
Search for anisotropic Lorentz invariance violation with γ-rays

Fabian Kislat* and Henric Krawczynski
Department of Physics and McDonnell Center for the Space Sciences, Washington University in St. Louis,

St. Louis, Missouri 63130, USA
(Received 8 May 2015; published 14 August 2015)

While Lorentz invariance, the fundamental symmetry of Einstein’s theory of general relativity, has been
tested to a great level of detail, grand unified theories that combine gravity with the other three fundamental
forces may result in a violation of Lorentz symmetry at the Planck scale. These energies are unattainable
experimentally. However, minute deviations from Lorentz invariance may still be present at much lower
energies. These deviations can accumulate over large distances, making astrophysical measurements the
most sensitive tests of Lorentz symmetry. One effect of Lorentz invariance violation is an energy-dependent
photon dispersion of the vacuum resulting in differences of the light travel time from distant objects. The
Standard Model Extension (SME) is an effective theory to describe the low-energy behavior of a more
fundamental grand unified theory, including Lorentz- and CPT-violating terms. In the SME the Lorentz-
violating operators can in part be classified by their mass dimension d, with the lowest order being d ¼ 5.
However, measurements of photon polarization have constrained operators with d ¼ 5 setting lower limits
on the energy at which they become dominant well beyond the Planck scale. On the other hand, these
operators also violate CPT, and thus d ¼ 6 could be the leading order. In this paper we present constraints
on all 25 real coefficients describing anisotropic nonbirefringent Lorentz invariance violation at mass
dimension d ¼ 6 in the SME. We used Fermi-LAT observations of 25 active galactic nuclei to constrain
photon dispersion and combined our results with previously published limits in order to simultaneously
constrain all 25 coefficients. This represents the first set of constraints on these coefficients of mass
dimension d ¼ 6, whereas previous measurements were only able to constrain linear combinations of all 25
coefficients.
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I. INTRODUCTION

Lorentz invariance is the fundamental symmetry of
Einstein’s theory of relativity. It has been established by
early experiments such as the Michelson-Morley experi-
ment [1] and has since been verified to great precision [2].
However, unified theories of general relativity and the
Standard Model of particle physics suggest that Lorentz
symmetry may be broken at the Planck energy scale
(EP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c5ℏ=G

p
≈ 1.22 × 1019 GeV) [3]. Lorentz invari-

ance violation (LIV) has to be suppressed at lower energies,
but tiny deviations may still exist, motivating sensitive tests
of Lorentz invariance.
In the photon sector violations of Lorentz symmetry

include vacuum dispersion and vacuum birefringence [4].
Even though these effects are suppressed at observable
energies, E ≪ EP, astrophysical observations can still be
sensitive to new physics since tiny deviations accumulate
over large distances [3]. Vacuum dispersion can be tested
using astrophysical time-of-flight measurements: when
observing a time-variable or transient source at large
redshift, tiny variations in the photon velocity will accu-
mulate leading to differences in the arrival time of photons
at different wavelengths. Using Fermi Large Area

Telescope (Fermi-LAT) observations of gamma-ray bursts,
linear photon dispersion has been ruled out beyond the
Planck scale [5]. Similarly, vacuum birefringence can be
probed with astrophysical polarization measurements. In
this case, the effects of tiny deviations from an isotropic
vacuum will accumulate over extragalactic distances result-
ing in a measurable rotation of the polarization plane of
linearly polarized light as a function of energy. Typically,
the strongest constraints on Lorentz invariance violation
result from astrophysical polarization measurements. This
can be understood by the fact that in a dispersion study over
the baseline L the sensitivity is given by arrival time
variations δt ∝ δvL, whereas in a polarimetric study, the
sensitivity is determined by the phase difference δϕ ∝
ωδvL with ω being the frequency of the light, resulting in
an improvement in sensitivity of 1=ω compared to time-of-
flight measurements; see e.g. Ref. [6]. Owing to the high
sensitivity of polarization observations, constraints from
time-of-flight measurements are most interesting for testing
theories or constraining parameters which do not predict
any vacuum birefringence.
The Standard-Model Extension (SME, [6,7]) is an

effective field theory to describe the low-energy phenom-
enology of a high-energy theory and includes effects of
general relativity and the Standard Model of particle
physics. Furthermore, it allows one to introduce Lorentz*fkislat@physics.wustl.edu
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invariance and CPT symmetry-violating terms in the
Lagrange density. Interpreting constraints on Lorentz
invariance violation in terms of limits on the coefficients
of the SME has the advantage over model-independent
tests, that results from different kinds of experiments (e.g.
polarization and time-of-flight measurements) can be
compared directly. The disadvantage of this approach is
that some models of quantum gravity, such as theories of
doubly special relativity (DSR, [8]), cannot be described
in the effective field theory framework (however, see
Sec. IV.F.3 of Ref. [6] for a critique of DSR). The additional
Lorentz and/or CPT-violating terms in the action of the
SME can be ordered by the mass dimension of the
corresponding operator. Operators of dimension d lead
to a dispersion proportional to ðE=EPlanckÞd−4, meaning that
the renormalizable operators of d ≤ 4 are unsuppressed
with respect to conventional physics. Thus, it is obvious,
that only the nonrenormalizable Lorentz-violating terms of
d ≥ 5 may contribute.
One of the problems of the Standard Model is that

