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Polymer quantization (PQ) is a background independent quantization scheme that arises in loop
quantum gravity. This framework leads to a new short-distance (discretized) structure characterized by a
fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly
reflecting surface under the influence of Earth’s gravitational field. In this scenario, deviations from the
usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational
interaction. We solve the polymer Schrödinger equation in an analytical fashion, and we evaluate
numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative
shift compared to the one obtained for the quantum bouncer. The comparison of our results with those
obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely

λ ≪ 0.6 Å. We find polymer corrections to the transition probability between levels, induced by small
vibrations, together with the probability of spontaneous emission in the quadrupole approximation.
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I. INTRODUCTION

One of the main challenges in physics today is the search
for a quantum theory of gravity (QTG). On the theoretical
front, one of the major problems is that the introduction of
gravity into quantum field theories appears to spoil their
renormalizability, and from the experimental point of view,
the major difficulty is the lack of experimentally accessible
phenomena that could shed light on a possible route to
QTG. This situation gives rise to the possibility of the
existence of other fundamental interactions in nature [1],
thus providing a strong motivation for the study of gravity
at short ranges. Newton’s law has never been tested at
distances below 0.1 mm, thus opening the possibility of
studying additional finite-range (non-Newtonian) gravita-
tional interactions. In this scenario different phenomeno-
logical approaches have been considered, such as extra
Yukawa-type forces [2]. Theories with large extra spatial
dimensions have also been studied. A proposal consistent
with string theory is due to Arkani-Hamed, Dimoupoulos
and Dvali (ADD), in which gravity departs from Newton’s
inverse square law at scales which could be as large as a
millimeter [3]. ADD conjecture the existence of two or
more additional dimensions in which gravity, but not the
strong or electroweak forces, might be acting, diluting itself
by spreading its lines of force into these extra dimensions.
Essentially, this would explain the apparent weakness of
gravity.

Considering the progress that has been achieved recently
in neutron physics experiments, it has been proposed that
they can reveal deviations from Newton’s law at short
distances. For example, Nesvizhevsky and coworkers use
the best experimental measurements performed with neutron
scattering experiments to give constraints for the hypotheti-
cal Yukawa-type force [2], and on the other hand, Frank and
coworkers propose that slow neutron scattering off atomic
nuclei with null spin may provide an experimental test for
large extra spatial dimensional gravity [4], but no experiment
in this regard has been performed so far. Note that in these
works the authors study the quantum effects caused by an
extra short-range gravitational potential.
In this paper we adopt a more fundamental point of view.

The high energy behavior of quantum fields is intimately
connected with the structure of spacetime at short distances.
For example, loop quantum gravity (LQG) asserts that
continuous classical spacetime is replaced by quantum spin
networks at small scales. Polymer quantization (PQ) is a
background independent quantization scheme that arises in
a symmetric sector of LQG known as loop quantum
cosmology. In this program the notion of discreteness is
built in, and consequently the momentum operator is not
realized directly as in Schrödinger’s quantum mechanics,
but arises indirectly through the translation operator. PQ
has been used to study quantum gravitational corrections to
temporal dynamics [5,6] and to statistical thermodynamics
[7] of simple quantum systems. In this paper we use PQ
to study the problem of a particle bouncing on a perfectly
reflecting surface under the influence of Earth’s*alberto.martin@nucleares.unam.mx
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gravitational field (described by Newton’s law), which we
have called the “polymer bouncer.” In this scenario,
deviations from the usual quantum effects are induced
by the spatial discreteness, but not by a new short-range
gravitational interaction.
Recent high-sensitivity experiments with thermal neu-

trons free-falling in the gravitational field, called GRANIT,
demonstrate that the energy spectrum in the gravitational
field’s direction is quantized [8]. This kind of experiments
may offer an opportunity to confront observation with
signatures of quantum gravitational effects. To this end, in
Sec. II we solve the problem of the polymer bouncer in an
analytical fashion, and we evaluate numerically the corre-
sponding energy levels. The polymer-Schrödinger transi-
tion is discussed in Sec. III. In Sec. IV we predict an upper
bound to the length scale of the polymer theory by
confronting our results with the maximal precision of
the GRANIT experiment. In Secs. V and VI we find
polymer corrections for both the probability of transitions
between levels induced by small vibrations and the prob-
ability of spontaneous emission in the quadrupole approxi-
mation, respectively. Finally, our conclusions are given in
Sec. VII.

II. THE POLYMER BOUNCER

The aim of this section is to analyze the problem of a
particle bouncing on a perfectly reflecting surface under
the influence of Earth’s gravitational field using polymer
quantization. Before embarking on the solution of this
problem, we first recall some of the main results of polymer
quantization scheme.
In polymer representation the corresponding Hilbert

space Hpoly is the Cauchy completion of the set of linear
combination of the basis states fjxμ >g, with inner product
hxμjxνi ¼ δμν. The polymer Hilbert space can be written as
Hpoly ¼ L2ðRd; dμdÞ, where dμd is the corresponding Haar
measure, being Rd the real line endowed with a discrete
topology [6,7]. The basic operators in this scheme are the
position and translation operators, defined by its action on
the basis states

x̂jxμi ¼ xμjxμi; Ûλjxμi ¼ jxμ − λi; ð1Þ

respectively. In Schrödinger quantization, the operator Ûλ

is weakly continuous in λ and the momentum operator is
defined as its infinitesimal generator. However, in the
polymer representation the translation operator Ûλ fails
to achieve this condition due to the spatial discreteness and,
thus, the momentum operator is not well defined. Due to
this fact, any momentum-dependent function has to be
regularized by the introduction of a lattice of fixed positive
length [6,7]. This length is regarded as a fundamental
length scale of the polymer theory. With this regularization,
the polymer Hamiltonian can be defined as follows,

