spacetime transformation. Using the notation in Sec. VI A,
we can express the Galilei boost as

viBi ¼ tvi∂i − ðv · xÞM; ðA32Þ

where vi is the transformation parameter. Since its space-
time transformation part takes the form

ϵt ¼ 0; ϵi ¼ vit; ðA33Þ

nonzero components in the decomposition (A25) are
given by

biþ ¼ bi− ¼ −vi; ðA34Þ23For notational simplicity, we use bμ� to denote gμνb�ν .
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which is consistent with the observation that bμ�’s are
associated with local Galilei boosts. Note that local
decompositions of other generators are the same as the
relativistic case.

b. Schrödinger symmetry

We next consider the Schrödinger symmetry [69,70],
which is generated by

~D ¼ 2t∂t þ xi∂i; ~K ¼ t2∂t þ txi∂i −
1

2
x2M; ðA35Þ

and Galilean symmetry generators. Nonzero components in
the decomposition (A25) for λ ~D are

1

2
λ∥ ¼ λ⊥ ¼ λ: ðA36Þ

On the other hand, those for μ ~K are

1

2
λ∥ ¼ λ⊥ ¼ μt; biþ ¼ bi− ¼ −μxi: ðA37Þ

Here, λ and μ are transformation parameters. We notice that
both of ~D and ~K have the rescaling components satisfying
λ∥ ¼ 2λ⊥. In other words, the dynamical exponent is z ¼ 2.

c. Galilean conformal symmetry

Finally, let us consider the Galilean conformal symmetry
(see, e.g., Ref. [71] for references). For this purpose, it is
convenient to introduce the extended Galilean conformal
algebra generated by

LðnÞ ¼ ðnþ 1Þtnxi∂i þ tnþ1∂t;

MðnÞ
i ¼ tn∂i; J

ðnÞ
ij ¼ tnðxi∂j − xj∂iÞ; ðA38Þ

where n is an arbitrary integer. In terms of these operators,
the Galilean conformal symmetry generators are given by

LðnÞ and MðnÞ
i with n ¼ 0;�1, and Jð0Þij . Using a function

ΛðtÞ of time, the coordinate transformation associated with
LðnÞ’s can be recast as

ϵt ¼ ΛðtÞ; ϵi ¼ Λ0ðtÞxi; ðA39Þ

and nonzero components in the decomposition (A25) are

λ∥ ¼ λ⊥ ¼ Λ0ðtÞ; biþ ¼ bi− ¼ −Λ00ðtÞxi: ðA40Þ

Note that the dynamical exponent is z ¼ 1. On the other

hand, coordinate transformations associated with MðnÞ
i ’s

take the form

ϵt ¼ 0; ϵi ¼ BiðtÞ; ðA41Þ

and nonzero components are

biþ ¼ bi− ¼ −B0iðtÞ; ðA42Þ

which can be thought of as a time-dependent generalization

of Galilei boosts. Similarly, JðnÞij ’s can be regarded as a time-
dependent generalization of spatial rotations.

4. Embedding into local symmetries

As we have seen in the previous subsection, nonrela-
tivistic spacetime symmetries generically have a particular
dynamical exponent z, and the decomposition (A25) takes
the form

∇μϵν ¼ ωμν
⊥ þ 1

2
nμðbνþ þ bν−Þ þ

1

2
nνðbμþ − bμ−Þ

þ λð−znμnν þ hμνÞ: ðA43Þ

Let us concentrate on such symmetries in the following.
They also admit central extensions. In this subsection, we
first discuss how nonrelativistic spacetime symmetries
without central extensions can be embedded into local
symmetries. We then extend discussions to the case with
central extensions.

a. Without central extensions

Let us begin with the case without central extensions. In
this case, the transformation rules of local fields are
determined by their local rotation charge and scaling
dimension. Suppose that a local field ΦðxÞ follows a
representation ~Σmn and has a scaling dimension ΔΦ, where
~Σmn is projected on to the spatial direction: ~Σ0n ¼ ~Σm0 ¼ 0.
It is then transformed as24