radiative corrections due to particle interactions can create
unsuppressed d ≤ 4 Lorentz-violating terms [9]. One of the
attractive features of supersymmetric (SUSY) theories is
that spontaneous symmetry breaking can suppress these
terms [9,10].
As mentioned above, the leading-order Lorentz-

violating operators of dimension d ¼ 5 lead to a photon
dispersion linear in energy, which has been constrained
beyond the Planck scale in the isotropic case [5].
Furthermore, in the SME all operators of this mass
dimension also result in birefringence, and can, therefore,
be constrained much more strongly by polarization mea-
surements [11]. The next-to-leading-order operators of
d ¼ 6 are generally suppressed compared to the leading-
order operators. However, d ¼ 5 operators not only violate
Lorentz invariance but also break CPT symmetry.
Additionally, the above-mentioned suppression of induced
lower-dimension Lorentz-violating operators through
SUSY breaking is not sufficient, and fine-tuning will be
required. On the other hand, the terms of mass dimension
d ¼ 6 conserve CPT, and induced dimension-four terms
are sufficiently suppressed in SUSY theories [9,10].
Therefore, it may well be possible that the lowest-order
nonvanishing Lorentz-invariance-violating terms are of
mass dimension d ¼ 6.
In the d ¼ 6 case, there is a subset of ðd − 1Þ2 ¼ 25

nonbirefringent Lorentz-violating operators, which cannot
be constrained through polarization measurements. This
motivates a dedicated search for photon dispersion
proportional to E2. In general, Lorentz invariance viola-
tion can lead to an anisotropic photon dispersion. A
spherical decomposition results in 25 real coefficients,
which can be constrained by observing photon dispersion
from at least 25 astrophysical sources distributed evenly
on the sky. So far, constraints on quadratic photon

dispersion have been derived from the observation of
four gamma-ray bursts (GRBs) by Fermi-LAT [12], one
GRB observed by RHESSI [13], and four flares of active
galactic nuclei (AGNs) observed by the TeV gamma-ray
telescopes H.E.S.S. [14,15], MAGIC [16], and Whipple
[17]. Constraints on linear dispersion from SWIFT,
HETE, and BATSE observations of GRBs [18] could
in principle be converted to limits on quadratic
dispersion. However, due to the much lower energies
probed in these cases, the resulting constraints are not
competitive.
While the work presented here as well as in the above-

mentioned references, consider systematic effects of
Lorentz invariance violation, it is expected that the foamy
structure of spacetime in models of quantum gravity may
lead to a stochastic variation of the velocity of photons of
the same energy [19]. In general, both “stochastic” and
“systematic” Lorentz invariance violations may be present.
Recently, stochastic variations of the linear photon
dispersion have been constrained at the Planck scale by
Fermi observations of GRB090510 [20].
In this paper, we analyze Fermi-LAT data [21] of 25

AGNs, and derive limits on photon dispersion for all of
them. We combine these limits with the previously pub-
lished results in order to derive limits on the complete set of
nonbirefringent Lorentz-violating coefficients with mass
dimension six in the Standard Model Extension.
In Sec. II, we summarize the theoretical foundation of

our analysis in the SME. In Sec. III, we give a brief
introduction to the Fermi-LAT. In the same section we also
describe the DisCan method, which we used to constrain
photon dispersion from the individual AGN studied in this
analysis. Our source selection and data set is described in
Sec. IV, and our results and the combination with pre-
viously published results will be presented in Sec. V.
Finally, we summarize our findings in Sec. VI.

II. MATHEMATICAL FRAMEWORK

The basic assumption of the Standard Model Extension
is that the theoretical framework of the Standard Model
and general relativity is the low-energy limit of a unified
quantum gravity theory, which holds at the Planck energy
scale. In an expansion approximating the full theory, the
action of the Standard Model is the zeroth-order term.
The Standard Model Extension considers additional terms
in the action, whose magnitude can be constrained by
observational data. These additional terms are ordered by
the mass dimension d of the tensor operator, and operators
with d > 4 lead to Lorentz invariance violation. Although
the full theory is thought to be Lorentz invariant and
consistent with the cosmological principle, Lorentz invari-
ance and isotropy of space breaking terms can arise
dynamically.
A general Lagrange density of the photon sector can be

written as [6]
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L ¼ −
1

4
FμνFμν þ 1

2
ϵκλμνAλðk̂AFÞκFμν

−
1

4
Fκλðk̂FÞκλμνFμν; ð1Þ

where the differential operators k̂AF are CPT odd and only
contain coefficients of odd mass dimension, whereas the
operators k̂F only contain coefficients of even d and are
CPT even. The equation of motion is derived by varying
the Lagrangian and the dispersion relation follows from the
equation of motion. In the vacuum case it can be written as