Ĥλ ¼
ℏ2

2mλ2
ð2 − Ûλ − Û−λÞ þ V̂ðxÞ; ð2Þ

where V̂ðxÞ is the potential term. The dynamics generated
by (2) decomposes the polymer Hilbert space Hpoly, into a
continuum of separable superselected subspaces, each with
support on a regular lattice γðλ; x0Þ ¼ fλnþ x0jn ∈ Zg,
with x0 ∈ ½0; λÞ. This way of choosing x0 fixes the super-
selected sector, restricting the dynamics to a lattice γðλ; x0Þ
and work on separable Hilbert space Hx0

poly consisting of
wave functions which are nonzero only on the lattice.
We now concentrate on the solution of the problem at

hand. For the purposes of this work we will make the
following physical assumptions. Firstly we consider that it
is reasonable to keep a constant value for g because the
small size of the experiments [9], and secondly we assume
that the weak equivalence principle is valid. Without loss
of generality we work on the superselected sector (of the
polymer Hilbert space) which corresponds to x0 ¼ 0.
Under these assumptions, the potential for this problem
can be taken as usual,

VðxμÞ ¼
�
mgλμ; μ > 0

∞; μ ≤ 0
; ð3Þ

where we assumed the perfectly reflecting surface located
at z ¼ 0. The energy eigenvalue equation Ĥλψμ ¼ Eψμ

becomes a difference equation, the polymer Schrödinger
equation, for the wave function ψμ in the position
representation

2εψμ ¼ 2ψμ − ψμþ1 − ψμ−1 þ υ−1μψμ; ð4Þ

where we have defined the following dimensionless
quantities,

ε ¼ mλ2E
ℏ2

; υ ¼ ðl0=λÞ3; ð5Þ

with l0 ¼ ð ℏ2

2m2gÞ1=3 the characteristic gravitational length

[10]. The appropriate solution for this problem is realized
through the following boundary conditions: ψμ must vanish
asymptotically as μ → ∞, and ψ0 ¼ 0 because of the
mirror at μ ¼ 0. Notice that if working on a different
superselected sector of the Hilbert space, namely γðλ; x0Þ
with x0 ≠ 0, the dynamics generated by the Hamiltonian
is the same, with the ground level of the bouncer shifted
from 0 to x0.
In most cases, second-order linear difference equations

with variable coefficients cannot be solved in closed form.
Fortunately, for the special case of the difference equation (4)
it is possible to obtain an analytic solution in a simple
fashion [11]. The most convenient approach for finding the
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solution of difference equations with polynomial coeffi-
cients is the method of the generating function. Let

fðζÞ ¼
Xþ∞

μ¼−∞
ψμζ

μ ð6Þ

be the generating function for the solution of Eq. (4). Note
that (6) is not a generating function in the strict sense but a
Laurent series, which is uniformly convergent, and thus we
can differentiate each term. Multiplying Eq. (4) by ζμ−1 and
summing for μ ∈ Z, the following differential equation for
the generating function is obtained,

�
d
dζ

− υ
ζ2 − 2ð1 − εÞζ þ 1

ζ2

�
fðζÞ ¼ 0; ð7Þ

for which the solution is

fðζÞ ¼ ζ−2υð1−εÞeυðζ−
1
ζÞ ¼ ζ−2υð1−εÞ

Xþ∞

μ¼−∞
Jμð2υÞζμ; ð8Þ

where we have identified the generating function for the
Bessel functions of the first kind Jn. After relabeling the
index in Eq. (8), a simple comparison with Eq. (6) shows
that the decaying solution of Eq. (4) is

ψμ ¼ NεJμþ2υð1−εÞð2υÞ; ð9Þ

where Nε is the appropriate normalization factor. By
using the recurrence relation for Bessel functions,
Jνþ1ðzÞ þ Jν−1ðzÞ ¼ 2 ν

z JνðzÞ, one can further check that
Eq. (9) correctly solves the time-independent polymer
Schrödinger equation (4). This generating function approach
is not suitable for determining the growing solution of
Eq. (4), but it is well known that the Neumann function Yμ

also satisfies the recursion equation for Bessel functions. It
does not, however, represent a physical solution for this
problem.

The second boundary condition, ψ0 ¼ 0, implies that 2υ
must be chosen as a root of the Bessel function
J2υð1−εÞð2υÞ ¼ 0, where 2υð1 − εÞ ∈ R (not necessarily
an integer). Let j½n;r� be the rth zero of the Bessel function
Jn. Then the condition

2υ ¼ j½2υð1−εÞ;n� ð10Þ

defines the quantized energy levels of the polymer bouncer
as a function of υ. Unfortunately Eq. (10) cannot be solved
analytically, but it can be studied numerically for arbitrary
values of υ. Using the quantization condition (10), we can
compute the normalization factor in a simple fashion.
One obtains

X∞
μ¼0

jψμj2 ¼ N2
ευJ1þ2υð1−εÞð2υÞJð1;0Þυð1−εÞð2υÞ ¼ 1; ð11Þ

where Jð1;0Þα ðzÞ ¼ ∂Jα0 ðzÞ∂α0 jα0¼α is the derivative of the Bessel
function with respect to its order. The substitution of Nε

into the polymer wave function Eq. (9) establishes the
normalized polymer wave function. Now we proceed with
the analysis of the polymer energy spectrum.
For the sake of simplicity, let us assume that the

gravitational length l0 is a multiple of the fundamental
length λ, i.e. l0 ¼ sλ with s ∈ Zþ. In Table I we present the
first ten energy levels of the polymer bouncer as a function
of s. We point out that these numerical estimates are good
approximations for s > 1. The case s ¼ 1 exhibits diffi-
culties arising from the polymer behavior, which we
discuss later. Our results show that the polymer energy
levels display a negative shift with respect to the energy
levels of the quantum bouncer. Such negative shift in
energy can be understood by studying the dynamics of the
polymer bouncer. The Heisenberg equation of motion for
the operator p̂λ yields