δΦ ¼ ΔΦλðxÞΦþ 1

2
ωmn⊥ ðxÞ ~ΣmnΦþ ϵμðxÞ∇μΦ; ðA45Þ

where ωmn⊥ ¼ ~emμ ~enνω
μν
⊥ . The covariant derivative is

defined by

∇μΦ ¼ ∂μΦþ 1

2
Smn
μ

~ΣmnΦ ¼ ∂μΦþ 1

2
~Smn
μ

~ΣmnΦ; ðA46Þ

24Note that fields with coordinate indices can be decomposed
into local fields following some representations of local rotations,
by using the vierbein. For example, a gauge field Aμ can be
decomposed as

Aμ ¼ −nμA∥ þ Aμ
⊥ ¼ nμA0 þ ~eμmAm⊥: ðA44Þ

Here, A∥ ¼ −A0 and Am⊥ are a scalar and a spatial vector,
respectively, and their transformation rules follow fromEq. (A45).
In this way, any local field can be expressed in terms of local
fields with the transformation rule (A45), the timelike vector nμ,
the spatial induced metric hμν, and the spatial dreibein ~eμm.
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where ~Smn
μ is given by Eq. (A30). Rewriting Eq. (A45) as

δΦ ¼ ΔΦλðxÞΦþ 1

2
ðωmn⊥ ðxÞ þ ϵμðxÞ ~Smn

μ ðxÞÞ ~ΣmnΦ

þ ϵμðxÞ∂μΦ; ðA47Þ

we notice that the three terms can be thought of as
anisotropic Weyl transformations, local rotations, and
diffeomorphisms. Since the transformation rule of Φ under
anisotropic Weyl transformations, local rotations, and
diffeomorphisms is given by

anisotropic Weyl∶ δΦ ¼ ΔΦ
~λΦ;

local rotation∶ δΦ ¼ 1

2
~ωmn⊥ ~ΣmnΦ;

diffs∶ δΦ ¼ ~ϵμ∂μΦ; ðA48Þ

the transformation (A47) can be reproduced by the param-
eter choice,

~λ ¼ λ; ~ωmn⊥ ¼ ωmn⊥ þ ϵμ ~Smn
μ ; ~ϵμ ¼ ϵμ; ðA49Þ

where ~λ, ~ωmn⊥ , and ~ϵ are transformation parameters of
anisotropic Weyl transformations, local rotations, and
diffeomorphisms, respectively. Similarly, the transforma-
tion rule of hμν, ~eμm, and nμ under local symmetries are
given by

anisotropic Weyl∶ δhμν ¼ 2~λhμν; δ~eμm ¼ ~λ~eμm;

δnμ ¼ z~λnμ; ðA50Þ

local rotation∶ δhμν ¼ 0; δ~eμm ¼ ~ω⊥m
n ~eμn; δnμ ¼ 0

ðA51Þ

and Eqs. (A26)–(A28), where z is the dynamical exponent.
It then turns out that the spatial induced metric hμν and the
spatial dreibein ~eμm, (hij, ~emi , and δnμ also) are invariant
under the (global) nonrelativistic spacetime symmetry
transformation given by the parameter choice (A49). On
the other hand, however, the timelike vector is not invariant
and transforms as

δnμ ¼ bμþ: ðA52Þ

b. Central extension

We then consider the case with the central extension. In
this case, spacetime symmetries can generate internal Uð1Þ
transformations as well as spacetime ones, just as Galilei
boosts do. Using the notation in Sec. VI A, let us write such
spacetime symmetries as

ϵμðxÞ∂μ þ αðxÞM; ðA53Þ

where M is the internal Uð1Þ generator and αðxÞ is the
corresponding parameter. For example, the Galilei boost
viBi can be expressed as ϵt ¼ 0, ϵi ¼ vit, and α ¼ −vixi, as
we illustrated in Sec. A. 3. When a local field Φ has an
internal Uð1Þ charge im, the transformation rule (A45) is
extended to

δΦ ¼ λðxÞΔϕΦþ 1

2
ωmn⊥ ðxÞ ~ΣmnΦþ ϵμðxÞ∇μΦþ imαðxÞΦ:

