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The fermion and total currents generated by a gauge field are derived in the framework of a self-
consistent consideration of the Dirac and Yang-Mills equations. Under the condition of gauge invariance,
the obtained currents are found to be expressible in terms of the massive vector field generated by the initial
gauge field. The mass of this vector field depends strongly on the occupancy numbers of the fermion
subsystem, whereas the arisen mass term holds the gauge invariance of the modified Lagrangian. We show
that such a modified Lagrangian can be reduced to the pure gluodynamic Lagrangian containing a mass
term. By breaking the initial SUðNÞ symmetry, we derive the Lagrangian governing the dynamics of the
massive scalar particles, which can be treated as the octet of the pseudoscalar mesons. The contribution of
both the quark-gluon interaction and the self-interaction gluon field to the masses of the octet particles is
considered. Provided that the hadronization of the confinement matter into the pion triplet occurs, the QCD
coupling constant is evaluated in this case in the developed model.
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I. INTRODUCTION

Schwinger pointed out the importance of the gauge
invariance of a fermion current in the ð1þ 1Þ quantum
electrodynamics (QED2) for the first time [1,2]. The
calculated fermion current is found to be expressible in
terms of some massive field. On the other hand, it was
shown [3] that, in the non-Abelian case, a Fermi theory
in ð1þ 1Þ dimensions is also equivalent to the local
boson theory.
The two-dimensional physics has been further developed

in papers [4–6] which are particularly devoted to the
derivation of the spectra of observable mesons [4–6] and
baryons [4]. In terms of the QCD2 action integral, it is
shown [4–6] that the meson mass is approximately propor-
tional to the square root of the number of colors and flavors.
The systematic presentation of the two-dimensional quan-
tum field theory is given in Ref. [7].
Another application of the ð1þ 1Þ physics [1–3] is the

idea of the so-called flux tube model [8–10] in QCD which
was put forward to describe the production of observable
hadrons in the eþe− annihilations, p − p, and A − A
collisions at high energies [8,11–14]. Despite the obvious
successes of the QCD2 concept in treating experimental
results, the problem of how to describe the states of
observable particles in the realistic QCD4 dynamics has
still been one of the most important problems in strong
interaction physics. There has also been, concurrently, a
natural development of the QCD2 models [1–6,8–14].
The dynamics of particles in QCD4 is vastly more

complicated than the QCD2 case because of an increasing
number of dimensions of the studied problem. In this way,
it is reasonable to think that, as in the QCD2 case,
interaction of fermions with a gauge field can be expressed
in terms of the massive gauge field. However, in calculating

the total mass of a gauge field, which is important in
developing the hadronization model, we have to take into
account another source of the gauge field mass: the self-
interacting non-Abelian field.
The problem of a gluon mass was repeatedly raised

[15–36], mainly in the context of studying the low
momentum properties of a gluon propagator in pure
Yang-Mills theory. The earliest considerations of this
problem concern deriving the gauge glueball spectrum in
a variational approximation [15,16], and discovering the
Gribov copies [17]. The latter [17] particularly leads to the
necessity of a cutoff in the path integral in the configuration
space and, as a consequence, results in an arising of the so-
called Gribov mass. Based on the localization idea [21–23],
the results [15–17] were further developed in papers
[18–20], where the dynamic gluon mass was found to
be aside from the Gribov one [17]. The last investigations
of the gluon propagator at low momentum [24–36], which
also include the lattice studies [24,27,32,35], show that the
inverse gluon propagator always has a nonvanishing
asymptote at small momentum, which is regardless of
analytical properties of the propagator studied in various
models. Such a behavior of the gluon propagator is
reasonably interpreted as a gluon mass.
In the present paper a self-consistent solution of the

Dirac equation in a non-Abelian gauge field is obtained in
the absence of the additional restrictions [37–39] to the
field structure, which are the consideration of the Dirac
equation either in the field of the non-Abelian plane wave
[38,39], or in the framework of the two-dimensional QCD
[37]. On the basis of the derived formal solution of the
Dirac equation, the fermion and total currents are obtained
in an explicit form. The derived currents are found to be
expressible in terms of the massive vector field, generated
in the result of interaction between fermions and gauge

PHYSICAL REVIEW D 92, 045017 (2015)

1550-7998=2015=92(4)=045017(11) 045017-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.045017
http://dx.doi.org/10.1103/PhysRevD.92.045017
http://dx.doi.org/10.1103/PhysRevD.92.045017
http://dx.doi.org/10.1103/PhysRevD.92.045017


fields. The obtained currents appear to be gauge invariant,
and this satisfies the continuity equation. In this way, the
derived contribution to the mass is sufficiently dependent
on the occupancy numbers of the fermion subsystem. The
obtained mass term holds the gauge invariance of the new
Lagrangian, which, it has been found, can be reduced to the
pure Yang-Mills Lagrangian with a mass term.
Based on the violation of the initial SUðNÞ symmetry,

the Lagrangian governing the octet of the massive
pseudoscalar fields is derived in the QCD4 case. We
consider and study in detail the contributions of both the
quark-gluon interaction and the self-interacting non-
Abelian fields to the masses of the octet particles. In the
approximation of the hadronization of the confinement
matter to the pion triplet, the QCD coupling constant is
estimated.
The paper is organized as follows. The second section

contains the statement of a problem and the solution of
the Dirac equation in an external SUðNÞ gauge field. The
fermion and total currents are considered in Sec. III. The
gauge invariant pure Yang-Mills Lagrangian containing a
mass term is obtained in Sec. IV. The Lagrangian governing
the octet of the pseudoscalar mesons is considered in
Sec. V. The last two sections are the discussion of the
obtained results and the Conclusion. Some detail steps of
the derivations are presented in the Appendixes.