TABLE I. Estimates of the first ten (rescaled) energy levels of the polymer bouncer as a function of s.

n

s 1 2 3 4 5 6 7 8 9 10

10 0.011686 0.0204258 0.0275773 0.033895 0.0396679 0.0450452 0.0501165 0.0549412 0.0595607 0.064006
9 0.0144258 0.025213 0.0340387 0.0418346 0.0489574 0.0555915 0.0618477 0.067799 0.073497 0.0789795
8 0.0182553 0.031903 0.0430672 0.052927 0.0619345 0.0703228 0.0782324 0.0857557 0.0929579 0.0998871
7 0.0238393 0.0416556 0.056226 0.0690913 0.080842 0.0917831 0.102098 0.111907 0.121296 0.130328
6 0.0324385 0.0566692 0.0764773 0.0939613 0.109926 0.124785 0.138791 0.152107 0.164849 0.177103
5 0.0466892 0.0815348 0.110001 0.135113 0.15803 0.17935 0.199436 0.218523 0.23678 0.254331
4 0.0728877 0.127199 0.171511 0.210558 0.246155 0.279241 0.310382 0.339949 0.368205 0.395345
3 0.129331 0.22536 0.303481 0.372143 0.434588 0.492495 0.546873 0.59839 0.647516 0.694599
2 0.289409 0.501951 0.673219 0.822395 0.956849 1.1875 1.3125 1.4375 1.5625 1.625
1 1.1235 1.90471 2.50631 3.00953 3.44616 3.83292 4.18004 4.49437 4.78077 5.04291

ANALYSIS OF THE QUANTUM BOUNCER USING POLYMER … PHYSICAL REVIEW D 92, 045018 (2015)

045018-3



dp̂λ

dt
¼ i

ℏ
mg½ẑ; p̂λ� ¼ −mg cos

pλ
ℏ

≥ −mg; ð12Þ

where the inequality is established using the domain of the
momentum in the polymer case, i.e. p ∈ ½−πℏ=λ; πλ=ℏ�.
In the first order of approximation, Eq. (12) becomes
_̂pλ ≈ −mgð1 − p2λ2

2ℏ Þ. So, classically, an additional p2-
dependent force acts on the particle which decreases the
energy of the system.
Quantummechanically, the negative shift is in agreement

with the correction term of the regularized p̂2
λ operator in

the polymer theory for pλ ≪ ℏ, i.e.

p̂2
λ ≈ p2 −

λ2

12ℏ2
p4: ð13Þ

With the assumption that the fundamental length is very
small compared with the characteristic gravitational length,

λ ≪ l0, the energy shift can be roughly estimated. In first-
order perturbation theory, the energy shift becomes

Δεn ¼ −
λ4

24ℏ4
hψnjp4jψni

¼ −
m2λ4

6ℏ4
hψnjðEn −mgzÞ2jψni: ð14Þ

The averages in this expression can be easily computed by
using the quantum-mechanical wave function Eq. (A7).
The final result is

Δεn ¼ −
a2n

120s4
; ð15Þ

which is in close agreement with the results reported in
Table I. Due to the lack of precision in numerical
calculations for the case s ¼ 1 in Eq. (10), we have
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FIG. 1 (color online). Plots of the polymer (blue dots) and quantum-mechanical (red lines) density profiles for different energy levels
and different values of s.
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employed the energy shift of Eq. (15) in Table I only for
this case. The energy spectrum of a quantum bouncer also
has been studied in the generalized uncertainty principle
(GUP) framework [9]. In this case the modification induced
by a minimal length lmin on the energy spectrum is

EðGUPÞ
n ¼ −mgl0an þ α2l2mina

2
n; ð16Þ

where α2 is a GUP parameter. Note that both the polymer-
and the GUP-corrections, depend on the minimum length
and the zeros of the Airy’s function quadratically, but they
feature a sign difference. Such opposite tendency is also
present for the energy spectrum for a particle in a box, as
pointed out in Ref. [7].
Another important consequence of the commutator in

Eq. (12) is the modification of the position-momentum
uncertainty relation. We know that for two operators Â and
B̂, the identity ðΔÂÞ2ðΔB̂Þ2 ¼ jh½Â; B̂�ij2=4 holds irrespec-
tive of the quantization scheme [12]. In the polymer
framework the position-momentum uncertainty relation
reads

ðΔẑÞ2ðΔp̂λÞ2 ¼
ℏ2

4

����
�
cos

�
pλ
ℏ

�	����
2

≈
ℏ2

4

�
1 −

hp2iλ2
2ℏ2

þOðλ4Þ
�
: ð17Þ

Note that the correction term in the right-hand side is
negative definite, thus implying that the uncertainty
decreases due to the presence of λ. Equation (17) suggests
that polymer quantum mechanics at short enough wave
lengths (of the order of ∼2λ) can exhibit classical behavior.
This result has a strong resemblance to the one found, on
a different setup, by Magueijo and Smolin in deformed
special relativity [13]. In this framework, ’t Hooft has
discussed the possibility of a deterministic quantum
mechanics at Planck scale, supplemented with a dissipation
mechanism, giving rise to the standard quantum mechani-
cal behavior at larger scales [14]. Equation (17) has been
used to derive a new mass-temperature relation for
Schwarzschild (micro) black holes [15].
We conclude this section by comparing the polymer and

quantum density profiles for different energy levels and
different values of s. Hereafter we denote by ψ ðnÞ

μ the
polymer wave function of the nth state. The discrete
plot corresponds to the polymer result, and the solid
line corresponds to its quantum-mechanical counterpart.

