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We propose the gravitino dark matter in the gravity mediated supersymmetry breaking scenario.
The mass hierarchies between the gravitino and other superparticles can be achieved by the nontrivial
Kähler metric of the supersymmetry breaking field. As a concrete model, we consider the five-dimensional
supergravity model in which moduli are stabilized, and then one of the moduli induces the slow-roll
inflation. It is found that the relic abundance of the gravitino and the Higgs boson mass reside in the
allowed range without a severe fine-tuning.
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I. INTRODUCTION

The low-scale supersymmetry (SUSY) is an attractive
scenario which not only protects the mass of the Higgs
boson from the large radiative corrections but also gives the
dark matter candidates. In addition to it, the existence of
supersymmetry is also motivated in the string theory which
is expected as the ultraviolet completions of the standard
model (SM). This is because the SUSY guarantees the
absence of tachyons in the string theory.
In the minimal supersymmetric standard model (MSSM),

the large radiative corrections are indicated by the observed
Higgs boson mass within ranges between 124.4 and
126.8 GeV [1]. One of the solutions to raise the Higgs boson
mass in theMSSMis thehigh-scaleSUSY-breaking scenario,
and then theSUSYflavorandCPproblemscanbealsosolved
at the same time. However, this scenario brings the tuning
problem to the MSSM in order to realize the successful
electroweak (EW) symmetry breaking. By contrast, there is
another solution to raise theHiggsbosonmassby thenatureof
left-rightmixingof the top squarks.Aspointedout inRef. [2],
the nonuniversal gaugino masses at the grand unification
theory (GUT) scale MGUT ≃ 2 × 1016 GeV lead to the
maximal mixing of the top squarks and then, the realistic
Higgs boson mass can be achieved without a severe fine-
tuningby thestructureof the renormalizationgroupequations
in the MSSM. Throughout this paper, we focus on this low-
scale SUSY-breaking scenario.
The SUSY-breaking scenarios aremainly categorized into

the gravity mediation [3], gauge mediation [4], and the
anomaly mediation [5]. For any mediation mechanisms, the
gravitino mass is sensitive to the cosmological problem, e.g.,
the cosmological gravitino problem [6]. If the gravitino is not
stable, the mass of the gravitino should be larger than
Oð10 TeVÞ in order to be consistent with the successful
big bang nucleosynthesis (BBN). The lower limit of the
gravitino mass depends on the reheating temperature; for

more details see Refs. [6–10].1 Therefore, before discussing
our considered situation, we comment on several SUSY-
breaking scenarios, focusing on the mass of the gravitino.
In the gauge mediated SUSY-breaking scenario, the dark

matter candidate is the ultralight gravitino of mass m3=2 ≪
Oð1 GeVÞ under the low-scale SUSY breaking. Note that if
the gravitinomass is larger than this scale, it is expected that the
gravitational interactions give the sizable effects to the dynam-
ics of the SUSY-breaking sector as well as the visible sector. In
the pure anomaly mediated SUSY-breaking scenario, the
winolike neutralino is likely to be the dark matter candidate
due to the structure of the beta functions in the MSSM [12].
However, the recent results of the LHC experiments [13]
indicate the TeV scale gluino mass; in other words, the large
mass of the gravitino m3=2 ≃Oð100 TeVÞ is required in the
framework of anomaly mediation. In the mirage mediation
[14], the mixed neutralino would be the dark matter candidate
and the large gravitino mass aboveOð10 TeVÞ is expected in
the light of the cosmological gravitino problem. In the gravity
mediation, the neutralino dark matter is often considered
under the large gravitino mass above Oð10 TeVÞ with high-
scale SUSY breaking; otherwise, SUSY flavor violations arise
due to the flavor dependent interactions.
In this paper, we consider the gravity mediated