II. SOLUTION OF THE DIRAC EQUATION

The Lagrangian governing the fermions interacting with
an SUðNÞ gauge field is [40]

L ¼
�X

f

�
1

2
½Ψ̄fγ

μDμΨf − Ψ̄fmfΨf�

−
1

2
½Ψ̄fγ

μ ⃖DμΨf þ Ψ̄fmfΨf�
�
−
1

4
Fa
μνF

μν
a

�
; ð1Þ

where Aa
μ and Ψf are the gauge and fermion fields in the

Minkowski ð3þ 1Þ-dimensional space-time with coordi-
nates x≡ xμ ¼ ðx0; xÞ ¼ ðx0; x1; x2; x3Þ, mf is a fermion
mass, g is the coupling constant, and f denotes a quark
flavor. In Eq. (1) we introduce

Dμ ¼ i∂μ þ gTaAa
μ; ⃖Dμ ¼ i⃖∂μ − gTaAa

μ

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcA

b
μAc

ν; ð2Þ

where γν’s are the standard Dirac matrices, Ta’s are the
infinitesimal operators satisfying the standard commutative
relations and the normalization condition [40], and
a; b; c ¼ 1…N2 − 1 are the SUðNÞ group indices;
∂μ ¼ ð∂=∂t;∇Þ.

The Lagrangian (1) leads to the Dirac equation

fiγμð∂μ − ig · Aa
μðxÞTaÞ −mfgΨfðxÞ ¼ 0: ð3Þ

The solution of Eq. (3) can be formally written in the
operator form as follows:

ΨfðxÞ ¼ fTlðx0;xÞ expg
�
igTa

Z
dxμAa

μ

�
ψfðxÞ; ð4Þ

where the symbol fTlðx0;xÞ expg means that the integration
is to be carried out along the line from the point x0 to the
point x, such that the factors in exponent expansion are
chronologically ordered from x0 to x. In this way, ψfðxÞ
obeys the free Dirac equation

fiγμ∂μ −mfgψfðxÞ ¼ 0: ð5Þ

The general solution of Eq. (5) can be presented as a
superposition of the Dirac plane waves

ψσcfðxÞ ¼ uσðPÞ
expð−iPμxμÞffiffiffiffiffiffiffiffiffiffiffiffi

2εð~pÞ
p vc;fðx0Þ;

ε2ð~pÞ ¼ ~p2 þm2
f; P≡ Pμ ¼ ðεð~pÞ; ~pÞ; ð6Þ

where Pμ is the 4-momentum and uσðPÞ are the free Dirac
bispinors, normalized by the doubled mass (ūu ¼ 2mf).
The symbol vc;fðx0Þ is a vector in the charged space, which
also depends on a point in the Minkowski space-time. We
take vc;fðx0Þ to be normalized by the standard condition

ðv†Þc0f0 ðx0Þvcfðx0Þ ¼ δcc0δ
f
f0 : ð7Þ

Here, σ and c denote the spin and color variables.
Let us consider the operator

Ô ¼ fTlðx0;xÞ expg
�
igTa

Z
dxμAa

μ

�
; ð8Þ

which is in Eq. (4). It acts on the vector vc;fðx0Þ and carries
out the parallel shift of this vector along the geodesic
line from the point x0 to the point x in the Minkowski
space-time.
Taking into account Eqs. (4) and (6), we can write the

general solution of Eq. (3) as follows:

Ψc;fðxÞ ¼
Z

d3 ~p
ð2πÞ3

X
σλ

½uσðPÞafðP; σ; λ; cÞθðP0Þ

þ uσð−PÞafð−P; σ; λ; cÞθð−P0Þ� expð−iPμxμÞffiffiffiffiffiffiffiffiffiffiffiffi
2εð~pÞ

p
× fTlðx0;xÞ expg

�
igTa

Z
dxμAa

μ

�
vc;fðx0Þ; ð9Þ
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where summation with respect to λmeans summing over all
of the possible trajectories of a fermion which connect the
points x0 and x in the Minkowski space-time. The sub-
scribes c and f enumerate the colors and the flavor states,
respectively; θðzÞ is the unit step function. The coefficients
afðP; σ; λ; cÞ are related to particles or antiparticles and
satisfy the standard commutative relations for the Fermi
operators under the field quantization

½afðP; σ; λ; cÞ; a†f0 ðP0; σ0; λ0; c0Þ�þ
¼ ð2πÞ3δð~p − ~p0Þδσσ0δcc0δff0δλλ0 : ð10Þ

The δ symbol with respect to the “variable” λ eliminates
interception of the particle trajectories, which is the direct
consequence of the superposition principle.

III. FERMION AND TOTAL CURRENTS

The initial Lagrangian (1) implies the self-consistency
with respect to the interacting fermions and gauge fields,
which leads to a very complicated structure of the currents
generated by this Lagrangian. However, it is reasonable to
expect some simplification in the calculations of fermion
currents in external fields, owing to the derived solution (9)
of the Dirac equation, since any current is the convolution
of Ψ functions. Moreover, the fermion current in an
external field is in the explicit form in the Lagrangian
(1) that allows us to modify the initial Lagrangian to the
form which appears to be more valid in order to study the
hadronization process.
Let us calculate the fermion current generated by the

external non-Abelian field. In deriving such a current, we
follow Schwinger’s idea consisting of the consideration of
Jμa as a limit:

