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In this paper we examine the properties of Uð1Þ gaugedQ-balls in two models with different scalar field
potentials. The obtained results demonstrate that in the general case Uð1Þ gauged Q-balls possess
properties, which differ considerably from those of Q-balls in the nongauged case with the same forms of
the scalar field potential. In particular, it is shown that in some cases the charge of Uð1Þ gauged Q-ball can
be bounded from above, whereas it is not so for the corresponding nongauged Q-ball. Our conclusions are
supported both by analytical considerations and numerical calculations.
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I. INTRODUCTION

A simplest generalization of nontopological solitons,
initially proposed in [1] and known asQ-balls [2], from the
global Uð1Þ symmetry to the gauge Uð1Þ symmetry was
proposed and analyzed in the pioneering paper [3]. Later
this subject was examined in the well-known paper [4], in
which gaugedQ-balls (for simplicity, from here on, we call
Uð1Þ gauged Q-balls “gauged Q-balls”) were examined
analytically and numerically. One can also recall papers
[5–7], where gaugedQ-balls were examined mainly from a
theoretical point of view, as well as papers [8–12], where
solutions for gauged Q-ball were obtained numerically.
It is clear that if the backreaction of the gauge field on the

scalar field is small, the characteristics of gauged Q-balls
(charge, energy, etc.) do not differ considerably from those
of ordinary nongaugedQ-balls (see paper [7], in which this
issue was examined in detail). Meanwhile, the most
interesting cases are those in which backreaction of the
gauge field cannot be neglected. In the general case, the
latter realizes not only if the corresponding coupling
constant is large, but even when the coupling constant is
rather small, but the other parameters of the solution are
such that contribution of the gauge field is considerable. In
the present paper we examine, both analytically and
numerically, such differences between nongauged and
gauged cases. In particular, we show that in some cases
gaugedQ-balls may exist for such values of the parameters,
for which nongauged Q-balls do not exist at all. And vice
versa, it is possible that there are no gauged Q-balls for the
values of the parameters for which nongauged Q-balls
exist. The obtained results demonstrate that gaugedQ-balls
possess properties, which can be completely different from
those of Q-balls in the nongauged case.
The paper is organized as follows. In Sec. II we present

the general setup and introduce the notations that will be
used throughout the paper. In Sec. III we present some

analytical results related to gauged Q-balls. In Sec. IV we
examine numerically two models with different scalar field
potentials. The obtained results are briefly discussed in the
last section.

II. SETUP

We consider the action, describing the simplest Uð1Þ
gauge invariant scalar field theory in four-dimensional
space-time, in the form

S ¼
Z

d4x

�
ð∂μϕ� − ieAμϕ�Þð∂μϕþ ieAμϕÞ

− Vðϕ�ϕÞ − 1

4
FμνFμν

�
ð1Þ

and take the standard spherically symmetric ansatz for the
scalar and gauge fields [3,4]:

ϕðt; ~xÞ ¼ eiωtfðrÞ; fðrÞjr→∞ → 0;
dfðrÞ
dr

����
r¼0

¼ 0;

ð2Þ

A0ðt;~xÞ¼A0ðrÞ; A0ðrÞjr→∞→0;
dA0ðrÞ
dr

����
r¼0

¼0; ð3Þ

Aiðt; ~xÞ≡ 0; ð4Þ

where r ¼
ffiffiffiffiffi
~x2

p
and fðrÞ, A0ðrÞ are real functions. Below

we will consider solutions such that the function fðrÞ has
no nodes. Without loss of generality we take fð0Þ > 0.
It is obvious that, according to (2)–(4), we can use the

effective action
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Seff ¼ 4π

Z
∞

0

r2dr

�
ðωþ eA0Þ2f2 − ∂rf∂rf

− VðfÞ þ 1

2
∂rA0∂rA0

�
; ð5Þ

where VðfÞ ¼ Vðϕ�ϕÞ. For the scalar field potential, the
conditions

Vð0Þ ¼ 0;
dV
df

����
f¼0

¼ 0 ð6Þ

are supposed to fulfill in order to ensure the existence of the
vacuum solution fðrÞ≡ 0, A0ðrÞ≡ 0. The equations of
motion, following from effective action (5), take the form

