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We derive the modified diffusion equations defined on kappa spacetime and, using these, investigate the
change in the spectral dimension of kappa spacetime with the probe scale. These deformed diffusion
equations are derived by applying Wick’s rotation to the κ-deformed Schrödinger equations obtained from
different choices of Klein-Gordon equations in the κ-deformed spacetime. Using the solutions of these
equations, obtained by perturbative method, we calculate the spectral dimension for different choices of the
generalized Laplacian and analyze the dimensional flow in the κ spacetime. In the limit of commutative
spacetime, we recover the well-known equality of spectral dimension and topological dimension. We show
that the higher-derivative term in the deformed diffusion equations makes the spectral dimension
unbounded (from below) at high energies. We show that the finite mass of the probe results in the
spectral dimension becoming infinitely negative at low energies also. In all these cases, we have analyzed
the effect of finite size of the probe on the spectral dimension.
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I. INTRODUCTION

Combining the principles of quantum mechanics and
general relativity is known to result in spacetime uncertain-
ties [1]. This leads to fuzziness of the spacetime at extremely
short distances. This fuzziness can change the effective
dimension of the spacetime at high energies [2–4]. Various
approaches like string theory, loop gravity, and causal
dynamical triangulation have been developed to unravel
the nature of spacetime at extremely short distances. All
these approaches have a common trait—they predict dimen-
sional reduction [5–9]. Construction and analysis of a
diffusion equation compatible with these approaches is a
possible way to study the dimensional flow. Spectral
dimension turns out to be an important tool for investigating
the nature of spacetime at microscopic scales [5].
Noncommutative geometry is a possible way to capture

the spacetime uncertainties and, thus, study the spacetime
structure at Planck scale. κ spacetime is an example of a Lie
algebraic–type noncommutative spacetime whose coordi-
nates satisfy

½x̂0; x̂i� ¼ iax̂i; ½x̂i; x̂j� ¼ 0: ð1Þ

The significance of this spacetime to quantum gravity
comes from the fact that it appears naturally in the low-
energy limit of loop gravity [10] as well as in the context of
doubly special relativity theories [11]. Analysis of diffusion
on this space shows that the effective dimension is different
from the topological dimension [12–16].
In this paper, we investigate the dimensional flow in the

κ-deformed spacetime using the solution of the deformed

diffusion equations. These κ-diffusion equations are con-
structed by a Wick’s rotation of κ-deformed Schrödinger
equations obtained as the nonrelativistic limit of the well-
studied κ-deformed Klein-Gordon equations [17–21].
It is well known that the Schrödinger equation and

diffusion equation are related by aWick’s rotation [22]. The
time-dependent Schrödinger equation for a free particle is

iℏ
∂
∂tϕðx; tÞ ¼ − ℏ2

2μ
∇2ϕðx; tÞ; ð2Þ

where μ is the particle’s reduced mass, ∇2 is the Laplacian,
and ϕ is the wave function, and is mapped to

∂
∂tϕ ¼ k∇2ϕ; ð3Þ

under the map t → −it. By redefining kt ¼ σ, one reex-
presses the above equation as the standard diffusion
equation.
The analysis of the effective dimension of the spacetime

and its dependence on the probe scale is studied using a
diffusion process [5]. In this approach, one investigate the
behavior of a nonrelativistic particle undergoing diffusion
in the space whose dimension is under study. This equation
is solved by imposing the delta function initial condition
which takes into account the point particle nature of the
probe.
The motion of the nonrelativistic particle in a diffusion

process in d-dimensional spacetime is governed by the
diffusion equation

∂
∂σUðx; y; σÞ ¼ LUðx; y; σÞ; ð4Þ*anjanaganga@gmail.com
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where σ is the diffusion time,L is the generalized Laplacian
in the given space (of d − 1 dimensions) and its solution
Uðx; y; σÞ is the probability density of diffusion from x to y
during the diffusion time σ. Using the solution of the
diffusion equation, one finds the return probability as

PðσÞ ¼
R
dnx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

p
Uðx; x; σÞR

dnx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

p : ð5Þ

The logarithmic derivative of return probability PgðσÞ gives
us the spectral dimension of the corresponding d − 1
dimensional space, i.e.,

Ds ¼ −2 ∂ lnPðσÞ∂ ln σ : ð6Þ

In the approach of studying the dimensional flow of
spacetime [5,12–16], one uses the nonrelativistic diffusion
equation given in Eq. (4) but replaces the d-1-dimensional
Laplacian L with the Euclideanized Beltrami-Laplace
operator defined on the concerned spacetime. One also
interprets σ as the fictitious diffusion time. The quantum
gravity effects do modify the Beltrami-Laplace operator,
which is typically the kinetic part of the deformed field
theory, defined on the spacetime under study. An equivalent
approach, using the momentum space representation of the
kinetic part of the deformed field theory (which is essen-
tially the deformed energy-momentum relation) has also
been used to study the spectral dimension of various
models [23].
There have been attempts to study possible generaliza-

tions of the diffusion process described by Eq. (4), which
includes changes in the Beltrami-Laplace operator, modi-
fication in the initial conditions as well as the modification
of diffusion operator ∂

∂σ [24], in order to capture possible
quantum gravity effects. Modification of diffusion equation
to address the nontrivial scaling behavior of spacetime was
analyzed and it was also shown that the diffusion equation
do get modified by introducing diffusion in nonlinear time
as well as by incorporating a nontrivial source term [24].
Natural generalization of diffusion equation involving
fractional derivatives (in spatial coordinate as well as in
diffusion time) was also introduced and discussed [24].
The spectral dimension of κ-Minkowski was studied in

[13] and the fractal nature of spacetimewith quantum group
symmetry was exhibited for the case of Wick’s rotated
κ-Minkowski space. The Casimir of the κ-Poincare algebra
was used to calculate the trace of the heat kernel in Wick’s
rotated κ-Minkowski space. The numerical evaluation of
the resulting expression showed that the spectral dimension
change from 4 to 3 with the probe scale. A study on similar
lines is reported in [14]. Here, the spectral dimension was
studied using three possible forms of the κ-deformed
Laplacians in the momentum space. The Laplacians con-
ceived from the Casimir of the bicovariant differential

calculus displayed the dimensional reduction as the time
change from 4 at low energies to 3 at high energies. For the
Laplacian associated with the bi-crossproduct Casimir,
spectral dimension varies from 4 to 6 with energy. A
model compatible with the notion of relative locality
[25–28] gives spectral dimension that goes to infinity as
one move to UV regime [14].
The spectral dimension of κ spacetime using the

