
Eternal Higgs inflation and the cosmological constant problem

Yuta Hamada,1,* Hikaru Kawai,1,† and Kin-ya Oda2,‡
1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, Osaka University, Osaka 560-0043, Japan

(Received 1 February 2015; published 11 August 2015)

We investigate the Higgs potential beyond the Planck scale in the superstring theory, under the
assumption that the supersymmetry is broken at the string scale. We identify the Higgs field as a massless
state of the string, which is indicated by the fact that the bare Higgs mass can be zero around the string
scale. We find that, in the large field region, the Higgs potential is connected to a runaway vacuum with
vanishing energy, which corresponds to opening up an extra dimension. We verify that such universal
behavior indeed follows from the toroidal compactification of the nonsupersymmetric SOð16Þ × SOð16Þ
heterotic string theory. We show that this behavior fits in the picture that the Higgs field is the source of the
eternal inflation. The observed small value of the cosmological constant of our universe may be understood
as the degeneracy with this runaway vacuum, which has vanishing energy, as is suggested by the multiple
point criticality principle.
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I. INTRODUCTION

The Higgs boson discovered at the LHC [1,2] beautifully
fits into the standard model (SM) predictions so far [3]. The
determination of its mass [4]

MH ¼ 125.7� 0.4 GeV ð1Þ

completes the list of the SM parameters, among which the
ones in the Higgs potential,

V ¼ m2jHj2 þ λjHj4; ð2Þ

have turned out to be m2 ∼ −ð90 GeVÞ2 and λ≃ 0.13,
depending on the precise values of the top and Higgs
masses; see e.g. Ref. [5].
We have not seen any hint of a new physics beyond the

SM at the LHC, and it is important to guess at what scale it
appears, as we know for sure that it must be somewhere in
order to account for the tiny neutrino masses, dark matter,
baryogenesis, inflation, etc. In this work, we assume that
the Higgs sector is not altered up to a very high scale,1 in
accordance with the following indications: The renormal-
ization group (RG) running of the quartic coupling λ
revealed that it takes the minimum value at around the
Planck scale ∼1018 GeV and that the minimum value can
be zero depending on the precise value of the top quark
mass [5,13–27]. We have also found that the bare Higgs
mass can vanish at the Planck scale as well [18–21,28–31].2

That is, the Veltman condition [35] can be met at the Planck
scale. In fact he speculates, “This mass-relation, implying a
certain cancellation between bosonic and fermionic effects,
would in this view be due to an underlying supersym-
metry.” To summarize, it turned out that there is a triple
coincidence: λ, its running, and the bare Higgs mass can all
be accidentally small at around the Planck scale.
This is a direct hint for Planck scale physics in the

context of superstring theory. The vanishing bare Higgs
mass implies that the supersymmetry is restored at the
Planck scale and that the Higgs field resides in a massless
string state. The smallness of both λ and its beta function is
consistent with the Higgs potential being very flat around
the string scale; see Fig. 1.3 Such a flat potential opens up
the possibility that the Higgs field plays the role of inflaton
in the early universe [59–67].4 To understand the whole
structure of the potential, it is crucial to investigate its
behavior beyond the Planck scale. The calculation based on
field theory cannot be trusted in this region. Although it is
hard to reproduce the SM completely as a low energy
effective theory of superstring, we can explore generic
trans-Planckian structure of the Higgs field, under the
assumption that the SM is close to a nonsupersymmetric
perturbative vacuum of superstring theory.
In four dimensions, string theory has many more

tachyon-free nonsupersymmetric vacua than the super-
symmetric ones. The latest LHC results suggest the
possibility of the absence of the low energy supersymmetry,
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1See e.g. Refs. [6–12] for a possible minimal extension of the

SM with the dark matter and right-handed neutrinos.
2See also Refs. [32–34] for discussion of quadratic divergences.

3This is indeed suggested by the multiple point criticality
principle (MPP) [36–38], the classical conformality [39–50], the
asymptotic safety [51], the hidden duality and symmetry [52,53],
and the maximum entropy principle [54–58].

4There are different models of the Higgs inflation involving
higher dimensional operators [68–72].
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and the research based on the nonsupersymmetric vacua is
becoming more and more important [73–77].
In such nonsupersymmetric vacua, almost all the moduli

are lifted up perturbatively, contrary to the supersymmetric
ones which typically possess tens or even hundreds of flat
directions that cannot be raised purturbatively. However,
there remains a problem of instability in the nonsupersym-
metric models: The perturbative corrections generate tad-
poles for the dilaton and other moduli such as the radii of
toroidal compactifications. The dilaton can be stabilized
within the perturbation series when gs ∼ 1 [78], or else by
the balance between the one-loop and the nonperturbative
potentials when gs is small [77]. In this paper, we assume
that the dilaton is already stabilized. We will discuss other
instabilities than the dilaton direction in Secs. II and III.
We start from the tachyon-free nonsupersymmetric

vacua of the heterotic string theory. We assume that the
Higgs comes from a closed string and that its emission
vertex at the zero momentum can be decomposed into a
product of operators whose conformal dimensions are (1,0)
and (0,1). This is realized in the following cases for
example:

(i) The Higgs comes from an extra dimensional com-
ponent of a gauge field [79–85].

(ii) The Higgs is the only one doublet in generic
fermionic constructions [86–89].

(iii) The Higgs comes from an untwisted sector in the
orbifold construction [90,91]; see e.g. Ref. [73] for a
recent model-building example.5

Then we consider multiple insertions of such emission
vertices to evaluate the effective potential. It is very
important to understand the whole shape of the Higgs
potential in order to discuss the initial condition of the
Higgs inflation, as well as to examine whether the MPP is
realized or not. We will show that, in the large field region,
the Higgs potential is connected to a runaway vacuum with

vanishing energy, which corresponds to opening up an
extra dimension. We find that such potential can realize an
eternal inflation.
This paper is organized as follows. In Sec. II, we show

that the potential in the large field limit with fixed radius
can be classified into the above three categories. In Sec. III,
we compute the one-loop partition function as a function of
a background field in SOð16Þ × SOð16Þ nonsupersymmet-
ric heterotic string on R1;8 × S1, as a concrete toy model
[92–96]. We explicitly check that the limiting behavior of
the potential fits into the three categories mentioned above.
We argue that physically this corresponds to opening up a
multidegrees of freedom space above the Planck scale and
that the runaway vacuum is a direction in this space. In
Sec. IV, we point out a possibility that the Higgs inflation is
preceded by an eternal inflation, which occurs either in a
domain wall or in a false vacuum. In Sec. V, we show a
possible explanation for the vanishing cosmological con-
stant in terms of the MPP, and consider a possible
mechanism to yield the observed value of the order of
ðmeVÞ4. In Sec. VI, we summarize our results. In
Appendix A, we summarize our notation for several
mathematical functions. In Appendix B, we review the
fermionic construction that we use for the heterotic super-
string theory. The computation of the partition function is
also outlined. In Appendix C, we review the T-duality that
we use in this work. In Appendix D, we review the MPP.

II. HIGGS POTENTIAL IN STRING THEORY

In this section, we show how to treat the large constant
background of a massless mode in closed string theory. In
general, we start from a world sheet action, say,

S0 ¼
1

2πα0

Z
d2zGMN∂XM∂̄XN þ � � � ; ð3Þ

where GMN is the target space metric, M;N;… run from 0
to D − 1, and α0 is the string tension. In general, a genetic
massless string state has the emission vertex
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FIG. 1 (color online). The SMHiggs potential V as a function of
the Higgs field φ. Here we take MH ¼ 125 GeV and tune the top
mass in such away that the potential becomes flat; see e.g. Ref. [65].

5In Ref. [73] the SM-like one Higgs doublet model is
constructed, in which Higgs is realized as an extra dimensional
gauge field. For example, the model under the Z6−I orbifold
compactification of SOð16Þ × SOð16Þ heterotic string with the
shift vector

V ¼ ð−1=2;−1=2; 1=6; 1=2;−2=3;−1=2; 0; 1=6Þ
× ð−2=3;−1=2; 0;−1=2;−1=2; 0; 1=6; 2=3Þ

and Wilson lines

A5 ¼ ð1=2; 1=2;−1=2; 5=6;−1=6; 1=2; 1=6;−1=2Þ
× ð1=2;−1=6;−5=6; 7=6; 1=6; 5=6; 1=2;−1=6Þ

A6 ¼ ð1=2; 1=2;−1=2; 5=6;−1=6; 1=2; 1=6;−1=2Þ
× ð1=2;−1=6;−5=6; 7=6; 1=6; 5=6; 1=2;−1=6Þ

fits in all the three criteria. We thank the authors of Ref. [73] on
this point.
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Oðz; z̄Þeik·X; ð4Þ

where k2 ¼ 0 and Oðz; z̄Þ has conformal dimensions (1,1)
to preserve the conformal symmetry on the world sheet.
As said in the Introduction, we assume in this paper that

the emission vertex at the zero momentum of the physical
Higgs can be decomposed into a product of the (1,0)
operator OLðzÞ and the (0,1) operator ORðz̄Þ:

Oðz; z̄Þ ¼ OLðzÞORðz̄Þ: ð5Þ

An operator of this form is exactly marginal: Insertions of
the operator ϕOðz; z̄Þ can be exponentiated without
renormalization, and hence the deformation of the world
sheet action

S ¼ S0 þ ϕ

Z
d2zOðz; z̄Þ ð6Þ

keeps the theory conformally invariant; see Fig. 2.
We want to know the effective potential for the back-

ground: VðϕÞ. At the tree-level, the potential vanishes

V treeðϕÞ ¼ 0: ð7Þ

This is because the one-point function of any emission
vertex, especially that of the graviton, vanishes on the
sphere as it has nonzero conformal dimension. At the one-
loop level and higher, we have nonzero effective potential.6

The D-dimensional energy density is given by

Vg-loop ¼ −
Zg

VD
; ð8Þ

where VD is the volume of D-dimensional spacetime and
Zg is the partition function on the world sheet with genus g
after moduli integration. We note that the potential (8) is
given in the Jordan frame that does not yet make the

gravitational action canonical; we will come back to this
point in Secs. II A and III B.
We emphasize that in string theory, the partition function

Zg can be obtained even for the field value larger than
the Planck scale, unlike the ordinary quantum field theory
where infinite number of Planck-suppressed operators
become relevant and uncontrollable.
Before generalizing to arbitrary compactification, we

first analyze two simple examples to build intuition: In
Sec. II A, we study the large field limit of the radion,
namely an extra dimensional component of the graviton
under the toroidal compactification. This limit corresponds
to the large radius limit of the compactified dimension.
In Sec. II B, we further turn on the Wilson line and the
antisymmetric tensor field. We can analyze this setup by
considering the corresponding boost in the momentum
space [97,98]. From the analysis of the spectrum of these
modes, we argue that the effective potential in the large
field limit can be classified into three categories, namely,
runaway, periodic, and chaotic. [In Sec. III, we will confirm
it by a concrete computation for the toroidal compactifi-
cation of the SOð16Þ × SOð16Þ heterotic string theory.]
In Sec. II C, we discuss more general compactifications,

and show that the same classification holds.

A. Radion potential

As said above, we start from the toroidal compactifica-
tion of the ðD − 1Þth direction: XD−1 ∼ XD−1 þ 2πR. The
emission vertex of the radion, GD−1D−1, is

∂XD−1∂̄XD−1eik·X: ð9Þ

Its constant background is given by setting the momen-
tum k ¼ 0.
We want the partition function with the radion back-

ground ϕ:

Sworld sheet ¼
1

2πα0

Z
d2zð1þ ϕÞ∂XD−1∂̄XD−1 þ � � � :

ð10Þ

In this case, we can transform the action into the original
form with ϕ ¼ 0 by the field redefinition

FIG. 2 (color online). Partition function under the presence of the background ϕ. Summing up all the possible insertions of ϕ, it
exponentiates to yield Eq. (6). This picture shows the one-loop case.

6On the whole plane that is mapped from the sphere, an operator
O with the scale dimension ds satisfies hOðλzÞi ¼ hOðzÞiλ−ds and
the translational invariance reads hOðλzÞi ¼ hOðzÞi. Hence we get
hOðzÞi ¼ 0 for ds ≠ 0. On the other hand, for torus and surfaces
with higher genera, we cannot define the scale transformation,
unlike the plane.
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X0D−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p
XD−1; ð11Þ

which however changes the periodicity as

X0D−1 ∼ X0D−1 þ 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p
R: ð12Þ

That is, the radion background changes the radius of S1 to

R0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ

p
R: ð13Þ

Therefore if the compactification radius R0 is large, the
effective action is proportional to it, and the ðD − 1Þ-
dimensional effective action for large ϕ becomes

Seff∼
Z

dD−1x
ffiffiffiffiffiffi
−g

p
R0
�
R−C−

2

R02 ð∂R0Þ2
�

¼
Z

dD−1x
ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffiffiffiffiffi
1þϕ

p
R

�
R−C−

1

2ð1þϕÞ2 ð∂ϕÞ
2

�

ð14Þ
up to an overall numerical coefficient, where we have
taken the α0 ¼ 1 units, R is the Ricci scalar in ðD − 1Þ-
dimensions, and C is a ϕ-independent constant that is
generated from loop corrections in the nonsupersymmetric
string theory. C can be viewed as the D-dimensional
cosmological constant.
This can be confirmed at the one-loop level as follows.