2eðωþ eA0Þf2 ¼
1

r
d2

dr2
ðrA0Þ; ð7Þ

ðωþ eA0Þ2f þ 1

r
d2

dr2
ðrfÞ − 1

2

dV
df

¼ 0: ð8Þ

For the numerical analysis, it is more convenient to use the
combination aðrÞ ¼ ωþ eA0ðrÞ instead of the field A0ðrÞ.
With this notation, equations (7), (8) can be rewritten as

2e2af2 ¼ 1

r
d2

dr2
ðraÞ; ð9Þ

a2f þ 1

r
d2

dr2
ðrfÞ − 1

2

dV
df

¼ 0; ð10Þ

where daðrÞ
dr jr¼0 ¼ 0. The value of the frequency ω is now

defined as ω ¼ limr→∞aðrÞ.
The charge of a gauged Q-ball can be defined as1

Q ¼ 8π

Z
∞

0

ðωþ eA0Þf2r2dr ¼ 8π

Z
∞

0

af2r2dr: ð11Þ

According to [3,4], the sign of a ¼ ωþ eA0 always
coincides with the sign of ω, whereas A0 ≡ 0 for ω ¼ 0.
Thus, without loss of generality we can consider ω ≥ 0,
which leads toQ ≥ 0. The energy of a gaugedQ-ball at rest
is defined by

E ¼ 4π

Z
∞

0

�
a2f2 þ ∂rf∂rf þ VðfÞ þ 1

2e2
∂ra∂ra

�
r2dr:

ð12Þ

It is well known that for ordinary (nongauged) Q-balls
the relation dE

dQ ¼ ω holds. In [7] it was shown that the same

relation also holds for Uð1Þ gauged Q-balls. We will use it
for an extra check of our numerical results.

III. ANALYTICAL CONSIDERATIONS

To begin with, let us discuss the allowed values of the
frequency ω. Suppose that our scalar field potential is such
that the relation

1

2f
dV
df

����
f¼0

¼ M2 ð13Þ

holds. In the most cases nongauged [i.e., with global Uð1Þ
symmetry] Q-balls exist only for ω < M, whereas Q → ∞
for ω → M. So, it is universally accepted that for gauged
Q-balls the values of the frequencyω are also bounded from
above as ω < M (recall that we take ω ≥ 0). Indeed, it was
shown in [3] using the perturbation method in the effective
coupling constant that the total energy of gauged Q-ball
diverges for ω ¼ M even in the special case in which the
corresponding nongaugedQ-ball exists and has finite charge
and energy.2 In [4] it was stated that the condition ω < M is
required to have localized solutions without oscillations for
the scalar field. However, our numerical analysis shows that
gauged Q-balls with finite charge and energy for ω ¼ M
may exist even if the corresponding solution in the non-
gauged case does not exist at all. Belowwewill present some
analytical considerations which support this statement.
First, we consider the usual caseω < M and suppose that

there exists a gauged Q-ball solution with finite charge and
energy such that A0ðrÞ → − eQ

4πr for large r. For such large r
the equation for the scalar field can be rewritten as

ðω2 −M2Þf −
2ωe2Q
4πr

f þ 1

r
d2

dr2
ðrfÞ ≈ 0: ð14Þ

The solution to this equation, tending to zero as r → ∞, can
be easily obtained and takes the form

fðrÞ¼Ce−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
rU

�
1þ ωe2Q

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p ;2;2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

�
;

ð15Þ
where C is a constant and Uðb; c; zÞ is the confluent
hypergeometric function of the second kind. It is not difficult
to show (see Appendix A) that for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r ≫ 1 we get

for (15)

1The physical charge is defined by Qphys ¼ eQ, but below we
will use the charge Q defined by (11), which simplifies
comparison with the nongauged case.