κ-deformed diffusion equation was studied in our earlier
work [16]. Using a mapping of noncommutative coordi-
nates to commutative coordinates and their derivatives,
we constructed the diffusion equation in κ spacetime from
the Casimir of the undeformed κ-Poincare algebra [17].
Keeping terms up to second order in the deformation
parameter a, we solved the diffusion equation perturba-
tively. The spectral dimension derived from this solution
showed a length scale dependence. For a four-dimensional
spacetime, we found that the spectral dimension decrease
and become negative as we probe at higher energies.
In this paper, we construct possible modifications to the

heat equation given in Eq. (4) due to κ deformation and
study its implication on the scale dependence of the
spacetime dimension. For this, we exploit the mapping
between the Schrödinger equation and heat equation
discussed above. Thus, we start from the well-studied
κ-deformed Klein-Gordon equations written using the
Beltrami-Laplace operator in commutative spacetime and
derive its nonrelativistic limit. From the κ-deformed
Schrödinger equation thus obtained, we construct the
deformed heat equation by a Wick’s rotation (by imple-
menting the map t → −it). Note that the Wick’s rotation is
applied to the theory written in the commutative spacetime
and all the effects of noncommutativity are included
through the deformation parameter a-dependent terms.1

Note that the deformation parameter a is unaffected by
the Wick’s rotation. This allows us to investigate two
related issues: (i) the spectral dimension of κ-deformed
space and (ii) its scaling with the energy dimensional flow
of the full κ-deformed spacetime. The first problem is
studied by evaluating the spectral dimension of κ space
using the κ-deformed heat equation derived from the
κ-deformed Schrödinger equation. Here we use the
(d − 1) dimensional Laplacian constructed as the space
derivative part of the nonrelativistic limit of the κ-deformed
Klein-Gordon equation, for L in Eq. (4). For investigating
the second problem, we take the κ-deformed heat equation
obtained by the Wick’s rotation of the κ-deformed
Schrödinger equation and replace the Laplacian with
the Euclideaniced Beltrami-Laplace operator defined in

1The Wick’s rotation in noncommutative spacetime is a non-
trivial issue and has been analyzed in detail, particularly for the
case of moyal spacetime in [29–31]. It was shown in [29] that the
naive Wick’s rotation will lead to the theory being nonunitary,
and a consistent way to map the noncommutative theory from the
Euclidean to the Minkowski signature was obtained in [29–32].
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the d-dimensional κ-deformed spacetime, for L in Eq. (4).
We have carried out this study by different choices of
κ-deformed Klein-Gordon equations.
In the first case, thus, we study the spectral dimension

of the spatial part of the κ-deformed spacetime. Since the
spatial coordinates of the κ spacetime commute among
themselves and it is the time coordinate which do not
commute with the space-coordinates, this approach is
appropriate to study how the space dimension of the κ
spacetime changes as the probe scale is changed due to
the noncommutativity between time and space coordinates.
We see that the effect of noncommutativity is to introduce
higher spatial derivative terms as well as terms involving
both spatial and temporal derivatives in the deformed
diffusion equation. The role of these terms on the spectral
dimension is brought out here.
In the second case, we take the κ-deformed heat equation

as the starting point of the analysis and replace the
Laplacian L in Eq. (4) by the Euclideanized Beltrami-
Laplace operator. Thus, here the noncommutativity shows
itself in two ways—by introducing the higher-derivative
terms in the deformed heat equation and also through the
additional terms appearing in the deformed Baltrami-
Laplace operator. Here also we do the analysis for different
choices of the Baltrami-Laplace operator.
Organization of this paper is as follows. In the second

section, we set up the diffusion equation using the
deformed Klein-Gordon equation. We start with the
Klein-Gordon equation in κ-Minkowski spacetime written
in terms of commuting coordinates and all the effects of
noncommutativity are contained in the a- (deformation
parameter) dependent terms. By taking the nonrelativistic
limit of this theory written in terms of the commutative
variables and applying Wick’s rotation, we derive the
diffusion equation in the κ-deformed Euclidean space,
valid up to first nonvanishing terms in the deformation
parameter a. We then solve this diffusion equation pertur-
batively and use this solution to calculate the spectral
dimension. We have also analyzed the change in the
spectral dimension due to extended nature of the probe.
In the next subsection, we start with a different choice of
generalized κ-deformed Klein-Gordon equation and arrive
at the κ-deformed diffusion equation. The spectral dimen-
sion is calculated using its solution and dimensional flow is
analyzed. In Sec. III, we replace the Laplacian in the
modified diffusion equation with the two different choices
of Beltrami-Laplace operator and use this diffusion equa-
tion to calculate the spectral dimension. The analysis of the
results and summary is presented in the last section.

II. κ-DEFORMED DIFFUSION EQUATION
AND SPECTRAL DIMENSION

In this section, we derive the κ-deformed diffusion
equations starting from two possible choices of κ-deformed
Klein-Gordon equations. The diffusion equation is related

to the Schrödinger equation under the mapping t → −it
and we use this map to derive the deformed diffusion
equation. By replacing t with −it in the κ-deformed
Schrödinger equations, derived by taking the nonrelativistic
limit of the κ-deformed Klein-Gordon equation, we obtain
the κ-deformed diffusion equations. Using perturbative
method, we obtain its solution valid up to second order
in the deformation parameter. From this solution, we
calculate the return probability which is a measure of
finding a particle back at the starting point after a finite time
gap. Using this, we calculate the spectral dimension.