ðA54Þ

Also, the internal Uð1Þ gauge field is transformed as

δAμ ¼ Aν∇μϵ
ν þ ϵρ∇ρAμ − ∂μα: ðA55Þ

Note that the transformation rule of the temporal compo-
nent and the spatial projection of the gauge field is given by

δA∥ ¼ zλA∥ þ ϵμ∂μA∥ − nμ∂μα; ðA56Þ

δA⊥m ¼ λA⊥m þ ω⊥m
nA⊥n þ ϵρ∇ρA⊥m − ~eμm∂μα; ðA57Þ

of which the dependence on λ, ω⊥m
n, and ϵμ is consistent

with Eq. (A45). Since the internal Uð1Þ gauge trans-
formations of Φ and Aμ are given by

δΦ ¼ im ~αΦ; δAμ ¼ −∂μ ~α; ðA58Þ

the (global) nonrelativistic spacetime symmetry transfor-
mation can be reproduced by the parameter set ~α ¼ α and
Eq. (A49), where ~α is the internal Uð1Þ gauge trans-
formation parameter. Note that the transformation rule of
hμν, ~eμm, and nμ is the same as the case without central
extensions: Under the (global) nonrelativistic spacetime
symmetry transformation, the spatial metric and dreibein
are invariant, but the timelike vector transforms as (A52).
To summarize, the transformation rule (A54) of standard

matter fields can be naturally reproduced by embedding
global nonrelativistic spacetime symmetries into diffeo-
morphisms, local rotations, anisotropic Weyl symmetries,
and internal Uð1Þ gauge symmetries associated with the
central extension. Identification of symmetry breaking
patterns and the corresponding NG fields should therefore
be based on those local symmetries: When the condensa-
tion is spacetime dependent, diffeomorphism invariance is
broken. The local rotation symmetry, the anisotropic Weyl
symmetry, and the internal Uð1Þ symmetry are broken
when the condensation has a rotation charge, scaling
dimension, and internal Uð1Þ charge, respectively. The
effective action construction can then be performed in a
similar way to the relativistic case, by gauging those local
symmetries. This is one point of this Appendix.
It should be also noted that the timelike vector nμ and the

internal Uð1Þ gauge field Aμ transform nonlinearly under
nonrelativistic spacetime symmetries with nonvanishing bþμ
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and ∂μα. This situation is similar to the Weyl gauge field
Wμ in conformal systems. As we mentioned in Sec. II C,
when we performWeyl gauging in conformal field theories,
the Weyl gauge field Wμ appears in a particular combina-
tion because it is not special conformal invariant by itself.
In the next subsection, we will illustrate that a similar
situation occurs for nμ and Aμ in Galilei boost invariant
systems.

5. Gauging nonrelativistic spacetime symmetries

We then summarize how global nonrelativistic space-
time symmetries can be gauged into local ones. First, the
diffeomorphism symmetry, local rotation symmetry, and
internal Uð1Þ gauge symmetry associated with the central
extension can be realized by introducing covariant
quantities nμ, hμν, and ~eμm introduced in Appendix A. 1
and the gauge field Aμ. For example, the free fermion
action,

S ¼
Z

d4x

�
iψ�∂tψ −

1

2m
j∂iψ j2

�
; ðA59Þ

can be reformulated as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
inμψ�ð∇⟷μ þ imAμÞψ

−
1

2m
hμνð∇μ − imAμÞψ�ð∇ν þ imAνÞψ

�
; ðA60Þ

where the covariant derivative ∇μ is defined by Eq. (A46)

and ψ� ∇⟷μψ ≡ ψ�∇μψ − ð∇μψ
�Þψ . This curved space

action enjoys the full diffeomorphism symmetry, the
local rotation symmetry, and the internal Uð1Þ gauge
symmetry. Note that the original action (A59) can be
reproduced by setting that

hμν ¼ ημν þ δμ0δ
ν
0; nμ ¼ δμ0; Aμ ¼ 0: ðA61Þ

As we mentioned in the pervious subsection, the above
conditions are not invariant under the global symmetries
with bþμ ≠ 0, ∂μα ≠ 0, or both. Indeed, under a finite
Galilei boost,

ψ 0ðxÞ ¼ eimαðxÞψðxþ ϵÞ with ϵt ¼ 0;