The radius dependent part of the one-loop partition
function before the moduli integration is

X∞
n;w¼−∞

exp

�
2πiτ1nw − πτ2α

0
��

n
R0

�
2

þ
�
R0w
α0

�
2
��

;

ð15Þ

where n and w are the Kaluza-Klein (KK) and winding
numbers, respectively, and τ ¼ τ1 þ iτ2 is the moduli of the
world sheet torus. In the large radius limit R0 ≫

ffiffiffiffi
α0

p
, we

can rewrite Eq. (15) by the Poisson resummation formula:

R0ffiffiffiffiffiffiffiffiffiffiffi
πτ2α

0p X
m;w

exp

�
−
πR02

α0τ2
jm − wτj2

�
: ð16Þ

We see that the partition function becomes indeed propor-
tional to R0 in the large R0 limit. Note that in the large R0
limit, only the w ¼ 0 modes contribute, and hence that the
winding modes are not important here.
We then rewrite the action (14) in the Einstein frame.

In ðD − 1Þ-dimensions, the field redefinition by the Weyl
transformation, gEμν ¼ e2ωgμν, gives us the volume element
and the Ricci scalar in the Einstein frame as

ffiffiffiffiffiffiffiffi
−gE

p
¼ eðD−1Þω ffiffiffiffiffiffi

−g
p

; ð17Þ

RE ¼ e−2ω½R − 2ðD − 2Þ∇2ω

− ðD − 3ÞðD − 2Þgμν∂μω∂νω�; ð18Þ

respectively. By choosing eðD−3Þω ¼ R0, we get the Einstein
frame action:

Seff ¼
Z

dD−1x
ffiffiffiffiffiffiffiffi
−gE

p �
RE þ ðD − 3ÞðD − 2ÞgEμν∂μω∂νω − e−2ωC −

2

R02 ð∂R0Þ2
�

¼
Z

dD−1x
ffiffiffiffiffiffiffiffi
−gE

p �
RE −

D − 4

D − 3

gEμν

R02 ∂μR0∂νR0 −
C

R02=ðD−3Þ

�

¼
Z

dD−1x
ffiffiffiffiffiffiffiffi
−gE

p �
RE −

gEμν

2
∂μχ∂νχ − C exp

�
−
ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 3ÞðD − 4Þp ��

; ð19Þ

where the second term in Eq. (18) has become a total

derivative and we have defined R0 ≕ expð χffiffi
2

p
ffiffiffiffiffiffiffi
D−3
D−4

q
Þ. When

D > 4 and C > 0, we see that the last term, the potential,
becomes runaway for large R0 or χ.7

To summarize, the large field limit of the radion ϕ, the
extra dimensional component of the graviton, leads to the
decompactification of the corresponding dimension. This
decompactified vacuum corresponds to the runaway poten-
tial if the cosmological constant is positive [102,103]. Since

the large radius limit is equivalent to the weak coupling
limit, the runaway vacuum corresponds to a free theory.
Therefore this runaway nature is not altered by the higher
order corrections. We will see in Sec. VI that this argument
also applies to the dilaton background.

B. Boost on momentum lattice

As the second example, we turn on the backgrounds for
graviton, gauge, and antisymmetric tensor fields. Let p and
q be the numbers of the compactified dimensions in the left
and right moving sectors of the closed string, other than our
four dimensions. We take p ≥ q without loss of generality.

7The small radius limit R0 ≪
ffiffiffiffi
α0

p
is the same as the large

radius limit due to the T-duality: R0⟷α0=R0 [99–101].
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The spectrum of ðpþ qÞ-dimensional momenta ð~kL; ~kRÞ of
the nonoscillatory mode is restricted to form an (even self-
dual) momentum lattice, due to the modular invariance
[97,98]; see Appendix B 4. Different lattices that are related

by the SOðp; qÞ rotation of ð~kL; ~kRÞ correspond to different
compactifications, up to the SOðpÞ × SOðqÞ rotation that

leaves ~k2L and ~k2R invariant. Therefore the compactifications
are classified by the transformation

SOðp; qÞ
SOðpÞ × SOðqÞ : ð20Þ

This is the moduli space of the theory at the tree level,
which is lifted up by the loop corrections in nonsupersym-
metric string theory.
The boost in the momentum space corresponds to putting

constant backgrounds for the degrees of freedom that are
massless at the tree-level [97,98]:

Cij∂Xi
L∂̄Xj̄

R; ð21Þ

where i and j̄ run for 1;…; p and 1;…; q, respectively. In
terms of q-dimensional fields, they can be interpreted as the
symmetric tensor (metric), antisymmetric tensor, and
Uð1Þp−q gauge fields (Wilson lines), whose total number is

qðqþ 1Þ
2

þ qðq − 1Þ
2

þ qðp − qÞ ¼ pq: ð22Þ

Indeed, this agrees with the number of degrees of freedom
of the coset space (20):

ðpþ qÞðpþ q − 1Þ
2

−
pðp − 1Þ

2
−
qðq − 1Þ

2
¼ pq: ð23Þ

We are interested in switching on the background of a
single field. If the emission vertex of the field is given by

cij̄∂Xi
L∂̄Xj̄

R, this corresponds to adding

λcij∂Xi
L∂̄Xj̄

R ð24Þ

to the world sheet action, where λ represents the strength of
the background. In general, the SOðpÞ × SOðqÞ rotation
can make cij̄ into the diagonal form

cij̄ →

2
6664
�

�
. .
.

�

3
7775; ð25Þ

where the blank slots stand for zero. This background
corresponds to the combination of q boosts in the
1-1̄;…; q-q̄ planes. That is, the ðpþ qÞ-dimensional vector

k ¼ ðk1L;…; kpL; k
1̄
R;…; kq̄RÞ ð26Þ

is transformed by

�
k0iL
k0 īR

�
¼
�
cosh ηi sinh ηi
sinh ηi cosh ηi

��
kiL

kīR

�
;

k0jL ¼ kjL; ð27Þ

for i ¼ 1;…; q and j ¼ qþ 1;…; p.
Let us first consider the effect of a boost in a single plane:

�
k0L
k0R

�
¼
�
cosh η sinh η

sinh η cosh η

��
kL
kR

�
: ð28Þ

Then one of kL � kR is contracted and the other expanded:

k0L þ k0R ¼ eηðkL þ kRÞ;
k0L − k0R ¼ e−ηðkL − kRÞ: ð29Þ

The effective potential in the large η limit depends on
whether or not there exists a lattice point on the light cone
in this plane, as is illustrated schematically in Fig. 3. There
are two possibilities in the infinite boost limit:

(i) If a point in the initial momentum lattice sits on the
light cone as in the left panel in Fig. 3, infinite
amount of its integer multiplications on the light
cone are contracted to form a continuous spectrum.
This behavior is the same as that of the KKmomenta
in the large radius limit discussed in Sec. II A. The
resultant partition function becomes proportional to
the radius R. The same argument as Sec. II A gives
us the runaway potential.

(ii) If no point sits on the light cone in the initial
momentum lattice, as in the right panel in Fig. 3,
then the continuum is not formed by the infinite
boost. For a given amount of boost, the closest point
to the origin contributes the most to the partition
function. Then the potential becomes either periodic
or chaotic for larger and larger boost.

The fate of the large field limit depends on whether or not a
lattice point sits on the light cone of the boost plane in the
momentum space.
In the case of the multiple boosts (25), the boost in each

plane is independent from the others. However, if there are
several degenerate massless states as in Eq. (21), we should
better consider all of them simultaneously. As wewill see in
Sec. III in a concrete model, the asymptotic behavior of the
potential remains essentially the same.

C. General compactifications

We discuss the large field limit in more general setup
including compactification on a curved space, possibly
involving orbifolding etc., or even the case without having
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a geometrical interpretation. We will show that the classi-
fication still holds: runaway, periodic, and chaotic.
As said above, the emission vertex of a massless field

must be written in terms of a (1,1) operator, and we assume
that this operator separates into the holomorphic and
antiholomorphic parts,

Oð1;1Þ ¼ Oð1;0Þ ×Oð0;1Þ; ð30Þ

on the world sheet. Then we can write at least locally,

Oð1;0Þ ¼ ∂Y; Oð0;1Þ ¼ ∂̄Z; ð31Þ

where Y and Z are free world sheet scalars. If we further
assume that the Higgs field is uniquely identified, i.e., that
it does not mix with other massless states at the tree level,
then it suffices to consider a single background as in
Eq. (6). In this case we may not need to consider the
multifield potential discussed above.
We can show that ∂Y and ∂̄Z are periodic at least in one

sector: In fact, if we insert the graviton emission vertex
∂Xμ∂̄Xνeik·X near the Higgs emission vertex, the latter is
single valued in the neighborhood of the former. This is
because Y and Z are independent of the spacetime
coordinates Xμ. Therefore, ∂Y and ∂̄Z are periodic in
the graviton sector; see Fig. 4.
In such a sector, we can mode-expand ∂Y and ∂̄Z. Let us

consider the simultaneous eigenvalues ðpY; pZÞ of the
constant modes of ∂Y and ∂̄Z. The set of the pairs of
eigenvalues form a momentum lattice ΓP ¼ fðpY; pZÞg: If
there exist states s1 and s2 with momenta ðpY1; pZ1Þ and
ðpY2; pZ2Þ, respectively, there is a state with the momentum
ðpY1 þ pY2; pZ1 þ pZ2Þ; such a state appears when s1 and
s2 merge. If ΓP contains a non-zero vector, it forms the
momentum lattice. Then the same argument applies as in

Sec. II B. Putting a constant background for Oð1;1Þ corre-
sponds to the momentum boost. If there is a point on the
light cone with pY=pZ being a rational number, then a
runaway direction emerges in the infinite boost limit. If not,
namely if there is no such point, then the potential becomes
chaotic.

III. SOð16Þ × SOð16Þ HETEROTIC STRING

We verify the argument in the previous section in the
concrete model: the SOð16Þ × SOð16Þ heterotic string
theory [92,93]. This model breaks supersymmetry at the
string scale but, unlike the bosonic string theory in 26
dimensions, the tachyonic modes are projected out as in the
ordinary heterotic superstring theories. In the fermionic
construction, the modular invariance of the partition func-
tion restricts the allowed set of the fermion numbers in
Neveu-Schwarz (NS) and Ramond (R) sectors. The clas-
sification of the ten dimensional string theories is com-
pleted in Ref. [104]. The SOð16Þ × SOð16Þ model [92,93]

FIG. 4 (color online). Left: The Higgs emission vertex ∂Y∂̄Z is
single-valued around the graviton emission vertex because Y and
Z are independent of the spacetime coordinate Xμ. Right:
Exponential mapping around the graviton emission vertex. ∂Y
and ∂̄Z are periodic around the cylinder, e.g. around the (red)
circle.

Lorentz boost Lorentz boost

FIG. 3 (color online). Schematic picture of the momentum boost in the kR vs kL plane. The light cone in the momentum space is
depicted by the dashed diagonal lines. The sets of lighter (magenta) and black dots represent the initial momentum lattice and the one
after the boost, respectively. Left: There exists a point of the initial lattice on the light cone. Then there exist infinite amount of its integer
multiplications on the light cone. In the infinite boost limit, they are contracted to form a decompactified dimension, which is
represented by the black dots. Right: There is no initial point on the light cone, and such a decompactification does not occur.
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is the only one that has neither a tachyon nor a supersym-
metry in ten dimensions.
We write the uncompactified dimensions Xμ

(μ ¼ 0;…; 9), and the compactified ones XI
L

(I ¼ 1;…; 16) for the left movers. We then compactify
this model on S1 [94]:

X9 ∼ X9 þ 2πR: ð32Þ

We further turn on a Wilson line for the gauge field AI¼1
μ¼9,

and compute the one-loop partition function.
In Appendix B, we spell out the construction of the

model and the computation of the partition function; the
notations for the theta functions are put in Appendix A.
In Sec. III A, we review the partition function in the
SOð16Þ × SOð16Þ heterotic string theory in 10 dimensions.
In Sec. III B we compute the one-loop partition function of
this model for the case described above.