A. Diffusion equation from the κ-deformed
Klein-Gordon equation ðDμDμ −m2Þϕ ¼ 0

Here we derive the deformed diffusion equation from
the nonrelativistic limit of κ-deformed Klein-Gordon equa-
tion ðDμDμ −m2Þϕ ¼ 0. Consider an n-dimensional
κ-deformed Minkowski space with signature (−þþ���þ).
The generalized Klein-Gordon equation on κ-deformed
spacetime [20] is

□

�
1þ a2

4
□

�
ϕ ¼ m2c2

ℏ2
ϕ; ð7Þ

where

□ ¼ ∇2
n−1

e−A
φ2

þ ∂2
0

2ð1 − coshAÞ
A2

: ð8Þ

Here ∇2
n−1 ¼ Σn−1

i¼1
∂2

∂x2i , A ¼ −ia∂0, and we choose

φ ¼ e−A
2 . We expand Eq. (7) in terms of the deformation

parameter and obtain the equation valid up to second order
in a as

�
∇2

n−1 − ∂2
0 þ

a2

4
∇4

n−1 − a2

2
∇2

n−1∂2
0 þ

a2

3
∂4
0

�
ϕ ¼ m2c2

ℏ2
ϕ:

ð9Þ

We next construct κ-deformed Schrödinger equation by
taking the nonrelativistic limit of the κ-deformed Klein-
Gordon equation. Note that Eq. (9) is written completely in
the commutative spacetime. This allows us to use the well-
known calculation scheme to obtain the nonrelativistic limit
[33]. Thus, we start with the ansatz wave function ϕ where
one separates out the rest mass dependence, and we further
use the fact that in the nonrelativistic limit, kinetic energy is
very small compared to rest mass energy. So we start with
the ansatz

ϕðx; tÞ ¼ φðx; tÞe−imc2
ℏ t ð10Þ

in Eq. (9). Here x is a point in the (n − 1) space. Effectively,
this ansatz allows us to extract a term containing the rest
massm. In the nonrelativistic limit, the kinetic energy (KE)
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is small compared to rest mass energy, i.e., KE ≪ mc2 and
hence we have

����iℏ ∂φ∂t
���� ≪ mc2φ: ð11Þ

Substituting Eq. (10) in Eq. (9) and after using the fact that
KE is much smaller than the rest mass energy [stated in
Eq. (11)], we get the κ-deformed Schrödinger equation as

∇2
n−1φþ i

2m
ℏ

∂φ
∂t þ

a2

4
∇4

n−1φþ ia2
m
ℏ
∂
∂t∇

2
n−1φ

þ a2

2

m2c2

ℏ2
∇2

n−1φþ ia2
4m3c2

3ℏ3

∂φ
∂t þ a2

m4c4

3ℏ4
φ ¼ 0:

ð12Þ

By changing t to −it in the above, we get the deformed
diffusion equation as

∇2
n−1φ − 2m

ℏ
∂φ
∂t þ

a2

4
∇4

n−1φ − a2
m
ℏ
∂
∂t∇

2
n−1φ

þ a2

2

m2c2

ℏ2
∇2

n−1φ − a2
4m3c2

3ℏ3

∂φ
∂t þ a2

m4c4

3ℏ4
φ ¼ 0:

ð13Þ

Redefining kt ¼ σ with k ¼ ℏ
2m and after some rearrange-

ments, we obtain κ-deformed diffusion equation as

∂φ
∂σ ¼ ∇2

n−1φþ a2c2

8k2
∇2

n−1φþ a2

4
∇4

n−1φ − a2

2

∂
∂σ∇

2
n−1φ

− a2c2

6k2
∂φ
∂σ þ a2c4

48k2
φ; ð14Þ

where ∇2
n−1 ¼ Σn−1

i¼1
∂2
∂x2i . In the above equation φ is a

function of x and σ. It is clear from Eq. (14) that, in the
commutative limit (a → 0), we obtain the usual diffusion
equation. Note that in deriving the κ-deformed diffusion
equation from the κ-deformed Schrödinger equation, we
only replace t with −it and absorb the ℏ

2m factor into the
diffusion scale σ. The κ-deformation parameter a does not
get any modification under this mapping.
Note that the deformed diffusion equation has the higher-

order spatial derivative (∇4
n−1) and terms involving products

of temporal and spatial derivatives, i.e., ∂
∂σ∇2

n−1. But there
are no higher-derivative terms with respect to (scaled) time
(σ). These features would turn out to be significant in the
calculation of spectral dimension of κ-deformed spacetime.

B. Spectral dimension

To find the heat kernel φðx; y; σÞ of the κ-deformed
diffusion equation obtained in Eq. (14), we express the
solution as a perturbative series in a as

φ ¼ φ0 þ aφ1 þ a2φ2: ð15Þ

We note that the dimension of the terms satisfy the
relations, ½φ1� ¼ 1

L ½φ0� and ½φ2� ¼ 1
L2 ½φ0�.

Using Eq. (15) in Eq. (14) and equating the terms of
same order in a, we solve the above equation. The zeroth-
order terms in a lead to

∂
∂σ φ0ðx; y; σÞ ¼ ∇2

n−1φ0ðx; y; σÞ: ð16Þ

The Laplacian ∇2
n−1 is with respect to x coordinates

and will act on the x dependence of the heat kernel.
The solution to this equation is given by

φ0ðx; y; σÞ ¼
1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ : ð17Þ

Next, equating the first-order terms in a gives us the
equation

∂
∂σ φ1ðx; y; σÞ ¼ ∇2

n−1φ1ðx; y; σÞ: ð18Þ

Note that here too, ∇2
n−1 is the Laplacian with respect to x

coordinates (and this notation is used in the remaining part
of this paper) and this will act on the first argument of φ1,
namely x.
The solution φ1ðx; y; σÞ satisfying the above equation

also have the same form as φ0ðx; y; σÞ since both satisfy the
same heat equation. Thus, we get

φ1ðx; y; σÞ ¼
α

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ ; ð19Þ

where the constant α has dimension of L−1. Now by
equating the second-order terms in a in Eq. (14), we find

∂φ2

∂σ ¼ ∇2
n−1φ2 þ

c2

8k2
∇2

n−1φ0 þ
1

4
∇4

n−1φ0 − 1

2

∂
∂σ∇

2
n−1φ0

− c2

6k2
∂φ0

∂σ þ c4

48k2
φ0: ð20Þ

Substituting the solution for φ0 from Eq. (17) in the above
equation and after straightforward manipulations, we get

