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Interactions of different types of topological defects can play an important role in the aftermath
of a phase transition. We study interactions of fundamental magnetic monopoles and stable domain
walls in a grand unified theory in which SUð5Þ × Z2 symmetry is spontaneously broken to
SUð3Þ × SUð2Þ × Uð1Þ=Z6. We find that there are only two distinct outcomes depending on the relative
orientation of the monopole and the wall in internal space. In one case, the monopole passes through the
wall, while in the other it unwinds on hitting the wall.
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I. INTRODUCTION

Grand unified theories (GUTs) are based on large
symmetry groups, the smallest of which is an SU(5) model
with an additional, possibly approximate, Z2 symmetry.
When such large symmetries are broken in a cosmological
setting, several kinds of topological defects can be pro-
duced. The ensuing cosmology will depend critically on
the interactions of the different defects. In particular, the
SUð5Þ × Z2 symmetry breaking leads to the existence of
magnetic monopoles and domain walls in the aftermath of
the phase transition. We expect the magnetic monopoles to
interact with domain walls, potentially resolving the
magnetic monopole overabundance problem [1]. To inves-
tigate this idea further, we study the interactions of SU(5)
monopoles and Z2 domain walls in this paper.
The interaction of monopoles and domain walls was also

studied in [2] with the domain wall structure given by

Φ ¼ tanh

�
z
w

�
Φ0 ð1Þ

where the order parameter Φ is in the adjoint representation
of SU(5), Φ0 is its constant vacuum expectation value
(VEV), and w is the width of the domain wall. By
numerical evaluation it was found that monopoles hitting
this domain wall will unwind and spread on the wall.
Subsequently, however, it was found [3–6] that the model
actually has several domain wall solutions, including the
one in Eq. (1), and that the lightest (stable) wall has a
different structure (see Sec. II B). Hence the interaction of
the stable wall and the monopole needs to be revisited.
In Sec. II we provide details of the SUð5Þ × Z2 model,

the monopole solution, the wall solutions, and finally our
scheme for setting up a configuration with a monopole and
a domain wall together. This provides us with initial
conditions that we numerically evolve in Sec. III. The
complexity of the field equations and the problem requires

some special numerical techniques that we briefly describe
in Sec. III.
Our results are summarized in Sec. IV. Essentially we

find that there are two internal space polarizations for the
monopole with respect to the wall. One of the polarizations
is able to pass through the wall with only some kinematic
changes. The monopole with the other polarization is
unable to pass through the domain wall and unwinds on
the wall, radiating away its gauge fields. The disappearance
of this monopole is further explained in Sec. IV.

II. THE MODEL

The SU(5) model we consider is given by the Lagrangian

L ¼ −
1

4
Xa
μνXaμν þ 1

2
Dμϕ

aDμϕa − VðΦÞ ð2Þ

where Φ ¼ ϕaTa (a ¼ 1;…; 24), Xa
μν are the gauge field

strengths defined as

Xμν ¼ ∂μXν − ∂νXμ − ig½Xμ; Xν�; ð3Þ

Xμ ¼ Xa
μTa are the gauge fields, and g is the coupling

constant. Ta are the generators of SU(5) normalized by
TrðTaTbÞ ¼ δab=2. The covariant derivative is given by

Dμϕ
a ¼ ∂μϕ

a − ig½Xμ;Φ�a: ð4Þ

The most general renormalizable SU(5) potential is

VðΦÞ ¼ −m2TrΦ2 þ γTrΦ3 þ hðTrΦ2Þ2 þ λTrΦ4 − V0;

ð5Þ

and we assume that γ vanishes, giving the model an
additional Z2 symmetry. For λ ≥ 0 and hþ 7λ=30 ≥ 0,
the potential has its global minimum at [7]
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Φ0 ¼
η

2
ffiffiffiffiffi
15

p diagð2; 2; 2;−3;−3Þ; ð6Þ

with η ¼ m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ 7λ=30

p
. The VEV, Φ0, spontaneously

breaks the SU(5) symmetry to SUð3Þ × SUð2Þ × Uð1Þ=Z6.
In what follows, the four diagonal generators of SU(5)

are chosen to be

λ3 ¼
1

2
diagð1;−1; 0; 0; 0Þ;