JμaðxÞ ¼ g
X
f

fΨ̄fðxÞγμTaΨfðx0Þg; x0 → x: ð11Þ

Since the current is proportional to the fermion Green’s
function [1,2], which has the first order pole at x ¼ x0, the
terms containing ðx − x0Þ in the expansion of Ψ̄fðxÞΨfðx0Þ
in a series with respect to ðx − x0Þ also give nonzero
contribution into the calculated current [2].
We note that, because of the trace operation with respect

to the color variable in Eq. (11), the current JμaðxÞ contains
the factor

ðTlðx;x0Þ expÞ
�
igTa

Z
x0

x
Aa
μdxμ

�
: ð12Þ

Then, expanding the operator exponent in the last equation
as a series with respect to ðx0 − xÞ → 0, we get

ðTlðx;x0Þ expÞ
�
igTa

Z
x0

x
Aa
μdxμ

�
¼ 1þ igTaðx0 − xÞμAa

μðξÞ

þ i
2
gTaðx0 − xÞμðx0 − xÞν∂νAa

μðξÞ
− g2ðTaTbÞð~x0 − ~xÞμðx0 − xÞνAa

μð~ξÞAb
νðξÞθð~ξ − ξÞ

þ � � � ; ð13Þ

where ~ξ ∈ ½~x; ~x0�, and ξ ∈ ½x; x0�; x0 → x.
Let us take the limits ð~x0 − ~xÞ → 0 and ðx0 − xÞ → 0,

such that

ð~x0 − ~xÞ
ðx0 − xÞ → 0: ð14Þ

Then, the last term in the expansion in Eq. (13) is equal
to zero. Substituting ðTlðx;x0Þ expÞfigTa

R
x0
x Aa

μdxμg into
Eq. (11), we obtain, for ðx0 − xÞ → 0,

Jμa ¼ g2
Z

d4P
ð2πÞ3

X
f;c;λσ

�
nfðP; σ; λ; cÞPμ

×

�
−

∂
∂Pν exp ð−iPðx0 − xÞÞ

�

×
½δðP0 þ εð~pÞÞ þ δðP0 − εð~pÞÞ�

εð~pÞ

×

�
Aν
aðξÞ þ

1

2
ðx0 − xÞβ∂νAβ

aðξÞ
��

; ð15Þ

where nfðP; σ; λ; cÞ denotes the occupancy numbers of
fermion states:

nfðP; σ; λ; cÞ ¼ ha†fðP; σ; λ; cÞafðP; σ; λ; cÞi; ð16Þ

where the angle brackets denote averaging over all of the
possible sets of the quantum numbers determining the
fermion states.
The occupancy numbers nfðP; σ; λ; cÞ should be physi-

cally treated as the average number of the fermions with
the quantum numbers ðP; σ; c; fÞ, which propagate along
the fixed trajectory identified by the number λ. Thereat, the
trajectories appear to be not interferant owing to the
commutative relations (10), which relates to the super-
position principle for fermion fields.
In obtaining the last equation, we have successively

calculated a trace, introduced the additional integration
with respect to the zeroth component of the vector Pμ (see
Appendix A). We note that on taking the partial derivative
∂2 ≡ ∂2

ðxÞ on ðx0 − xÞβ∂νðxÞAb
βðξÞ, we get [37]
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∂2
ðxÞ limx0→x

fðx0 − xÞβ∂νðxÞAb
βðξÞg

¼ lim
x0→x

∂2
ðxÞfðx0 − xÞβ∂νðxÞAb

βðxÞg

¼ lim
x0→x

f−2∂β
ðxÞ∂νðxÞAb

βðxÞ

þ ðx0 − xÞβ∂βðxÞ∂β
ðxÞf∂νðxÞAb

βðxÞgg: ð17Þ

Upon taking the limit x0 → x, the second term vanishes.
Then, formally dividing both parts of Eq. (17) by ∂2, we
have, at x0 → x,

lim
x0→x

ððx0 − xÞλ∂νAb
λðξÞÞ ¼ −2

∂β∂ν

∂2
Ab
βðxÞ: ð18Þ

Integrating partially with respect to Pμ in Eq. (15), we
derive (see Appendix A)

JμaðxÞ ¼ M2ðNc; NfÞ
�
Aμ
aðxÞ − ∂λ∂μ

∂2
Aλ
aðxÞ

�
; ð19Þ

where Nc and Nf are the number of colors and flavors,
respectively. The operator of the inverse squared derivative
in Eq. (19) should be treated in terms of Eq. (17). In the
momentum representation, this operator corresponds to
division by the off-shell squared 4-momentum.
The factor M2ðNc; NfÞ in Eq. (19), which has the

dimension of the squared mass, is equal to [see Eq. (A6)
in Appendix A]

M2ðNc; NfÞ≡M2

¼ g2

8

Z
d4P
ð2πÞ3

X
f;c;λσ

∂
∂Pν

×

�
nfðP; σ; λ; cÞ

Pν½δðP0 þ εð~pÞÞ þ δðP0 − εð~pÞÞ�
εð~pÞ

�
:

ð20Þ

The obtained massM can be physically interpreted as the
mass of a fermion field which is carried by a gauge field
due to interaction between the fermion and gluon fields.
We also note that M depends explicitly on the number of
colors and flavors. Provided that the occupancy numbers
nfðP; σ; λ; cÞ are approximately independent on Nc and
Nf, we obtain

M2ðNc; NfÞ ∝ NfNc; ð21Þ

which is in good agreement with the results obtained earlier
in Refs. [4–6].