∂φ2

∂σ ¼ ∇2
n−1φ2

þ
�

c4

48k4
þ c2

48k2
ðn − 1Þ

σ
− ðn2 − 1Þ

16σ2

− c2

96k2
Σn−1
i¼1 ðxi − yiÞ2

σ2
þ ðnþ 1Þ

16σ3
Σn−1
i¼1 ðxi − yiÞ2

− 1

64σ4
ðΣn−1

i¼1 ðxi − yiÞ2Þ2
�

1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ :

ð21Þ
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The above equation is of the generic form:

∂
∂σ φ2ðX; σÞ ¼ ∇2

n−1φ2ðX; σÞ þ fðX; σÞ: ð22Þ

For a given initial condition, φ2ðX; 0Þ ¼ gðXÞ, the solution
to above equation can be written as [34]

φ2ðX; σÞ ¼
Z
Rn−1

ΦðX − X0; σÞgðX0ÞdX0

þ
Z

σ

0

Z
Rn−1

ΦðX − X0; σ − sÞfðX0; sÞdX0ds;

ð23Þ

where

ΦðX; σÞ ¼ 1

ð4πσÞn−12 e−
ðX2

1
þX2

2
þ���þX2

n−1Þ
4σ : ð24Þ

Using the initial condition φ2ðX; 0Þ ¼ δn−1ðXÞ, we obtain
the first term φ21 in Eq. (23) as

φ21ðx; y; σÞ ¼
β

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ ; ð25Þ

where β has dimension L−2. The second term on the rhs of
Eq. (23), φ22, is calculated as

φ22ðx; y; σÞ ¼
1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ

��
c4

48k4
− n2 − 1

16σ2
þ c2

48k2
ðn − 1Þ

σ

�
ðσ − ϵÞ

−
�

c2

96k2σ2
þ 1

64σ4
Σn−1
i¼1 ðxi − yiÞ2 − ðnþ 1Þ

16σ3

�
Σn−1
i¼1 ðxi − yiÞ2ðσ − ϵÞ

−
�

c2

24k2
1

σ
ffiffiffiffiffiffi
σπ

p þ 1

8σ3
ffiffiffiffiffiffi
σπ

p Σn−1
i¼1 ðxi − yiÞ2

�
Σn−1
i¼1 ðxi − yiÞðσtan−1q − ϵqÞ

−
1

2σ3π
½ðx1 − y1ÞΣn−1

i¼2 ðxi − yiÞ þ ðx2 − y2ÞΣn−1
i¼3 ðxi − yiÞ þ � � � þ ðxn−2 − yn−2Þðxn−1 − yn−1Þ

�
A

þ 1

4σ2
ffiffiffiffiffiffi
σπ

p Σn−1
i¼1 ðxi − yiÞðð5nþ 2Þσtan−1q − ð4nþ 2Þσq − nqϵÞ

�
; ð26Þ

where q ¼ ffiffiffiffiffiffiffiffiffiffi
σ
ϵ − 1

p
and A ¼ σ lnðσ=ϵÞ − σ þ ϵÞ. Using

Eqs. (17), (19), (25), and (26) in Eq. (15), we find the
heat kernel valid up to second order in a. Using the
definition [Eq. (5)] of return probability, we obtain PðσÞ
(in the limit ϵ → 0) as

PðσÞ ¼ 1

ð4πσÞn−12
�
1þ aαþ a2β þ a2

c4

48k4
σ

− a2
ðn2 − 1Þ
16σ

þ a2
c2

48k2
ðn − 1Þ

�
: ð27Þ

The spectral dimension is found by taking the logarithmic
derivative of the above return probability. Thus, we get

Ds ¼ ðn − 1Þ − a2

8

ðn2 − 1Þ
σ

− a2c4

24k4
σ: ð28Þ

From the above expression, we see that apart from the usual
(n − 1) term, we have two additional terms and both of
them are of second order in a. They arise due to the
noncommutative nature of κ spacetime. One term is
dependent on the topological dimension n we started with
and the other term is independent of the initial dimension.
Note that the diffusion scale σ appears in the n- dependent

correction as inverse, whereas in the second correction
term, it appears linearly. In the commutative limit, we see
that the spectral dimension is the same as the topological
dimension, i.e., Ds ¼ n − 1.
For n ¼ 4 with a ¼ c ¼ k ¼ 1, we obtain Ds ¼

3 − σ
24
− 15

8σ. From this, we see that in the limit σ → 0,
the spectral dimension Ds → −∞. As σ increases the
spectral dimension also increases and reaches a maximum
value Ds ∼ 2.44 for σ ∼ 6.7. As we go further, the spectral
dimension starts decreasing [see Fig. 1].
In general, for n ¼ 4 and with c ¼ k ¼ 1, we get an

inequality for σ, 36
a2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1296
a4 − 45

q
< σ < 36

a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1296
a4 − 45

q
,

where the spectral dimension becomes positive and it takes
the negative value outside this range. The condition on the
deformation parameter, a2 < 72σ

45þσ2
, implies that the spectral

dimension is positive.
We also investigate the effect of the extended nature of

the probe on the spectral dimension. For this purpose, we
consider the Gaussian distribution as our initial condition in
solving Eq. (14); i.e., we take

φðx; y; 0Þ ¼ 1

ð4πa2Þðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4a2 ; ð29Þ
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instead of the delta function condition used to obtain φ0;φ1

and φ2. Using this, we solve Eq. (14) and obtain the zeroth-
order solution as

φ0ðx; y; σÞ ¼
1

ð4πðσ þ a2ÞÞðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2

4ðσþa2Þ : ð30Þ

Keeping terms up to second order in a, we find

φ0ðx; y; σÞ ¼
1

ð4πσÞðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4σ

×

�
1þ a2

4σ2
Σn−1
i¼1 ðxi − yiÞ2 − ðn − 1Þ a

2

2σ

�
:

ð31Þ

Similarly, we obtain φ1 from Eq. (18), valid up to first order
in a as

φ1ðx; y; σÞ ¼
α

ð4πσÞðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4σ : ð32Þ

For φ2 we need to consider only the zeroth-order terms in a,
since the expression for φ contains a2φ2 and, thus, the
solution for φ2 will be the same as we obtained in Eqs. (25)
and (26).
Using this, we calculate the spectral dimension as

Ds¼ðn−1Þ−a2c4

24k4
σ−a2

8

ðn2−1Þ
σ

−a2

σ
ðn−1Þ: ð33Þ

By comparing with Eq. (28), we note that we have an extra
term− a2

σ ðn − 1Þ, which is due to the extended nature of the
probe. Further, we note that the dimensional flow has the

same general behavior as the one obtained with point
particle probe in Eq. (28). Here again, we note that there are
terms with σ−1 dependence and one term with linear
dependence on σ, the diffusion scale. The finite size effect
of the test particle introduces a correction which is propor-
tional to the inverse power of σ.