EðpÞ≃
�
1 − ς0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðς1Þ2 þ ðς2Þ2 þ ðς3Þ2

q �
p: ð2Þ

An expansion in mass dimension and spherical decom-
position yield for photons of momentum p arriving from
direction ðθk;φkÞ

ς0 ¼
X
djm

pd−4Yjmðθk;φkÞcðdÞðIÞjm; ð3Þ

ς� ¼ ς1 � ς2

¼
X
djm

pd−4∓2Yjmðθk;φkÞðkðdÞðEÞjm ∓ ikðdÞðBÞjmÞ; ð4Þ

ς3 ¼
X
djm

pd−4Yjmðθk;φkÞkðdÞðVÞjm; ð5Þ

where cðdÞðIÞjm represents sets of ðd − 1Þ2 nonbirefringent

CPT-even coefficients, i.e. they are nonzero only for even
d. Furthermore, d ≥ 4, j ¼ 0…d − 2, and jmj ≤ j. While,
ς0 only contains nonbirefringent CPT-even coefficients, ς3

and the combinations ς� ¼ ς1 ∓ iς2 contain birefringent
CPT-even and birefringent CPT-odd coefficients, respec-
tively. Since Lorentz symmetry is well established, any
Lorentz-violating effect has to be small. It is therefore
expected that coefficients of Lorentz-invariance-violating
operators are suppressed by a large scale, typically a factor
of Md−4

Planck [6]. The coordinates ðθk;φkÞ are in a Sun-
centered celestial equatorial frame, such that θk ¼ 90° − δk
and φk ¼ αk, where αk and δk are the right ascension and
declination of the kth astrophysical source, respectively.
In the following, we will assume a CPT-even non-

birefringent vacuum model, which has nonzero coefficients
only in even dimensions d, with the leading order being
d ¼ 6 (at dimension four the photon dispersion only
depends on direction, not energy, and therefore cannot
be measured with astrophysical observations). Using the
approximation E≃ p in Eq. (3), the operators of this mass
dimension lead to a photon dispersion that is quadratic in
energy. Thus, the difference of arrival times of two photons
with energies E1 and E2 emitted simultaneously from an
astrophysical source at redshift zk is given by

t2 − t1 ≈
Z

zk

0

v1 − v2
Hz

dz

≈ ðE2
2 − E2

1Þ
Z

zk

0

ð1þ zÞ2
Hz

dz
X
jm

Yjmðθk;φkÞcð6ÞðIÞjm;

ð6Þ

where

Hz ¼ H0½Ωrð1þ zÞ4 þΩmð1þ zÞ3 þΩkð1þ zÞ2 þ ΩΛ�12
ð7Þ

is the Hubble expansion rate at redshift z with the present
day Hubble constant H0 ≃ 70 km s−1Mpc−1, the radiation
density Ωr ≃ 0.015, the matter density Ωm ≃ 0.27, the
vacuum density ΩΛ ≃ 0.73, and the curvature density
Ωk ¼ 1 − Ωr −Ωm −ΩΛ [22].
Introducing the dispersion coefficient

ϑk ¼
Z

zk

0

ð1þ zÞ2
Hz

dz
X
jm

Yjmðθk;φkÞcð6ÞðIÞjm; ð8Þ

Eq. (6) can be written as

Δtk ¼ ϑkðE2
2 − E2

1Þk; ð9Þ

where the index k indicates the kth astrophysical source
being studied. With the redshift and light-travel-time
weighted dispersion coefficient

γk ¼
ϑkR zk

0
ð1þzÞ2
Hz

dz
ð10Þ

one finds a system of equations to calculate the coefficients

cð6ÞðIÞjm:

X
j¼0…4
m¼−j…j

Yjmðθk;φkÞcð6ÞðIÞjm ¼ γk: ð11Þ

At leading order, d ¼ 6, there are 25 complex coefficients

cð6ÞðIÞjm. However, since the γk are real, the structure of the

spherical harmonics leads to the reality condition

cð6ÞðIÞj−m ¼ ð−1Þmðcð6ÞðIÞjmÞ�; ð12Þ

resulting in a total of 25 real coefficients, with all cð6ÞðIÞj0 real.
Thus, measurements of γk from at least 25 sources are

required to constrain all coefficients individually. If no
significant deviation of photon travel times is found,
positive and negative limits on γk are determined con-
straining a volume in the 25-dimensional parameter space

of the cð6ÞðIÞjm.
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III. INSTRUMENT AND METHODS

A. The Fermi-LAT

The LAT is the primary instrument on the Fermi Gamma-
ray Space Telescope [21], covering the γ-ray energy band
from 20 MeV to more than 300 GeV. It is an imaging
telescope with a wide field of view of 2.4 sr that covers the
entire sky every two orbits, and as such is ideally suited for
the study presented here because it allows us to obtain
densely sampled long-term light curves of AGNs. The LAT
is a pair-conversion telescope consisting of a converter-
tracker and a calorimeter. Gamma rays convert in the
tungsten layers of the converter-tracker, and the tracks of
the eþe− pair are recorded in silicon strip detectors in order
to reconstruct the direction of the incident gamma ray. The
electromagnetic shower initiated by the eþe− pair is then
absorbed in the calorimeter to measure the energy depo-
sition and, thus, reconstruct the energy of the gamma ray.
Above an energy of 1 GeV the angular resolution of the
LAT is better than 1°.