λ8 ¼
1

2
ffiffiffi
3

p diagð1; 1;−2; 0; 0Þ;

τ3 ¼
1

2
diagð0; 0; 0; 1;−1Þ;

Y ¼ 1

2
ffiffiffiffiffi
15

p diagð2; 2; 2;−3;−3Þ: ð7Þ

We use a ¼ 1; 2; 3 to denote generators Ta ¼ τa ¼
diagð0; 0; 0; σa=2Þ where σa are the Pauli spin matrices.

A. The monopole

Let us consider a magnetic monopole whose winding lies
in the 4–5 block of Φ. This is possible [8] if we take the
VEV along one of the radial directions far away from the
monopole to be

Φ∞ ¼ η

2
ffiffiffiffiffi
15

p diagð2;−3; 2; 2;−3Þ

¼ η

ffiffiffiffiffi
5

12

r
ðλ3 þ τ3Þ þ

η

6
ðY −

ffiffiffi
5

p
λ8Þ: ð8Þ

The monopole ansatz for the scalar field can be written
as [3]

ΦMðrÞ ¼ PðrÞ
X3
a¼1

xaτa þMðrÞ
� ffiffiffi

3
p

2
λ3 −

1

2
λ8

�
þ NðrÞY;

ð9Þ

while the nonzero gauge fields can be written as

Xa
i ¼ ϵaij

xj

gr2
ð1 − KðrÞÞ; ða ¼ 1; 2; 3Þ ð10Þ

and PðrÞ;MðrÞ; NðrÞ, and KðrÞ are profile functions
that depend only on the spherical radial coordinate
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and satisfy the boundary conditions:

lim
r→∞

rPðrÞ ¼ η

ffiffiffiffiffi
5

12

r
; Mð∞Þ ¼ η

ffiffiffi
5

p

3
;

Nð∞Þ ¼ η

6
; Kð∞Þ ¼ 0: ð11Þ

The profile functions for the monopole alone were evalu-
ated numerically and are shown in Fig. 1.
The non-Abelian magnetic field can be defined as [9]

Bk ¼ −
1

2
ϵijkXij

with the associated energy density given by TrðBkBkÞ.
Far away from the center, the monopole field becomes
Bk → Qxk=ðgr3Þ, with Q ¼ τjxj=r.
The monopole charge Q includes a component along the

generator of the unbroken U(1) symmetry [Φ∞ of Eq. (8)],
as well as SU(2) and SU(3) magnetic charges. The U(1)
part of the magnetic field, which is a defining feature of a
topological SU(5) monopole, is given by

Bk
Y ¼ −

1

2
ϵijkXa

ijϕ̂
a ð12Þ

where ϕ̂a ≡ ϕa=
ffiffiffiffiffiffiffiffiffiffiffi
ϕbϕb

p
. As discussed in [10], other

definitions of the Abelian magnetic field are possible,
and these differ from our definition but only within the
core of the monopole. Since we only use our definition to
plot the long range Abelian magnetic field (see Fig. 3) the
definition in Eq. (12) is sufficient.

B. The wall

Without loss of generality [4], the domain wall solution
can be taken to be diagonal at all z and written in terms of
the diagonal generators of SU(5) as

ΦDWðzÞ ¼ aðzÞλ3 þ bðzÞλ8 þ cðzÞτ3 þ dðzÞY: ð13Þ

In each of the two disconnected parts of the vacuum
manifold M there are a total of ten different diagonal
VEVs corresponding to all possible permutations of 2s and

FIG. 1 (color online). The profile functions for the monopole
alone, evaluated numerically, for a model with η ¼ 1,
h=λ ¼ −0.2, and λ ¼ 0.5.
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3s in Eq. (6). Topology dictates that there must be a domain
wall separating any pair of VEVs from the two discon-
nected parts of M. However, not every such pair of VEVs
corresponds to a stable domain wall solution. For instance,
as shown in [3], the wall across which Φ0 goes to −Φ0 is
unstable and will decay into a lower energy stable wall. The
stable domain walls are obtained when both 3s in Eq. (6)
change into 2s across the wall.
Let us choose the boundary condition at z ¼ −∞ to be