2Note that the correction to the background nongauged
solution in [3] grows with r, which indicates the breakdown
of the linear approximation at some r (moreover, as it was shown
in [7], such a breakdown of the linear approximation for the
correction is inherent to models of gauged Q-balls). Thus, the
divergence of total energy in the linear approximation cannot be
used as an indication of the absence of a solution to the full set of
nonlinear equations.
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fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r
1þ ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
: ð16Þ

This formula resembles the naively expected result

fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r , the difference is caused by taking into
account the electromagnetic potential A0ðrÞ → − eQ

4πr for
large r. But formula (16) has a singular behavior in the
limit ω → M, which clearly indicates that the case ω ¼ M
should be considered separately.
Equation (14) for ω ¼ M also has a solution, ensuring

the finiteness of charge and energy. Indeed, let us suppose
that solution to the full set of nonlinear equations exists and
has the charge Q. Then, far away from the center of the
Q-ball, we can write for the scalar field

−
2Me2Q
4πr

f þ 1

r
d2

dr2
ðrfÞ ≈ 0: ð17Þ

The solution to this equation, tending to zero as r → ∞,
takes the form

fðrÞ ¼ C
K1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Me2Q

π r
q �

ffiffiffi
r

p ; ð18Þ

where C is a constant and K1ðb; zÞ is the modified Bessel
function of the second kind. For large r this solution
behaves as

fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
2Me2Q

π r
p
r
3
4

: ð19Þ

On sees that due to the long-range action of the electro-
magnetic potential A0ðrÞ, the behavior of the scalar field at
r → ∞ differs considerably from the nongauged case, in
which one expects fðrÞ ∼ 1

r for ω ¼ M. Moreover, one may
naively expect that the repulsive nature of the electrostatic
interaction would prevent from forming a gauged Q-ball
for such a value of ω (recall that usually the corresponding
nongauged Q-ball has an infinite charge for ω ¼ M). The
argumentation presented above shows that it is not so. This
statement is also confirmed by the numerical results, which
will be presented in the next section.
It should be noted that it is possible to show analytically

that in the limit ω → M solution (15) transforms into
solution (18), see Appendix B.
A few words about the caseω > M. The form of Eq. (14)

suggests that the corresponding solutions for the scalar field
are oscillatory for r → ∞, leading to infinite charge and
energy. More precisely, the leading term of a solution to
Eq. (14) takes the form

C1

1

r
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p
r−

ωe2Q

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p
rÞ
�

þC2

1

r
sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p
r−

ωe2Q

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−M2

p
rÞ
�
:

The latter formula supports the assumption that there are no
gauged Q-balls for ω > M, which was also confirmed by
the numerical analysis.
One can think that it looks rather strange that there exist

solutions with finite charge for ω ≤ M, whereas no sol-
utions with finite charge are expected for ω > M. However,
a similar situation can be observed in the nongauged case.
Indeed, let us take a scalar field potential of the form

VðfÞ ¼ M2f2 − λjfjN: ð20Þ
It was noted in [13] thatQ → const ≠ 0 in the limit ω → M
for N ¼ 10

3
(one can easily check numerically that the

corresponding solutions for the scalar field indeed exist).
More precisely, Q ∼ ω for ω < M. Meanwhile, it is
possible to show analytically that there are no Q-ball
solutions for ω ≥ M (to show it in a simple way one
can use the scale transformation technique, proposed in
[14], supplemented by transformations of the fields them-
selves; see, for example, [15], where such a method was
applied to the more complicated case of gauged Q-balls).
Thus, this example indicates that the situation with the
existence of a finite charge for ω ¼ M in the gauged case is
not so unique.

IV. EXPLICIT EXAMPLES OF Uð1Þ
GAUGED Q-BALLS

The numerical solutions for gauged Q-balls, which will
be presented below, were obtained in two steps. On the first
step the shooting method, which solves the boundary value
problem by reducing it to the solution of the initial value
problem, was used. According to this method, one should
adjust the initial data for the system of equations at one of
the boundaries (at the origin of gauged Q-ball in our case)
in such a way that the solution satisfies required conditions
at the second boundary (for large r in our case). The
shooting method is very simple and it is easy to implement
it, but it fails to find gauged Q-ball solutions for large r,
where the scalar field falls off to zero exponentially, see
relations (16), (19). To find a solution for such large values
of the coordinate r using the shooting method, one has to
fine tune the initial data with very high accuracy, which
may even exceed the truncation error of double precision
floating-point numbers. Moreover, by taking the box of a
small size one can mistake spurious solutions (such as
oscillating solutions for ω > M) for correct monotonic
solutions of the boundary value problem. So, these prob-
lems make the shooting method not fully applicable for our
task. In order to overcome them, the solutions obtained on
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the first step (i.e., for the values of r which are not very
large) were supplemented by analytical solutions defined
by formulas (16), (19). On the second step, the resulted
“combined solutions” were used as the initial approxima-
tion of the solutions to the boundary value problem for
discretized version of the system of equations (9), (10).
Then these solutions were improved iteratively by the
Gauss-Seidel red-black relaxations, accelerated with the
help of multigrid technique. The additional cross-checks of
the final results were performed using the known theoreti-
cal relations for gaugedQ-balls, such as, for example, dEdQ ¼
dE=dω
dQ=dω ¼ ω [7].