B. The DisCan method

As mentioned in the Introduction, and Eqs. (6) and (8),
the Lorentz-violating operators of mass dimension d ¼ 6
lead to a quadratic dependence of the photon travel time
from the source to the observer on the photon energy. In the
case of a time-variable source, this will generally smear out
the structure of the light curve. In the dispersion cancella-
tion method, this effect is corrected for, by adjusting the
arrival time of each photon proportional to −ϑE2:

t00 ¼ tarr − ϑðE2 − hE2iÞ; ð13Þ

where hE2i is the average E2 of the observed photons. One
then finds the value of ϑ that leads to the “least washed-out”
light curve. In this way no binning in energy is necessary.
In the DisCan method [23] a binning of photons in time

is furthermore avoided as follows. Each photon at arrival
time ti is assigned a time bin of width

Δti ¼
tiþ1 − ti−1

2
: ð14Þ

In order to represent the light curve in this way, the contents
of each time bin are set to

wi ¼ 1=Δti: ð15Þ
This leads to an accurate albeit choppy representation of the
light curve that does not require binning photons in time. In
order to reduce choppiness, we chose to combine each ten
consecutive photons into one wider time bin with appro-
priate weight. Furthermore, we required that the last photon
in each bin is separated from the next by more than 1 s,
otherwise the bin is extended by one photon. Thus the final
duration of the nth bin spanning photons n1…n2 is

Δtn ¼
tn2þ1 − tn2 − tn1 þ tn1−1

2
ð16Þ

with the weight

wn ¼
n2 − n1
Δtn

: ð17Þ

One then calculates the Shannon information in order to
quantify, how much the light curve is smeared out:

S ¼
X
n

wn

W
log

wn

W
; ð18Þ

where

W ¼
X
n

wn: ð19Þ

A more narrowly peaked light curve will lead to a larger
Shannon information than a more smeared out one. By
varying ϑ one then finds the value of the parameter, ϑ̂,
which maximizes S. Then, ϑ̂ is considered the best-
fit value.
In general, the method above will find a value ϑ̂ ≠ 0,

even if there was no Lorentz invariance violation at all, due
to statistical fluctuations. In order to determine the signifi-
cance of this deviation from the null hypothesis and to
determine upper and lower limits on ϑ, the method
described above was repeated on randomized light curves.
For each source 106 random light curves were produced by
keeping all photon arrival times and energies, but assigning
to each arrival time a random photon energy out of the set
of detected energies (using each energy only once). We
then applied the DisCan method to each of these random
light curves. The lower and upper limits on ϑ were then
determined as single-sided 95% confidence limits.

IV. SOURCE SELECTION AND DATA SET

Constraining all 25 nonbirefringent LIV parameters of
mass dimension d ¼ 6 in the SME requires the observation
of at least 25 astrophysical sources. To date, limits have
been published from four very high-energy (VHE) AGNs
[14–17], four GRBs detected with Fermi-LAT [12], and
one GRB observed by RHESSI [13]. In this paper we
supplement that data set with limits on photon dispersion
from 25 blazars observed with the Fermi-LAT.
We selected the 24 sources from the four-year Fermi

point source catalog (3FGL, [24]) with the highest vari-
ability index [25], that also fulfilled the following
conditions:

(i) the red shift is known and >0.1;
(ii) no constraints on Lorentz invariance violation have

been published based on TeV gamma-ray observa-
tions of this source;
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(iii) the source is significantly detected above 10 GeV by
Fermi-LAT, with sqrt ts 10 100 gev > 10 ac-
cording to the catalog [25], which is the square root
of the logarithm of the likelihood ratio of observing
the signal in the 10 to 100 GeV band with and
without the point source;

(iv) and there are no other similarly bright γ-ray sources
within a 2° radius.

While the variability index characterizes the variability of a
source on month time scales, it does not give any indication
about its shorter-term variability, which is of importance to
this study. However, in the case of blazars, it is a good
indication of the frequency and intensity of observed flares,
making it a suitable criterion to select sources for this
analysis. In addition to the sources obtained in this way, we
also analyzed the flat spectrum radio quasar S3 0218þ 35,
resulting in a total of 25 blazars, which are listed in Table I.
Of these, 19 are flat spectrum radio quasars (FSRQs), and
six are BL Lac type objects. Figure 1 shows a sky map of all
sources used in this analysis, including those with pre-
viously published limits.
For the analysis of the selected AGNs we used all

data from the Fermi Pass 7 P7REP_SOURCE_V15 data
set taken between August 5, 2008, and October 15, 2014.
For each source we selected time intervals such that

a search radius of 15° would pass a zenith angle
cut of zmax ¼ 100. Furthermore, we restricted the
energy range to 500 MeV–300 GeV and applied the
cut ðDATA QUAL>0Þ && ðLAT CONFIG¼¼1Þ. Below
500 MeV the direction resolution degrades rapidly and
the background contribution rises quickly. We then
applied the DisCan method as described in Sec. III B
to all remaining events within a search radius of 1°
around the source, the results of which will be discussed
in the next section.