Φ− ¼ Φðz ¼ −∞Þ ¼ η

2
ffiffiffiffiffi
15

p diagð2;−3; 2; 2;−3Þ

¼ η

ffiffiffiffiffi
5

12

r
ðλ3 þ τ3Þ þ

η

6
ðY −

ffiffiffi
5

p
λ8Þ: ð14Þ

For this choice of Φ−, there are three different choices of
Φðz ¼ þ∞Þ, proportional to

diagð3;−2;−2; 3;−2Þ
diagð−2;−2; 3; 3;−2Þ
diagð3;−2; 3;−2;−2Þ; ð15Þ

that lead to stable domain walls. For the purpose of
understanding the monopole-wall interactions, it is suffi-
cient to consider only two of the above, corresponding to
the two distinct entries in the 4–5 block of Φ. We take the
first to be the same as in [3], subsequently referred to as
case 1:

Φð1Þ
þ ¼ η

2
ffiffiffiffiffi
15

p diagð3;−2;−2; 3;−2Þ

¼ η

ffiffiffiffiffi
5

12

r
ðλ3 þ τ3Þ −

η

6
ðY −

ffiffiffi
5

p
λ8Þ: ð16Þ

The value of the field in the core of this wall is proportional
to diagð1;−1; 0; 1;−1Þ. The other case, subsequently
referred to as case 2, has

Φð2Þ
þ ¼ η

2
ffiffiffiffiffi
15

p diagð3;−2; 3;−2;−2Þ

¼ η

ffiffiffiffiffi
15

p

6
λ3 þ

η

6
ð4Y −

ffiffiffi
5

p
λ8Þ; ð17Þ

with the field in the wall being proportional to
diagð1;−1; 1; 0;−1Þ. A novel feature of these walls is that
the unbroken symmetry groups on either side of the wall are
isomorphic to each other but they are realized along
different directions of the initial SU(5) symmetry group.
Hence the wall is the location of a clash of symmetries [11].
Note that the symmetry within the wall is

½SUð2Þ × Uð1Þ�2. The SU(2)s correspond to rotations in
the 1–3 and 2–5 blocks and the U(1)s to rotations along σ3
in the 1–2 and 3–5 blocks. Therefore the symmetry group
within the wall is eight dimensional, and is smaller than the

twelve-dimensional symmetry outside the wall.1 Also note

that the symmetry in the 4–5 block is different for the Φð1Þ
þ

and Φð2Þ
þ vacua. This is going to be of direct relevance for

the fate of the monopoles.
The profile functions aðzÞ, bðzÞ, cðzÞ, and dðzÞ for both

cases are shown in Fig. 2. In each case, they are linear
combinations of two functions FþðzÞ and F−ðzÞ defined by
the alternative way of writing the domain wall solution [3],

ΦDW ¼ ΦþðzÞ − Φ−ðzÞ
2

F−ðzÞ þ
ΦþðzÞ þ Φ−ðzÞ

2
FþðzÞ;

ð18Þ

where Fþð�∞Þ ¼ 1, F−ð�∞Þ ¼ �1. For a general choice
of parameters, functions F�ðzÞ must be found numerically.
For h=λ ¼ −3=20, they are known in closed form [3]:
FþðzÞ ¼ 1, F−ðzÞ ¼ tanhðmz=

ffiffiffi
2

p Þ. Correspondingly, for
this value of h=λ, the four functions aðzÞ, bðzÞ, cðzÞ, and
dðzÞ are either constant or describe a transition from one
constant value to another. For h=λ ≠ −3=20 the constant
functions develop a small bump around z ¼ 0 as can be
seen in Fig. 2.

C. Monopole and wall

As our initial configuration, we take the monopole to be
on the z ¼ −∞ side, far away from the wall. In this case,

FIG. 2 (color online). The wall profile functions for cases 1 and
2 for a model with η ¼ 1, h=λ ¼ −0.2, and λ ¼ 0.5. Note that the
profile function cðzÞ goes to zero in case 2, which gives an

unbroken SUð2Þ ⊂ SUð3Þ symmetry in the 4–5 block of Φð2Þ
þ .