Figures 1(a)–(c) show the ground state for s ¼ 10, 5 and 1,
respectively. Figures 1(d)–(f) show the first excited state for
s ¼ 10; 5 and 1, respectively. Figures 1(g)–(i) show the
tenth excited state for s ¼ 10; 5 and 2, respectively. We
expect a close agreement between the polymer and quan-
tum-mechanical density profiles for the case s ≫ 1; how-
ever, in Fig. 1 we observe that this occurs already for s ¼ 5.
When the gravitational length is of the order of the
fundamental length (s ¼ 1) the polymer distribution
departs from its quantum-mechanical counterpart, and
the polymer effects become important. From Fig. 1(i) we
can infer that the most significant polymer effects are for
high energies and s ¼ 1, as expected.

III. THE POLYMER-SCHRÖDINGER TRANSITION

In physics, if a new theory is considered more general
than the former, it must yield accurate results not only in the
new scale but in the former one as well. In this sense, we
know that Newtonian mechanics can be recovered from
relativistic mechanics in the domain of low velocities
compared with the speed of light in vacuum. Regarding
the quantum-classical transition the problem is more subtle,
given that the conceptual framework of these theories are
fundamentally different [16,17]. In the problem at hand one
expects that if the lattice spacing λ is taken to be sufficiently
small, the polymer formulation should reduce to the
Schrödinger representation. However, this is a delicate
issue because λ is regarded as a nonzero fundamental
length scale of the polymer theory, and it cannot be
removed when working in the polymer Hilbert space
Hpoly, no matter how small λ is [5].
The polymer-Schrödinger transition for this problem is

quite simple. Taking λ to be of the order of the Planck
length, and the value of the characteristic length for the
falling slow neutrons case l0 ¼ 5.87 μm [18], one obtains
υ ∼ 1088. Note that this approximation is valid even if we
take λ several orders of magnitude larger than the Planck
length. Therefore, the asymptotic behavior of the Bessel
functions for large arguments is required in Eq. (9). On the
other hand, the l0 ≫ λ limit also implies that we should take
a very large number of points between two arbitrary points,
i.e. μ ≫ 1. Therefore, μþ 2υð1 − εnÞ > 2υ ≫ 1, and the
asymptotic behavior of the Bessel function for large orders
is also required. The asymptotic expansion for the Bessel
functions for these conditions is well known [19]. For
n ≫ 1 and n > x, the following approximation is valid:

JnðxÞ ∼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx − nÞ

x

r �
J1=3

�f2ðx − nÞg2=3
3

ffiffiffi
x

p
�
þ J−1=3

�f2ðx − nÞg2=3
3

ffiffiffi
x

p
��

: ð18Þ
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Now by using the identity of Eq. (A5), we find

JnðxÞ ∼
�
2

x

�
1=3

Ai

��
2

x

�
1=3

ðn − xÞ
�
; ð19Þ

and by setting n ¼ μþ 2υð1 − εnÞ ≫ 1 and x ¼ 2υ ≫ 1,
we obtain

ψ ðnÞ
μ ∼

Nn

υ1=3
Ai

�
z
l0
−

En

mgl0

�
; ð20Þ

where z ¼ λμ and En is defined through Eq. (5). From this
expression we also recover the quantum-mechanical energy
spectrum as proportional to the zeros of Airy functions.
On the other hand, the normalization factor can be

approximated by using the Euler-Maclaurin formula,

X∞
μ¼0

jψ ðnÞ
μ j ∼ N2

n

υ2=3

Z
∞

0

dμAi2
�
μλ

l0
−

En

mgl0

�

¼ N2
n

l0
Ai02

�
−

En

mgl0

�
¼ 1; ð21Þ

where we have used that AiðxÞ → 0 as x → ∞ and
Ai½− En

mgl0
� ¼ 0. Substituting this result into Eq. (20), we

finally obtain

ψ ðnÞ
μffiffiffi
λ

p ∼ ψnðzÞ; ð22Þ

where ψnðzÞ is the wave function for the quantum bouncer
Eq. (A7). Note that the presence of λ−1=2 is consistent with
the fact that the Lebesgue measure has dimensions of
length while the discrete measure is dimensionless [20].

IV. COMPARISON WITH THE
GRANIT EXPERIMENT

The experimental physics of slow neutrons has under-
gone significant evolution in the last decades. Recent high-
sensitivity experiments, called GRANIT, performed by
V. V. Nesvizhevsky et al. at the Institute Laue-Langevin,
show that cold neutrons moving in a gravitational field do
not move smoothly but jump from one height to another, as
predicted by quantum theory [8]. They used an intense
horizontal beam of cold neutrons directed slightly upwards
and allowing the neutrons to fall onto a horizontal mirror.
By placing a neutron absorber above the mirror and
counting the particles as they moved the absorber up
and down, they found that neutrons are measured only
at certain well-defined heights. The experimental
average values of the two lowest critical heights (taken
from [21]) are

hexp1 ¼ ð12.2� 1.8sys � 0.7statÞ μm;

hexp2 ¼ ð21.6� 2.2sys � 0.7statÞ μm; ð23Þ

while the theoretical heights (hn ¼ −anl0) with m ¼
1.67 × 1027 Kg and g ¼ 9.806 m=s2 give

h1 ¼ 13.7 μm; h2 ¼ 24.0 μm: ð24Þ
The theoretical values are, therefore, located within the
error bars. As a consequence of the good agreement
between theory and experiment, this finding could be used
for bounding deviations from the standard theory due to an
eventual new physical mechanism. In the problem at hand,
the (negative) energy shift must satisfy the constraint

jΔEnj < ΔEexp
n ; ð25Þ

with ΔEn the energy shift given by Eq. (15) and ΔEexp
n the

maximal experimental error. The substitution of Eq. (15)
into Eq. (25) produces an upper bound for λ given by

λ2 <
60l0
mga2n

ΔEexp
n : ð26Þ

Let us discuss the possible bounds for λ. For the first two
states, we know that ΔEexp