C. Diffusion equation for ð□ −m2Þϕ ¼ 0
and spectral dimension

Equation (7) and Eq. (8) show that both DμDμ and □

operator have the same commutative limit. Thus, the
requirement of the correct commutative limit allows

□ϕ ¼ m2c2

ℏ2
ϕ ð34Þ

as a possible κ-deformed Klein-Gordon equation. Expanding
this equation up to first nonvanishing terms in a, we
find

�
∇2

n−1 − ∂2
0 þ

a2

12
∂4
0

�
ϕ ¼ m2c2

ℏ2
ϕ: ð35Þ

Using Eq. (10) and Eq. (11) in the above, we obtain the
nonrelativistic limit of Eq. (35) as

∇2
n−1φþ i

2m
ℏ

∂φ
∂t þ i

a2

3

m3c2

ℏ3

∂φ
∂t þ

a2

12

m4c4

ℏ4
φ ¼ 0: ð36Þ

After mapping t to −it and redefining kt ¼ σ (where
k ¼ ℏ

2m), we reexpress the above equation as

∂φ
∂σ ¼ ∇2

n−1φ − a2c2

24k2
∂φ
∂σ þ a2

c4

192k4
φ: ð37Þ

Unlike Eq. (14), here we do not have higher-derivatives
terms. We perturbatively solve this deformed diffusion
equation using the series expansion of φ given in
Eq. (15). The zeroth-order terms give

∂
∂σ φ0ðx; y; σÞ ¼ ∇2

n−1φ0ðx; y; σÞ; ð38Þ

whose solution is

φ0ðx; y; σÞ ¼
1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ : ð39Þ

Equating the first-order terms in a on both sides of Eq. (37)
gives

∂
∂σ φ1ðx; y; σÞ ¼ ∇2

n−1φ1ðx; y; σÞ: ð40Þ

FIG. 1 (color online). Spectral dimension as a function of σ for
n ¼ 4, a ¼ 1, c ¼ k ¼ 1.
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The solution to this equation is

φ1ðx; y; σÞ ¼
α

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ : ð41Þ

Note that α has the dimension of inverse length. Next we
collect the terms of having a2 from both sides of Eq. (37)
to get

∂φ2

∂σ ¼ ∇2
n−1φ2 − c2

24k2
∂φ0

∂σ þ c4

192k4
φ0: ð42Þ

Substituting for φ0 from Eq. (39) in the above, reduces
Eq. (42) to

∂φ2

∂σ ¼ ∇2
n−1φ2 þ

�
c2

48k2
ðn − 1Þ

σ
− c2

96k2
1

σ2
Σn−1
i¼1 ðxi − yiÞ2

þ c4

192k4

�
1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ : ð43Þ

Using Eq. (23), we solve this differential equation. Then the
first term of Eq. (23) will give φ21 as

φ21ðx; y; σÞ ¼
β

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ ; ð44Þ

where β has dimension L−2. The second term on rhs of
Eq. (23), φ22 is evaluated as

φ22ðx; y; σÞ ¼
1

ð4πσÞn−12 e−
Σn−1
i¼1

ðxi−yiÞ2
4σ

��
c4

192k4
− c2

96k2σ2
Σn−1
i¼1 ðxi − yiÞ2 þ

c2

48k2σ
ðn − 1Þ

�
ðσ − ϵÞ

− c2

24k2
1

σ
ffiffiffiffiffiffi
σπ

p Σn−1
i¼1 ðxi − yiÞ2

�
σtan−1

ffiffiffiffiffiffiffiffiffiffiffi
σ

ϵ
− 1

r
− ϵ

ffiffiffiffiffiffiffiffiffiffiffi
σ

ϵ
− 1

r ��
: ð45Þ

Using Eqs. (39), (41), (44), and (45) in Eq. (15), we find the
heat kernel valid up to second order in a. From this we
calculate the return probability (in the limit ϵ → 0) as

PðσÞ ¼ 1

ð4πσÞn−12
�
1þ aαþ a2β þ a2

c4

192k4
σ

þ a2
c2

48k2
ðn − 1Þ

�
: ð46Þ

Using this we find the spectral dimension to be

Ds ¼ ðn − 1Þ − a2c4

96k4
σ: ð47Þ

The correction of the spectral dimension is of second
order in a, and it is independent of the initial dimension.
Thus, we see that the change in spectral dimension is the
same for spacetimes of all dimensions. Here we see that the
a-dependent correction to the spectral dimension is linear
in the diffusion scale σ. Unlike the spectral dimension
obtained in Eq. (28), there is no term involving σ−1
in Eq. (47).
In the commutative limit we have Ds ¼ n − 1, same as

the topological dimension. For n ¼ 4, k ¼ c ¼ 1, it is easy
to see from Fig. 2 that spectral dimensionDs ¼ 3 exactly at
σ ¼ 0, and it starts decreasing as σ increases. For σ ¼ 288

a2

the spectral dimension vanishes and it is negative for higher
values of σ.
Now we want to see the change in spectral dimension

due to the extended nature of the probe. We use the
Gaussian function as the initial condition and solve for
the heat kernel. The modified initial condition will be

φðx; y; 0Þ ¼ 1

ð4πa2Þðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4a2 : ð48Þ

Using this initial condition, we solve Eq. (37) and obtain
the zeroth-order term as