The profile function aðzÞ is the same for cases 1 and 2.

1For the simplest domain walls, such as kinks in λΦ4, the full
symmetry of the Lagrangian is restored inside the core. However,
the symmetry inside stable domain walls in SUðNÞ × Z2 is
always lower than that of the vacuum [4].
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the ansatz for the initial combined field configuration of the
wall and the monopole can be written as [3]

ΦMþDW ¼ PðrÞ cðz0Þ
cð−∞Þ

X3
a¼1

xaτa þ NðrÞ dðz0Þ
dð−∞ÞY

þMðrÞ
� ffiffiffi

3
p

2

aðz0Þ
að−∞Þ λ3 −

1

2

bðz0Þ
bð−∞Þ λ8

�
ð19Þ

where z0 ¼ γðz − z0Þ, γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the boost factor, v

is the wall velocity, and z0 is the initial position of the wall.
The monopole is at x ¼ 0 ¼ y ¼ z. It is easy to check that,
far away from the monopole, the profile functions take on
the values in Eq. (11) and ΦMþDW → ΦDW . Close to the
monopole, z0 → −∞, since the monopole is initially very
far from the wall, and ΦMþDW → ΦM as desired. We work
in the temporal gauge, Xa

0 ¼ 0, and with the initial ansatz
for the gauge fields given by Eq. (10) for both cases.
It is instructive to examine the difference in the nature of

the magnetic field in cases 1 and 2. As mentioned in
Sec. II A, the charge of our monopole along the z-direction,
Q ¼ ð1=2Þdiagð0; 0; 0; 1;−1Þ, is a combination of the
U(1), the SU(2), and the SU(3) magnetic charges. Since
the VEV of Φ in our model is along the generator of
(hypercharge) U(1), the magnetic field, as defined in
Eq. (12), corresponds solely to the U(1) component of
the charge. In case 1, TrðQΦÞ is the same on both sides of
the wall and the U(1) magnetic field is unaffected by the
presence of the domain wall. In case 2, however,

TrðQΦð2Þ
þ Þ ¼ 0 and there is no magnetic field correspond-

ing to the unbroken U(1) on the z ¼ þ∞ side of the wall.
Instead, the gauge field on that side is associated with an
SU(2) subgroup of the unbroken SU(3). We note that, while
the magnetic energy density associated with the gauge field
is unaffected by the presence of the wall, it is specifically

the U(1) magnetic field that is a defining feature of a
topologically stable monopole.
The magnetic field, as defined in Eq. (12), is plotted for

both cases in Fig. 3, where the vectors have components
r2Bz

Y and r2Bx
Y . This plot shows that, in case 1, there is a

U(1) magnetic field on both sides of the wall falling off as
r2 as expected, while in case 2 the U(1) magnetic field is
zero on the z ¼ þ∞ side of the wall.

III. EVOLUTION

Let us consider an initial monopole-wall configuration
given by Eq. (19) in which the VEVat z ¼ −∞ is given by
Φ− in Eq. (14). As mentioned in the previous section, there
are two types of boundary conditions at z ¼ þ∞, given by
Eqs. (16)–(17), dubbed case 1 and case 2, leading to two
different outcomes of the monopole-wall collision.
Before considering the two cases in detail, let us note that

initially, when the monopole and the wall are very far away
from each other, the field configuration has just three
nonzero gauge fields and six scalar fields corresponding to
the generators that appear in Eq. (19). Because these six
generators form a closed algebra, it follows from the
equations of motion that the subsequent evolution does
not involve fields corresponding to the other 18 generators.
Namely, the scalar and the gauge field equations are

DμDμϕa ¼ −∂V=∂ϕa ð20Þ

DμXμνa ¼ gfabcðDνΦÞbϕc ð21Þ

where fabc are the SU(5) structure constants defined by
½Ta; Tb� ¼ ifabcTc. Let C be the set of indices of the six
generators that appear in the initial field configuration
given by Eq. (19). Since the six generators form a closed
algebra, fabc ¼ 0 for a∉C and b; c ∈ C. Now let ϕa and Xa