A. Model with ϕ4 scalar field potential

At first, we consider the potential of form

VðfÞ ¼ M2f2 − λf4; ð21Þ

where λ > 0. At the very beginning it is convenient to make
the following redefinition of the coordinate r and the fields:

R ¼ Mr; GðRÞ ¼ 1

M
aðrÞ; FðRÞ ¼

ffiffiffi
λ

p

M
fðrÞ:

ð22Þ

In these notations, the system of equations (9), (10) takes
the form

2α1GF2 ¼ 1

R
ðRGÞ00; ð23Þ

G2F þ 1

R
ðRFÞ00 − F þ 2F3 ¼ 0; ð24Þ

where 0 ¼ d
dR, α1 ¼ e2

λ . We see that the only effective
parameter in this system of equations is α1. Since
1
2f

dV
df jf¼0 ¼ M2, we will be looking for solutions such that

Gð∞Þ ≤ 1, which corresponds to ω ≤ M.
The charge of the Q-ball takes the form

Q ¼ 1

λ
8π

Z
∞

0

GF2R2dR ¼ 1

λ
~Q; ð25Þ

whereas the energy is

E ¼ M
λ
4π

Z
∞

0

�
G2F2 þ ∂RF∂RF þ F2 − F4

þ 1

2α1
∂RG∂RG

�
R2dR ¼ M

λ
~E: ð26Þ

In Fig. 1 one can see several examples ofQðωÞ diagrams
(expressed in the dimensional variables ~Q and ω

M). Since in
the nongauged case there exists a solution for ω ¼ 0 with
the zero charge [16], the gauged solution for ω ¼ 0 simply
coincides with it [3], which explains why the curves start
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FIG. 1 (color online). QðωÞ for different values of the parameter α1 (thick lines). The thin lines stand for the nongauged case. The
circles on the plots mark the points with ω

M ¼ 1.
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from the point ω ¼ 0, ~Q ¼ 0. Meanwhile, in the non-
gauged case theQ-ball charge tends to infinity while ω

M → 1

[16]. As it was demonstrated in Sec. III, it is not so for the
gauged case, in which one may expect the existence of a
Q-ball with finite charge and energy. It is confirmed by the
plots in Fig. 1, demonstrating the existence of Q-balls with
finite charges for ω

M ¼ 1 for different values of the param-
eter α1.

3 We also performed the numerical analysis for
ω
M > 1. No solutions of form (2)–(4) with finite charge and
energy were found.
In Fig. 2 one can find the E

Q ðQÞ dependencies for
different values of the parameter α1 in comparison with
the nongauged case. Profiles of the scalar field for different
values of ω

M and for
ffiffiffiffiffi
α1

p ¼ 0.05 are presented in Fig. 3. We
have also performed a comparison of the numerical
solutions for the scalar field at large R with the asymptotes
defined by Eqs. (16), (19). The result is presented in Fig. 4,
demonstrating a remarkable agreement with theoretical
predictions.

B. Model with the piecewise parabolic
scalar field potential

Now we consider the piecewise potential of form

VðfÞ ¼ M2f2θ

�
1 −

f2

v2

�
þM2v2θ

�
f2

v2
− 1

�
; ð27Þ

where θ is the Heaviside step function with the convention
θð0Þ ¼ 1

2
(such piecewise potentials for the case of
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FIG. 2 (color online). E
Q ðQÞ for different values of the parameter α1 (thick lines). The thin lines stand for the nongauged case. The

circles on the plots mark the points with ω
M ¼ 1.
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FIG. 3 (color online). Profiles of the scalar field for different
values of ω

M. Here
ffiffiffiffiffi
α1

p ¼ 0.05.