We add the current, induced by the self-interaction of a
gauge field [40], to the JμaðxÞ given by Eq. (19). Then, the
total fermion current IμaðxÞ generated by the non-Abelian
external field is

IμaðxÞ ¼ M2

�
Aμ
aðxÞ − ∂λ∂μ

∂2
Aλ
aðxÞ

�
− gfcabA

b
νF

μν
c : ð22Þ

The obtained current (22) is gauge invariant, and it
obviously satisfies the continuity equation

∂μI
μ
aðxÞ ¼ 0: ð23Þ

We should note that the currents which are given by
Eq. (19) and derived in paper [2] appear to be very similar.
However, such a similarity is only formal since the current
Eq. (19) depends strongly on the mass of a vector field,
which is governed by the occupancy numbers of the
fermion subsystem.

IV. GLUODYNAMICS LAGRANGIAN

Let us substitute the fermion field given by Eq. (9) into
the Lagrangian (1). Such a modification of the Lagrangian
results in taking into account only such trajectories of
fermions which are governed by the Dirac equation, rather
than all of the possible ones which are contained in the
Lagrangian (1). Thus, provided that ΨðxÞ is in the form
given by Eq. (9), the Lagrangian (1) can be rewritten as
follows:

L ¼
X
f

�
1

2
½Ψ̄fðiγμ∂μÞΨf − Ψ̄fmfΨf�−

1

2
½Ψ̄fðiγμ ⃖∂μÞΨf

þ Ψ̄fmΨf�
�
þM2Aμ

aðxÞ
�
Aa
μðxÞ−

∂λ∂μ

∂2
Aa
λðxÞ

�

−
1

4
ð∂μAν

aðxÞ− ∂νAμ
aðxÞ þ gfbca Aμ

bA
ν
cÞð∂μAa

νðxÞ
− ∂νAa

μðxÞ þ gfabcA
b
μAc

νÞ: ð24Þ

In the last equation, we have picked out the interaction term
and used the fact that this term is a product of the current
(19) and gauge field Aa

νðxÞ. The Lagrangian (24) is gauge
invariant despite the mass term, but it is strongly nonlocal
due to the factor ∂−2.
As has been already mentioned, the factor M in

Eq. (24) is the mass of a fermion field which is carried
by a gauge field because of the interaction between
fermions and gauge fields. Therefore, it is reasonable to
expect that the term Lk, corresponding to the kinetic
energy of the fermion subsystem, can be gotten rid of in
Lagrangian (24) in the developed consideration. With
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Eqs. (9), (10), and (16) in mind, we have for this term
(see Appendix B)

Lk ¼ ð−∂μðxÞÞ
�
lim
x0→x

Z
2
d4P
ð2πÞ3

×
X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�expð−iPμðxμ − x0μÞ

ð∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

��
: ð25Þ

Since Eq. (25) is a divergency of some function, the
contribution ofLk into the total LagrangianL can be omitted.
As a result, we have

L ¼ M2Aμ
aðxÞ

�
Aa
μðxÞ −

∂λ∂μ

∂2
Aa
λðxÞ

�

−
1

4
ð∂μAν

aðxÞ − ∂νAμ
aðxÞ þ gfbca Aμ

bA
ν
cÞð∂μAa

νðxÞ
− ∂νAa

μðxÞ þ gfabcA
b
μAc

νÞ: ð26Þ

The derived Lagrangian governs the pure gluodymanics
so that all of the fermion subsystem is found to be
incorporated into Lagrangian (26) by means of the mass
M. In this way, the obtained Lagrangian has still been
gauge invariant, remaining sufficiently nonlocal due to the
operator ∂−2.

V. LAGRANGIAN OF SCALAR PARTICLES

The main aim of this section is derive the Lagrangian
governing observable particles. Therefore, we need to
eliminate the unobservable degrees of freedom, which
always are in the gauge invariant Lagrangians. To do it
we fix a gauge, and we take the Lorenz one because of its
relativistic invariance:

∂μA
μ
a ¼ 0: ð27Þ

Then, Lagrangian (26) takes the form

L¼M2Aμ
aðxÞAa

μðxÞ−
1

4
ð∂μAν

aðxÞ−∂νAμ
aðxÞ

þgfbca Aμ
bA

ν
cÞð∂μAa

νðxÞ−∂νAa
μðxÞþgfabcA

b
μAc

νÞ; ð28Þ

where the mass M is given by Eq. (20). We note that the
obtained Lagrangian has lost its gauge invariance
because of the condition (27), but it becomes local in
comparison with the Lagrangian given by Eq. (26). The
mass M in the Lagrangian is not the total mass of a
vector field. This is only the mass generated by the
interaction between fermions and gauge fields, whereas
there is another source of the gauge field mass, which is
that of the self-interacting non-Abelian gauge fields.

In the case of the SUð3Þ symmetry, Lagrangian (28)
contains eight independent fields. Therefore, it is reasonable
to relate them with the octet of the pseudosalar mesons,
arising in the result of the hadronization of the confinement
matter. This is a specific confinement situation since there
are only gluons in Lagrangian (28). As for the quark
subsystem, the information about it appears to be incorpo-
rated into this Lagrangian by means of the mass term.
To derive the scalar particle Lagrangian, we primarily

have to go from vector fields to scalar ones. We carry it out
by separating the variables in Aμ

aðxÞ which correspond to
the Minkowski and representation spaces. Let us assume
that the hadronization occurs when the SUð3Þ symmetry
appears to be spontaneously broken, so that the fields Aμ

aðxÞ
take the form

Aμ
aðxÞ ¼ aμa þ eμφaðxÞ; ð29Þ

where φaðxÞ are scalar functions, whereas the constant
vectors aμa are assumed to be orthogonal to both the unit
vector eμ and the scalar field gradients ∂μφaðxÞ:

aμaeμ ¼ 0; aaμ∂μφbðxÞ ¼ 0: ð30Þ

In this way, the unit vector eμ is taken to be normalized by a
relation:

eμeμ ¼ −1: ð31Þ

We note that Lorentz gauge (27) results in the additional
orthogonality condition

eμ∂μφaðxÞ ¼ 0: ð32Þ

The fields Aμ
aðxÞ governed by Eqs. (29)–(32) indicate

that, physically, the scalar fields φaðxÞ can only propagate
along the direction in the Minkowski space-time which is
perpendicular to the plane fixed by the orthogonal vectors
eμ and aμa. Since these planes are different for different a’s,
the fields φaðxÞ are independent in terms of their evolution
in the Minkowski space-time. We should also note that such
a kinematic restriction in the field propagation leads to the
arising of the additional mass of the field φaðxÞ, as will be
shown below.
Substituting Eq. (29) into Lagrangian (28) and taking

into account Eqs. (27) and (30)–(32), we derive, after direct
calculations,

L ¼ 1

2
ð∂μφaðxÞÞð∂μφaðxÞÞ −

1

2
ðM2ÞabφaðxÞφbðxÞ; ð33Þ

where ðM2Þab is the matrix of the squared masses which is
given by the formula
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ðM2Þab ¼ 2M2ðNc; NfÞδab − g2aμcac
0
μ fbcsfac0s: ð34Þ

We note that Lagrangian (33) has still been SUð3Þ
invariant. Let us follow Gell-Mann [41] and take the
conservation of the isospin T and strangeness S, rather
than supporting the exact SUð3Þ symmetry, under hadro-
nization into the octet of the colorless mesons. This means
breaking the initial symmetry SUð3Þ up to the
SUS¼0ð2Þ ⨂ SUS¼1ð2Þ ⨂ Uð1Þ one. The new symmetry
implies that these eight pseudoscalar mesons, which are
π�; π0; K�; K0; ~K0; η, including antiparticle (K− and ~K0),
can be placed into the strangenessless pion triple, two kaon
doublets at S ¼ �1, where S ¼ −1 corresponds to anti-
particles, and an η meson having zeroth isospin and
strangeness. Moreover, such a symmetry violation affects
the massM ¼ MðNc; NfÞ since its value depends explicitly
on the number of colors Nc and flavors Nf.
Therefore, let us establish the relation of these pseudo-

scalar mesons to the fields φa by means of the complex
subscribing a ⇒ ðT; SÞ:

φaðxÞ ¼

0
BBBBBBBBBBBBBBB@

φ1ðxÞ
φ2ðxÞ
φ3ðxÞ
φ4ðxÞ
φ5ðxÞ
φ6ðxÞ
φ7ðxÞ
φ8ðxÞ

1
CCCCCCCCCCCCCCCA

≡

0
BBBBBBBBBBBBBBB@

φπþðxÞ
φπ−ðxÞ
φπ0ðxÞ
φKþðxÞ
φK−ðxÞ
φK0ðxÞ
φ ~K0ðxÞ
φηðxÞ

1
CCCCCCCCCCCCCCCA

≡

0
BBBBBBBBBBBBBBB@

φð1;0ÞðxÞ
φð1;0ÞðxÞ
φð1;0ÞðxÞ
φð1=2;1ÞðxÞ
φð1=2;−1ÞðxÞ
φð1=2;1ÞðxÞ
φð1=2;−1ÞðxÞ
φð0;0ÞðxÞ

1
CCCCCCCCCCCCCCCA

;

ð35Þ

where T and S are the isospin and the strangeness,
respectively.
Such defined fields φa do not correspond to the

observable mesons since the mass term in Lagrangian
(33) has not diagonalized yet.
Based on the structure of the vector φa given by Eq. (35),

which follows from the SUS¼0ð2Þ ⊗ SUS¼1ð2Þ ⊗ Uð1Þ
symmetry, we have for the mass matrix

M2 ¼

0
BBBBBBBBBBBBBBBB@

2M2
1 þm2

1 −μ21 −μ21 0 0 0 0 0

−μ21 2M2
1 þm2

1 −μ21 0 0 0 0 0

−μ21 −μ21 2M2
1 þm2

1 0 0 0 0 0

0 0 0 2M2
2 þm2

2 0 −μ22 0 0

0 0 0 0 2M2
2 þm2

2 0 −μ22 0

0 0 0 −μ22 0 2M2
2 þm2

2 0 0

0 0 0 0 −μ22 0 2M2
2 þm2

2 0

0 0 0 0 0 0 0 2M2
3 þm2

3

1
CCCCCCCCCCCCCCCCA

: ð36Þ

In the last formula we introduce

m2
1 ¼ −g2aμcac

0
μ fcs1 f

1
c0s ¼ −g2aμcac

0
μ f2csf2c0s ¼ −g2aμcac

0
μ fcs3 f

3
c0s; m2

3 ¼ −g2aμcac
0
μ f8csf8c0s;

m2
2 ¼ −g2aμcac

0
μ f4csf4c0s ¼ −g2aμcac

0
μ f5csf5c0s ¼ −g2aμcac

0
μ f6csf6c0s ¼ −g2aμcac

0
μ f7csf7c0s;

M1 ¼ MðNc; Nf ¼ 2Þ; M2 ¼ MðNc; Nf ¼ 3Þ; M3 ¼ MðNc; Nf ¼ 2Þ: ð37Þ

As for μ1;2, they are given by the corresponding non-
diagonal elements in Eq. (34).
We note that matrix (36) has a block structure.