μ

be fields corresponding to any a∉C. If ϕa and Xa
μ are zero at

the initial time, they will remain zero if fabc ¼ 0 for
b; c ∈ C and ∂V=∂ϕa ≠ 0. The former condition is satisfied
as mentioned above, while the latter holds since
Tr½TaTb� ∝ δab and Tr½TaTbTcTd� ¼ 0 for b; c; d ∈ C, as
we have checked by explicit evaluation. Thus, for our
purposes, it is sufficient2 to consider only a ∈ C.
Our numerical implementation is based on techniques

developed in [2]. First, the domain wall and the monopole
profile functions are found via numerical relaxation. The
monopole is initially located at the center of the lattice. We
give the domain wall a velocity towards the monopole and
boosted profiles are inserted into the initial configuration
given by Eq. (19). With the initial time derivatives simply

FIG. 3 (color online). The magnetic field BY [defined in
Eq. (12)] multiplied by r2 for cases 1 and 2, where at each
point r2Bz

Y and r2Bx
Y are plotted as a vector. In case 1, there is a

magnetic field associated with the unbroken U(1) symmetry on
both sides of the wall. In case 2, the magnetic field becomes
associated with the SUð2Þ ⊂ SUð3Þ on the z ¼ þ∞ side on the
wall, while its Uð1Þ component vanishes. Note that it is the U(1)
magnetic field that characterizes a topologically stable monopole.

2Although the field components for a∉C continue to vanish
during evolution if they vanish initially, we cannot exclude the
possibility that the fields in these other directions may grow
unstably if they did not vanish initially.
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determined from the Lorentz boost factor, this initial
configuration is evolved forward in time using a staggered
leapfrog code. The boundary conditions require special
care since the wall extends all the way across the lattice. We
have implemented boundary conditions in which the field is
extrapolated across the boundary. We have numerically
tested that this boundary condition leads to a smoothly
evolving domain wall, without any spurious incoming
radiation. Even though our problem has axial symmetry,
we work in Cartesian coordinates as this offers superior
stability. However, as discussed in [12], we take advantage
of the axial symmetry of our configuration to restrict the
lattice to just three lattice spacings along the y direction. We
then use a 256 × 256 lattice grid for the x and z coordinates.
Additionally, the axial symmetry allows us to solve only for
positive x and use reflection to find the fields at negative x.
The units of length are set by η ¼ 1 and we take each lattice
spacing to correspond to half of a length unit. In these units,
the range of x and z axis for a 256 × 256 grid is ½−64; 64�.
Note that in some figures we do not plot the entire lattice.
The radius of the monopole core is about 10 length units
and is about the same as one half of the domain wall width.
At the initial time, the wall is 30 length units away from the
center of the monopole.

A. Case 1: the monopole passes through

It is not difficult to predict that the monopole in case 1
will pass through the wall. The monopole winding is due to
the fields in the SU(2) subgroup corresponding to gen-
erators τa, a ¼ 1;…; 3. In Eq. (19), these fields are
multiplied by the function cðzÞ which has the same value
at z ¼ �∞ and, as known from [3], is approximately
constant across the domain wall. Only bðzÞ and dðzÞ
change signs across the wall, but these are irrelevant for

the winding of the monopole. Thus, the presence of the wall
is of no qualitative consequence to the winding of the
monopole or its profile functions. The only effect is the
small change in cðzÞ around z ¼ 0 [note that, as mentioned
earlier, cðzÞ is strictly a constant when h=λ ¼ −3=20].
We numerically collide the monopole and the wall by

giving the wall an initial velocity of 0.8 (in speed of
light units) and choosing parameters η ¼ 1, h ¼ −λ=5, and
λ ¼ 0.5 for VðΦÞ.
Figure 4 shows the potential and magnetic energy