A. Partition function of SOð16Þ × SOð16Þ string
We first review the computation of the partition function

in the SOð16Þ × SOð16Þ nonsupersymmetric heterotic
string [92,93]. Here we have chosen a nonsupersymmetric
string as a toy model because, as discussed in Introduction,
the low energy data at the electroweak scale suggests via
the Veltman condition that the supersymmetry is broken
at the Planck scale. In such a nonsupersymmetric theory, the
flat direction of the effective potential is raised perturba-
tively. Detailed procedure of the fermionic construction of
the model is explained in Appendix B 1 and B 2.
Let us write down the contribution from the momentum

lattice after the bosonization in each α~w sector:

ẐT2;α~w ¼ Trα~we2πiτ1ðL0−L̄0Þ−2πτ2ðL0þL̄0Þjmomentum lattice: ð33Þ

In our case, they are

ẐT2;~0 ¼
1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þððϑ00Þ8 þ ðϑ01Þ8Þ2;

ẐT2; ~w0
¼ −

1

8
ðϑ̄10Þ4ðϑ10Þ16;

ẐT2; ~w1
¼ 1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þðϑ10Þ16;

ẐT2; ~w2
¼ 1

8
ððϑ̄00Þ4 þ ðϑ̄01Þ4Þðϑ10Þ8ððϑ00Þ8 − ðϑ01Þ8Þ;

ẐT2; ~w0þ~w1
¼ −

1

8
ðϑ̄10Þ4ððϑ00Þ8 − ðϑ01Þ8Þ2;

ẐT2; ~w0þ~w2
¼ −

1

8
ðϑ̄10Þ4ððϑ00Þ8 þ ðϑ01Þ8Þðϑ10Þ8;

ẐT2; ~w1þ~w2
¼ 1

8
ððϑ̄00Þ4 þ ðϑ̄01Þ4Þðϑ10Þ8ððϑ00Þ8 − ðϑ01Þ8Þ;

ẐT2; ~w0þ~w1þ~w2
¼ −

1

8
ðϑ̄10Þ4ððϑ00Þ8 þ ðϑ01Þ8Þðϑ10Þ8; ð34Þ

where ~0 and ~wi are basis vectors for the boundary
conditions on the fermions; see Appendix B 3 for
details.
Let us sum up all the above contributions, multiplied by

those from the oscillator modes in the bosonization.
Including also the spacetime momentum and oscillator
modes from the bosonic Xm (m ¼ 2;…; 9), we get the one-
loop vacuum amplitude [92,93]:

ZT2 ¼ V10

α05
1

2ð2πÞ10
Z
F

dτ1dτ2
τ62

1

jηðτÞj16ηðτÞ16η̄ðτ̄Þ4
×
X

sector α~w

ẐT2;α~w

¼ V10

α05
1

4ð2πÞ10
Z
F

dτ1dτ2
τ62

1

jηðτÞj16ηðτÞ16η̄ðτ̄Þ4
× ½ðϑ̄01Þ4ðϑ10Þ8ððϑ00Þ8 − ðϑ01Þ8Þ
þðϑ̄10Þ4ðϑ01Þ8ððϑ00Þ8 − ðϑ10Þ8Þ�; ð35Þ

where F represents the fundamental region,

F ≔ fðτ1; τ2Þj − 1=2 ≤ τ1 ≤ 1=2; jτj ¼ jτ1 þ iτ2j ≥ 1g;
ð36Þ

and we have used the Jacobi’s identity:

ðϑ̄00Þ4 − ðϑ̄01Þ4 − ðϑ̄10Þ4 ¼ 0: ð37Þ

We can see from this identity that the contributions
between ~w0 and ~w1 cancel. By the numerical calculation,
we obtain [92,93]

ρ10 ¼ −
ZT2

V10

≃ ð3.9 × 10−6Þ 1

α05
: ð38Þ

B. S1 compactification with Wilson line

Now we compactify the m ¼ 9 direction on S1 with
radius R∶ X9 ∼ X9 þ 2πR [94]. Here we consider a large
field limit of an extram ¼ 9 dimensional component of the
gauge field, AI¼1

m¼9. We will find three possible large field
limits discussed in the previous section.
The emission vertex for the gauge field with the

polarization and momentum ϵm and k, respectively, is

ϵm

�
i∂̄Xm þ α0

2
ðk · ψRÞψm

R

�
∂XI

Le
ik·X; ð39Þ

where indices run such that m ¼ 2;…; 9 and I ¼ 1;…; 16.
We see by putting k ¼ 0 in Eq. (39) that a constant
background AI

m corresponds to adding

AI
m

Z
d2z∂̄Xm∂XI

L; ð40Þ
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to the world sheet action.8 In particular, we switch on the
component of I ¼ 1 and m ¼ 9, and write A ≔ A1

9:

A
Z

d2z∂̄X9∂X1
L: ð41Þ

Turning on the Wilson line background A does not affect
the oscillator modes since Eq. (40) is a total derivative in
the world sheet action; only the momentum lattice of the
center-of-mass mode is changed by A.
Let lL be the momentum of XI¼1

L . After fermionization,
we have

lL ¼
ffiffiffiffi
2

α0

r
m; ð42Þ

where m ∈ Z and Zþ 1=2 for the NS (antiperiodic) and R
(periodic) boundary conditions, respectively. Let pL and pR

be the spacetime momenta of the S1-compactified direction
Xm¼9 for the left and right movers, respectively:

pL ¼ n
R
þ Rw

α0
;

pR ¼ n
R
−
Rw
α0

; ð43Þ

where n ∈ Z and w ∈ Z are the KK and winding numbers,
respectively.
Turning on the background A corresponds to the boost

on the momentum lattice [98]:�
l0L
p0
R

�
¼
�
cosh η sinh η

sinh η cosh η

��
lL
pR

�
; ð44Þ

since there appears only lL and pR in Eq. (41). This boost
necessarily changes the radius of the compactification too.
We will see that the identification

A ¼ sinh η; ð45Þ

gives the correct answer below. Let us define r by

r ≔
R

cosh η
; ð46Þ

which will turn out to be the compactification radius in the
presence of A. Note that in the language of Sec. II B, we
have 17 left-moving and 1 right-moving internal dimen-
sions (p ¼ 17 and q ¼ 1). The nontrivial transformations
on the compactified space are

SOð17; 1Þ
SOð17Þ : ð47Þ

Among them, we have chosen the boost between the left
I ¼ 1 and right m ¼ 9 dimensions with the momenta lL
and pR, respectively. The left momentum of the m ¼ 9
dimension, pL, is untouched. We will soon use the rotation
between lL and pL that belongs to SOð17Þ.
We now show the validity of the identification (45). In

terms of A and r, we have

p0
R ¼ pR cosh ηþ lL sinh η

¼ n
r
−
rw
α0

ð1þ A2Þ þ
ffiffiffiffi
2

α0

r
mA; ð48Þ

l0L ¼ lL cosh ηþ pR sinh η

¼
ffiffiffiffi
2

α0

r
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
þ n

r
Affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2
p −

rw
α0

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
;

ð49Þ

p0
L ¼ pL ¼ n

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2
p þ rw

α0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
: ð50Þ

We further rotate by a part of SOð17Þ in Eq. (47),�
l00L
P00
L

�
¼
�

cos θ sin θ

− sin θ cos θ

��
l0L
p0
L

�
; p00

R ¼ p0
R; ð51Þ

with

cos θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p ; sin θ ¼ −
Affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2
p ; ð52Þ

to get

l00L ¼
ffiffiffiffi
2

α0

r
m − 2

rw
α0

A; ð53Þ

p00
L ¼ n

r
þ rw

α0
ð1 − A2Þ þ

ffiffiffiffi
2

α0

r
mA: ð54Þ

The spectrum becomesX
all modes

ðl002L þ p002
L þ p02

R Þ

¼
X
m;n;w

" ffiffiffiffi
2

α0

r
m − 2

rw
α0

A

!
2

þ
 
n
r
þ rw

α0
ð1 − A2Þ þ

ffiffiffiffi
2

α0

r
mA

!
2

þ
 
n
r
−
rw
α0

ð1þ A2Þ þ
ffiffiffiffi
2

α0

r
mA

!
2
#
: ð55Þ

As promised, this result (55) correctly reproduces that in
Refs. [94,98], which is obtained from the quantization of the
scalar field under constraints. Furthermore, from Eq. (55),
we see

8In obtaining the constant background by putting k ¼ 0, it is
again important that the A is massless at the tree-level.
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ðl002L þ p002
L Þjm¼w¼0 ¼ p002

R jm¼w¼0 ¼
n2

r2
; ð56Þ

which indicates that r is the physical radius of S1.
Now let us discuss the T-dual transformations that can be

read off from the above result.
(i) We can see that the shift

A → Aþ
ffiffiffiffiffiffiffi
2α0

p

r
ð57Þ

leaves the spectrum (55) unchanged.9

(ii) From Eq. (43), we see that the spectrum is invariant
under the T-dual transformation [99–101]

R →
α0

R
; ð58Þ

or in terms of r and A, r → α0=ð1þ A2Þr.
By defining

~τ ¼ ~τ1 þ i~τ2 ≔
rAffiffiffiffi
α0

p þ i
rffiffiffiffi
α0

p ; ð59Þ

we can write down the enlarged T-dual transformation10:

S∶ ~τ → −
1

~τ

T∶ ~τ → ~τ þ
ffiffiffi
2

p
: ð60Þ

The general form of the T-dual transformation is

~τ0 ¼ a~τ þ b
c~τ þ d

; ð61Þ

where ad − bc ¼ 1 and a, b, c, and d are either

a ∈ Z; b ∈
ffiffiffi
2

p
Z; c ∈

ffiffiffi
2

p
Z; d ∈ Z; ð62Þ

or

a ∈
ffiffiffi
2

p
Z; b ∈ Z; c ∈ Z; d ∈

ffiffiffi
2

p
Z: ð63Þ

The fundamental region is −1=
ffiffiffi
2

p
≤ ~τ1 ≤ 1=

ffiffiffi
2

p
; j~τj ≥ 1.

More details can be found in Appendix C.

C. Effective potential under Wilson line

Let us write down the contribution from the momentum
lattice after the bosonization in each sector α~w; this time
we include the momentum (43) of the S1-compactified
Xm¼9 which is modified by theWilson line A as in Eqs. (48)
and (54):

~ZT2;α~w ¼ Trα~we2πiτ1ðL0−L̄0Þ−2πτ2ðL0þL̄0Þjmomentum lattice: ð64Þ

Concretely,

~ZT2;~0 ¼
1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þ

X
m∈Z

gmðη; RÞððϑ00Þ7 þ ð−1Þmðϑ01Þ7Þððϑ00Þ8 þ ðϑ01Þ8Þ;

~ZT2; ~w0
¼ −

1

8
ðϑ̄10Þ4

X
m∈Zþ1=2

gmðη; RÞðϑ10Þ15;

~ZT2; ~w1
¼ 1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þ

X
m∈Zþ1=2

gmðη; RÞðϑ10Þ15;

~ZT2; ~w2
¼ 1

8
ððϑ̄00Þ4 þ ðϑ̄01Þ4Þ

X
m∈Zþ1=2

gmðη; RÞðϑ10Þ7ððϑ00Þ8 − ðϑ01Þ8Þ;

~ZT2; ~w0þ~w1
¼ −

1

8
ðϑ̄10Þ4

X
m∈Z

gmðη; RÞððϑ00Þ7 − ð−1Þmðϑ01Þ7Þððϑ00Þ8 − ðϑ01Þ8Þ;

~ZT2; ~w0þ~w2
¼ −

1

8
ðϑ̄10Þ4

X
m∈Z

gmðη; RÞððϑ00Þ7 þ ð−1Þmðϑ01Þ7Þðϑ10Þ8;

~ZT2; ~w1þ~w2
¼ 1

8
ððϑ̄00Þ4 þ ðϑ̄01Þ4Þ

X
m∈Z

gmðη; RÞððϑ00Þ7 − ð−1Þmðϑ01Þ7Þðϑ10Þ8;

~ZT2; ~w0þ~w1þ~w2
¼ −

1

8
ðϑ̄10Þ4

X
m∈Zþ1=2

gmðη; RÞðϑ10Þ7ððϑ00Þ8 þ ðϑ01Þ8Þ; ð65Þ

10The S-transformation is the transformation (58) composed with A → −A, while the T is Eq. (57).

9After the shift of A, redefine the mode numbers by n0 ¼ nþ 2m − 2w, w0 ¼ w, and m0 ¼ m − 2w.
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where

gmðη; RÞ ¼
X∞

n;w¼−∞
exp

�
πiα0

τ1
2
ðl002L þ p002

L − p002
R Þ − π

2
τ2α

0ðl002L þ p002
L þ p002

R Þ�

¼
X∞

n;w¼−∞
exp
�
πiτ1ðm2 þ 2nwÞ − π

4
τ2α

0ðe2ηðlL þ pRÞ2 þ e−2ηðlL − pRÞ2 þ 2p2
LÞ
�

ð66Þ

contains the information of theWilson line. We can check that the η → 0 limit reduces Eq. (65) to Eq. (34), multiplied by the
contribution from the compactified dimension shown in Appendix. B 4.
Including the oscillator modes and the spacetime coordinates Xm (m ¼ 2;…; 9), we get

ZT2 ¼ V9

α09=2
1

2ð2πÞ9
Z
F

dτ1dτ2
τ11=22

1

jηðτÞj16ηðτÞ16η̄ðτ̄Þ4
X

sector α~w

~ZT2;α~w

¼ V9

α09=2
1

8ð2πÞ9
Z
F

dτ1dτ2
τ11=22

1

jηðτÞj16ηðτÞ16η̄ðτ̄Þ4
� X

m∈Zþ1=2

gmðη; RÞðϑ10Þ7ððϑ̄01Þ4ðϑ00Þ8 − ðϑ̄00Þ4ðϑ01Þ8Þ

þ
X
m∈Z

gmðη; RÞ½ðϑ00Þ7ððϑ̄10Þ4ðϑ01Þ8 þ ðϑ̄01Þ4ðϑ10Þ8Þ þ ð−1Þmðϑ01Þ7ððϑ̄10Þ4ðϑ00Þ8 − ðϑ̄00Þ4ðϑ10Þ8Þ�
�
:

ð67Þ

The 9 dimensional energy density in the Jordan frame is
given by

ρ9 ¼ −
ZT2

V9

; ð68Þ

see Eq. (8).
In Fig. 5, we plot ρ9 as a function of A for r ¼ ffiffiffiffi

α0
p

(left)
and

ffiffiffiffiffiffiffi
2α0

p
(right), all in units of α0 ¼ 1. The summation over

n andm in Eqs. (66) and (67) are truncated by jnj; jmj ≤ 10
and the numerical integration is performed within τ2 ≤ 4.
We can see the periodicity A → Aþ ffiffiffiffiffiffiffi

2α0
p

=r.
For varying A and r, we plot ρ9 as a function of ~τ1 ¼

rA=
ffiffiffiffi
α0

p
and ~τ2 ¼ r=

ffiffiffiffi
α0

p
in Fig. 6. Note that in the large r

(¼
ffiffiffiffi
α0

p
~τ2) limit, the Jordan frame potential becomes

proportional to r. This can also be seen analytically from

the fact that in the large r limit, the contributing modes are
as in Eq. (56), which results in the same expression as
Eq. (16). To repeat, we have obtained both numerically and
analytically that the Jordan frame potential is proportional
to r at the one-loop level. For large r limit, all the higher
loop corrections have the same behavior since it comes
from the fact that the energy is proportional to the volume
of the compactified dimension.
Now let us turn to the Einstein frame:

VEðrÞ ¼−
1

ð2πrÞ2=7
ZT2

2πrV9

;

¼−
1

α09=2
1

2ð2πÞ72=7
1

r9=7

Z
F

dτ1dτ2
τ11=22

1

jηðτÞj16ηðτÞ16η̄ðτ̄Þ4

×
X

sectorα~w

~ZT2;α~w; ð69Þ

0.0 0.5 1.0 1.5 2.0 2.5

0.000024

0.000025

0.000026

0.000027

0.000028

A

9

r 1

0.0 0.5 1.0 1.5 2.0 2.5

0.0000334

0.0000335

0.0000336

0.0000337

A

9

r 2

FIG. 5 (color online). The potential ρ9 in Jordan frame as a function of A with r ¼
ffiffiffiffi
α0

p
(left) and

ffiffiffiffiffiffiffi
2α0

p
(right), all in units of α0 ¼ 1.