φ0ðx; y; σÞ ¼
1

½4πðσ þ a2Þ�ðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2

4ðσþa2Þ : ð49Þ

Since we are interested only up to second-order terms in a,
we expand this as

FIG. 2 (color online). Spectral dimension as a function of σ for
n ¼ 4, a ¼ 1, c ¼ k ¼ 1.
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φ0ðx; y; σÞ ¼
1

ð4πσÞðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4σ

×

�
1þ a2

4σ2
Σn−1
i¼1 ðxi − yiÞ2 − ðn − 1Þ a

2

2σ

�
:

ð50Þ

Similarly we obtain φ1 from Eq. (40), valid up to first order
in a as

φ1ðx; y; σÞ ¼
α

ð4πσÞðn−12 Þ e
−Σn−1

i¼1
ðxi−yiÞ2
4σ : ð51Þ

The equation for φ2 will be the same as Eq. (43) since we
are interested only in terms of the order a2. The resulting
solution will be same as Eqs. (44) and (45). Using this we
obtain the spectral dimension as

Ds ¼ ðn − 1Þ − a2c4

96k4
σ − ðn − 1Þ a

2

σ
: ð52Þ

By comparing with Eq. (47), here we have an extra term
− a2

σ ðn − 1Þ due to the extended nature of the probe. Thus,
we see that the extended nature of the probe introduce a
correction to the spectral dimension which depends on the
inverse power of the diffusion scale σ.

III. MODIFIED κ-DIFFUSION EQUATION
AND SPECTRAL DIMENSION

In this section, we study alternative diffusion equations
to the ones analyzed in the previous section. Here, we
generalize the approach where one starts from the diffusion
equation and replaces the Laplacian [L in Eq. (4)] with
the Beltrami-Laplace operator. Thus, we start with the
κ-deformed diffusion equation derived in Eq. (14), but use
the κ-deformed Beltrami-Laplace operator in place of
the Laplacian ∇2

n−1, keeping all other terms of Eq. (14)
unchanged. Thus, in this approach we include the possible
modification of the diffusion equation in κ spacetime
coming from two sources: first, due to the additional terms
in the diffusion equation involving the derivative with
respect to the diffusion time σ and, second, due to the
nonlocal and higher-derivative terms appearing through the
deformed Beltrami-Laplace operator. As earlier, here too
we analyze the spectral dimension using two different
choices of κ-deformed Beltrami-Laplace operators.

A. Diffusion equation with Beltrami-Laplace operator
and corresponding spectral dimension

In this subsection, we rewrite the diffusion equation
Eq. (14) using the Casimir (general form of Laplacian) of
the kappa-Euclidean space. The Casimir of the d-dimensional
κ-deformed Euclidean space is given by [17–19]

DμDμ ¼ □

�
1 − a2

4
□

�
ð53Þ

□ ¼ ∇2
d−1

e−A
φ2

− ∂2
d
2ð1 − coshAÞ

A2
; ð54Þ

where ∇2
d−1 ¼ Σd−1

i¼1
∂2
∂x2i and ∂2

d ¼ ∂2

∂x2d. Here xd is the

Euclidean time coordinate and xi, i ¼ 1; 2;…; d − 1 are
the space coordinates.
Equation (14) for a generic n-dimensional Euclidean

space reads as

∂φ
∂σ ¼ ∇2

nφþ a2c2

8k2
∇2

nφþ a2

4
∇4

nφ − a2

2

∂
∂σ∇

2
nφ

− a2c2

6k2
∂φ
∂σ þ a2c4

48k2
φ: ð55Þ

Since the above equation is valid for any dimensions, we
useDμDμ for∇2

n, which is the general form of the Beltrami-
Laplace operator in the κ-deformed Euclidean space.
We expand Eq. (53) up to first nonvanishing terms in a,

DμDμ ¼ ∇2
d−1 þ ∂2

d − a2

3
∂4
d − a2

2
∇2

d−1∂2
d − a2

4
∇4

d−1;

ð56Þ

and use this in Eq. (55) and keep terms up to second order
in a

∂φ
∂σ ¼ ∇2

n−1φþ ∂2
nφ − a2

3
∂4
nφ − a2

2
∇2

n−1∂2
nφ − a2

4
∇4

n−1φ

þ a2c2

8k2
½∇2

n−1φþ ∂2
nφ�

þ a2

4
½∇4

n−1φþ ∂4
nφþ 2∇2

n−1∂2
nφ�

− a2

2

∂
∂σ ½∇

2
n−1φþ ∂2

nφ� − a2c2

6k2
∂φ
∂σ þ a2c4

48k2
φ: ð57Þ

By comparing with Eq. (55), we see that there are three
extra terms in the above equation and they modify the
spectral dimension (obtained in Sec. II B). Note that the
extra terms are of higher derivatives in space and Euclidean
time coordinates. We have a term which is quartic deriva-
tive in Euclidean time, terms involving product of deriv-
atives in space and Euclidean time and a term having
quartic derivatives in space coordinate. We solve the above
diffusion equation perturbatively using Eq. (15) for φ.
By equating the zeroth-order terms in a, we obtain

∂
∂σ φ0ðx; y; σÞ ¼ ∇2

n−1φ0ðx; y; σÞ þ ∂2
nφ0ðx; y; σÞ: ð58Þ

This is the usual diffusion equation in n-dimension whose
solution is
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φ0ðx; y; σÞ ¼
1

ð4πσÞn2 e
−∣x−y∣2

4σ : ð59Þ

The first-order term in a will give

∂
∂σ φ1ðx; y; σÞ ¼ ∇2

n−1φ1ðx; y; σÞ þ ∂2
nφ1ðx; y; σÞ: ð60Þ

It is clear that φ1ðx; y; σÞ also satisfy the usual heat equation
and, thus,

φ1ðx; y; σÞ ¼
α

ð4πσÞn2 e
−∣x−y∣2

4σ : ð61Þ

Now equate the second-order terms in a in Eq. (57) to get

∂φ2

∂σ ¼ ∇2
n−1φ2 þ ∂2

nφ2 − 1

3
∂4
nφ0 − 1

2
∇2

n−1∂2
nφ0

− 1

4
∇4

n−1φ0 þ
c2

8k2
ð∇2

n−1φ0 þ ∂2
nφ0Þ

þ 1

4
ð∇4

n−1φ0 þ ∂4
nφ0 þ 2∇2

n−1∂2
nφ0Þ

− 1

2

∂
∂σ ð∇

2
n−1φ0 þ ∂2

nφ0Þ − c2

6k2
∂φ0

∂σ þ c4

48k2
φ0:

ð62Þ

Substitute for φ0 and using Eq. (23) we calculate φ2. Using
this heat kernel, we obtain the return probability as

PðσÞ ¼ 1

ð4πσÞn2
�
1þ aαþ a2β − ð1þ nÞ2 a2

16σ
þ a2

c4

48k4
σ

− a2
nðnþ 2Þ

16σ
þ a2c2

48k2
n

�
: ð63Þ

The logarithmic derivative of the above expression gives
the spectral dimension as

Ds ¼ n − a2

8σ
ð1þ 4nþ 2n2Þ − a2c4

24k4
σ: ð64Þ

In the commutative limit we find Ds ¼ n. The spectral
dimension as a function of σ with n ¼ 4 and a ¼ k ¼ c ¼
1 is shown in Fig. 3. We see that in the limit σ → 0, the
spectral dimensionDs → −∞. As σ increases,Ds reaches a
value close to 3 and thereafter decreases with increase in σ.
We note that one of the corrections depends on the diffusion
scale linearly while the other changes as the inverse of σ.
This feature is the same as the spectral dimension obtained
in Eq. (28). The requirement of the positivity of the spectral
dimension gives a bound on the deformation parameter
as a2 < 96σ

147þσ2
.

The use of an extended probe would result in the spectral
dimension

Ds ¼ n − a2

8σ
ð1þ 4nþ 2n2Þ − a2c4

24k4
σ − a2n

σ
: ð65Þ

By comparing with Eq. (64), we find an additional term
− a2n

σ due to the finite width of the probe. This new term is
proportional to the initial dimension we start with and
inversely proportional to σ. Note that the extended probe
does not change the generic behavior of the dimen-
sional flow.

B. Spectral dimension with □ as the
Beltrami-Laplace operator

It is easy to see from Eq. (53) and Eq. (54) that the □

operator has the same commutative limit as DμDμ.
Equation (37) in generic n-dimension spacetime is of the
form

∂φ
∂σ ¼ ∇2

nφ − a2c2

24k2
∂φ
∂σ þ a2

c4

192k4
φ: ð66Þ

Now we use □ as the general form of Beltrami-Laplace
operator in the above equation, in place of ∇2

n. We expand
the □ operator and keep terms up to the first nonvanishing
terms in a,

□ ¼ ∇2
d−1 þ ∂2

d − a2

12
∂4
d: ð67Þ

Now substituting Eq. (67) in Eq. (66) and keeping terms up
to second order in a, we get

∂φ
∂σ ¼ ∇2

n−1φþ ∂2
nφ − a2

12
∂4
nφ − a2c2

24k2
∂φ
∂σ þ a2

c4

192k4
φ:

ð68Þ

We note that Eq. (68) has one extra term compared to
Eq. (66) which is quartic derivative in the Euclidean time.

FIG. 3 (color online). Spectral dimension as a function of σ for
n ¼ 4, a ¼ 1, c ¼ k ¼ 1.
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We solve the above diffusion equation perturbatively using
Eq. (15) for φ, as earlier. By equating the zeroth-order terms
in a, we obtain

∂
∂σ φ0ðx; y; σÞ ¼ ∇2

n−1φ0ðx; y; σÞ þ ∂2
nφ0ðx; y; σÞ ð69Þ

and the corresponding solution is

φ0ðx; y; σÞ ¼
1

ð4πσÞn2 e
−∣x−y∣2

4σ : ð70Þ

The first-order terms in a give

∂
∂σ φ1ðx; y; σÞ ¼ ∇2

n−1φ1ðx; y; σÞ þ ∂2
nφ1ðx; y; σÞ; ð71Þ

whose solution is given by

φ1ðx; y; σÞ ¼
α

ð4πσÞn2 e
−∣x−y∣2

4σ : ð72Þ

Second-order terms in a will result in

∂φ2

∂σ ¼ ∇2
n−1φ2 þ ∂2

nφ2 − 1

12
∂4
nφ0 − c2

24k2
∂φ0

∂σ þ c4

192k4
φ0:

ð73Þ

We solve this equation by substituting for φ0 and using
Eq. (23). The solutions of Eq. (69), (71) and (73) are used to
obtain the return probability,

PðσÞ ¼ 1

ð4πσÞn2
�
1þ aαþ a2β − a2

16σ
þ a2c4

192k4
σ þ a2c2

48k2
n

�
;

ð74Þ

and using Eq. (6), we find the spectral dimension as

Ds ¼ n − a2

8σ
− a2c4

96k4
σ: ð75Þ

Note that the spectral dimension has one term which is
linear in σ and another which is proportional to σ−1. For
n ¼ 4 and k ¼ c ¼ 1, it is easy to see from Fig. 4 that the
spectral dimension increases with σ initially and then
decreases as σ increases. It is clear that the spectral

dimension is positive for 192
a2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36864
a4 − 12

q
< σ < 192

a2 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36864
a4 − 12

q
.

The spectral dimension with an extended probe is
given by

Ds ¼ n − a2

8σ
− a2c4

96k4
σ − a2n

σ
; ð76Þ

which has an extra term, − a2n
σ , compared to Eq. (75). Note

that this additional term depends on the topological
dimension n and it is proportional to σ−1. This will not
change the general feature of the dimensional flow.