densities as the wall hits the monopole in case 1. In
addition, we plot the scalar field configuration in Fig. 5,
where each point is a vector with components ϕ3 and ϕ1.
These figures show that the magnetic energy density and
the scalar field configuration remain unchanged after the
collision, and that the potential energy densities corre-
sponding to the monopole and the domain wall remain
localized. This does not imply a complete absence of
interaction between the wall and the monopole—some
interaction is expected due to the nonlinearity of the scalar
field potential.
To see if the monopole gains momentum due to the

interaction, we have evaluated the center of energy (COE)
defined as

zCOEðtÞ ¼
R
V d

3xzρðt;xÞR
V d

3xρðt;xÞ ; ð22Þ

where V is the volume of a finite cylindrical region centered
at the origin and extending 1=8th of the lattice size in the
x- and z-directions, while ρ is the energy density. For
h=λ ¼ 0, we give the wall a velocity of v ¼ 0.9 towards the
monopole and compare the initial zCEO to the one after the
wall passes away. We see a very slow drift of the COE in
the direction of the wall velocity. We performed the same

FIG. 4 (color online). The potential and magnetic energy densities in the xz plane for the colliding monopole and wall in case 1. We see
that the monopole passes through the wall and the energy densities remain localized. Additionally, we see the magnetic energy density is
unchanged before and after the collision.
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procedure using different model parameters and wall
velocities and the outcome was qualitatively the same. In
all cases, while the direction of the drift is clear, the
magnitude is extremely small and too close to the numeri-
cal uncertainties to allow a definitive quantitative analysis.

B. Case 2: the monopole unwinds

As in case 1, it is possible to guess the outcome of the
monopole-wall collision without doing numerical simula-
tions. For this, we note that Φð2Þ

þ has an SU(2) symmetry in
the 4–5 block, which means that there is no topology that
can support the winding. Thus, the monopole cannot exist
in that corner of the matrix. An equivalent way to see this is
to note that the function cðzÞ, which multiplies the three
relevant monopole scalar fields, goes to zero at z ¼ þ∞
(see Fig. 2), effectively erasing the monopole.

Additional insight can be gained by noting that the long
range magnetic field of the monopole transforms into an
SU(3) magnetic field on the far side of the wall. More
explicitly, the U(1) magnetic field is given by Eq. (12) with
Xa
ij determined using the solution in Eq. (10). Since Xij

only has components in the τa directions, it lies in the 4–5
block. However, the 4–5 block is entirely within the
unbroken SU(3) on the right-hand side of the wall. Thus
the long range magnetic field of the monopole is purely
SU(3) on the right-hand side of the wall and, from the
vantage point of someone there, there is no U(1) magnetic
field emerging from the left-hand side of the wall. However,
a U(1) magnetic field is an essential feature of a topological
monopole. Thus, from the right-hand side of the wall, there
is no magnetic monopole in the system, only some source
of SU(3) magnetic flux.
Doing the numerical simulation with the parameters

chosen as before, we plot the potential and magnetic energy
densities as the wall hits the monopole in Fig. 6. This figure
shows that the potential energy for the monopole disap-
pears as the wall and monopole collide, and the magnetic
energy that was stored in the monopole radiates away
in a hemispherical wave. The collision was simulated with
initial wall velocities ranging from 0.1 to 0.99 for
h=λ ¼ −1=5, and initial wall velocities of 0.6, 0.8, and
0.99 for h=λ ¼ −3=20 and 1=5. In all of these cases, the
result of the collision was unchanged.
In Fig. 7, we show the a ¼ 1; 2; 3 components of the

scalar field using two different representations. In the first
row, the fields ϕ3 and ϕ1 are plotted as a vector. The plot
shows that the components of the field that are responsible
for the winding vanish on the z ¼ þ∞ side of the wall. In
the second row of Fig. 7, the color represents the magnitude

FIG. 5 (color online). The scalar field ϕa in the xz plane for the
colliding monopole and wall in case 1, where at each point ϕ3 and
ϕ1 are plotted as a vector. In this case the scalar field arrangement
in direction and magnitude remains virtually unchanged.