3The numerical analysis was also performed for the values of
the parameter α1 larger than those used in Fig. 1. However, no
essential changes in the behavior of the QðωÞ dependencies were
found.
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nongauged Q-balls were introduced in [1] and thoroughly
examined in [17,18]). Again, it is convenient to pass to the
new variables

R ¼ Mr; GðRÞ ¼ 1

M
aðrÞ; FðRÞ ¼ 1

v
fðrÞ:

ð28Þ

In these notations, the system of equations (9), (10) takes
the form

2α2GF2 ¼ 1

R
ðRGÞ00; ð29Þ

G2F þ 1

R
ðRFÞ00 − Fθð1 − F2Þ ¼ 0; ð30Þ

where α2 ¼ e2v2

M2 , which is the only effective parameter in
this system of equations. Again, since 1

2f
dV
df jf¼0 ¼ M2, we

will be looking for solutions such that Gð∞Þ ≤ 1, which
corresponds to ω ≤ M.
The charge of the Q-ball takes the form

Q ¼ v2

M2
8π

Z
∞

0

GF2R2dR ¼ v2

M2
~Q; ð31Þ

whereas the energy is
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FIG. 4 (color online). Comparison of the scalar field profiles
(thick lines) with the asymptotes defined by Eqs. (16), (19) (thin
lines) for different values of ω

M. Here
ffiffiffiffiffi
α1

p ¼ 0.05.
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FIG. 5 (color online). QðωÞ for different values of the parameter α2 (thick lines). The thin lines stand for the nongauged case. The
circles on the plots mark the points with ω

M ¼ 1, the triangles mark the points with dQ
dω ¼ 0, the asterisks mark the points with dQ

dω ¼ ∞, the
boxes also mark the points with ω

M ¼ 1.
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E ¼ v2

M
4π

Z
∞

0

�
G2F2 þ ∂RF∂RF þ F2θð1 − F2Þ

þ θðF2 − 1Þ þ 1

2α2
∂RG∂RG

�
R2dR

¼ v2

M
~E: ð32Þ

In Fig. 5 one can see several examples ofQðωÞ diagrams
for this model. We see a completely unexpected behavior of
the corresponding QðωÞ dependencies. First, we see that,
contrary to the case of the previous model, now the
parameter ω does not uniquely define the charge of the
Q-ball. Indeed, except the Q-ball corresponding to a
minimal value of ω (these points are marked by asterisks),
there exist twoQ-balls with different charges for each value
of ω. We have the following explanation of this fact.
Indeed, in the nongauged case the charge tends to

infinity in the limits ω → 0 and ω → M [18]. According
to the results of Sec. III, the nongauged limit ω → M
transforms into the Q-ball with ω ¼ M. This Q-ball
corresponds to the lower points with ω

M ¼ 1 in Fig. 5 (these

points are marked by the circles), and its existence is not
surprising. Now let us consider another limit, namely
ω → 0. From [3] we know that if ω ¼ 0 for a gauged
Q-ball, then A0 ≡ 0. Since there is not a Q-ball solution
with the zero charge for ω ¼ 0 in the nongauged case [18],
there should be no such solution in the gauged case too. It is
also improbable that the charge of a gauged Q-ball tends to
infinity in the limit ω → 0—the value of ω tends to zero,
whereas A0ðrÞ < 0 is a monotonically growing func-
tion such that ωþ eA0ðrÞ > 0 for any r. Thus,
jeA0ðrÞj < ω → 0, whereas a solution for A0ðrÞ should
support the existence of a large charge. The latter situation
seems to be unrealizable. So, theQðωÞ curve modifies with
respect to the nongauged case in order to overcome this
problem and to maintain its continuity, which is realized in
Fig. 5—the curve just turns back at the point of the minimal
possible value of ω. At this point, the value of the charge
behaves as ~Q� ∼ 1