ϵi ¼ vit; α ¼ −vixi −
1

2
v2t; ðA62Þ

the timelike vector nμ and the gauge field Aμ are
transformed as

n0μðxÞ ¼ nμðxþ ϵÞ − δμi v
intðxþ ϵÞ;

A0
μðxÞ ¼ Aμðxþ ϵÞ þ δtμ

�
viAiðxþ ϵÞ þ 1

2
v2
�
þ δiμvi;

ðA63Þ

which breaks the conditions (A61). This situation is
similar to the special conformal transformation of the
Weyl gauge field Wμ. Similarly to the previous case, by
rewriting the action (A60) as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
iðnμ þ hμνAνÞðψ� ∇⟷μψÞ

−
m
2
ð2nμAμ þ hμνAμAνÞjψ j2 −

1

2m
hμν∇μψ

�∇νψ

�
;

ðA64Þ

we notice that nμ and Aμ appear in the following
combinations:

nμ þ hμνAν; 2nμAμ þ hμνAμAν; ðA65Þ

which are Galilei boost invariant. Note that such combi-
nations are known to be Milne boost invariant in the
context of the Newton–Cartan geometry. See, e.g.,
Ref. [72,73] for details.
Finally, let us consider the anisotropic Weyl symmetry.

Just as the Ricci gauging in relativistic systems, it is known
to be possible to introduce anisotropic Weyl invariant
curved space actions for some class of nonrelativistic
conformal theories. If such a procedure cannot be per-
formed, we need to introduce a gauge field Wμ just as the
Weyl gauging in relativistic systems. If the curved space
action is invariant under global anisotropic Weyl trans-
formations, we can always introduce a local anisotropic
Weyl invariant action by replacing the covariant derivative
∇μ with the Weyl covariant derivative,25

DμΦ ¼ ∇μΦþ ðΔΦδ
ν
μ − ~Σμ

νÞWνΦ; ðA66Þ

where ~Σμ
ν ¼ ~emμ Σm

n ~eνn and the local anisotropic Weyl
transformation rule is given by

Φ → Φ0 ¼ eΔΦλΦ; nμ → n0μ ¼ e−zλnμ;

hμν → h0μν ¼ e−2λhμν;

~eμm → ~e0μm ¼ e−λeμm; Wμ → W0
μ ¼ Wμ − ∂μλ: ðA67Þ

In contrast to the relativistic case, it seems not well
understood under what conditions Weyl gauging can be
converted to Ricci gauging. It would be interesting to

25See, e.g., Ref. [74] for recent discussions on the gauging of
the anisotropic Weyl symmetry.
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investigate this issue by extending the discussion [42] in
relativistic systems.

APPENDIX B: DERIVATION OF
NAMBU–GOTO ACTION

In Sec. III C, we discussed that our effective action for a
single scalar brane contains gapped modes in addition to
gapless NGmodes localizing on the brane. In this Appendix,
we show that the low-energy effective action after integrating
out massive modes is nothing but the Nambu–Goto action.
As we have discussed, the unitary gauge action for z-
diffeomorphism symmetry breaking takes the form

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½α1ðzÞð1þ gzzÞ þ α3ðzÞðδgzzÞ2

þOððδgzzÞ3Þ� with δgzz ¼ gzz − 1 ðB1Þ

at the lowest dimension. To discuss its relation to the
Nabmu–Goto action, it is convenient to rewrite

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−h

p
½2α1ðzÞ þ ~α3ðδgzzÞ2 þOððδgzzÞ3Þ�;

ðB2Þ

where h is the determinant of the induced metric, hμ̂ ν̂ ¼ gμ̂ ν̂,
on the constant z surfaces. Here, we follow the convention
in Sec. III, e.g., μ̂ ¼ t; x; y. We also introduced ~α3 ¼
1
4
α1ðzÞ þ α3ðzÞ. In the following, we show that the integra-

tion of gapped modes provides a constraint δgzz ¼ 0 and the
effective action is reduced to the Nambu–Goto action in the
low-energy regime.
For this purpose, let us first write down the second order

action for the NG field. In the unitary gauge coordinate, the
NG field for the broken z-diffeomorphism is eaten by the
metric field. The induced metric, hμ̂ ν̂, and the z-component,
gzz, are given by26

hμ̂ ν̂ðxÞ ¼ ημ̂ ν̂ þ ∂ μ̂πðxÞ∂ ν̂πðxÞ;
gzz ¼ 1þ 2∂zπ þ 3ð∂zπÞ2 þ ð∂ μ̂πÞ2 þOðπ3Þ; ðB3Þ

where note that ∂zπ appears only in gzz. The second order
action then takes the form