V. LIMITS ON LIV PARAMETERS

A. Previously published constraints

Previously published results on quadratic photon
dispersion are listed in Table II, and the magnitudes of
all values including ours are shown in Fig. 2. The best limits
are obtained from AGNs observed with VHE gamma-ray
instruments. The extremely high photon energies more
than compensate for the fact that the observed objects
have a relatively low redshift, in particular given that the
expected photon dispersion is proportional to the square of
the photon energy. Note, however, that MAGIC originally
reported a marginal detection [16] of ϑ̂ ¼ 3.71� 2.57×
10−6 s=GeV2. Due to the low significance of the result, we
decided to convert it into a 95% upper limit and then
conservatively used the negative value as a lower limit,
i.e. −8.85× 10−6 s=GeV2 ≤ ϑ ≤ 8.85× 10−6 s=GeV2. The
resulting limits on γ are given in the table. In the case of
Fermi GRB observations the extremely short temporal
structure and high redshifts lead to limits on the order of
10−19 GeV−2 or better. The RHESSIGRB limit suffers from
the lower attainable energies.

B. Constraints from AGNs observed with Fermi

In this work, we obtained limits on quadratic photon
dispersion from an analysis of Fermi AGNs. As seen in
Table III, most of the limits we obtained are between 10−14

and 10−18 GeV−2, mostly depending on the brightness of

FIG. 1 (color online). Sky map with all sources used in this
analysis in equatorial coordinates. The Fermi AGNs (blue circles)
and PKS 0527 − 441 were analyzed in this work.

TABLE I. List of sources studied in this analysis. All source
coordinates were obtained from the SIMBAD database [26].
Individual references are given for the redshifts.

RA Declination Redshift
Source Class J2000 [°] J2000 [°] z Ref.

3C 66A BL Lac 35.665 þ43.036 0.444 [27]
3C 273 FSRQ 187.278 þ2.052 0.158 [28]
3C 279 FSRQ 194.047 −5.789 0.536 [29]
3C 454.3 FSRQ 343.491 þ16.142 0.859 [29]
4C þ14.23 FSRQ 111.320 þ14.420 1.814 [30]
4C þ28.07 FSRQ 39.468 þ28.802 1.207 [29]
B2 1520þ 31 FSRQ 230.542 þ31.737 1.487 [31]
B3 1343þ 451 FSRQ 206.388 þ44.883 2.534 [32]
GB 1310þ 487 FSRQ 198.181 þ48.475 0.501 [30]
PKS 0235þ 164 BL Lac 39.662 þ16.616 0.94 [33]
PKS 0426 − 380 BL Lac 67.168 −37.939 1.030 [27]
PKS 0454 − 234 FSRQ 74.263 −23.414 1.003 [29]
PKS 0537 − 441 BL Lac 84.710 −44.086 0.896 [27]
PKS 0716þ 714 BL Lac 110.473 þ71.343 0.300 [27]
PKS 1222þ 216 FSRQ 186.227 þ21.380 0.435 [29]
PKS 1424 − 41 FSRQ 216.985 −42.105 1.522 [34]
PKS 1502þ 106 FSRQ 226.104 þ10.494 1.838 [35]
PKS 1510 − 089 FSRQ 228.211 −9.100 0.361 [27]
PKS 1633þ 382 FSRQ 248.815 þ38.135 1.814 [36]
PKS 1830 − 211 FSRQ 278.416 −21.061 2.507 [37]
PKS 2233 − 148 BL Lac 339.142 −14.556 0.609 [38]
PKS 2326 − 502 FSRQ 352.337 −49.928 0.518 [39]
PMN J2345−1555 FSRQ 356.302 −15.919 0.621 [30]
S3 0218þ 35 FSRQ 35.273 þ35.937 0.685 [40]
S4 1849þ 67 FSRQ 282.317 þ67.095 0.657 [41]
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the source and the duration of the observed bursts. A bright
short flare will be sensitive to time structures that can be
orders of magnitude smaller than what can be tested with a
fainter and longer flare. This is the main advantage of GRB
observations over AGNs. No significant photon dispersion
was found in any of the AGNs studied here. The value of
ϑ̂ ¼ 36686 s=GeV2 found in case of the FSRQ PKS
0537 − 441 is significantly beyond the 95% upper limit
obtained from randomized light curves. Using these ran-
domized light curves, we determined that the chance
probability of observing this value of ϑ̂ or larger, is less
than 0.5%. While this by itself would be a significant
deviation from the null hypothesis, considering that we
analyzed 25 sources, the post-trial probability of this event
is 19.2%. At the same time, this value of ϑ̂ is also
significantly larger than any other previously published
limit, as well as all constraints found in this analysis, which
strongly suggests that this finding is due to a source-
intrinsic effect. Therefore, we removed PKS 0537 − 441

from our data set, and completed the analysis with the
remaining sources. A more detailed discussion of this
source follows in Sec. V D.