α2
∼ 1

e2 for small values of α2.
It is interesting to note that now it is the parameter Gð0Þ

that uniquely characterizes a gauged Q-ball, not ω like in
the nongauged case or even in the gauged case discussed
in the previous subsection. We can also see that the curves
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FIG. 6 (color online). E
Q ðQÞ for different values of the parameter α2 (thick lines). The thin lines stand for the nongauged case. The

circles on the plots mark the points with ω
M ¼ 1, the triangles mark the points with dQ

dω ¼ 0, the asterisks mark the points with dQ
dω ¼ ∞, the

boxes also mark the points with ω
M ¼ 1.
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in Fig. 5 become smaller while increasing the value of the
parameter α2. For α2 ≳ 0.013 no gauged Q-balls were
found. Analogous observation of nonexistence of gauged
Q-ball for the values of the coupling constant larger than
some critical value was made in [12], where the model with
supersymmetry motivated scalar field potential, which has
the form similar to (27), was examined.
A remark is in order here. The results presented in this

and in the previous subsections suggest that there exists a
maximal possible charge of gauged Q-ball (of course, its
value should depend on the model at hand). We think that it
is not so in the general case; see, for example, [11].
However, this statement seems to be valid for models with
1
2f

dV
df jf→0 ≠ ∞. It should be noted that this restriction is not

connected with the restriction on the charge of stable
gaugedQ-balls [4], which was shown to be incorrect in [7].
In Fig. 6 one sees the E

Q ðQÞ dependencies for different
values of the parameter α2 in comparison with the non-
gauged case. The cusps on the corresponding curves, which
are marked by triangles, correspond to the points with
dQ
dω ¼ 0, which are also marked by triangles in Fig. 5. The
existence of the cusps follows from the fact that dEdQ ¼ ω for
gauged Q-balls [7].
For the completeness, we also present the scalar field

profiles (Fig. 7), the effective charge density ~qðRÞ ¼ GF2

(Fig. 8) and the effective pressure ~pðRÞ (Fig. 9) for different
values of ω

M and for
ffiffiffiffiffi
α2

p ¼ 0.02. The effective (dimension-
less) pressure is defined in the standard way through the
energy-momentum tensor [19] as

~p ¼ G2F2 −
1

3

�
dF
dR

�
2

þ 1

6α2

�
dG
dR

�
2

− ðF2θð1 − F2Þ þ θðF2 − 1ÞÞ; ð33Þ

one can show that the equality
R
∞
0 ~pðRÞR2dR ¼ 0 (the so-

called “von Laue condition” [19]) fulfills in the general
case (this equality was also used for the additional cross-
check of our numerical results). The values of ω

M for these
plots are chosen such that they approximately correspond
to the marked points in Fig. 5 in the clockwise order:
ω
M ¼ 1—circle, ωM ≈ 0.96—triangle, ωM ≈ 0.46—asterisk (the
point of the turnover), ω

M ¼ 1—box.
There exists a dip in the vicinity of R ¼ 0 on the charge

density curve in Fig. 8 for ω
M ¼ 1, clearly indicating the

repulsive nature of the electrostatic interaction in the
gauged Q-ball. Such dips on the charge density curves
appear forQ-balls from the upper part of theQðωÞ diagram
(Fig. 5) for ω

M ≳ 0.506. It is also interesting to note that,
according to Fig. 9, the pressure can be negative even in the
center of gauged Q-balls.

V. CONCLUSION

As it was demonstrated above, gauged Q-balls posses
surprising properties which differ considerably from those
of Q-balls in the nongauged case. Namely, it was shown
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FIG. 7 (color online). Profiles of the scalar field for different
values of ω

M. Here
ffiffiffiffiffi
α2

p ¼ 0.02.
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FIG. 8 (color online). Profiles of the effective charge density
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FIG. 9 (color online). Profiles of the effective pressure ~pðRÞ,ffiffiffiffiffi
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that there may exist gauged Q-ball solutions with a finite
charge even for ω ¼ M (if 1

2f
dV
df jf¼0 ¼ M2 ≠ 0), which is

usually impossible in the nongauged case. The correspond-
ing analytical considerations were supported by the
numerical calculations in two models with different scalar
field potentials. Moreover, numerical analysis shows that
even when Q → ∞ as ω → 0 in the nongauged case, the
charge in the gauged case remains finite for all allowed
values of ω. As a consequence, the regions of allowed
frequencies appear to be different from those in the non-
gauged case.
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APPENDIX A: THE BEHAVIOR OF f ðrÞ FORffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r ≫ 1

Let us take the integral representation of the confluent
hypergeometric function of the second kind Uðb; c; zÞ,
which has the form [20]