S2 ¼ −
1

2

Z
d4x½α1ðzÞð∂ μ̂πÞ2 þ 4~α3ð∂zπÞ2�

¼ −
1

2

Z
d4xα1

�
ð∂ μ̂πÞ2 − π

�
4~α3
α1

∂2
z þ

4~α3
0

α1
∂z

�
π

�
;

ðB4Þ

where we dropped total derivative terms. The physical
spectrum is now determined by the eigenvalue problem of
theoperator, ~α3α1 ∂2

z þ ~α3
0

α1
∂z.Note that our analysis inSec. III C

was for α1 ¼ 4~α3 ¼ β2v2

cosh4 βz in particular. There, we had two

types of physical modes: gapless modes localizing on the
brane and gapped modes propagating in the bulk. Let
us assume that such a qualitative feature holds generically
in more general setups for a single domain wall. We then
expand the NG field, π, by those modes as

πðxÞ ¼ π0ðx⊥Þ þ
X
λ

X
i¼�

πλiðx⊥ÞuλiðzÞ; ðB5Þ

where x⊥ stands for coordinates in the transverse directions,
t; x; y, and

P
λ denotes both the sum and integral over λ:uλi

(i ¼ �) stands for two eigenfunctions with the eigenvalue λ
satisfying

�
~α3
α1

∂2
z þ

~α03
α1

∂z

�
uλi þ λuλi ¼ 0 and

Z
dzα1uλþuλ− ¼ 0:

ðB6Þ

The second order action is now reduced to the form

S ¼ −
1

2

Z
dzα1ðzÞ

Z
d3x⊥ð∂ μ̂π0Þ2

−
1

2

X
λ

X
i¼�

Z
dzα1ðzÞðuλiðzÞÞ2

×
Z

d3x⊥½ð∂ μ̂πλiÞ2 þ λπ2λi �; ðB7Þ

where λ can be thought of as the mass squared in three
dimensions.Note that suchamass termoriginates fromthe ~α3
term in (B2). Also, the linear equation of motion for gapped
modes reduces to πλ� ¼ 0 in the low-energy limit, jkμ̂j2 ≪ λ.
Finally, we extend the previous discussion to the nonlinear

level and derive the Nambu–Goto action. Just as the linear
order discussions, the ~α3 term plays an important role,

−
1

2

Z
d4x

ffiffiffiffiffiffi
−h

p
~α3ðδgzzÞ2

¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−h

p
~α3ð2∂zπþ3ð∂zπÞ2þð∂ μ̂πÞ2þOðπ3ÞÞ2;

ðB8Þ

where note that the factor,
ffiffiffiffiffiffi
−h

p
, does not contain ∂zπ. As

we have discussed, the mass term for the gapped modes, πλi ,
arises from this interaction at the second order action level. If
we include higher order terms, there appear mixing inter-
actions between gapped and gapless modes. In the low-
energy limit, the equation of motion for the gapped mode is
then given by

26We define π in the unitary gauge coordinate such that
zflat ¼ z − πðxÞ, where zflat is the flat space coordinate and z
and x are the unitary gauge coordinates.
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2∂zπ þ 3ð∂zπÞ2 þ ð∂ μ̂πÞ2 þOðπ3Þ ¼ 0 ↔ gzz ¼ 1; ðB9Þ

so that the effective action for the gapless mode reduces to the Nambu–Goto type one,

Seff ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−h

p
α1ðzÞ ¼ −T

Z
d3x

ffiffiffiffiffiffi
−h

p
with T ¼ 1

2

Z
dzα1ðzÞ; ðB10Þ

where h contains gapless modes only and T can be identified with the brane tension.
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