C. Constraining SME parameters

The redshift and light-travel-time weighted dispersion
coefficients γ are related to the Lorentz-violating coeffi-

cients cð6ÞðIÞjm through Eq. (11). This system of equations can

be written in matrix form,

TABLE II. Published limits on the redshift and light-travel-time weighted dispersion coefficient γk. Note that in the case of the
MAGIC result (indicated by a �) a marginal detection was quoted. We converted this result into 95% limits as discussed in Sec. V.

RA Declination Redshift γmin γmax
Source Instrument J2000 [°] J2000 [°] z [GeV−2] [GeV−2] Refs.

GRB 080916C Fermi-LAT 119.847 −56.638 4.35 −8.7 × 10−20 2.0 × 10−19 [12]
GRB 090510 Fermi-LAT 333.553 −26.597 0.903 −3.1 × 10−21 1.6 × 10−21 [12]
GRB 090902B Fermi-LAT 264.939 þ27.324 1.822 −3.4 × 10−20 5.2 × 10−20 [12]
GRB 090926A Fermi-LAT 353.401 −66.323 2.107 −1.1 × 10−19 5.2 × 10−20 [12]
GRB 021206 RHESSI 240.195 −9.710 0.3 −1.0 × 10−16 1.0 × 10−16 [2,13]
PKS 2155 − 304 H.E.S.S. 329.717 −30.226 0.116 −7.4 × 10−22 7.4 × 10−22 [14]
PG 1553þ 113 H.E.S.S. 238.929 þ11.190 0.49 −5.37 × 10−21 3.46 × 10−21 [15]
Mrk 501 MAGIC 253.468 þ39.760 0.034 −5.8 × 10−22 5.8 × 10−22 [16]�

Mrk 421 Whipple 166.114 þ38.209 0.031 −1.4 × 10−21 1.4 × 10−21 [17]
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FIG. 2 (color online). Distribution of weighted dispersion
coefficients γ values used in this study, showing the best
95% confidence level limit obtained for each source. All Fermi
AGNs were analyzed here, while the values from other sources
have previously been published [12–17]. The Fermi AGN limits
are not as sensitive as the Fermi GRB or VHE AGN limits, but
they provide the data points required for constraining all 25

expansion coefficients cð6ÞðIÞjm.

TABLE III. Best-fit values of the dispersion coefficient ϑ, as
well as upper and lower limits on ϑ and redshift and light-travel-
time weighted dispersion coefficient γ for the sources studied in
this analysis.

ϑ̂ ϑmin ϑmax γmin γmax
Source [s=GeV2] [s=GeV2] [s=GeV2] [GeV−2] [GeV−2]

3C 66A 428 −7148 11017 −2.77×10−14 4.26×10−14
3C 273 5.0 −19.3 24.9 −2.50×10−16 3.23×10−16
3C 279 2.1 −3.8 6.3 −1.16×10−17 1.92×10−17
3C 454.3 0.22 −0.20 0.65 −3.31×10−19 1.08×10−18
4C þ14.23 843 −12243 12107 −7.37×10−15 7.29×10−15
4C þ28.07 −1554 −22276 19750 −2.34×10−14 2.07×10−14
B2 1520þ31 −0.78 −1064 306 −8.41×10−16 2.42×10−16
B3 1343þ451 −733 −10753 10258 −4.10×10−15 3.91×10−15
GB 1310þ487 55.0 −142 838 −4.72×10−16 2.79×10−15
PKS 0235þ164 473 −3974 10628 −5.84×10−15 1.56×10−14
PKS 0426−380 −0.13 −779 922 −1.01×10−15 1.20×10−15
PKS 0454−234 −472 −1131 2975 −1.52×10−15 4.01×10−15
PKS 0537−441

† 36686 −2692 2504
PKS 0716þ714 −266 −378 30.9 −2.35×10−15 1.92×10−16
PKS 1222þ216 0.14 −1.9 3.9 −7.54×10−18 1.55×10−17
PKS 1424−41 −7.9 −52.1 45.5 −3.99×10−17 3.48×10−17
PKS 1502þ106 −1.9 −19.4 51.2 −1.15×10−17 3.04×10−17
PKS 1510−089 0.65 −3.4 5.4 −1.69×10−17 2.69×10−17
PKS 1633þ382 4.0 −4891 4400 −2.95×10−15 2.65×10−15
PKS 1830−211 −82.4 −129 106 −4.99×10−17 4.10×10−17
PKS 2233−148 0.79 −3281 2104 −8.52×10−15 5.46×10−15
PKS 2326−502 −1.0 −203 1507 −6.48×10−16 4.81×10−15
PMN J2345−1555 −0.33 −2655 3390 −6.72×10−15 8.58×10−15
S3 0218þ35 −4.0 −125 61.1 −6.33×10−15 5.96×10−15
S4 1849þ67 90.4 −2837 2671 −2.94×10−16 1.44×10−16

†The value of ϑ̂ obtained for PKS 0537−441 is far outside the
limits set by ϑmin and ϑmax. As discussed in Sec. V, we discarded
this source for the remainder of the analysis.
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H · v ¼ γ; ð20Þ
where v is a vector of the 25 independent real numbers

entering the complex coefficients cð6ÞðIÞjm, γ is a vector of the
N values of γk for N sources studied, and H is the 25 × N
matrix relating the two sets, whose rows are obtained
directly from Eq. (11). For a set of uncorrelated measure-
ments of γk from N ≥ 25 sources, the best-fit set of
parameters v can be obtained through,

v ¼ ðHTHÞ−1HTγ ¼ Hþγ; ð21Þ

where Hþ is the Moore-Penrose pseudoinverse of H (see
e.g. Ref. [42], and note that Hþ ¼ H−1 for square
matrices).