Uðb; c; zÞ ¼ 1

ΓðbÞ
Z

∞

0

e−zttb−1ð1þ tÞc−b−1dt: ðA1Þ

For solution (15) we get

fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

Z
∞

0

e−2
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
rtt

ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p ð1þ tÞ−
ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
dt: ðA2Þ

Let us change the variable t such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rt ¼ ~t. We get

fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r

Z
∞

0

e−2~t
�

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rþ ~t

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t ðA3Þ

It is clear that, due to the exponential suppression, the main contribution to the integral in (A3) is achieved in the region
~t ∼ 1. Thus, for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r ≫ 1, we can rewrite the integral in (A3) as

Z
∞

0

e−2~t
�

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rþ ~t

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t ≈

Z
∞

0

e−2~t
�

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t

¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p Z
∞

0

e−2~t~t
ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t: ðA4Þ

Finally, for (A3) we obtain (up to a constant depending
on ω)

fðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

r
1þ ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
; ðA5Þ

which coincides with (16).

APPENDIX B: CORRESPONDENCE BETWEEN
THE SCALAR FIELD SOLUTIONS FOR ω < M

AND ω ¼ M

Let us again take the integral representation of the
confluent hypergeometric function of the second kind
Uðb; c; zÞ. We will be interested in the limit ω → M for
a fixed r. In this case (A3) can be rewritten as

fðrÞ ∼ 1

r
lim
ω→M

Z
∞

0

e−2~t
�

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rþ ~t

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t:

ðB1Þ

In the limit ω → M the term ~tffiffiffiffiffiffiffiffiffiffiffi
M2−ω2

p
rþ~t

can be represented

as

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rþ ~t

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − ω2
p

rþ ~t
≈ 1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r

~t
: ðB2Þ

Thus, we get
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lim
ω→M

Z
∞

0

e−2~t
�

~tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
rþ ~t

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t ≈ lim

ω→M

Z
∞

0

e−2~t
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r

~t

� ωe2Q

4π
ffiffiffiffiffiffiffiffiffi
M2−ω2

p
d~t

¼ lim
ω→M

Z
∞

0

e−2~t
��

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
r

~t

�− ~tffiffiffiffiffiffiffiffiffi
M2−ω2

p
r

�−ωe2Qr
4π~t

d~t ¼
Z

∞

0

e−2~te−
Me2Qr
4π~t d~t:

ðB3Þ

Now let us define y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Me2Q

π r
q

, x ¼
ffiffiffiffiffiffiffiffiffiffiffi
8π

Me2Qr

q
~t. In these notations, the last integral in (B3) can be rewritten as

Z
∞

0

e−2~te−
Me2Qr
4π~t d~t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r Z
∞

0

e−
y
2
ðxþ1

xÞdx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r �Z
1

0

e−
y
2
ðxþ1

xÞdxþ
Z

∞

1

e−
y
2
ðxþ1

xÞdx
�
: ðB4Þ

Now let us make the redefinition x → 1
x in the last integral in (B4). We get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r �Z
1

0

e−
y
2
ðxþ1

xÞdxþ
Z

∞

1

e−
y
2
ðxþ1

xÞdx
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r Z
1

0

e−
y
2
ðxþ1

xÞ
�
1þ x2

x2

�
dx ðB5Þ

It is convenient to introduce the new variable 2w ¼ xþ 1
x, which leads, according to the limits of integration, to

x ¼ w −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
. The integral in (B5) can be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r Z
1

0

e−
y
2
ðxþ1

xÞ
�
1þ x2

x2

�
dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
8π

r Z
∞

1

e−wy
�

2wffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
�
dw

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me2Qr
2π

r
y
Z

∞

1

e−wy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
dw; ðB6Þ

where we have performed integration by parts in the last step. Recalling the integral representation of the modified Bessel
function of the second kind K1ðyÞ, which has the form [20]

K1ðyÞ ¼
ffiffiffi
π

p
2Γð3

2
Þ y

Z
∞

1

e−wy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
dw; ðB7Þ

combining formulas (B1), (B6), (B7) and taking into account the definition of y, we arrive at

fðrÞ ∼
K1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Me2Q

π r
q �

ffiffiffi
r

p ; ðB8Þ

which obviously corresponds to (18).
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