IV. CONCLUSION

In this paper, we have constructed four different modi-
fied diffusion equations in the κ spacetime and, using their
solutions, analyzed the dimensional flow in the κ spacetime.
In these studies, we have used probes which are pointlike
as well as probes with finite extension. For all these cases,
we get the correct commutative limit, where the spectral
dimension matches with the topological dimension. In all
four cases studied, the spectral dimension changes with the
probe scale. We note that for the three cases studied [see
Eqs. (28), (64), and (75)] in the high-energy limit where
σ → 0, the spectral dimension becomes infinitely negative
(−∞). This featurewas also observed in [16]. Thus, for these
three cases the spectral dimension loses its meaning at high
energies. By demanding that the spectral dimension should
be positive definite, we obtain bounds on the deformation
parameter in terms of diffusion time in these three cases. In
the case of the spectral dimension obtained in Eq. (47), we
note that as σ → 0 the spectral dimension becomes equal to
topological dimension. In all four cases, we see a novel
feature of spectral dimension of noncommutative spacetime
in comparison with the result obtained in [16] as well as in
[12–15]. The new fact revealed here is that the spectral
dimension goes to −∞ at low energies (i.e., σ → ∞). We
want to emphasize that this feature is absent in the
commutative limit, and in the commutative limit we get
back the equality between the spectral dimension and the
topological dimension at low energies. From Eqs. (28), (64),
and (75), we see that the spectral dimension increases from
−∞ as σ rises from zero, reaches a maximum value, and then

FIG. 4 (color online). Spectral dimension as a function of σ for
n ¼ 4, a ¼ 1, c ¼ k ¼ 1.
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decreases to −∞. The maximum value of the spectral
dimension in all three cases is less than the topological
dimension. A similar behavior of the spectral dimension, but
in a completely different context, was reported in [35]. Here
the spectral dimension of commutative spacetime has been
calculated using the relativistic Schrödinger equation ana-
lytically continued (RSEAC) and the result is compared with
the one derived using the telegraph equation (TE). The
analysis of [35] shows that only TE produces the spectral
dimension that agrees with the topological dimension in the
low energies while both these approaches show a reduction
of spectral dimension to two at high energies.
We note that the major difference in the present analysis

from the earlier ones is the use of a modified diffusion
equation(s). In our case, we have not just used the Beltrami-
Laplace operator in the usual diffusion equation given in
Eq. (4) but derived the modified diffusion equation in the
κ-deformed spacetime. This is done by applying the Wick’s
rotation to the κ-deformed Schrödinger equation, obtained
by taking the nonrelativistic limit of the well-studied
κ-deformed Klein-Gordon equation. This approach explicitly
introduces finite mass for the particle undertaking diffusion
on the deformed spacetime. We see from the spectral
dimension obtained in Eqs. (28), (47), (64), and (75) that
in the limit of a massless probe, the spectral dimension and
topological dimension coincide at low energies. We note here
that the probes used in earlier studies [12–16] were massless
ones. The spectral dimension obtained in Eq. (47) shows the
interesting property that in the limit of probe mass set to zero,
there are no corrections to the spectral dimension due to the
noncommutativity. This feature is unique, as the spectral
dimension calculated for the other three cases does have an
a-dependent term, even in the limit of vanishing probe mass.
The diffusion equation constructed and analyzed in

Sec. II C [see Eq. (37)] do not have any higher-derivative
terms unlike the other three cases studied here [see
Eqs. (14), (57), and (68)]. The deformed diffusion equation
given in Eq. (37) is obtained from a specific choice of
the Laplacian (equivalently Klein-Gordon operator in the
κ-deformed space-time). The fact that in the massless limit
of the probe, the spectral dimension is exactly the same as
the topological dimension for all probe scales shows that
the noncommutativity between the time and space coor-
dinate does not affect the spectral dimension of the space
part of κ spacetime at all.
Equations (14) and (37) are derived from the Wick’s

rotated nonrelativistic limit of two different choices of the
κ-deformed Klein-Gordon equation. In the nonrelativistic
limit, one neglects higher-time derivative terms and, thus,
keeps only higher-space derivative terms if any appear in
the deformed diffusion equation. Thus, we do not have any
higher-time derivatives (equivalently, higher derivatives
with respect to σ) in these two equations. Further, for
the specific choice of the deformed Klein-Gordon equation
used in Sec. II C, there are no higher-order spatial

derivatives (up to second order in a). This is why the
spectral dimension obtained in Eq. (47) has a completely
different behavior at high energies. For both the choice of
Beltrami-Laplace operator considered in Sec. III, higher
derivatives with respect to spatial as well as Euclidean time
coordinates are present, and they do appear in the corre-
sponding diffusion equations [see Eqs. (57) and (68)].
It is interesting to note that the three diffusion equations

leading to negative spectral dimension of high energies all
have the higher-derivative terms. It has been known that
such equations result in negative return probabilities [36].
In our formulation, κ-deformed diffusion equations are
written down in the commutative spacetime. All the effects
of nonlocality inherent in the noncommutative spacetime
are contained in the a-dependent terms of the deformed
diffusion equation. As it is clear, these terms are all higher-
order derivatives and, thus, nonlocal (except for the case
studied in Sec. II C). As discussed above, the higher-time
derivative drops out in the nonrelativistic limit and this
explains why noncommutativity does not play any role in
the limit of vanishing mass of the probe for the spectral
dimension obtained in Eq. (47).). The κ-deformed
Laplacian we used does have higher-derivative terms.
These terms summarize the nonlocal effects of the non-
commutativity of the spacetime. In the momentum space
representation of the Laplacian, this nonlocality appears as
higher-power terms of momentum [13–15]. Laplacians
with higher derivatives were also analyzed in [36–39].
The negative value of the spectral dimension we see in our

analysis might be a reflection of the higher-derivative terms
(and, thus, related to the built-in nonlocality of noncommu-
tative space-time). But the higher-derivative terms in the
Laplacian (equivalently, Beltrami-Laplace operator) are a
characteristic feature of κ-deformed spacetime. Herewe have
taken a perturbative approach in the analysis of the spectral
dimension. A detailed analysis of the issue of higher
derivatives requires a field theoretic reinterpretation going
beyond the usual diffusion equation [36,37]. The issues
related to higher-derivative terms and that of the negative
return probability have been analyzed in [36], and the field
theoretical reinterpretation of the spectral dimension as a
possible way to avoid the negative return probability was
also introduced. The spectral dimension calculated in
Eqs. (28), (64), and (75), by imposing the requirement that
the spectral dimension should be positive definite at high
energies, translates into the conditions a2 < 72σ

45þσ2
, a2 <

96σ
147þσ2

, a2 < 384σ
12þσ2

, respectively. This feature suggests the
possibility of the multiscale structure of the spacetime at high
energies, which has been pointed out earlier [37]. These
issues are being investigated now.
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