We used Eq. (21) to obtain the 95% confidence level
limits on the LIV coefficients cð6ÞðIÞjm from the limits on γk,
by generating 107 random vectors γ. For each source, the
probability distribution of γk was approximated by an
asymmetrical normal distribution with mean 0 and standard
deviations chosen to match the one-sided 95% limits in
Tables II and III. For each of these random γ we then solved
Eq. (21) and in that way found the distribution for each
coefficient in v. From those resulting distributions we then
determined the single-sided 95% upper and lower bounds.
The resulting limits on all 25 nonbirefringent Lorentz-
violating parameters of mass dimension d ¼ 6 of the SME
are listed in Table IV.
Previous measurements only considered the isotropic

case since not enough sources were available. The pre-
viously published results made use of Fermi-LAT GRB
observations and TeV gamma-ray observations of AGNs.
The resulting isotropic limits are up to 6 orders of
magnitude better than the anisotropic limits presented here
[2,5,12,14–17]. The reason for this big difference is that the
results of Eq. (21) are dominated by the worst of the best 25
constraints. As a consequence, the results of this analysis
cannot be improved significantly by simply adding more
constraints to the data set. Major improvements will only be
possible when a large number of additional highly con-
straining observations are made (such as TeV observations
of further AGNs and GeV observations of gamma-ray
bursts).
However, our limits are the first constraints on any

complete sector of the SME, and the first direct constraints

on any of the parameters cð6ÞðIÞjm other than cð6ÞðIÞ00, which
describes the isotropic case [2]. No Lorentz invariance
violation has been observed in the photon dispersion in
energy or direction.

D. PKS 0537 − 441

We used the constraints on the coefficients cð6ÞðIÞjm in order
to test to what degree the finding of a nonzero delay of
high-energy photons from PKS 0537 − 441 is consistent
with quadratic photon dispersion in the SME given the
observations of the other sources in this analysis. In the same
way as described above, we generated 107 random vectors γ

and then computed the coefficients cð6ÞðIÞjm according to
Eq. (21). For each of these sets of parameters we then
calculated the expected value of ϑ for PKS 0537 − 441
according to Eqs. (10) and (11). In this way we found that
based on the constraints on the Lorentz-invariance-breaking
parameters in the SME obtained from the other sources one
expects a value of ϑ̂ < 15775 s=GeV2 for PKS 0537 − 441
at the 95% confidence level. Furthermore, the probability
of finding ϑ̂ ≥ 36686 s=GeV2 is only 7.1 × 10−5. This
underlines our earlier conclusion that the result found here
has to be caused by a source-intrinsic effect, and not by
photon dispersion caused by Lorentz invariance breaking.

TABLE IV. Limits in units of GeV−2 on all independent LIV

parameters cð6ÞðIÞjm obtained in this analysis. The dependent

parameters cð6ÞðIÞj−m can be calculated according to Eq. (12).