Therefore, the left upper (3 × 3) block and the (4 × 4)
block, which is next to it below, can be independently
diagonalized by the ð3 × 3Þ and ð4 × 4Þ unitarian matrices
(see Appendix C).
Upon carrying out such a transformation (see

Appendix C), we go to such a new basis ΦaðxÞ that the
diagonalized Lagrangian of the meson octet takes the form

L ¼ 1

2
ð∂μΦaðxÞÞð∂μΦaðxÞÞ −

1

2
ðm2

octÞabΦaðxÞΦbðxÞ; ð38Þ

where the Φa’s are the components of the octet, which are
listed in the following order: πþ; π−; π0; KþK−; K0; ~K0; η0

(see also Appendix C), whereas the mass matrix ðm2
octÞab

consists only of the diagonal elements, which are the
squared masses of the octet particle [see also Eq. (C3)
in Appendix C]:
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ðm2
octÞab ¼ diagðmπþ ;mπ− ;mπ0 ;mKþ ;mK− ;mK0 ;m ~K0 ;mηÞ:

ð39Þ

Lagrangian (38) governs the octet of the massive scalar
particles, while the elements of the mass matrix ðm2

octÞab
appear to be generated by both the quark-gluon interaction
and the self-interacting gauge fields.
In the tensor representation of the SUð3Þ group, the

meson octet has the form [41]

P̂ ¼
X8
0

TaΦa

¼ 1ffiffiffi
2

p

0
BBB@

Φ3 þ Φ8ffiffi
3

p Φ1 − iΦ2 Φ4 − iΦ5

Φ1 þ iΦ2 −Φ3 þ Φ8ffiffi
3

p Φ6 − iΦ7

Φ4 þ iΦ5 Φ6 − iΦ7 − 2Φ8ffiffi
3

p

1
CCCA

≡

0
BBB@

π0ffiffi
2

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η0ffiffi
6

p K0

K− ~K0 − 2η0ffiffi
6

p

1
CCCA; ð40Þ

where the symbols πþ; π−; π0; KþK−; K0; ~K0; η0 represent
the corresponding fields.

VI. DISCUSSION

Since the matrix ðm2
octÞab is diagonal, Lagrangian (38)

consists of three noninterferant terms, which allows us to
study independently the mass matrix in the Lagrangian
given by Eq. (33). Let us start a consideration from the term
governing the lightest mesons, pions, since they are the
particles which appear to be most often created in high
energy processes such as p-p, p-A and A-A collisions.
Comparing Eq. (36) with Eq. (C2) and using [42], we
obtain, after a direct calculation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

1 þm2
1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

π� þm2
π0

3

s
≃ 1.37 × 102 MeV;

μ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π� −m2
π0

3

s
≃ 21.4 MeV: ð41Þ

The last formula shows that the nondiagonal elements
in matrix (36), which are in the upper left block, are
sufficiently less than the diagonal ones.
Although the equations in formula (41) do not allow us

to derive M1 and m1 independently, they enable us to
estimate the value of the coupling constant g. To do it, we
need to make some additional assumptions, and to con-
cretize the conditions under which pions are produced.
First, let

m1 ≃ μ1: ð42Þ

Furthermore, we assume that the pions are only produced
in the result of the hadronization of the confinement matter
at the temperature Tc (see, for example [12,43]). We also
suggest that the matter consists of the gluons whose
dynamics is governed by Lagrangian (28). Moreover, we
neglect the creation of the heavy mesons belonging to
this octet.
Since the temperature Tc is of the order of some

hundreds of MeV, the lightest quarks, which are only in
a pion, can be considered ultrarelativistic particles. Then, in
the absence of the quark condensate [44], such quarks are
approximately distributed according to the Fermi-Dirac
formula with the zeroth chemical potential:

nfðP; σ; λ; cÞ≃ 1

1þ expðεð~pÞ=TÞ : ð43Þ

In the case of ultrarelativistic particles, the leading
contribution to the integral in Eq. (20) gives a differ-
entiation of Pν and εð~pÞ. Then, taking into account the
degeneracy with respect to the colors and flavors of the
quarks, we derive from Eq. (20)

m2
π0
−m2

1

2
¼ M2

1 ¼ 9g2 ·
Z

d3p
pð2πÞ3

1

1þ expðp=TÞ

¼ 9g2T2

2π2

Z
∞

0

xdx
1þ expðxÞ ¼

3g2T2

8
: ð44Þ

The last formula establishes the relationship between the
mass of the observable particle, temperature, and coupling
constant, which allows us to get information about the
states of the confinement matter under the chosen
assumption. Provided thatmπ0 ¼ 135 MeV [42], we obtain
gTc ≃ 154 MeV. Taking Tc in the interval from 200 to
300 MeV, we find that the coupling constant g varies from
0.51 to 0.76.
We note that the matrix element μ1 is directly connected

with the transverse (or magnetic) gluon mass mmag because
of the transverseness relation (30). On the other hand, this
magnetic mass is [45]

mmag ≃ 7.2 · g2T
4π

: ð45Þ

Owing to the block structure of matrix (36) and provided
that the pion dominance is as assumed above, we can
approximately set M1 ≃

ffiffiffi
3

p
mmag. Then, using Eqs. (44)

and (45), we obtain

g≃ π
ffiffiffi
2

p

7.2
≃ 0.61: ð46Þ
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The obtained result appears to be inside the range of
variation of the coupling constant which was already
derived in the previous estimation.
Furthermore, we analyze the kaon part of Lagrangian

(38). Comparing Eq. (36) with Eq. (C2), we find that the
nondiagonal elements μ2 in matrix (36) are

μ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~K0 −m2
K�

2

s
≃ 44.5 MeV ≪ mK� ; ð47Þ

which is found to be very similar to the situation that took
place above, when the relationship between the diagonal
and nondiagonal matrix elements in Eq. (36) were studied
in the pion case.
We should also note that, since the masses mπ; mK� ; mη

are in the hierarchy mπ� < mK� < mη, whereas M1 ¼ M3,
the massm3 should be more thanm1 by three times, at least.