We can see the periodicity A → Aþ
ffiffiffiffiffiffiffi
2α0

p
=r, up to the distortions due to numerical errors.
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see Eq. (19). We plot this potential in Fig. 7. An important
fact is that the potential in the Einstein frame becomes
runaway for the large radius limit r ≫

ffiffiffiffi
α0

p
. As discussed

above, this behavior should not be altered by the higher
loop corrections.
Note that this effective potential in the Einstein frame is

reliable only for large r ≫
ffiffiffiffi
α0

p
since the treatment in terms

of the effective field theory (14) becomes valid only in this
limit; furthermore, we can regard r as the physical radius
only in this limit; see also the argument around Eq. (56).

D. Large boost limit

We want to examine the behavior of the Higgs potential
in the large field limit. However, in this nine dimensional
toy model, there are two flat directions at this level, namely,

A and R. If the Higgs comes from a similar mechanism to
the gauge-Higgs unification, the Higgs field should be
identified with A. Therefore, we check the large A limit for
a fixed R. This limit is nothing but the large boost limit as is
easily seen from Eq. (45): η → ∞. From Eqs. (46) and (59),
the trajectory in the ~τ1-~τ2 plane is given by

~τ1 ¼
Rffiffiffiffi
α0

p tanh η;

~τ2 ¼
Rffiffiffiffi
α0

p 1

cosh η
: ð70Þ

Since ~τ21 þ ~τ22 ¼ R2=α0, this path starts from ð0; R=
ffiffiffiffi
α0

p
Þ for

η ¼ 0, and moves on the circle toward ðR=
ffiffiffiffi
α0

p
; 0Þ as

η → ∞. The question is what this trajectory is when

FIG. 6 (color online). Contour and 3D plots are shown in the left and right panels, respectively, for the energy density ρ9 in the Jordan
frame as a function of ~τ1 ¼ rA=

ffiffiffiffi
α0

p
and ~τ2 ¼ r=

ffiffiffiffi
α0

p
, with all their values being given in α0 ¼ 1 units. In the left, we shade the

fundamental region for the T-dual transformation: jτ1j ≤ 1=
ffiffiffi
2

p
, jτj ≥ 1. We can see the shift-symmetry ~τ1 → ~τ1 þ

ffiffiffi
2

p
, up to distortions

due to numerical errors.

FIG. 7 (color online). Contour and 3D plots are shown in the left and right panels, respectively, for the energy density VE in the
Einstein frame as a function of ~τ1 ¼ rA=

ffiffiffiffi
α0

p
and ~τ2 ¼ r=

ffiffiffiffi
α0

p
, with all their values being given in α0 ¼ 1 units. The shaded

fundamental region and the existence of the
ffiffiffi
2

p
-shift are the same as in Fig. 6. We see that the potential becomes runaway for the

large radius limit r ≫
ffiffiffiffi
α0

p
.
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mapped onto the fundamental region. The large η behavior
depends on the value of R=

ffiffiffiffi
α0

p
:

(a) If R=
ffiffiffiffi
α0

p
∈

ffiffiffi
2

p
Q, then ~τ2 (¼ r=

ffiffiffiffi
α0

p
) goes to infinity

in the large η limit. This can be seen as follows. Since
~τ → R=

ffiffiffiffi
α0

p
as η → ∞, let us check to what point

R=
ffiffiffiffi
α0

p
is mapped in the fundamental region. Let us

write R=
ffiffiffiffi
α0

p ¼ ffiffiffi
2

p
p=q with p; q ∈ Z. By an appro-

priate times of
ffiffiffi
2

p
-shifts [T-transfomation in (60)], we

can always make jpj < jqj. Performing the inversion
[S-transformation in (60)], and again doing an appro-
priate times of

ffiffiffi
2

p
-shifts, we can make the numerator

p smaller and smaller; eventually we get p=q → 0.
This corresponds to the infinity τ2 → ∞ in the
fundamental region.
This behavior is expected from the discussion of the

general momentum boost in Sec. II B. In fact, if and
only if R=

ffiffiffiffi
α0

p
∈

ffiffiffi
2

p
Q, we can have a lattice point on

the light cone in the momentum space, that is, there
exist n;m;w ∈ Z such that11

l2L − p2
R ¼ 2

α0

�
mþ 1ffiffiffi

2
p
�

n

R=
ffiffiffiffi
α0

p −
Rffiffiffiffi
α0

p w

��

×

�
m −

1ffiffiffi
2

p
�

n

R=
ffiffiffiffi
α0

p −
Rffiffiffiffi
α0

p w

��
¼ 0;

ð71Þ

p2
L ¼ 1

α0

�
n

R=
ffiffiffiffi
α0

p þ Rffiffiffiffi
α0

p w

�
2

¼ 0: ð72Þ

For R=
ffiffiffiffi
α0

p
∈

ffiffiffi
2

p
Q, there is a point on the light cone

in the momentum space. Following the argument of
Sec. II B, the Lorentz boost between lL and pR opens
up a new dimension.

(b) If R=
ffiffiffiffi
α0

p
∈
ffiffiffi
2

p
Q, the potential becomes either periodic

or chaotic. Let us check in what case we get the
periodic potential.
(i) The periodic case is realized if, starting from a

point ~τ (70) with the boost η, we get another
point on the trajectory with the boost ηþ ηc,

~τ01 ¼
Rffiffiffiffi
α0

p tanhðηþ ηcÞ;

~τ02 ¼
Rffiffiffiffi
α0

p 1

coshðηþ ηcÞ
; ð73Þ

which can be mapped from ~τ by an appropriate T-
dual transformation (61).
In general, the transformation of ~τ2 is as shown in

Eq. (C1), and we get

~τ02 ¼
~τ2

jc~τ þ dj2 ¼
~τ2

c2 R2

α0 þ d2 þ 2cd~τ1

¼ Rffiffiffiffi
α0

p 1

ðc2 R2

α0 þ d2Þ cosh ηþ 2cd Rffiffiffi
α0

p sinh η

¼ Rffiffiffiffi
α0

p 1

coshðη − η2Þ
; ð74Þ

where we have defined η2 by

tanh η2 ≔ −
2cd Rffiffiffi

α0
p

c2 R2

α0 þ d2
: ð75Þ

On the other hand, the same transformation maps ~τ1
to

~τ01 ¼
acj~τj2 þ ðadþ bcÞ~τ1 þ bd

jc~τ þ dj2

¼ ac R2

α0 þ bdþ ðadþ bcÞτ1
coshðη − η2Þ= cosh η

¼
ðac R2

α0 þ bdÞ cosh ηþ Rffiffiffi
α0

p ðadþ bcÞ sinh η
coshðη − η2Þ

¼ Rffiffiffiffi
α0

p sinhðη − η1Þ
coshðη − η2Þ

; ð76Þ

where we have defined η1 by

tanh η1 ¼ −
ac R2

α0 þ bd
Rffiffiffi
α0

p ðadþ bcÞ : ð77Þ

The trajectory becomes periodic if and only if
η1 ¼ η2, that is,

2cd Rffiffiffi
α0

p

c2 R2

α0 þ d2
¼ ac R2

α0 þ bd
Rffiffiffi
α0

p ðadþ bcÞ ; ð78Þ

or

�
d2 − c2

R2

α0

��
bd − ac

R2

α0

�
¼ 0: ð79Þ

11This can be proved as follows. First we show that the
conditions (71) and (72) can be met for an arbitrary R=

ffiffiffiffi
α0

p
∈ffiffiffi

2
p

Q by an appropriate choice of n;m; w. Let us write R=
ffiffiffiffi
α0

p
¼ffiffiffi

2
p

qn=qd with qn; qd ∈ Z. The condition (72) reads nqd=qnþ
2wqn=qd ¼ 0. We can choose n and w such that n ¼ n0qn and
w ¼ w0qd with n0; w0 ∈ Z, resulting in the condition n0qdþ
2w0qn ¼ 0. This can be satisfied by setting w0 ¼ qd and

n0¼−2qn. Then the condition (71) reads 0¼! mþ1
2
ðn0qd −

2qnw0Þ¼mþn0qd, which can be satisfied by choosing
m ¼ −n0qd.
Next we show that if R=

ffiffiffiffi
α0

p
∈
ffiffiffi
2

p
Q, there is no set of n;m; w ∈ Z

that satisfies Eqs. (71) and (72). By putting Eq. (72) into Eq. (71),
we get the condition m� ffiffiffi

2
p

n
ffiffiffi
α0

p
R ¼ 0. Therefore, it is necessary

that R=
ffiffiffiffi
α0

p
¼ ∓ ffiffiffi

2
p

n=m with n;m ∈ Z.
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Vanishing first factor means η2 ¼ ∞, and the finite
period is obtained when and only when the last
factor becomes zero:

bd − ac
R2

α0
¼ 0: ð80Þ

Therefore, the partition function becomes periodic if
and only if R2=α0 can be written as

Rffiffiffiffiffiffiffi
2α0

p ∈Q;
R2

α0
¼ bd

ac
; ð81Þ

where ad − bc ¼ 1 and either a; d ∈
ffiffiffi
2

p
Z, b; c ∈ Z

or a; d ∈ Z, b; c ∈
ffiffiffi
2

p
Z.

(ii) In particular, if R2=α0 is an irrational number
then the condition (81) cannot be met (unless
ac¼0 that leads to the trivial η1¼0), and the
partition function becomes nonperiodic, namely
chaotic.

As a check, we show the numerical results for
R=

ffiffiffiffi
α0

p ¼ ffiffiffi
2

p
, 2, and 21=3 in Fig. 8. We see that they show

the runaway, periodic, and chaotic limits, respectively. The
result presented in this section provides a concrete example

of the general argument presented in Sec. II. It is plausible
that the large Higgs field limit in string theory fits into
either one of these three.
Note that our computation is based on the one-loop

effective potential and that the higher order corrections are
significant around the region A;R−1 ∼Ms (¼ 1=

ffiffiffiffi
α0

p
).

Therefore, the result so far should be interpreted as an
effort to guess what is the physical large field limit along a
potential valley after including all the higher order correc-
tions. In Fig. 8, we have checked the large A limit for a
fixed R. Is this a physical limit, and if not, what should it
be? Comparing Figs. 6 and 7, we see that it is a generic
feature that there is a runaway vacuum no matter what the
structure is around A;R−1 ∼Ms. It seems plausible that if
the physical large A limit is not the one with fixed ~τ2, then
large A limit goes into the runaway vacuum after all.
However, we consider all the three limits, runaway,
periodic, and chaotic in order not to loose generality.
As said above, the extrapolation from the low energy

data has revealed that there is the quasiflat direction of the
Higgs potential in the SM.We are interested in the potential
for the large field values. Beyond the string or Planck scale,
there opens up several quasiflat directions in general.
Therefore we need to consider a multidimensional field
space. In the example examined in this section, it corre-
sponds to the A − R (or ~τ1 − ~τ2) plane. As we have seen in
this section, generally there is at least one runaway
direction in this space that corresponds to opening up an
extra dimension; see Fig. 9. We will discuss its physical
implications in the subsequent sections.

IV. ETERNAL HIGGS INFLATION

As shown in the Introduction, the Higgs potential V ∼
λeff jHj4 in the SM shows a quite peculiar behavior when
extrapolated to very large field values: all of the λeff , its
running, and the bare Higgs mass can be accidentally small.

FIG. 8 (color online). The trajectory that starts from η ¼ 0 at ð~τ1; ~τ2Þ ¼ ð0; R=
ffiffiffiffi
α0

p
Þ for a fixed value of R=

ffiffiffiffi
α0

p
being

ffiffiffi
2

p
, 2, and 21=3 in

the left, center, and right panels, respectively, showing the runaway, periodic, and chaotic limits. We have shaded the fundamental region
for the T-dual transformations.