−2.705 × 10−14 < cð6ÞðIÞ00 < 3.925 × 10−14

−3.753 × 10−14 < cð6ÞðIÞ10 < 2.889 × 10−14

−2.816 × 10−14 < Reðcð6ÞðIÞ11Þ < 3.574 × 10−14

−3.299 × 10−15 < Imðcð6ÞðIÞ11Þ < 5.984 × 10−15

−4.232 × 10−14 < cð6ÞðIÞ20 < 3.032 × 10−14

−1.590 × 10−14 < Reðcð6ÞðIÞ21Þ < 1.043 × 10−14

−4.412 × 10−14 < Imðcð6ÞðIÞ21Þ < 3.288 × 10−14

−2.353 × 10−14 < Reðcð6ÞðIÞ22Þ < 3.113 × 10−14

−5.144 × 10−14 < Imðcð6ÞðIÞ22Þ < 6.634 × 10−14

−4.823 × 10−14 < cð6ÞðIÞ30 < 6.435 × 10−14

−2.439 × 10−14 < Reðcð6ÞðIÞ31Þ < 1.798 × 10−14

−2.822 × 10−14 < Imðcð6ÞðIÞ31Þ < 2.078 × 10−14

−3.125 × 10−14 < Reðcð6ÞðIÞ32Þ < 3.855 × 10−14

−2.171 × 10−14 < Imðcð6ÞðIÞ32Þ < 1.624 × 10−14

−3.693 × 10−14 < Reðcð6ÞðIÞ33Þ < 2.943 × 10−14

−4.216 × 10−14 < Imðcð6ÞðIÞ33Þ < 5.656 × 10−14

−2.313 × 10−14 < cð6ÞðIÞ40 < 2.739 × 10−14

−9.021 × 10−15 < Reðcð6ÞðIÞ41Þ < 1.131 × 10−14

−2.953 × 10−14 < Imðcð6ÞðIÞ41Þ < 3.904 × 10−14

−4.650 × 10−15 < Reðcð6ÞðIÞ42Þ < 6.846 × 10−15

−2.489 × 10−14 < Imðcð6ÞðIÞ42Þ < 1.961 × 10−14

−7.276 × 10−15 < Reðcð6ÞðIÞ43Þ < 1.014 × 10−14

−1.246 × 10−14 < Imðcð6ÞðIÞ43Þ < 1.343 × 10−14

−3.919 × 10−14 < Reðcð6ÞðIÞ44Þ < 2.923 × 10−14

−1.801 × 10−14 < Imðcð6ÞðIÞ44Þ < 1.427 × 10−14
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The light curve of PKS 0537− 441 (Fig. 3) shows an
extended period of high activity between MJD 55253 and
55708 (February 2, 2010, and May 27, 2011), which can be
subdivided into at least two major flares, the first one
lasting through MJD 55392 (July 15, 2010) and the second
one starting at MJD 55505 (November 5, 2010). We
analyzed those two flares independently and found no
photon arrival time variation during the first, larger flare.
During the second flare, an arrival time variation compa-
rable to the value found for the entire light curve could be
observed. Assuming that the Lorentz-invariance-violating
coefficients are constant in time, this is a contradiction that
suggests that there was a source-intrinsic spectral evolution
during the second flare.

VI. SUMMARY

In the Standard Model Extension, Lorentz invariance
violation is described by nonrenormalizable terms of
mass dimension d ≥ 5. Dimension-five operators have
already been constrained very strongly through polariza-
tion measurements. In addition, these operators not only
violate Lorentz symmetry but also CPT making it
plausible that CPT-even operators of higher mass dimen-
sion d ¼ 6 constitute the leading order. There is a subset
of 25 nonbirefringent operators of d ¼ 6 leading to an
anisotropic photon dispersion that is quadratic in energy.
These terms are characterized by a set of 25 real
coefficients, which can be constrained through astro-
physical dispersion measurements from 25 or more
directions in the sky. We conducted a search for
Lorentz-violating photon dispersion from 25 active galac-
tic nuclei using data from the Fermi-LAT. Using the
DisCan method we did not find any significant energy
dependence of the speed of light with one exception. In
the case of PKS 0537 − 441, which exhibited a strong
energy dependence of the photon arrival times, we
demonstrated that this is most likely a source-intrinsic
effect observed during one of its flares and absent at
other times. Therefore, we set upper and lower limits on

the coefficients describing the quadratic photon
dispersion for all sources. We combined our 24 limits
with nine previously published constraints in order to set
limits on all 25 coefficients of the nonbirefringent
Lorentz-violating operators of mass dimension d ¼ 6 in
the Standard Model Extension. While previous measure-
ments were able to constrain linear combinations of all
operators, our limits represent the first set of constraints
on a complete subset of individual coefficients in the
photon sector with d ¼ 6. The photon sector of the SME
has always been the best-constrained part of the theory.
However, the detection of high-energy neutrinos by
IceCube promises to provide constraints on the neutrino
sector in the near future [43].
The next step will be to repeat the analysis presented

here using polarization data in order to constrain the
birefringent coefficients in a similar way. Polarimetric
observations rule out a modification of the photon
dispersion relation of order unity at the Planck scale
from operators with d ¼ 5 by more than 6 orders of
magnitude. In contrast, neither time-of-flight measure-
ments nor polarimetric observations do so for the case of
d ¼ 6. It is instructive to evaluate how much better future
time-lag and polarization measurements will do in this
regard. For this purpose we assume that observations of
GRBs at z ¼ 1 can constrain the time-of-flight difference
of photons of energies E1 ¼ ϵ and E2 ¼ 0.1ϵ with an
accuracy of 1 ms, and succeed to detect a polarized signal
from these GRBs. Figure 4 shows the resulting con-
straints. Interestingly, the time-of-flight measurements will
not have the sensitivity required to constrain new physics
at the Planck scale for the case of d ¼ 6. Polarization
observations do better, but require the detection of
polarized signals at >20 MeV energies. Such detections
might be possible with a next-generation Compton or
pair-production telescope (e.g. [44]).
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FIG. 3 (color online). Light curve of PKS 0537 − 441 above
1 GeV as observed with the Fermi-LAT. The raw event counts
were not exposure corrected reflecting the way individual
photons are used in the DisCan method.
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FIG. 4 (color online). Estimates of the limits on Lorentz-
invariance-violating parameters ζðdÞa ¼ Ed

Planckς
ðdÞa with d ¼ 5

and d ¼ 6 and a ∈ f0; 3;þg (see Sec. II) that can be achieved
with future time dispersion and birefringence observations at
energy ϵ. Results at and below the dotted line at ζðdÞa ¼ 1
constrain effects at the Planck energy scale.
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