1 ¼ 0.102 peV and ΔEexp
2 ¼

0.051 peV [21]. With this values Eq. (26) yields
λ < 10−6 m. This result tells us that the effects of the
spatial discretization would be largely unobservable in
the GRANIT experiment, even with an improvement of the
experimental precision. On the other hand, Eq. (26) sug-
gests that a better upper bound can be established if the
gravitational field is intensified by some mechanism.
Following this idea, Nesvizhevsky and coworkers have
considered the centrifugal states of neutrons, which is the
quantum analog of the so-called whispering gallery wave
[22]. They consider the scattering of cold neutrons by a
perfect cylindrical mirror with a radius of a few centimeters.
They found that neutrons are affected by a huge centrifugal
accelerations of the order 105–107 g. Most neutrons enter-
ing at a tangential trajectory are deviated to small angles.
However, some neutrons could be captured into long-living
centrifugal states [23]. In the limiting case we are consid-
ering here (λ ≪ l0) our results can be applied to the
centrifugal quasistationary states, but not in the polymer
regime (λ ∼ l0) [24]. The implementation of this centrifugal
acceleration into Eq. (26) yields λ < 0.6 Å, which in turn is
greater than the mean square neutron radius rn ∼ 0.8 fm,
thus implying that actually this limit should be read as
λ ≪ 0.6 Å. This is the best bound we can establish on the
fundamental length of the polymer theory with respect to
the best measurements performed in the GRANIT experi-
ment. It is worth mentioning that, although far from the
expected value for λ, this bound improves by 3 orders of
magnitude the bound obtained when polymer corrections

A. MARTIN-RUIZ, L. F. URRUTIA, AND A. FRANK PHYSICAL REVIEW D 92, 045018 (2015)

045018-6



are compared with other experiments. For example, the
authors in Ref. [25] analyze the properties of a one-
dimensional polymer Bose-Einstein condensate trapped
in a harmonic oscillator potential, within the semiclassical
approximation, and they found λ < 10−8 m.

V. TRANSITIONS INDUCED BY
SMALL VIBRATIONS

It is commonly believed that λ is in the order of the
Planck length ∼10−35 m (no known data substantiate this
conjecture), which is 1024 times smaller than the upper
bound we established in the previous section. Therefore,
our results are not yet feasible for the energy scales of
present experiments, but they motivates the search of other
mechanisms that could provide a better bounds for the
fundamental length.
Although the quantum states of the bouncing neutron are

fundamentally stable, various physical effects can induce
transitions. In this framework, vibrations and waviness of
the mirror surface have been analyzed in Ref. [18]. The
purpose of this section is to study whether the polymer
quantization scheme induces corrections to the probability
of transition between states that could be significant for
detecting quantum gravitational effects.
Let us assume that the mirror vibrates with a time-

dependent height described by a time-dependent function
hðtÞ with support on the equispaced lattice γðλÞ ¼
fλnjn ∈ Zþg. By performing the transformation

μ0 ¼ μ − hðtÞ; ϕμ0 ðtÞ ¼ ψμðtÞ; ð27Þ

the modified polymer Schrödinger equation becomes

iℏ
∂
∂tϕμ0 ¼ −

ℏ2

2mλ2
ðϕμ0þ1 − 2ϕμ0 þ ϕμ0þ1Þ þmgλμ0ϕμ0

þ
�
mgλhþ i _h

ℏ
2λ

ðÛλ − Û−λÞ
�
ϕμ0 ; ð28Þ

where _h is the time derivative and Ûλ the translation
operator. We observe that this equation consists of the
standard polymer Schrödinger equation for the polymer
bouncer (4) plus an effective perturbation potential,

V̂ ¼ mgλhþ i _h
ℏ
2λ

ðÛλ − Û−λÞ: ð29Þ

Note that the first term provides no transition between
quantum levels because it is position-independent, but
clearly the matrix elements of the second term relates
polymer wave functions with different quantum numbers,
and can lead to transitions. In first-order perturbation
theory, the probability of the corresponding transition after
an observation time T is equal to

Pn→mðTÞ ¼
1

ℏ2

����
Z

T

0

VnmðtÞdt
����
2

¼
�
Pnm

ℏ

�
2
����
Z

T

0

_he−iðEn−EmÞt=ℏdt
����
2

; ð30Þ

with Pnm ¼ i ℏ
2λ T nm, where the matrix elements

T nm ¼
X∞
μ¼0

ψ ðnÞ
μ ðÛλ − Û−λÞψ ðmÞ

μ ð31Þ

encode the transition between states. In Appendix B we
explicitly evaluate these matrix elements in a simple
fashion. The result is

2ðεn − εmÞT nm ¼ 1

2
ψ ðnÞ
1 ψ ðmÞ

1 − υ−2
X∞
μ¼0

μψ ðnÞ
μ ψ ðmÞ

μ ; ð32Þ

where εn are the polymer energy levels reported in Table I
and υ is defined in Eq. (5). Now we focus on the quantum
regime. In the limiting case λ ≪ l0 this equation becomes

Pnm ≈ i
mg
ωnm

�
1þ ð−1Þn−m g

2l0ω2
nm

�
λ

l0

�
3
�
; ð33Þ

where ωnm ¼ ðEn − EmÞ=ℏ is the quantum-mechanical
angular transition frequency. On the other hand, the integral
in (30) makes no polymer corrections to the transition
probabilities, but it depends on the level of vibration noise
in the spectrometer. Therefore, the lowest-order polymer
correction to the probability of transition is proportional to
s−3. In the GRANIT experiment an accelerometer which
is sensitive in the frequency range from 0 to 500 Hz, has
been used to study the transition between the six lowest
gravitational neutron quantum states [18]. Unfortunately,
this implies that the correction term in Eq. (33) would be
strongly suppressed in the GRANIT experiment. However,
it could in principle be used to establish an alternative
bound for λ. For comparison with experimental results, we
write the probability of transition per unit time in terms of
the vertical acceleration of the mirror

pa
n→m ≃

�
mg
ℏ

�
2 1

ω4
nm

�
1þ ð−1Þn−m g

l0ω2
nm

�
λ

l0

�
3
�
SaðωnmÞ;