FIG. 9 (color online). Schematic figure for the Higgs potential.
Low energy side is determined phenomenologically. High energy
side represents a runaway direction in the multidegrees of
freedom space.
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In Ref. [61], we have proposed a possibility that this
behavior, so to say the criticality, is a consequence of the
Planck scale physics and that the criticality is closely
related to the cosmic inflation.
We have seen that the large field limit goes down to a

runaway direction, which corresponds to opening up an
extra dimension, in the multidegrees of freedom space, as
shown in Fig. 9. Therefore, there is at least one maximum
of the potential around the Planck scale; see Fig. 10. This
maximum can be a source of an eternal inflation at the core
of the domain wall [105] between the electroweak vacuum
and the runaway vacuum, in which the fifth dimension is
opened up. In order for this to work, the curvature of the
potential at the maximum must be sufficiently small [106]:

M2
P

Vφφ

V

����
maximum

≲ 1.4: ð82Þ

In our scenario, this can be naturally satisfied as follows.
The potential for the fifth dimension can be seen by putting
D ¼ 5 in Eq. (19). In stringy language, the action for the
fifth dimension R0 ≫ M−1

s is coming from the one-loop
potential: In the Einstein frame, we get

Seff ∼
M2

s

g2s

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

ð∂R0Þ2
R02 − g2sM2

s
1

R0

�
: ð83Þ

Switching to the canonical field R0 ¼ egsχ=Ms , we get

Seff ∼
Z

d4x
ffiffiffiffiffiffi
−g

p ðM2
PR − ð∂χÞ2 − e−χ=MPM4

s Þ; ð84Þ

where MP ¼ Ms=gs. Therefore, the stringy potential also
gives

Vχχ ∼
V
M2

P
: ð85Þ

It is remarkable that the potential changes of order unity
when we vary χ byMP, not byMs, for large χ. On the other
hand, at low energies, the SM potential in the Einstein

frame exhibits the same behavior if the nonminimal
coupling ξ is of order ten [65]. Therefore, it is natural to
conclude that the condition (82) is also met around the
maximum.
We note that in the original version of the topological

Higgs inflation [105], ξ is used to make the maximum of
the potential, and hence that it cannot account for the
observed fluctuation of the cosmic microwave background
(CMB). On the other hand, the scenario proposed in this
paper allows the Higgs to be the source for both the eternal
topological inflation and for the one that accounts for the
CMB fluctuation, simultaneously.
There are two possibilities for the potential beyond the

maximum:
(i) The potential smoothly becomes runaway as

in Fig. 11.
(ii) The potential has another local minimum as

in Fig. 12.
In the latter case, the false vacuum gives another mecha-
nism of eternal inflation. This situation is similar to some of
the originators’ idea of the inflation using a first order phase
transition [107,108]. In the medium of the false vacuum,
which is indicated by the (red) dot in Fig. 12, there appears
a bubble of the electroweak vacuum due to the tunneling,
which is indicated by the dotted arrow. This eternal
inflation in the false vacuum had caused the so-called
the graceful exit problem in the old inflation scenario [109–
111]. However in the left case in Fig. 12, the space inside
the bubble experiences the second stage of inflation
[61,65], after the dotted arrow in the figure, and hence
this problem is ameliorated as we do not need bubbles to
collide. In the right case in Fig. 12, we need another
inflation to account for the observed CMB fluctuation such
as the B − L Higgs inflation.

V. COSMOLOGICAL CONSTANT

As is reviewed in detail in Appendix D, the MPP requires
degenerate vacua at the field value of the order of the
Planck scale [36–38]. The cosmological constant of the
runaway vacuum is exactly zero. Then the MPP tells us that
our electroweak vacuum must have the zero cosmological

FIG. 10 (color online). Schematic figure for the maximum that
yields the domain wall, which becomes the source for the eternal
inflation.

FIG. 11 (color online). Schematic figure for the Higgs potential
smoothly connected to the runaway direction.

YUTA HAMADA, HIKARU KAWAI, AND KIN-YA ODA PHYSICAL REVIEW D 92, 045009 (2015)

045009-14



constant too. This is a new solution to the cosmological
constant problem in terms of the MPP.12

On the other hand, the current universe is being
dominated by the cosmological constant [112]

ρobsΛ ≃ ð2.2 meVÞ4; ð86Þ

and is entering the second inflationary stage. This will
eventually lead to the de Sitter space dS4 with the length
scale H−1, where

H2 ¼ ρobsΛ

3M2
P
: ð87Þ

We will discuss the possibility that the existence of the
finite cosmological constant is understood as a statistical
fluctuation.
First we point out that our universe is a part of a large

universe whose cosmological constant is fixed to zero by
the MPP.13 The large universe can be divided into parts that
will eventually become causally disconnected de Sitter
spaces in the end of their histories, as in Fig. 13. After the

Euclideanization, each de Sitter space becomes S4 with
radius rU ¼ 1=H.
We consider one of the S4’s and latticize it by the lattice

spacing of the order of lP ¼ 1=MP, and let Si be the action
on each site labeled by i. The total action for the S4

becomes the sum over positions:

S ¼
Xr4U=l4P
i¼1

Si: ð88Þ

Assuming that Si are independent of each other, the
vanishing cosmological constant for the large universe
leads to hSii ¼ 0 for each i and in particular to hSi ¼ 0
for this part. Therefore the value of S fluctuates around zero
and its variance can be evaluated as

hS2i ∼ N ≔
r4U
l4P

; ð89Þ

where we have assumed that the variance of each Si is of
order unity.
We interpret Eq. (89) as the variance of the actions of the

S4’s in the large universe. Then the typical amount of the
energy density of one S4 is estimated as

ρΛ ∼
ffiffiffiffiffiffiffiffiffi
hS2i

p
r4U

∼
1

l2Pr
2
U
∼ ðmeVÞ4: ð90Þ

Thus, we have obtained the right amount of the cosmo-
logical constant as the fluctuation from zero. This result has
been obtained in Ref. [113] in the context of causal set
theory.
We note that the value of H is not really a prediction in

this argument. We have rather provided a consistent
explanation of having a finite amount of the cosmological
constant, even though it is fixed to be zero for the large
universe.

VI. SUMMARY AND DISCUSSIONS

We have studied possible large field limits of the SM
Higgs, assuming that it is coming from a massless state at

FIG. 12 (color online). Schematic figure for the Higgs potential. On the left, the false vacuum has higher energy than the quasiflat
potential in the SM, while on the right, it has lower energy.

FIG. 13 (color online). Universe is divided into parts that will
eventually become causally disconnected to each other in the end
of their histories.

12See also Ref. [38] in which the cosmological constant
problem is discussed in a different perspective.

13The argument in this section may also apply for the multi-
verse [54–58].
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the tree level in heterotic string theory with its supersym-
metry broken at the string scale. In the toroidal compacti-
fication, putting a background for such a massless state
corresponds to a boost in the momentum lattice. We have
classified the large boost limits with fixed radius into three
categories: runaway, periodic, and chaotic.
As a concrete toy model, we have examined the ten-

dimensional SOð16Þ × SOð16Þ nonsupersymmetric heter-
otic string, with a dimension being compactified on S1 with
the radius R. We have considered the large field limit of a
Wilson line on the S1 with fixed R, and reproduced these
three limits. We have argued that this behavior is universal
if the zero momentum limit of the emission vertex of the
Higgs is written as a product of holomorphic (1,0) and
antiholomorphic (0,1) operators, not only in the case of
toroidal compactification. In the known models of fer-
mionic construction and of orbifolding, the emission vertex
tends to be written as such a product, and our argument
applies for these wide class of models.
Physically several degrees of freedom appears when the

Higgs field value becomes larger than the Planck scale. We
have argued that there exists a runaway direction in this
multidegrees of freedom space. This runaway vacuum
corresponds to opening up an extra dimension.
It is noteworthy that this potential fits into the criteria of

the MPP proposed by Froggatt and Nielsen. The MPP
requires that the electroweak vacuum is degenerate with
this runaway vacuum, and hence that the cosmological
constant of the electroweak vacuum is tuned to be zero in
the large universe. We have speculated that the observed
amount of the cosmological constant can be understood as
a fluctuation from zero in the framework of the MPP.
We may get the eternal inflation from this potential. It is

realized either as a topological inflation at the domain wall
between the two vacua or as a decay from the false vacuum
that traps the Higgs field. In both cases, the Higgs field,
which is rolling down the potential, may cause the
succeeding inflation, which accounts for the observed
CMB fluctuations, along the quasiflat potential around
the critical point.
It would be interesting to study the limit in more realistic

SM-like model with the orbifolding, fermionic construc-
tions, etc; see e.g. Ref. [73].
Finally we comment on the dilaton potential. Though we

consider the general compactifications which may not even
have a geometric interpretation, let us illustrate the situation
starting from a conventional ten dimensional string theory.
The low energy effective action in ten dimensions reads

S ¼ M8
s

g2s

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2ΦðRþ 4∂μΦ∂μΦþ � � �Þ

þM10
s

Z
d10x

ffiffiffiffiffiffi
−g

p ð−Cþ � � �Þ

þOðg2se2ΦÞ; ð91Þ

where Φ is the dilaton field and C is the dimensionless
cosmological constant induced at the one-loop level. We
note that in this string frame, gs and Φ always appear in the
combination gseΦ. After the compactification,

S ¼ M2
s

g2s
ðM6

sV6Þ
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p
e−2ΦðR4 þ 4∂μΦ∂μΦþ � � �Þ

þM4
s ðM6

sV6Þ
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p ð−Cþ � � �Þ

þOðg2se2ΦÞ; ð92Þ

where V6 is the compactification volume. Switching to the
Einstein frame, we get

S ¼ M2
s

g2s
ðM6

sV6Þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p ðRE − 2∂μΦ∂μΦþ � � �Þ

þM4
s ðM6

sV6Þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p ð−Ce4Φ þ � � �Þ

þ � � � : ð93Þ

We see from the second line that the dilaton has the
runaway potential e4Φ for Φ → −∞ if the cosmological
constantC is positive. In this limit, the expansion parameter
gseΦ in Eq. (92) becomes small, and the theory is weakly
coupled. Since all the higher-loop corrections come with
this combination as well, the runaway behavior is not
altered by taking them into account. Therefore, this
direction Φ → −∞ necessarily comprises one of the run-
away directions [78] in Fig. 9, and hence the arguments in
Secs. IV and V apply quite generally.
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APPENDIX A: THETA FUNCTIONS

We list the notations for the functions that we use in the
computation of the partition function. (The notations are
the same as in Polchinski’s textbook but we list them
anyway for convenience.) The Dedekind eta function is

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; ðA1Þ

where q ¼ e2πτ. We write theta function with character-
istics as
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ϑ

�
a

b

�
ðν; τÞ

¼
X∞
n¼−∞

expðπiðnþ aÞ2τ þ 2πiðnþ aÞðνþ bÞÞ; ðA2Þ

and introduce the following shorthand notations:

ϑ00ðτÞ ¼ ϑ

�
0

0

�
ð0; τÞ; ðA3Þ

ϑ01ðτÞ ¼ ϑ

�
0

1=2

�
ð0; τÞ; ðA4Þ

ϑ10ðτÞ ¼ ϑ

�
1=2

0

�
ð0; τÞ; ðA5Þ

ϑ11ðτÞ ¼ ϑ

�
1=2

1=2

�
ð0; τÞ ¼ 0: ðA6Þ

The Jacobi’s identity reads

ðϑ00Þ4 − ðϑ01Þ4 − ðϑ10Þ4 ¼ 0: ðA7Þ

APPENDIX B: FERMIONIC CONSTRUCTION
MANUAL FOR TEN DIMENSIONS

We review the SOð16Þ × SOð16Þ heterotic string
theory in terms of the fermionic construction, and
show the computation of its one-loop partition function.
In heterotic string theory, the right-moving modes are
the same as the superstring in 10 dimensions Xμ

(μ ¼ 0;…; 9), while the left-movers as the bosonic string
in 26 dimensions with their “internal” XI

L (I ¼ 1;…; 16)
being compactified.

1. Generalized GSO projection

We work in the light-cone gauge, where Xþ is identified
with the time direction and X− is written in terms of the
transverse modes, where

X� ¼ 1ffiffiffi
2

p ðX0 � X1Þ: ðB1Þ

We express the left-moving extra degrees of freedom XI
L by

16 complex fermions, while we form 4 complex fermions
by pairing the right-moving fermions ψm

R (m ¼ 2;…; 9).
Hereafter, ψa (a ¼ 1;…; 4) denote the 4 complex fermions
representing ψm

R , and ψa (a ¼ 5;…; 20) denote the 16
complex fermions representing XI

L.
Let us review the procedure to retain the modular

invariance. Here we assume that each of the above-listed
complex fermions ψa (a ¼ 1;…; 20) either has the NS

(antiperiodic) or R (periodic) boundary condition on the
world sheet σ ∼ σ þ 2π14:

NS∶ ψaðσ ¼ 2πÞ ¼ −ψaðσ ¼ 0Þ;
R∶ ψaðσ ¼ 2πÞ ¼ ψaðσ ¼ 0Þ: ðB2Þ

We can write them collectively

ψaðσ ¼ 2πÞ ¼ −e2πiwa
ψaðσ ¼ 0Þ; ðB3Þ

where the vector ~w ¼ ðwaÞa¼1;…;20 consists of either 0 (NS,
antiperiodic) or 1=2 (R, periodic) modulo 1.
We classify the possible boundary conditions by the

following procedure. Let W be a vector space over Z2

spanned by the bases f~wigi¼0;…;l. W is the set of boundary
conditions, appearing in a theory, that are required by the
string interaction and the modular invariance:

(i) There must be all antiperiodic boundary condition

~0 ¼ ð0Þa¼1;…;20 ¼ ð0;…; 0Þ ðB4Þ

in W: When considering a partition function on the
torus, there must be the sector in which all the
fermions are antiperiodic in the time direction in
order to get the identity operator in the trace, which
is needed to form a projection operator; then the S-
transformation τ → −1=τ maps this condition to the
space direction.