FIG. 6 (color online). The potential and magnetic energy densities in the xz plane for the colliding monopole and wall in case 2. We
can see that as the domain wall and monopole collide, the potential energy contained by the monopole disappears and the monopole
begins to radiate away its magnetic energy in a hemispherical wave. Note that the middle and final plots for the magnetic energy density
have a much smaller scale as the ripples are not visible at the original scale.
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jϕj≡ ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕap

, a ¼ 1; 2; 3, while vectors are drawn of fixed
length and direction given by tan−1ðϕ3=ϕ1Þ. Even though
jϕj becomes very small, it is not strictly zero at a finite
distance from the wall, and so one can still define the
direction of the arrow in this way. One can see that initially
the field has a hedgehog configuration across the wall.
However, as the wall sweeps along, the fields on the
z ¼ þ∞ side of the wall rotate around in such a way as to
unwind the monopole. In the final step, all fields that are
nonzero are pointing in one direction, and therefore the
monopole winding is gone.

IV. CONCLUSIONS

In a grand unified model there can be several types of
defects, including magnetic monopoles and domain walls.
In the aftermath of the cosmological phase transition in
which the grand unified symmetry is spontaneously broken
to the standard model symmetry, the monopoles and walls
will interact.3 We have studied these interactions explicitly

in an SUð5Þ × Z2 GUT, taking into account that the model
has several different types of domain walls, and that only
the lowest energy wall is expected to be cosmologically
relevant. Even this stable wall has several different ori-
entations in internal space, two of which are distinct for the
purposes of monopole-wall interaction.
The first wall (case 1 above) is found to be transparent to

the monopole. This is simply because the domain wall
mainly resides in a certain block of field space, while the
winding of the monopole resides in a different nonoverlap-
ping block. The interactions between the monopole and
the wall are very weak, and only affect the dynamics of the
monopole as it passes through the wall. Depending on the
parameters, the monopole might be attracted or repelled by
the wall leading to a time delay or advance as the monopole
goes through.
The second wall (case 2 above) is opaque to the

monopole. When the monopole hits the wall its energy
is transformed into radiation on the other side of the wall, as
seen in Fig. 6. A useful way to picture this system is to
consider a magnetic monopole that is located inside a
spherical domain wall. Now there is a topological magnetic
monopole inside the wall, but only an SU(3) magnetic flux

FIG. 7 (color online). The scalar field ϕa in the xz plane for the colliding monopole and wall in case 2. At each point in the first row, ϕ3

and ϕ1 are plotted as a vector. In the second row, the length of the arrow is fixed, while the direction of the arrow is given by
tan−1ðϕ3=ϕ1Þ and the color represents the magnitude of the field jϕj ¼ ffiffiffiffiffiffiffiffiffiffiffi

ϕaϕa
p

for a ¼ 1; 2; 3. The first row shows the monopole
unwinding as the wall sweeps past it, and the second shows how the fields arrange themselves to unwind the monopole.

3Scattering of fermions and GUT domain walls was studied
in [13].
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from the outside. In particular, there is no topological
magnetic monopole as seen from the outside. Therefore the
spherical wall itself must carry the topological charge of an
antimonopole.4 If the spherical wall shrinks, either it can
annihilate the magnetic monopole within it and radiate
away the energy, or the monopole can escape the wall, in
which case the wall would then collapse into an antimono-
pole so that the total topological charge of the system
continues to vanish. Our explicit numerical evolution
shows that annihilation occurs for the parameter ranges
we have considered. We note that the unwinding of
the monopole in case 2 may be related to the mech-
anism of formation of non-Abelian clouds (massless
monopoles) [14].
Our results have bearing on cosmology as they explicitly

show the possible destruction of magnetic monopoles. In

the case where the Z2 symmetry is approximate, the walls
will eventually decay away, and it is possible that these
interactions could lead to a universe that is free of magnetic
monopoles. Estimates in [1] indicate that this possibility is
worth investigating in more detail. With several types of
domain walls and monopoles simultaneously forming in a
phase transition [15–17], and with the complex nature of
both the interwall [18] and monopole-wall interaction, the
fate of the monopoles will remain uncertain until a
comprehensive simulation of the GUT phase transition is
performed. We leave this for a future study.
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