VII. CONCLUSION

The self-consistent dynamics of fermion and boson fields
in the gauge SUðNÞ model is considered beyond the
perturbative approximation. The formal solution of the
Dirac equation, which allows us to calculate the bilinear
convolutions of fermion fields in the explicit form, is
derived. On the basis of the obtained solution, the fermion
and total currents in the SUðNÞ gauge model in the ð3þ 1Þ
Minkowski space-time are derived. The obtained currents
are gauge invariant, and they satisfy the continuity equa-
tion. In this way, the transformation properties of the
currents are entirely determined by the gauge field which
appears to be massive, which is similar to the results
obtained in Ref. [2] in the specific case of the two-
dimensional space-time. We show that in the absence of
the quark condensate [44], the derived mass depends on the

number of colors, as
ffiffiffiffiffiffi
Nc

p
, that coincides with the results

obtained earlier [4–6,37,39].
By using the derived current, we obtain the Lagrangian

governing the pure gluodynamics. The derived Yang-Mills
Lagrangian also contains the mass term generated by the
interaction of fermions with gauge fields.
In the QCD case, by breaking the initial SUð3Þ sym-

metry in the gluodynamics Lagrangian, we derive the
Lagrangian governing the octet of the pseudoscalar mes-
ons. The contribution of the quark-gluon interaction and the
self-interacting gluon field to the meson masses is derived.
Provided that only the hadronization of the confinement
gluon matter into the pion triplet occurs, we evaluate the
QCD coupling constant, which appears to be in the interval
from 0.51 to 0.76.
We note in conclusion that the proposed violation of the

SUð3Þ symmetry, which is governed by Eqs. (29)–(32),
should be considered as a physical ansatz. Although such
symmetry breaking allows us to obtain the reasonable
results concerning the hadronization into the meson octet,
the developed model of the hadronization demands addi-
tional verification. In particular, it concerns generalization
of the obtained result to the hadronization of the confine-
ment matter into the mesons which are beyond the
considered octet.
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APPENDIX A MASS CALCULATION

We substitute the wave function given by Eq. (9) into
formula (11). Taking into account Eqs. (13) and (14), we
derive

JμaðxÞ ¼ ig2

2

Z
d3~p
ð2πÞ3

Z
d3 ~p0

ð2πÞ3
X

σ;σ0;λλ0;c;c0f;f0
½ūσðPÞγμuσðP0Þ�ha†fðP; σ; λ; cÞaf0 ðP0; σ0; λ0; c0Þi

×
exp ðþiPμxμ − iP0

μx0μÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð~pÞ2εð~p0Þ

p ðθðP0Þ þ θð−P0ÞÞ · ðx0 − xÞβ
�
Aβ
aðξÞ þ 1

2
ðx0 − xÞν∂βAν

aðξÞ
�
; x0 → x: ðA1Þ

The correlator ha†fðP; σ; λ; cÞaf0 ðP0; σ0; λ0; c0Þi can be expressed in terms of the occupancy numbers of fermions
nfðP; σ; λ; cÞ:

ha†fðP; σ; λ; cÞaf0 ðP0; σ0; λ0; c0Þi ¼ ð2πÞ3nfðP; σ; λ; cÞδð~p − ~p0Þδσσ0δλλ0δcc0δff0 : ðA2Þ

To proceed further, we substitute (A2) into (A1) and introduce the additional integration with respect to P0. As a result, we
obtain
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JμaðxÞ ¼ ig2

2

Z
d4P
ð2πÞ3

X
σ;λ;c;f

PμnfðP; σ; λ; cÞ½δðP0 − εð~pÞÞ þ δðP0 þ εð~pÞÞ� exp ðiPμðxμ − x0μÞÞ
εð~pÞ

× ðx0 − xÞβ
�
Aβ
aðξÞ þ 1

2
ðx0 − xÞν∂βAν

aðξÞ
�

¼ g2

2

Z
d4P
ð2πÞ3

X
σ;λ;c;f

PμnfðP; σ; λ; cÞ
½δðP0 − εð~pÞÞ þ δðP0 þ εð~pÞÞ�

εð~pÞ
�
−

∂
∂Pβ

�
exp ðiPμðxμ − x0μÞÞ

×
�
Aβ
aðξÞ þ 1

2
ðx0 − xÞν∂βAν

aðξÞ
�
; x0 → x: ðA3Þ

Taking into account Eq. (18), we obtain, after integration by parts,

JμaðxÞ¼g2

2

Z
d4P
ð2πÞ3

X
σ;λ;c;f

� ∂
∂Pβ

��
PμnfðP;σ;λ;cÞ

½δðP0−εð~pÞÞþδðP0þεð~pÞÞ�
εð~pÞ

��
Aβ
aðξÞþ1

2
ðx0−xÞν∂βAν

aðξÞ
�
: ðA4Þ

Since the integrand in Eq. (A4) is the tensor in the Minkowski space-time, it has to be proportional to the metric tensor gμβ:

Z
d4P
ð2πÞ3

X
σ;λ;c;f

� ∂
∂Pβ

��
PμnfðP; σ; λ; cÞ

½δðP0 − εð~pÞÞ þ δðP0 þ εð~pÞÞ�
εð~pÞ

�
¼ Agμβ; ðA5Þ

where A is a constant. Calculating the convolutions with gμβ in the left- and right-hand sides in Eq. (A5), we get

A ¼ 1

4

Z
d4P
ð2πÞ3

X
σ;λ;c;f

� ∂
∂Pν

��
PνnfðP; σ; λ; cÞ

½δðP0 − εð~pÞÞ þ δðP0 þ εð~pÞÞ�
εð~pÞ

�
: ðA6Þ

The last formula allows us to rewrite the mass factor M2 in Eq. (19) in the form given by Eq. (20).