(ii) Then the modular invariance necessitates the all-
periodic boundary condition

~w0 ≔ ð1=2Þa¼1;…;20 ¼ ð1=2;…; 1=2Þ ðB5Þ

in W; see Fig. 14.
(iii) If ~wi and ~wj exist inW, then ~wi þ ~wj must also be in

W; see Fig. 15.
A boundary condition belonging to W can be written as

ψaðσ ¼ 2πÞ ¼ −e2πiðα~wÞaψaðσ ¼ 0Þ; ðB6Þ

where α~w ≔
P

l
i¼0 αi ~wi, namely ðα~wÞa ≔P

l
i¼0 αiw

a
i , with

αi (i ¼ 0;…; l) being either 0 or 1 and the vector ~wi ¼
ðwa

i Þa¼1;…;20 consisting of either 0 or 1=2 again.
The partition function becomes modular invariant if and

only if we impose the generalized GSO projection, under
which the surviving states satisfy the following condition
[104]:

14One can consider a more general boundary condition such as
ψaðσ ¼ 2πÞ ¼ �ψ̄aðσ ¼ 0Þ and ψaðσ ¼ 2πÞ ¼ −e2πiwaψaðσ ¼
0Þ for arbitrary rational wa [104].

ETERNAL HIGGS INFLATION AND THE COSMOLOGICAL … PHYSICAL REVIEW D 92, 045009 (2015)

045009-17



e2πi~wi· ~Nα~w ¼ e2πið
P

l
j¼0

kijαj−~wi·α~wþsiÞ; for each i ¼ 0;…; l;

ðB7Þ

that is,

~wi · ~Nα~w¼1
Xl
j¼0

kijαj − ~wi · α~wþ si;

for each i ¼ 0;…; l; ðB8Þ

where¼1 stands for the equality modulo 1; ~Nα~w is the vector
consisting of the world sheet fermion numbers for the α~w
sector; the inner product is Lorentzian such that þ and −
are respectively assigned for right and left movers,

~wi · ~wj ≔
X4
a¼1

wa
i w

a
j −
X20
b¼5

wb
i w

b
j ; ðB9Þ

si denotes the value of the right-moving components of wa
i

(a ¼ 1;…; 4),

si ≔ w1
i ¼ w2

i ¼ w3
i ¼ w4

i ðB10Þ

(
P

l
i¼0 αisi ¼ 0 and 1=2 respectively indicate that the α~w

sector is a spacetime boson and fermion)15; α~w is the vector,
each of its component being the fractional part of the

corresponding component of α~w, that is, α~w is the frac-
tional vector in the decomposition16

α~w ¼
Xl
i¼0

αi ~wi ¼ ðinteger vectorÞ þ ðfractional vectorÞ;

ðB11Þ

and kij is the solution to the following conditions

kij þ kji¼1 ~wi · ~wj

kijmj¼1 0; all the indices i; j ¼ 0;…; lunsummed;

kii þ ki0 þ si¼1
1

2
~wi · ~wi; ðB12Þ

withmi being the smallest integer that satisfiesmi ~wi¼1 ~0 for
each i unsummed (In our case mi ¼ 2).
For a given W, the condition (B12) may have several

solutions for kij. Each solution kij gives a 10 dimensional
string theory that is in general physically distinct from the
others. These solutions are believed to complete all the
possible consistent string theories in 10 dimensions [104].
To summarize, once a set of basis vectors f~wigi¼0;…;l is
given, then one can construct consistent string theories
according to the above procedure. A concrete example is
shown below.

FIG. 14 (color online). A and P denote the antiperiodic and periodic boundary conditions, respectively. The horizontal direction is the
spatial one, σ. Given the all-A boundary condition for both the time and spatial directions, the modular invariance necessitates the all-P
boundary condition for the time or spatial direction.

FIG. 15 (color online). Schematic picture for the string inter-
action joining ~wi and ~wj strings to make ~wi þ ~wj string. If there
exist the sets of boundary conditions ~wi and ~wj, then there must
be ~wi þ ~wj in W.

15All the right-moving components must take the same value
as in Eq. (B10) since we assume the 10 dimensional Lorentz
invariance.

16The fractional vector is chosen in such a way that all its
components are within ½−1=2; 1=2Þ. In our application, ~wi ·

¯̄
α~w

turns out to be zero.
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2. E8 × E8 and SOð16Þ × SOð16Þ string theories

We can obtain the E8 × E8 superstring theory and the
SOð16Þ × SOð16Þ nonsupersymmetric string theory by the
following choice of basis17:

~w0 ¼
��

1

2

�
4
����
�
1

2

�
8
�
1

2

�
8
�
;

~w1 ¼
�
04
����
�
1

2

�
8
�
1

2

�
8
�
;

~w2 ¼
�
04
����
�
1

2

�
8

08
�
; ðB13Þ

where 0 and 1=2 represent the antiperiodic and periodic
boundary conditions, respectively, as explained above;
those on the left (right) of j are the boundary conditions
for the right (left) moving fermions; and e.g. 04 denote that
there are four 0s in the slots.

Let us obtain kij for the basis (B13). We express kij by a
three-by-three matrix:

k ¼

2
64
k00 k01 k02
k10 k11 k12
k20 k21 k22

3
75 ¼

2
64
a b b

d e f

g h i

3
75: ðB14Þ

Noting that m0 ¼ m1 ¼ m2 ¼ 2, s0 ¼ 1=2, s1 ¼ s2 ¼ 0,
~w0 · ~w0 ¼ −3, ~w1 · ~w1 ¼ ~w0 · ~w1 ¼ −4, and ~w2 · ~w2 ¼
~w0 · ~w2 ¼ ~w1 · ~w2 ¼ −2, we obtain from Eq. (B12)

k¼1
2
64
a b c

b b f

c f c

3
75; a; b; c; f¼1 0 or

1

2
: ðB15Þ

From 2~wi¼1 ~0, we have the eight sectors shown in the
table below.

α (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

α~w ~0 ~w0 ~w1 ~w2 ~w0 þ ~w1 ~w0 þ ~w2 ~w1 þ ~w2 ~w0 þ ~w1 þ ~w2

Note that ~wi · α~w¼1 0 for all sectors in this case.
Let us see the massless spectrum of each sector. The

ground state energies of the ~0 sector are −Ms=2 and −Ms
for the right and left movers, respectively; recall that we
have taken Ms ≔

ffiffiffiffiffiffiffiffiffi
1=α0

p
. Changing the boundary condi-

tion of each slot (a ¼ 1;…; 20) from NS (antiperiodic) to R
(periodic) raises the vacuum energy by Ms=8. The lowest
bosonic and fermionic modes raise the energy by Ms and
Ms=2, respectively. The level matching condition says that
the left and right levels should be the same. We see that the
possible problem of having tachyonic modes resides only

in the ~0 sector; we will check that they are safely
projected out.
LetNR be the number of right-moving complex fermions

in the first 4 slots, where α~w-dependence is made implicit
for simplicity. Similarly, the subsequent 8 slots for the left-
movers are numbered as NL1 and the last 8 slots NL2. We
can write

~wi · ~Nα~w ¼
X4
a¼1

wa
i N

a
R −

X12
a¼5

wa
i N

a
L1 −

X20
a¼13

wa
i N

a
L2; ðB16Þ

where

NR ¼
X4
a¼1

Na
R; NL1 ¼

X12
a¼5

Na
L1; NL2 ¼

X20
a¼13

Na
L2:

ðB17Þ

In our case (B13), we get

~w0 · ~Nα~w ¼ NR

2
−
NL1

2
−
NL2

2
;

~w1 · ~Nα~w ¼ −
NL1

2
−
NL2

2
;

~w2 · ~Nα~w ¼ −
NL1

2
: ðB18Þ

For the fermions with R (periodic) boundary condition, it is
convenient to use

ΓR ≔ ð−1ÞNR; ΓL1 ≔ ð−1ÞNL1 ; ΓL2 ≔ ð−1ÞNL2 ;

ðB19Þ

since ΓR gives the chirality of the 10 dimensional spinor for
the right-moving fermions and ΓL1;ΓL2 give the chirality of
the SOð16Þ spinor for the left-moving fermions.
We look for the surviving states under the three projec-

tions i ¼ 0; 1; 2 in Eq. (B8).
(i) ~0 sector: All the fermions have the NS (antiperiodic)

boundary condition. The projection (B8) reads

17SOð32Þ supersymmetric string corresponds to the bases
f~w0; ~w1g.
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~w0 · ~N~0 ¼
NR

2
−
NL1

2
−
NL2

2
¼1 1

2
;

~w1 · ~N~0 ¼ −
NL1

2
−
NL2

2
¼1 0;

~w2 · ~N~0 ¼ −
NL1

2
¼1 0: ðB20Þ

When exponentiated, it results in

ð−1ÞNR ¼ −1; ð−1ÞNL1 ¼ 1; ð−1ÞNL2 ¼ 1:

ðB21Þ

We see that we need at least one mode of the right-
moving fermion ψm

R , which raises the mass level from
−Ms=2 at least to 0. Then the level matching condition
tells that the left levels start from 0 too. Therefore,
there remains no tachyonic mode.
The massless states in this sector are

ψm
R;−1=2X

n
L;−1j0i~0 ðB22Þ

(m; n ¼ 2;…; 9) that becomes a graviton, an anti-
symmetric tensor, and a dilation in ten dimensions
and

ψm
R;−1=2ψ

a
L;−1=2ψ

b
L;−1=2j0i~0 ðB23Þ

(a; b ¼ 5;…; 12 or a; b ¼ 13;…; 20) that becomes
SOð16Þ × SOð16Þ gauge boson. To summarize, the
massless states are ð35; 1; 1Þ þ ð28; 1; 1Þ þ ð1; 1; 1Þ
and ð8v; 120; 1Þ þ ð8v; 1; 120Þ in terms of SOð8Þ×
SOð16Þ × SOð16Þ, where 8v is the vector represen-
tation. This sector is common for the E8 × E8

superstring and the SOð16Þ × SOð16Þ nonsuper-
symmetric string.

(ii) ~w0 ¼ ðð1
2
Þ4jð1

2
Þ8ð1

2
Þ8Þ sector: All the fermions have

the R (periodic) boundary condition. The projection
(B8) is

~w0 · ~N~w0
¼ NR

2
−
NL1

2
−
NL2

2
¼1 aþ 1

2
;

~w1 · ~N~w0
¼ −

NL1

2
−
NL2

2
¼1 b;

~w2 · ~N~w0
¼ −

NL1

2
¼1 c: ðB24Þ

That is,

ΓR ¼ ð−1Þ2ðaþbÞþ1;

ΓL1 ¼ ð−1Þ2c;
ΓL2 ¼ ð−1Þ2ðbþcÞ: ðB25Þ

The left ground state is raised by 16 × Ms
8
from −Ms

due to the R (periodic) boundary conditions. The

lightest left states start from Ms. So do the right
states due to the level matching condition. There is
no massless state in this sector.

(iii) ~w1 ¼ ð04jð1
2
Þ8ð1

2
Þ8Þ sector: The right and left movers

have the NS (antiperiodic) and R (periodic) boun-
dary conditions, respectively. The projection (B8) is

~w0 · ~N~w1
¼ NR

2
−
NL1

2
−
NL2

2
¼1 bþ 1

2
;

~w1 · ~N~w1
¼ −

NL1

2
−
NL2

2
¼1 b;

~w2 · ~N~w1
¼ −

NL1

2
¼1 f; ðB26Þ

that is,

ð−1ÞNR ¼ −1;

ΓL1 ¼ ð−1Þ2f;
ΓL2 ¼ ð−1Þ2ðbþfÞ: ðB27Þ

Following the same reasoning as the ~w0 sector, there
is no massless state in this sector.

(iv) ~w2 ¼ ð04jð1
2
Þ808Þ sector: The projection (B8) is

~w0 · ~N~w2
¼ NR

2
−
NL1

2
−
NL2

2
¼1 cþ 1

2
;

~w1 · ~N~w2
¼ −

NL1

2
−
NL2

2
¼1 f;

~w2 · ~N~w2
¼ −

NL1

2
¼1 c; ðB28Þ

that is,

ð−1ÞNR ¼ ð−1Þ2ðcþfÞþ1;

ΓL1 ¼ ð−1Þ2c;
ð−1ÞNL2 ¼ ð−1Þ2ðcþfÞ: ðB29Þ

The massless spectrum depends on the value of

cþ f. If cþ f¼1 0, the massless states form a
spacetime vector: ð8v;128;1Þ of SOð8Þ×SOð16Þ×
SOð16Þ, which is a part of the E8 × E8 gauge boson

in the superstring theory. If cþ f¼1 1=2, there is no
massless state.

(v) ~w0 þ ~w1 ¼ ðð1
2
Þ4j0808Þ sector: The projection (B8) is

~w0 · ~N~w0þ~w1
¼ NR

2
−
NL1

2
−
NL2

2
¼1 aþ bþ 1

2
;

~w1 · ~N~w0þ~w1
¼ −

NL1

2
−
NL2

2
¼1 0;

~w2 · ~N~w0þ~w1
¼ −

NL1

2
¼1 cþ f; ðB30Þ
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that is,

ΓR ¼ ð−1Þ2ðaþbÞþ1;

ð−1ÞNL1 ¼ ð−1Þ2ðcþfÞ;

ð−1ÞNL2 ¼ ð−1Þ2ðcþfÞ: ðB31Þ

The massless spectrum depends on the value of

cþ f. If cþ f¼1 0, the massless state becomes the
gravitino and dilatino ð56; 1; 1Þ þ ð80; 1; 1Þ and
the gaugino ð8; 120; 1Þ þ ð8; 1; 120Þ in terms of
SOð8Þ × SOð16Þ × SOð16Þ, where 8 and 80 are
two spacetime spinor representations with different
chiralities. We see that a spacetime supersymmetry

remains. If cþ f¼1 1=2, the massless state becomes a
spacetime spinor (8; 16; 16) which belongs to the bi-
fundamental representation of the gauge group. This
theory does not have a gravitino nor a gaugino, and
hence the supersymmetry is not left.