ð34Þ

where

SaðωÞ ¼ lim
T→∞

1

T

����
Z

T

0

ḧeiωtdt

����
2

ð35Þ

is the acceleration power spectrum [18]. The lifetime for the
nth level can be calculated, summing the contributions (34)
for all transitions, namely τ−1n ¼ P

m≠np
a
n→m. In the
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problem at hand, the polymer quantum levels lifetime are
given by

τn ¼
tn

1þ tnΩnυ
−3 ; ð36Þ

where tn is the expected lifetime of the nth neutron
gravitational quantum state due to vibrations of the mirror
(tn ∼ 104 s) [18] and

Ωn ¼
�
mg
ℏ

�
2 g
l0

X
m≠n

ð−1Þn−m SaðωnmÞ
ω6
nm

: ð37Þ

As in the previous section, we can use this equation to
establish an upper bound for the fundamental length as a
function of the best precision measurements, i.e. Δtn <
Δtexpn with Δtn ¼ τn − tn. We obtain

λ3 < l30
Δtexpn

t2njΩnj
; ð38Þ

where Δtexpn is the maximal experimental error in the
measurement of tn. Now we perform a numerical analysis
based on the data reported in [18] for the neutron lifetimes
of neutron gravitational quantum states due to vibrations
of the mirror. First we assume that the maximal error bar in
the measurements of t1 ¼ 105 s (the larger lifetime) is in
the same order that for the β decay time, i.e. Δtexpn ∼ 1 s.
The best precision measurement of the β decay time of the
neutrons is about ð878.5� 0.7stat � 0.3sysÞ s. In order to
evaluate Ω1, we assign the average acceleration power
spectrum S̄aðωnmÞ ∼ 10−10 m2Hz3 to all possible transi-
tions. A numerical evaluation of the sum appearing in
Eq. (37) gives Ω1 ∼ 10−3 Hz. With these values, Eq. (38)
yields again λ < 10−6 m. This upper bound is in the same
order as that obtained in the previous section when
confronted with the GRANIT experiment for thermal
neutrons free-falling in the gravitational field. With an
improvement of the experimental precision in time mea-
surements, a better upper bound can be achieved.

VI. TRANSITION RATE OF A
POLYMER BOUNCER

The observation of spontaneous decay of an excited state
in the GRANIT experiment would be of interest, since it
would be a Planck-scale physics effect. This decay rate is
too low, as estimated in Ref. [26]. Since the spectrum of a
polymer bouncer is slightly shifted respect to the standard
energy spectrum (15), we expect the rate of this decay will
change as a trace of quantum gravitational effects via the
short-distance (discretized) structure at high energies.
Nevertheless, although the polymer correction to the decay
rate is expected to be extremely low, it is of conceptual and
theoretical interest to estimate it. In what follows we

discuss this issue, and we present the detailed calculations
in Appendix C.
The quantum-mechanical transition rate for a bouncer to

make a transition k → n, in the quadrupole approximation, is

Γk→n ¼
4

15

ω5
kn

M2
plc

4
Q2

kn; ð39Þ

where Mpl is the Planck mass, ωkn is the angular frequency
of transition and Qkn ¼ mhψkjz2jψni is the quadrupole
moment of transition [26]. In the polymer framework, the
first λ-dependent contribution is due to the shift in energy,
and the second one arises from the polymer quadrupole
moment. For the two lowest quantum states, we find that the
probability of spontaneous graviton emission (at lowest
order in λ) is

Γλ
2→1 ≃ Γ2→1

�
1þ 1

2

λ2

l20

�
: ð40Þ

So, there is a theoretical difference in the probability of
spontaneous graviton emission due to the spatial “grainy”
structure. Although this phenomenon is further away to be
detected in the laboratory (even the quantum-mechanical
result), it is interesting from the conceptual point of view
because the spontaneous decay of an excited state would be a
true Planck-scale physics effect.

VII. CONCLUSIONS

In the present work, we have investigated the problem
of a particle subject to the Earth’s gravitational field
(described by Newton’s law) but assuming that space is
quantized, as suggested by various candidates to quantum
theory of gravity (such as LQG, string theory, and non-
commutative geometries). In this scenario, deviations from
the usual quantum effects are induced by the spatial
discreteness, but not by a new short-range gravitational
interaction as in Refs. [2,4]. We have called this problem
“polymer bouncer” for obvious reasons. We solved the
polymer Schrödinger equation in an analytical fashion, and
we evaluated numerically the corresponding energy levels.
We showed that the polymer energy spectrum is in close
agreement with that obtained by using perturbation theory,
supporting the hypothesis that λ ≪ l0 in the quantum
domain.
The implications of the introduction of a nonzero

fundamental length scale in quantum theory are quite
profound. For example, there is a belief that if quantum
gravity effects are taken into account, the Heisenberg
uncertainty relations should be modified. In polymer
quantization the problem is subtle because of notion of
discreteness. Unlike GUP theories, in PQ there is no
deformation of the algebra of the observables; rather, the
Hilbert space is such that the momentum operator is