APPENDIX B TRANSFORMATION OF A KINEMATIC TERM OF THE LAGRANGIAN

Let us transform the kinematic part of Lagrangian (24) which corresponds to the fermion fields. The direct calculations
give

Lk ¼
X
f

½Ψ̄fðxÞðiγμ∂μÞΨfðxÞ − Ψ̄fðxÞmfΨfðxÞ� ¼ lim
x0→x

X
f

½Ψ̄fðx0Þðiγμ∂μðxÞÞΨfðxÞ − Ψ̄fðx0ÞmΨfðxÞ�

¼ lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�ððiPμ∂μðxÞÞ −m2
fÞexpð−iPμðxμ − x0μÞÞ

�
igTa

Z
x

x0
dxμAa

μ

�

¼ lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�expð−iPμðxμ − x0μÞÞðiPμ∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

�

¼ lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�ð−∂μðxÞexpð−iPμðxμ − x0μÞÞÞð∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

�

¼ ð−∂μðxÞÞ
�
lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�expð−iPμðxμ − x0μÞð∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

��

þ lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�expð−iPμðxμ − x0μÞð∂μðxÞ∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

�
: ðB1Þ

Expanding the exponent in the last line of Eq. (B1), as has already been done in Eq. (13), we derive that this term is equal
to zero. Then, the kinematic part of Lagrangian (24), which corresponds to the fermion subsystem, is equal to
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Lk ¼ ð−∂μðxÞÞ
�
lim
x0→x

Z
2
d4P
ð2πÞ3

X
σλ;f;c

½nfðP; σ; λ; cÞδðPμPμ −m2Þ�expð−iPμðxμ − x0μÞð∂μðxÞÞ
�
igTa

Z
x

x0
dxμAa

μ

��
: ðB2Þ

APPENDIX C DIAGONALIZATION OF THE MASS MATRIX

The direct calculations show that matrix (36) can be transformed into the diagonal form by means of the independent
diagonalization of the left upper (3 × 3) block and the (4 × 4) block, which is next to it below. These blocks are diagonalized
by the matrices

T̂3×3 ¼
1

6

0
B@

1 −1 0

1 1 −2
1 1 1

1
CA; T̂4×4 ¼

1ffiffiffi
2

p

0
BBB@

1 0 1 0

0 1 0 1

−1 0 1 0

0 −1 0 1

1
CCCA: ðC1Þ

In the result of such a diagonalization, the mass matrix M2 given by Eq. (36) takes the form

2 ·

0
BBBBBBBBBBBBBBBBBB@

M2
1 þ m2

1
þμ2

1

2
0 0 0 0 0 0 0

0 M2
1 þ m2

1
þμ2

1

2
0 0 0 0 0 0

0 0 M2
1 þ m2

1
−2μ2

1

2
0 0 0 0 0

0 0 0 M2
2 þ m2

2
−μ2

2

2
0 0 0 0

0 0 0 0 M2
2 þ m2

2
−μ2

2

2
0 0 0

0 0 0 0 0 M2
2 þ m2

2
þμ2

2

2
0 0

0 0 0 0 0 0 M2
2 þ m2

2
þμ2

2

2
0

0 0 0 0 0 0 0 M2
3 þ m2

3

2

1
CCCCCCCCCCCCCCCCCCA

:

ðC2Þ

Introducing the standard notations for the diagonal matrix elements, we have

ðM2Þ≡ ðm2
octÞab ¼

0
BBBBBBBBBBBBB@

mπþ 0 0 0 0 0 0 0

0 mπ− 0 0 0 0 0 0

0 0 mπ0 0 0 0 0 0

0 0 0 mKþ 0 0 0 0

0 0 0 0 mK− 0 0 0

0 0 0 0 mK0 0 0

0 0 0 0 0 0 m ~K0 0

0 0 0 0 0 0 0 mη

1
CCCCCCCCCCCCCA
; ðC3Þ

where the corresponding diagonal matrix elements are the same in both matrices given by Eqs. (C2) and (C3).
The direct calculations show that matrix (C3) appears to be unchangeable if the bases φaðxÞ and ΦaðxÞ are related to one

another by means of the unitarian transformations V and U, which are dictated by the following formula:
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VφaðxÞ≡
0
B@

T̂3×3 0 0

0 T̂4×4 0

0 0 1

1
CA

0
BBBBBBBBBBBBB@

φπþðxÞ
φπ−ðxÞ
φπ0ðxÞ
φKþðxÞ
φK−ðxÞ
φK0ðxÞ
φ ~K0ðxÞ
φηðxÞ

1
CCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBB@

1ffiffi
2

p 1ffiffi
2

p 0 0 0 0 0 0

iffiffi
2

p −iffiffi
2

p 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1ffiffi
2

p 1ffiffi
2

p 0 0 0

0 0 0 iffiffi
2

p −iffiffi
2

p 0 0 0

0 0 0 0 0 1ffiffi
2

p 1ffiffi
2

p 0

0 0 0 0 0 iffiffi
2

p −iffiffi
2

p 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

πþðxÞ
π−ðxÞ
π0ðxÞ
KþðxÞ
K−ðxÞ
K0ðxÞ
~K0ðxÞ
ηðxÞ

1
CCCCCCCCCCCCCCCA

≡UΦaðxÞ; ðC4Þ

where the matrices T̂3×3 and T̂4×4 are given by Eq. (C1).
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