(vi) ~w0 þ ~w2 ¼ ðð1
2
Þ4j08ð1

2
Þ8Þ sector: The projection (B8)

is

~w0 · ~N~w0þ~w2
¼ NR

2
−
NL1

2
−
NL2

2
¼1 aþ cþ 1

2
;

~w1 · ~N~w0þ~w2
¼ −

NL1

2
−
NL2

2
¼1 bþ f;

~w2 · ~N~w0þ~w2
¼ −

NL1

2
¼1 0; ðB32Þ

that is,

ΓR ¼ ð−1Þ2ðaþbþcþfÞþ1;

ð−1ÞNL1 ¼ 1;

ΓL2 ¼ ð−1Þ2ðbþfÞ: ðB33Þ

The massless states form a spacetime spinor that is
(8; 1; 128) representation of SOð8Þ × SOð16Þ×
SOð16Þ.

(vii) ~w1 þ ~w2 ¼ ð04j08ð1
2
Þ8Þ sector: The projection (B8)

reads

~w0 · ~N~w1þ~w2
¼ NR

2
−
NL1

2
−
NL2

2
¼1 bþ cþ 1

2
;

~w1 · ~N~w1þ~w2
¼ −

NL1

2
−
NL2

2
¼1 bþ f;

~w2 · ~N~w1þ~w2
¼ −

NL1

2
¼1 cþ f; ðB34Þ

that is,

ð−1ÞNR ¼ ð−1Þ2ðcþfÞþ1;

ð−1ÞNL1 ¼ ð−1Þ2ðcþfÞ;

ΓL2 ¼ ð−1Þ2ðbþcÞ: ðB35Þ

The massless spectrum depends on the value of

cþ f. If cþ f¼1 0, the massless states form a
spacetime vector: ð8v; 1; 128Þ of SOð8Þ × SOð16Þ×
SOð16Þ. This becomes a part of the E8 × E8 gauge

boson. If cþ f¼1 1=2, there is no massless state.
(viii) ~w0 þ ~w1 þ ~w2 ¼ ðð1

2
Þ4jð1

2
Þ808Þ sector: The projec-

tion (B8) is

~w0 · ~N~w0þ~w1þ~w2
¼ NR

2
−
NL1

2
−
NL2

2
¼1 aþ bþ cþ 1

2
;

~w1 · ~N~w0þ~w1þ~w2
¼ −

NL1

2
−
NL2

2
¼1 f;

~w2 · ~N~w0þ~w1þ~w2
¼ −

NL1

2
¼1 f; ðB36Þ

that is,

ΓR ¼ ð−1Þ2ðaþbþcþfÞþ1;

ΓL1 ¼ ð−1Þ2f;
ð−1ÞNL2 ¼ 1: ðB37Þ

The massless states form a spacetime fermion:
(8; 128; 1) of SOð8Þ × SOð16Þ × SOð16Þ.

To summarize, if cþ f¼1 0, the theory has a supersymmetry,
and the massless states form the supergravity multiplet
and the E8 × E8 vector multiplet in 10 dimensions. If

cþ f¼1 1=2, the theory is nonsupersymmetric, and the
massless states are

ð56; 1; 1Þ þ ð28; 1; 1Þ þ ð1; 1; 1Þ
þ ð8v; 120; 1Þ þ ð8v; 1; 120Þ
þ ð8; 128; 1Þ þ ð8; 1; 128Þ þ ð80; 16; 16Þ; ðB38Þ

of SOð8Þ × SOð16Þ × SOð16Þ. In this paper, we consider
the latter.
We comment on the choice of chirality. Since the

chirality of each sector takes either value of

ΓR ¼ ð−1Þ2ðaþbÞþ1 or ð−1Þ2ðaþbþcþfÞþ1;

ΓL1 ¼ ð−1Þ2c or ð−1Þ2f;
ΓL2 ¼ ð−1Þ2ðbþcÞ or ð−1Þ2ðbþfÞ; ðB39Þ

the relative difference of the chirality depends only on the
combination cþ f. Therefore, it suffices to determine cþ
f in order to classify the theories.
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3. Contributions from world sheet fermions to one-loop
partition function

Let us compute the contribution from world sheet
fermions to the one-loop partition function ZT2 in the
fermionic construction of the SOð16Þ × SOð16Þ heterotic
string theory. (We treat the contributions from the space-
time coordinates in the next section.)
We use the bosonization technique that replaces each

world sheet complex fermion by a world sheet boson. The
contribution from the oscillator modes of the bosons is the
same as in the free boson case, resulting in the factor
1=η̄4η16. As we will see below, the contribution from the
boson zero modes that are constant along σ is computed as
follows: The momentum of the boson zero mode is equal to

the fermion number of the corresponding fermion; there-
fore for the momentum lattice of the bosons is the same as
the charge lattice of the fermions; from NS (antiperiodic)
fermions, we replace NR, NL1 and NL2 in the partition
function by the corresponding momentum lattice of the
boson zero mode; for the R (periodic) fermion, we shift the
momentum lattice by half of the lattice spacing in order to
take the vacuum charge into account.
Let us check the contribution from each sector of

fermions. As we have explained above, cþ f¼1 1=2 in

the nonsupersymmetric heterotic string; we take a¼1 f¼1 1=2
and b¼1 c¼1 0 without loss of generality.

(i) ~0 sector: The momentum lattice is

Γ~0 ¼ fðn1;…; n4∣m1;…; m8; l1;…; l8ÞjN ∈ odd;M ∈ even; L ∈ eveng; ðB40Þ

where even ¼ 2Z, odd ¼ 2Zþ 1, and we define

N ≔
X4
i¼1

ni; M ≔
X8
i¼1

mi; L ≔
X8
i¼1

li: ðB41Þ

The summation over the momenta of the boson zero modes becomes

Ẑ~0 ¼
X

fpR;pLg∈Γ~0

q̄p
2
R=2qp

2
L=2

≔
X

fn1;…;n4;m1;…;m8;l1;…;l8g∈Γ~0

e−πiτ̄
P

4

i¼1
n2i eπiτ

P
8

i¼1
ðm2

iþl2i Þ

¼
X

fn1;…;n4;m1;…;m8;l1;…;l8g∈Z20

1 − ð−1ÞN
2

1þ ð−1ÞM
2

1þ ð−1ÞL
2

× e−πiτ̄
P

i
n2i eπiτ

P
i
ðm2

iþl2i Þ

¼ 1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þððϑ00Þ8 þ ðϑ01Þ8Þððϑ00Þ8 þ ðϑ01Þ8Þ; ðB42Þ

where the theta functions are listed in Appendix A.
(ii) ~w0 sector: The momentum lattice is

Γ~w0
¼
��

n1 þ
1

2
;…; n4 þ

1

2

����m1 þ
1

2
;…; m8 þ

1

2
; l1 þ

1

2
;…; l8 þ

1

2

�����
N ∈ even;M ∈ even; L ∈ even

	
: ðB43Þ

The summation is

Ẑ ~w0
¼ −

X
fpR;pLg∈Γ~w0

q̄p
2
R=2qp

2
L=2 ¼ −

1

8
ðϑ̄10Þ4ðϑ10Þ8ðϑ10Þ8: ðB44Þ

Note that the extra minus sign is put for spacetime fermions.
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(iii) ~w1 sector: The momentum lattice is

Γ~w1
¼
��

n1;…; n4∣m1 þ
1

2
;…; m8 þ

1

2
; l1 þ

1

2
;…; l8 þ

1

2

�����N ∈ odd;M ∈ odd; L ∈ odd

	
: ðB45Þ

The summation is

Ẑ ~w1
¼

X
fpR;pLg∈Γ~w1

q̄p
2
R=2qp

2
L=2 ¼ 1

8
ððϑ̄00Þ4 − ðϑ̄01Þ4Þðϑ10Þ8ðϑ10Þ8: ðB46Þ

(iii) ~w2 sector: The momentum lattice is

Γ~w2
¼
��

n1;…; n4∣m1 þ
1

2
;…; m8 þ

1

2
; l1;…; l8

�����N ∈ even;M ∈ even; L ¼ odd

	
: ðB47Þ

The summation is

Ẑ ~w2
¼

X
fpR;pLg∈Γ~w2

q̄p
2
R=2qp

2
L=2 ¼ 1

8
ððϑ̄00Þ4 þ ðϑ̄01Þ4Þðϑ10Þ8ððϑ00Þ8 − ðϑ01Þ8Þ: ðB48Þ

(iv) ~w0 þ ~w1 sector: The momentum lattice is

Γ~w0þ~w1
¼
��

n1 þ
1

2
;…; n4 þ

1

2

����m1;…; m8; l1;…; l8

�����N ∈ even;M ∈ odd; L ∈ odd

	
: ðB49Þ

The summation is

Ẑ ~w0þ~w1
¼ −

X
fpR;pLg∈Γ~w0þ~w1

q̄p
2
R=2qp

2
L=2 ¼ −

1

8
ðϑ̄10Þ4ððϑ00Þ8 − ðϑ01Þ8Þððϑ00Þ8 − ðϑ01Þ8Þ: ðB50Þ

(v) ~w0 þ ~w2 sector: The momentum lattice is

Γ~w0þ~w2
¼
��

n1 þ
1

2
;…; n4 þ

1

2

����m1;…; m8; l1 þ
1

2
;…; l8 þ

1

2

�����
N ∈ odd;M ∈ even; L ∈ odd

	
: ðB51Þ

The summation is

Ẑ ~w0þ~w2
¼ −

X
fpR;pLg∈Γ~w0þ~w2

q̄p
2
R=2qp

2
L=2 ¼ −

1

8
ðϑ̄10Þ4ððϑ00Þ8 þ ðϑ01Þ8Þðϑ10Þ8: ðB52Þ

(vi) ~w1 þ ~w2 sector: The momentum lattice is

Γ~w1þ~w2
¼
��

n1;…; n4jm1;…; m8; l1 þ
1

2
;…; l8 þ

1

2

�����N ∈ even;M ∈ odd; L ∈ even

	
: ðB53Þ

The summation is
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Ẑ ~w1þ~w2
¼

X
fpR;pLg∈Γ~w1þ~w2

q̄p
2
R=2qp

2
L=2 ¼ 1

8
ððϑ̄00Þ4 þ ððϑ̄01Þ4Þððϑ00Þ8 − ðϑ01Þ8Þðϑ10Þ8: ðB54Þ

(vii) ~w0 þ ~w1 þ ~w2 sector: The momentum lattice is

Γ~w0þ~w1þ~w2
¼
��

n1 þ
1

2
;…; n4 þ

1

2

����m1 þ
1

2
;…; m8 þ

1

2
; l1;…; l8

�����
N ∈ odd;M ∈ odd; L ∈ even

	
: ðB55Þ

The summation is

Ẑ ~w0þ~w1þ~w2
¼ −

X
fpR;pLg∈Γ~w0þ~w1þ~w2

q̄p
2
R=2qp

2
L=2 ¼ −

1

8
ðϑ̄10Þ4ðϑ10Þ8ððϑ00Þ8 þ ðϑ01Þ8Þ: ðB56Þ

Summing up the contributions from all the sectors, and including the trivial contribution from the spacetime bosons shown
in Sec. B 4, we get Eq. (35).
Note that in Eq. (35), the overall normalization is chosen to match the field theoretical computation as follows: Summing

up loops of a point particle with length α, we get

ZS1 ¼ Vd

Z
ddp
ð2πÞd

Z
∞

0

dα
2α

e−αðp2þm2Þ=2; ðB57Þ

where the factor 2α comes from the redundancy to choose the initial point of the loop and its direction. In string theory, we
want to fix the normalization A in

ZT2 ¼ AVd

Z
ddp
ð2πÞd

Z
dτ1dτ2
τ2

exp

�
2πiτ1ðL0 − L̄0Þ − 2πτ2

�
L0 þ L̄0 −

1

24
ðcþ c̄Þ

��
: ðB58Þ

The τ1 integral gives the level matching condition L0 ¼ L̄0. To compare with the point particle computation, we concentrate
on the spacetime momentum: L0 þ L̄0 ¼ p2α0=2þ ðneglected oscillatorsÞ. After the τ1 integral, we get

ZT2 ¼ AVd

Z
ddp
ð2πÞd

Z
dτ2
τ2

expð−πτ2p2α0Þ þ ðcontribution from oscillatorsÞ: ðB59Þ

Comparing this expression with Eq. (B57), we see

A ¼ 1

2
: ðB60Þ

4. Contributions from spacetime coordinates to one-loop partition function

Let us briefly recall the basic computation of the remaining contributions from the spacetime coordinates.
We start from the D ¼ 10 dimensional free bosonic string:

HX ¼ L0 þ L̄0; ðB61Þ

L0 ¼
α0

4
p2 þ

X∞
n¼1

XD−1

m¼2

αm−nα
m
n −

D − 2

24
; ðB62Þ

L̄0 ¼
α0

4
p2 þ

X∞
~n¼1

XD−1

m¼2

~αm− ~n ~α
m
~n −

D − 2

24
; ðB63Þ
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where p2 ≔
P

D
μ¼0 p

μpμ. Its contribution reads

TrðqL0 q̄L̄0Þ ¼ VDq−
D−2
24 q̄−

D−2
24

Z
dDp
ð2πÞD expð−πτ2p2α0Þ

Y
i;n; ~n

X∞
Ni;n; ~Ni;n¼1

qnNi;n q̄ ~n ~Ni;n

¼ i
VD

ð2πÞD q−
D−2
24 q̄−

D−2
24

�
1

τ2α
0

�
D=2Y

i;n; ~n

ð1 − qnÞ−1ð1 − q̄ ~nÞ−1

¼ i
VD

ð2πÞD
�

1

τ2α
0

�
D=2 1

ηðτÞD−2η̄ðτ̄ÞD−2 ; ðB64Þ

where N and ~N are the occupation numbers.
Next we compactify the ðD − 1Þth direction on

S1∶ XD−1 ∼ XD−1 þ 2πR. The ðD − 1Þth momentum
becomes discrete, which we replace in L0 and L̄0 as

α0ðpD−1Þ2
4

→
α0

4
ðp2

L þ p2
RÞ; ðB65Þ

where

pL ¼ n
R
þ wR

α0
; pR ¼ n

R
−
wR
α0

: ðB66Þ

We then obtain

TrðqL0 q̄L̄0Þ → i
VD−1

ð2πÞD−1

�
1

τ2α
0

�ðD−1Þ=2 1

ηðτÞD−2η̄ðτ̄ÞD−2

×
X
n;w

e2πiτ1
α0
4
ðp2

L−p
2
RÞ

× exp

�
−πτ2α0

�
n2

R2
þ w2R2

α02

��
: ðB67Þ

APPENDIX C: T-DUALITY

In this Appendix, we show that successive S and T
transformations (60) yield the Eq. (61). More explicitly,

~τ1 →
acj~τj2 þ ðadþ bcÞ~τ1 þ bd

jc~τ þ dj2 ; ~τ2 →
~τ2

jc~τ þ dj2 :

ðC1Þ

Using this duality, we will check in Sec. C2 if ~τ2 ¼ r=
ffiffiffiffi
α0

p
stays finite or goes to infinity in the large boost
limit η → ∞.