A. MARTIN-RUIZ, L. F. URRUTIA, AND A. FRANK PHYSICAL REVIEW D 92, 045018 (2015)

045018-8



realized only indirectly through the translation operator. In
Sec. II we found that polymer quantum mechanics at short
enough wave lengths can exhibit classical behavior, resem-
bling the one found in a different context by Magueijo and
Smolin in deformed special relativity. This finding is also in
agreement with ’t Hooft’s proposal about the possibility of
a deterministic quantum mechanics at Planck scale.
Experiments with thermal neutrons free-falling in the

gravitational field may offer an opportunity to test obser-
vations with signatures of quantum gravitational effects. In
this frame, we have established an upper bound for the
fundamental length of the polymer theory by confronting
our results with the best measurements performed in the
GRANIT experiment, namely λ ≪ 0.6 Å. It is commonly
believed that λ is of the order of the Planck length
∼10−35 m (no known data substantiate this conjecture),
which is 1024 times smaller than the upper bound we
established. Therefore, our results are far away for the
energy scales of present experiments, but they motivate the
search of other mechanisms that could provide a better
bound for the fundamental length. In Sec. V we studied the
polymer corrections to the transitions induced by small
vibrations, and we found an upper bound of the same order
as that obtained in Sec. IV. In both cases, we established a
relation for the upper bound as a function of the maximal
experimental error performed in the GRANIT experiment.
The improvement of the precision in such experimental
methods will produce better bounds according to Eqs. (26)
and (38). For completeness, in Sec. VI we briefly studied
the polymer corrections to the quantum-mechanical tran-
sition rate for a bouncer to make a transition k → n. This
phenomenon, although far away from the possibility of
detection in the laboratory (even the quantum-mechanical
result), is interesting from a conceptual point of view, since
the spontaneous decay of an excited state would be a
Planck-scale physics effect.
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APPENDIX A: THE QUANTUM BOUNCER

In this section we recall briefly the problem of a particle
of mass m bouncing on a perfectly reflecting surface under
the influence of gravity, that is, of a particle in the potential

VðzÞ ¼
�
mgz; z > 0

∞; z ≤ 0
; ðA1Þ

where g is the Earth’s gravitational field strength near the
surface. The wave function ψðzÞ of a quantum bouncer
obeys the stationary Schrödinger equation for the vertical
motion along the z axis:

−
ℏ2

2m
∂2ψ

∂z2 þmgzψ ¼ Eψ : ðA2Þ

The solution must obey the following boundary conditions:
ψðzÞ must vanish asymptotically as z → ∞, and
ψðz ¼ 0Þ ¼ 0 because of the presence of the mirror at
z ¼ 0. Making the change of variables x ¼ z

l0
− E

mgl0
, where

l0 ¼ ð ℏ2

2m2gÞ1=3 is the characteristic gravitational length,

Eq. (A2) can be written as

d2ψ
dx2

¼ xψ : ðA3Þ

The general solution to Eq. (A3) can be written in terms of
the Airy functions, AiðxÞ and BiðxÞ. Since the function
BiðxÞ goes to infinity as its arguments grows, it is not
an acceptable solution for this problem, where z is
unbounded from above. Then, the solution is of the form
ψðxÞ ¼ NAiðxÞ, where N is an appropriate normalization
factor. The second boundary condition, ψðz ¼ 0Þ ¼
NAið− E

mgl0
Þ, establishes the quantized energy levels of

the stationary states

En ¼ −mgl0an; ðA4Þ

where an is the nth zero of the Airy function. The sequence
of zeros of the Airy function has no simple analytic
expression, but fairly good approximations can be
obtained. For negative arguments, the Airy function is
related to the Bessel functions by

Aið−yÞ ¼
ffiffiffi
y

p
3

½J1=3ðξÞ þ J−1=3ðξÞ�; ðA5Þ

where ξ ¼ 2
3
y3=2. For the zeros AiðanÞ ¼ 0, one obtains the

following approximate solution:

an ≈ −
�
3π

2

�
n −

1

4

��
2=3

: ðA6Þ

It is accurate within 1%, even for n ¼ 1, and it is exact in
the semiclassical limit n ≫ 1. Substitution of (A6) into
(A4) establishes a good approximation for the energy
spectrum.
The wave function for the nth (nondegenerate) state

reads
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ψnðzÞ ¼ NnAi

�
an þ

z
l0

�
θðzÞ; ðA7Þ

where θðzÞ is the Heaviside step function, and Nn is
determined from the normalization condition,

Z
∞

0

jψnðzÞj2dz ¼ N2
nl0

Z
∞

an

Ai2ðyÞdy

¼ N2
nl0Ai02ðanÞ ¼ 1: ðA8Þ

APPENDIX B: MATRIX ELEMENTS T mn

To calculate the matrix element T mn of Eq. (31), we start
with the polymer Schrödinger equation (4) expressed in
terms of the translation operator,

2εnψ
ðnÞ
μ ¼ ð2 − Ûλ − Û−λÞψ ðnÞ

μ þ υ−1μψ ðnÞ
μ : ðB1Þ

One can multiply (B1) by ðÛλ − Û−λÞψ ðmÞ
μ and multiply the

polymer Schrödinger equation for the wave function by

ðÛλ − Û−λÞψ ðnÞ
μ to sum them and to calculate the sum for

μ ∈ Zþ. The result is

2
X∞
μ¼0

½εnψ ðnÞ
μ ðÛλ − Û−λÞψ ðmÞ

μ þ ðn ↔ mÞ�

¼
X∞
μ¼0

½ðÛλ − Û−λÞψ ðnÞ
μ ð2 − Ûλ − Û−λÞψ ðmÞ

μ þ ðn ↔ mÞ�

þ υ−1
X∞
μ¼0

μ½ψ ðnÞ
μ ðÛλ − Û−λÞψ ðmÞ

μ þ ðn ↔ mÞ�: ðB2Þ

The left-hand side (LHS) can be computed by using the
following simple result:

X∞
μ¼0

ψ ðnÞ
μ Û�λψ

ðmÞ
μ ¼

X∞
μ¼0

ψ ðmÞ
μ Û∓λψ

ðnÞ
μ : ðB3Þ

So we obtain

LHS ¼ 2ðεn − εmÞ
X∞
μ¼0

ψ ðnÞ
μ ðÛλ − Û−λÞψ ðmÞ

μ

¼ 2ðεn − εmÞT nm; ðB4Þ

where T nm is the required matrix element (31). The first
term RHS1 in the right-hand side of Eq. (B2) can be studied
as follows. We know that to the lowest order in λ, we have
Ûλ − Û−λ ≃−2λ ∂

∂z and 2− Ûλ − Û−λ ≃−λ2 ∂2
∂z2. Therefore,

the following approximation is valid:

RHS1¼
X∞
μ¼0

ðÛλ−Û−λÞψ ðnÞ
μ ð2− Ûλ−Û−λÞψ ðmÞ

μ þðn↔mÞ;

≃ −1
4
ðÛλ− Û−λÞ½ðÛλ− Û−λÞψ ðnÞ

μ ðÛλ− Û−λÞψ ðmÞ
μ �;

¼−
1

2
ðÛλ− Û−λÞψ ðnÞ

0 ðÛλ− Û−λÞψ ðmÞ
0 : ðB5Þ

Note that in this case RHS1 ¼ − 1
2
ψ ðnÞ
1 ψ ðmÞ

1 because the

boundary condition ψ ðnÞ
0 ¼ 0. Nevertheless, in the limiting

case λ ≪ l0 becomes RHS1 ¼ −2λ3ψ 0
nð0Þψ 0

mð0Þ, where ψn
is the quantum mechanical wave function Eq. (A2).
For computing the second term RHS2 in the right-hand

side of Eq. (B2), we use the formula

X∞
μ¼0

μψ ðnÞ
μ Û�λψ

ðmÞ
μ ¼

X∞
μ¼0

ψ ðmÞ
μ ðμ∓1ÞÛ∓λψ

ðnÞ
μ : ðB6Þ

The term RHS2 can be written as

RHS2 ¼ −υ−1
X∞
μ¼0

ψ ðnÞ
μ ðÛλ þ Û−λÞψ ðmÞ

μ : ðB7Þ

After multiplying the Schrödinger equation (B1) by the

wave function ψ ðmÞ
μ and performing the sum for μ ∈ Zþ,

one obtains

X∞
μ¼0

ψ ðnÞ
μ ðÛλ þ Û−λÞψ ðmÞ

μ ¼ υ−1
X∞
μ¼0

μψ ðnÞ
μ ψ ðmÞ

μ ; ðB8Þ

where the orthogonality of the polymer wave functions has
been used. Then RHS2 becomes

RHS2 ¼ −υ−2
X∞
μ¼0

μψ ðnÞ
μ ψ ðmÞ

μ : ðB9Þ

The substitution of (B4), (B5) and (B9) into (B2) estab-
lishes Eq. (32).
In the quantum-mechanical regime λ ≪ l0, we approxi-

mate the sum appearing in Eq. (32) by using the Euler-
Maclaurin formula,

X∞
μ¼0

μψ ðnÞ
μ ψ ðmÞ

μ ≃ 1

l0

Z
∞

0

zψnðzÞψmðzÞdz ¼
2ð−1Þn−m
ðan − amÞ2

¼ 2ð−1Þn−m
�
mgl0
ℏωnm

�
2

; ðB10Þ

where an is the nth zero of the Airy function and ωnm ¼
ðEn − EmÞ=ℏ is the quantum-mechanical angular transition
frequency. As discussed in this section, Eq. (B4) becomes
RHS1 ¼ −2λ3ψ 0

nð0Þψ 0
mð0Þ for λ ≪ l0. These results estab-

lish the required matrix elements Pnm [Eq. (33)] at
quantum level.
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APPENDIX C: TRANSITION RATE
OF A POLYMER BOUNCER

In this section we present the calculations of the transition
rate of a polymer bouncer. The polymer transition frequency
(in the first-order approximation), ωλ

kn, is given by

ωλ
kn ¼ ωkn

�
1 −

ak þ an
60s2

�
: ðC1Þ

This formula is obtained with the help of Eq. (15). On the
other hand, we must evaluate the polymer quadrupole

moment Qλ
kn ¼ mλ2

P
μμ

2ψ ðkÞ
μ ψ ðnÞ

μ . To this end we use
first-order perturbation theory. The perturbation shifts the
wave function to

jΨnðλÞi ¼ jψni −
λ2

24mℏ2

X
k≠n

hψkjp4jψni
En − Ek

jψki; ðC2Þ

where p is the standard quantum-mechanical momentum

operator. By using the Hamiltonian, H ¼ p2

2m þmgz, the
first-order shift in the wave function becomes

jΨnðλÞi ¼ jψni −
�
λ

l0

�
3X
l≠n

ð−1Þl−nFlnjψ li; ðC3Þ

where we have defined

Fln ¼
1

3ðak − anÞ3
�
an −

6

ðak − anÞ2
�
: ðC4Þ

For the evaluation of the expectation value appearing in
Eq. (C2) we have used the well-known results

hψkjzjψni ¼
2ð−1Þn−k
ðak − anÞ2

l0;

hψkjz2jψni ¼
24ð−1Þk−n−1
ðak − anÞ4

l20: ðC5Þ

With the help of Eq. (C3), the polymer quadrupole moment
can be written in terms of the quantum-mechanical quandru-
pole moment (Qkn ¼ mhψkjz2jψni) as follows:

Qλ
kn ≃Qkn

−
�
λ

l0

�
2
�X

l≠k
ð−1Þl−kFlkQkn þ

X
l≠n

ð−1Þl−nFlnQkl

�
:

ðC6Þ

The substitution of Eqs. (C1) and (C6) into Eq. (39) produces
a general expression for the transition rate of a polymer
bouncer. For the transition between the two lowest quantum
states, 2 → 1, we can evaluate numerically the sums involved
in Eq. (C6). The approximate final result is Eq. (40).
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