1. Review on ordinary modular transformation

Let us first recall how we have shown that the general
form of the transformation generated by τ → τ þ 1 and τ →
−1=τ is given by

τ → τ0 ¼ aτ þ b
cτ þ d

; ad − bc ¼ 1: ðC2Þ

First we point out that the set of transformations Eq. (C2)
forms the SLð2;ZÞ group, from which the closure of the
transformation is obvious. In fact, if we identify the

transformation with the matrix
h a b
c d

i
, the composition

of two transformations

τ00 ¼ a0 aτþb
cτþd þ b0

c0 aτþb
cτþd þ d0

¼ ða0aþ b0cÞτ þ ða0bþ b0dÞ
ðc0aþ d0cÞτ þ ðc0bþ d0dÞ ðC3Þ

is equivalent to the multiplication of the corresponding

matrices
ha0 b0

c0 d0
iha b

c d

i
. Moreover, the inverse of τ → τ0

τ ¼ −dτ0 þ b
cτ0 − a

ðC4Þ

is equivalent to the inverse matrix
h a b
c d

i−1
.

Since τ → τ þ 1 and τ → −1=τ are special cases of
Eq. (C2), the transformation generated by them also has the
form Eq. (C2). On the other hand, any transformation
Eq. (C2) can be obtained as successive applications of τ →
τ þ 1 and/or τ → −1=τ.
Proof. We start from the general form

aτ þ b
cτ þ d

ðC5Þ

of the transformation, and show that it reduces to τ by
applying τ → −1=τ and τ → τ þ 1. By the n times of shift,
we get

τ0 ¼ aτ þ b
cτ þ d

þ n ¼ ðaþ ncÞτ þ ðbþ ndÞ
cτ þ d

: ðC6Þ

Choosing n ∈ Z appropriately, we can make a0 ¼ aþ nc
satisfy ja0j < jcj. The inversion τ0 → −1=τ0 gives

τ0 → τ00 ¼ −cτ − d
a0τ þ b0

: ðC7Þ

Now a00 (¼ −c) and c00 (¼ a0) satisfy ja00j > jc00j. By doing
this cycle of shift and inversion successively, we can always
reduce the value of a to eventually get
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b
cτ þ d

: ðC8Þ

From the condition for the determinant to be unity, we get
bc ¼ −1, which reads b ¼ �1 for b and c are integers.
Finally by the inversion, we get

b
cτ þ d

→ −
c
b
τ −

d
b
¼ τ −

d
b
; ðC9Þ

from which we obtain τ by the integer shift. ▪

2. T-dual transformation

We follow the argument above to show that we can get
the general form (61) from the

ffiffiffi
2

p
-shift and inversion in

Eq. (60). Let us start from

a~τ þ b
ffiffiffi
2

p

c
ffiffiffi
2

p
~τ þ d

; ad − 2bc ¼ 1; a; b; c; d ∈ Z: ðC10Þ

The closure and the existence of the inverse can be shown
in the same way as above.
By the n times of

ffiffiffi
2

p
-shift, we get

a~τ þ b
ffiffiffi
2

p

c
ffiffiffi
2

p
~τ þ d

→ ~τ0 ¼ a~τ þ b
ffiffiffi
2

p

c
ffiffiffi
2

p
~τ þ d

þ n
ffiffiffi
2

p

¼ ðaþ 2ncÞ~τ þ ðbþ ndÞ ffiffiffi
2

p

c
ffiffiffi
2

p
~τ þ d

¼ a0 ~τ þ b0
ffiffiffi
2

p

c0
ffiffiffi
2

p
~τ þ d0

:

ðC11Þ

Choosing appropriate n ∈ Z, we can always make
ja0j ≤ jcj. Further performing the inversion and the n0

times of
ffiffiffi
2

p
-shift, we get

~τ0 → ~τ00 ¼ −
c0
ffiffiffi
2

p
~τ þ d0

a0 ~τ þ b0
ffiffiffi
2

p þ n0
ffiffiffi
2

p

¼ ð−c0 þ n0a0Þ ffiffiffi
2

p
~τ þ ð−d0 þ 2n0b0Þ

a0 ~τ þ b0
ffiffiffi
2

p : ðC12Þ

Again inverting, we get

~τ00 → ~τ000 ¼ −
a0 ~τ þ b0

ffiffiffi
2

p

ð−c0 þ n0a0Þ ffiffiffi
2

p
~τ þ ð−d0 þ 2n0b0Þ

¼ a000 ~τ þ ffiffiffi
2

p
b000

c000
ffiffiffi
2

p
~τ þ d000

: ðC13Þ

Choosing n0 ∈ Z appropriately, we can always make
jc000j ≤ ja000=2j ¼ ja0=2j ≤ jc=2j.
By repeating this cycle, we can make the absolute value

of the coefficient c in Eq. (C10) smaller and smaller to get
c ¼ 0 eventually:

a~τ þ b
ffiffiffi
2

p

d
¼ a

d
~τ þ b

d

ffiffiffi
2

p
: ðC14Þ

Since ad ¼ 1 due to the condition for the determinant to be
unity. From Eq. (C14), we obtain ~τ by the

ffiffiffi
2

p
-shifts.

The case

a
ffiffiffi
2

p
~τ þ b

c~τ þ d
ffiffiffi
2

p ; 2ab − bc ¼ 1; a; b; c; d ∈ Z; ðC15Þ

is an inversion of Eq. (C10).

APPENDIX D: MULTIPLE POINT PRINCIPLE

We review the original argument for the MPP that says
that the SM parameters should be tuned so that our SM
vacuum is degenerate with another one whose vacuum
expectation value of the Higgs field is around the Planck
scale [36–38].
The quantum field theory (QFT) is formulated by the

path integral

ZðfλgÞ ¼
Z

½dφ�e−SðfλgÞ½φ�; ðD1Þ

where fλg denotes the dependence on the coupling con-
stants (and mass) collectively. The partition function (D1)
is analogous to the one in the canonical ensemble in the
statistical mechanics:

ZðβÞ ¼
X
n

e−βHn: ðD2Þ

However in the statistical mechanics, the most fundamental
concept is the microcanonical ensemble:

ΩðEÞ ¼
X
n

δðHn − EÞ: ðD3Þ

Froggatt and Nielsen argue that more fundamental formu-
lation of the QFT may be analogous to the microcanonical
ensemble, in which rather the average field value is fixed
while the coupling constants are determined dynamically.
Let us review their argument step by step.
The canonical ensemble becomes equivalent to the

microcanonical one in the thermodynamic (large volume)
limit: Given the partition function (D2), we can compute
the multiplicity
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Ω̄ðEÞ ≔
Z

dβeβEZðβÞ

¼
Z

dβ
Z

dE
�X

n

δðHn − EÞ
�
e−βðE−EÞ

¼
Z

dβ
Z

dEΩðEÞe−βðE−EÞ

¼
Z

dβ
Z

dEeSðEÞ−βðE−EÞ; ðD4Þ

where we used the entropy SðEÞ ≔ lnΩðEÞ; noting that
SðEÞ, E, and E are extensive variables, in the thermody-
namic limit, the integral over β and E is dominated by the
strong peak at their stationary values; by taking variations
of E and β, we get dS=dE ¼ β and E ¼ E:

Ω̄ðEÞ → eSðEÞ ¼ ΩðEÞ: ðD5Þ

The energy is fixed first, and then the temperature T ≔ 1=β
is determined dynamically. Later we will see, in the QFT
language, that the inverse-temperature β corresponds to the
coupling constants, that the energy E; E to the spatial
integral over field values

R
dDxjφjn, and that the summation

over the states
P

n to the path integration
R ½dφ�.

As an illustration, let us consider a system of coexisting
water and vapor with a fixed pressure in a piston, placed in
a room temperature. We add heat into the piston. The
temperature β−1 in the piston rises to the boiling point.
Even if we further continue to add the heat, it is used tomake
the water into the vapor, without changing the temperature.
Thisway, for a large rangeof energy, the temperature is tuned
to be the boiling point due to the two coexisting phases. In
QFT language, this will be translated to the statement that
even if Nature changes the field value in the microcanonical
version of the QFT, the coupling constant (mass) is tuned to
the value that allows two coexisting vacua.18

The ordinary QFT starts from the path integral (D1). Let
us illustrate the situation by a simple toy model:

SðΛ; m2; λ;…Þ½φ�

¼
Z

dDxðj∂φj2 þ Λþm2jφj2 þ λjφj4 þ � � �Þ: ðD6Þ

The partition function reads

ZðΛ; m2; λ;…Þ ¼
Z

½dφ�e−SðΛ;m2;λ;…Þ½φ�: ðD7Þ

The counterpart of Eq. (D4) should be the following:

Ω̄ðI0; I2; I4;…Þ ¼
�Z

dΛ
Z

dm2

Z
dλ � � �

�
eΛI0þm2I2þλI4þ���ZðΛ; m2; λ;…Þ

¼
�Z

dΛ
Z

dm2

Z
dλ � � �

�
eΛI0þm2I2þλI4þ���

Z
½dφ�e−SðΛ;m2;λ;…Þ½φ�

¼
�Z

dΛ
Z

dm2

Z
dλ � � �

��Z
dI0

Z
dI2

Z
dI4 � � �

�

× e−ΛðI0−I0Þ−m2ðI2−I2Þ−λðI4−I4Þþ���

×

�Z
½dφ�e−

R
dDxð∂φÞ2δ

�Z
dDx − I0

�
δ

�Z
dDxjφj2 − I2

�
δ

�Z
dDxjφj4 − I4

�
� � �
�
; ðD8Þ

where the dimensionality is

½φ� ¼ D − 2

2
; ½I0� ¼ −D; ½I2� ¼ −2; ½I4� ¼ D − 4;

ðD9Þ

etc.
From the observation, we know that the volume of the

universe V is much larger than the Planck volume:
V ≔

R
dDx⋙M−D

P . In the thermodynamic limit V → ∞,

we will recover the multiplicity in the microcanonical
ensemble19:

Ω̄ðI0; I2; I4;…Þ →
Z

½dφ�e−
R

dDxð∂φÞ2δ
�Z

dDx − I0

�

× δ

�Z
dDxjφj2 − I2

�

× δ

�Z
dDxjφj4 − I4

�
� � �

¼ ∶ΩðI0; I2; I4;…Þ: ðD10Þ
18The effective potential must be convex, which is realized as a

spatially inhomogeneous configuration with φ ¼ φ1 in some
regions and φ ¼ φ2 in other places, where φ1 and φ2 are local
minima of the potential; see e.g. Ref. [114].

19Here we leave the kinetic term as is. One might apply the
same argument for the kinetic term as well.
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The “entropy” is given by

SðI0; I2; I4;…Þ ¼ lnΩðI0; I2; I4;…Þ: ðD11Þ
In the microcanonical version of the QFT, Nature

chooses a set of extensive variables fI0; I2;…g. Natural
choice would be the values of order unity in Planck units,
multiplied by the volume V:

I0 ∼ V; I2 ∼ VMD−2
P ; I4 ∼ VM2D−4

P ; � � � :
ðD12Þ

Suppose that such a generic set of extensive variables are
given in the microcanonical picture. Then the integral over
the intensive variables Λ; m2; λ;… in Eq. (D8) must be
dominated by such values that allow the coexisting vacua,
whose mixture can reproduce the values (D8) as their mean
value. This is just as in the heuristic example shown above.
The field values in such vacua other than ours must be
around the Planck scale.

We comment that the effective potential can be approxi-
mated by the quartic term because the running Higgs mass
is almost zero in Planck units in a mass independent
renormalization scheme. Therefore both the quartic cou-
pling and its beta function must be zero at the Planck scale
in order to allow the other vacuum. This has led to the
predictions of the top mass 173� 5 GeV and the Higgs
mass 135� 9 GeV [36], nearly twenty years before the
Higgs discovery.
We note that the bare Higgs mass becomes accidentally

small for a Planck scale cutoff, given the low energy data at
the electroweak scale [18–21,29–31]. This smallness of the
bare mass can be accounted for by the above argument if
we employ a regularization scheme in which the bare Higgs
mass appears in the effective potential near the cutoff; see
e.g. Appendix B in Ref. [60].
In Ref. [37], this argument has been extended to the

metastable vacua. In Ref. [38], the delta function in this
argument has been promoted to an arbitrary function
having appropriate peaks.
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