SUSY-breaking scenario which is compatible with the
low-scale SUSY and observed Higgs boson mass without
the cosmological gravitino and SUSY flavor problems. In
general, the gravity mediation connects the scale of the
gravitino mass with that of the supersymmetric particle,
because the origin of soft SUSY-breaking terms is only the
gravitational interactions. Therefore, it seems to be difficult
to solve the cosmological gravitino problem with the low-
scale SUSY-breaking scenario. In order to realize the low-
scale SUSY without the cosmological gravitino problem,
we propose the mechanism to generate the mass hierarchies
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1It is also possible to consider the light gravitino in the
extension of the MSSM. See, e.g., Ref. [11].
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between the gravitino and the other sparticles based on the
framework of a four-dimensional N ¼ 1 supergravity (4D
N ¼ 1 SUGRA). Especially, we focus on the case that the
gravitino is the lightest supersymmetric particle (LSP)
whose mass is of Oð100 GeVÞ. Since such a stable
gravitino is much heavier than that predicted by the gauge
mediated SUSY-breaking scenario, this would be the
typical feature of the gravity mediation. There are some
studies for the gravitino dark matter with assumed sparticle
spectra that focus on the cosmological implications and it is
then found that the next-to-the-lightest supersymmetric
particle (NLSP) is severely constrained. (See, e.g.,
Refs. [10,15–17].) In order to determine the relevant
higher-dimensional operators in 4D N ¼ 1 SUGRA, we
consider a five-dimensional supergravity (5D SUGRA)
compactified on an orbifold S1=Z2. In the framework of
5D SUGRA, the successful inflation mechanism as well as
the moduli stabilization can be realized as suggested in
Refs. [18,19]. The dynamics of inflaton and moduli are
important to evaluate the abundance of the gravitino
produced via the inflaton and moduli decay into the
gravitino. Furthermore, the Yukawa hierarchies of elemen-
tary particles can be realized without a severe fine-tuning
by employing the localized wave function of quarks,
leptons, and Higgs in the fifth dimension [20].
The following sections are organized as follows. In

Sec. II, we discuss how to realize the mass hierarchies
between the gravitino and other supersymmetric particles in
4D N ¼ 1 SUGRA. As a concrete model, in Sec. III, we
briefly review the structure of 5D SUGRA on S1=Z2 and
then the gravitino can be the dark matter candidate. Thanks
to the detailed moduli stabilization as well as the inflation
mechanism, one can discuss the nonthermal productions of
the gravitino via the moduli and inflaton decay after the
inflation. After that, in Sec. IV, we evaluate the relic
abundance of the gravitino and the Higgs boson mass with
a severe fine-tuning. The obtained results are consistent
with the cosmological observations as well as the collider
experiments. Finally, Appendixes A and B denote the
detailed derivations of the scalar potential around the
vacuum and during the inflation, respectively.

II. THE MASS HIERARCHIES BETWEEN
THE GRAVITINO AND OTHER SPARTICES

In this section, we show how to realize the mass
hierarchies between the gravitino and other sparticles in
the framework of 4D N ¼ 1 SUGRA. The scalar potential
in 4D N ¼ 1 SUGRA is given by

V ¼ eKðKIJ̄DIWDJ̄W̄ − 3jWj2Þ
¼ KIJ̄F

IFJ̄ − 3eK=2jWj2; ð1Þ
where K and W are the Kähler and superpotential,
respectively. DIW ¼ WI þ KIW with WI ¼ ∂W=∂QI ,
KI ¼ ∂K=∂QI are the Kähler covariant derivatives of

the superpotential for the scalar components of the chiral
superfields QI , FI ¼ −eK=2KIJ̄DJ̄W̄ are the F-terms of QI

and KIJ̄ are the inverse of Kähler metric KIJ̄ ¼ ∂I∂ J̄K.
Here and hereafter, we set the Planck unit MPl ¼ 1, unless
we specify it. The vanishing cosmological constant
hVi ¼ 0 is rewritten in the following form:

m2
3=2 ¼

1

3
hKXX̄F

XFX̄i; ð2Þ

where m3=2 ¼ ehKi=2hWi is the gravitino mass. It is then
assumed that the SUSY is broken by the single chiral
superfield X,2 whereas the soft SUSY-breaking masses of
the gauginos and scalar components of the chiral super-
fields QI are given by

Ma ¼ hFX∂X ln ðRefaÞi;
m2

ΦI ¼ −hFXF̄X̄∂X∂X̄ lnYΦIi; ð3Þ
where fa, a ¼ Uð1ÞY; SUð2ÞL; SUð3ÞC are the gauge
kinetic functions of the standard model gauge groups
whose vacuum expectation values (VEVs) determine the
size of gauge couplings. YQI are some nontrivial functions
for the kinetic term ofQI which can be severely constrained
by the flavor structure of elementary particles as can be
seen later. From the above equations, (2) and (3), the
nontrivial Kähler metric of the SUSY-breaking field X
gives rise to two nontrivial possibilities:

(i) The gravitino dark matter:
In the case of hKXX̄i ≪ 1, the gravitino mass is

smaller than the soft SUSY-breaking masses for any
value of the F-term hFXi. Then it is possible to
consider the gravitino dark matter in the gravity
mediated SUSY-breaking scenario with TeV scale
gauginos and sparticles. It is then assumed that the
derivatives of the gauge kinetic function ∂XRefa and
the kinetic term ofΦI , ∂X∂X̄ lnYΦI satisfy the certain
conditions in order to obtain the gravitino dark
matter. This is because the renormalization group
(RG) effects are significant to discuss the sparticle
spectrum. Such conditions are discussed in the case
of constrained MSSM (CMSSM) [21].

The stable gravitino would be consistent with the
thermal history of the Universe, even if the decays of
NLSPdonot spoil the success ofBBN [10,15–17] and
at the same time, the relic abundance of the gravitino
should not be larger than that reported by the Planck
Collaboration [22]. In any case, the stable gravitino is
favored in the light of naturalness, because theF-term
of the SUSY-breaking field can be taken as a usual
low-scale SUSY-breaking scenario which soften the
divergences for the Higgs boson mass. Note that the
smallKählermetric of the fieldX should be ensured in

2It is straightforward to extend our situation in multiple SUSY-
breaking fields.
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order not to be below that generated by the loop and/or
higher derivative corrections.

(ii) Other dark matter candidates:
By contrast, in the case of hKXX̄i ≫ 1, it is

expected that the gravitino is heavier than the other
sparticles for any value of the F-term hFXi with
∂XRefa and ∂X∂X̄ lnYΦI of order unity. Thus, one
can solve the cosmological gravitino problem with
the low-scale SUSY-breaking scenario. Then, the
gravitino mass can be chosen as above 10 TeV;
otherwise, the BBN is threatened by the gravitino
decay into the electronic and hadronic showers.
Although we do not pursue this possibility, it is
interesting to work in this direction.3

III. GRAVITINO DARK MATTER IN 5D SUGRA

A. 4D effective Lagrangian and matter contents

The soft SUSY-breaking terms are sensitive to the
ultraviolet completion of the SM. As a concrete model,
we consider the 5D SUGRA on S1=Z2 and the flat 5D
background metric,

ds2 ¼ ημνdxμdxν − dy2;

where xμ with μ ¼ 0, 1, 2, 3 and y denote the 4D spacetime
and fifth coordinates, respectively. ημν¼diagð1;−1;−1;−1Þ
and the fundamental region of the orbifold is chosen as 0 ≤
y ≤ L in which y ¼ 0; L correspond to the fixed points. The
S1=Z2 orbifold restricts all fields fðx; yÞ to two classes of
them such as Z2-even and -odd fields, satisfying the follow-
ing Z2 transformations: fðx;−yÞ ¼ fðx; yÞ and fðx;−yÞ ¼
−fðx; yÞ, respectively. Only Z2-even fields have zero modes
which can appear in the low-energy effective theory.
First of all, we list the relevant matter contents of 5D

SUGRA. From the structure of the orbifold, 5D SUSY is
broken into the 4D N ¼ 1 SUSY. Correspondingly, 5D
vector multiplets VI and hypermultiplets Φα are decom-
posed into 4D vector multiplets VI and three types of chiral
multiplets ΣI , Φα, and ΦC

α , that is, VI ¼ fVI;ΣIg with I ¼
1; 2;…; nv andHα ¼ fΦα;ΦC

αg with α ¼ 1; 2;…; nH þ nC
where nC is the number of compensator hypermultiplets
and in this paper, it is chosen as nC ¼ 1, for simplicity.
In addition to the usual Z2-even vector multiplets VI

involving the vector multiplets in the standard model,
we consider Uð1ÞI0 Z2-odd vector multiplets VI0 with
I0 ¼ 1; 2;…; nI

0
V . The zero modes of Z2-even chiral mul-

tiplets ΣI0 are called as themoduli chiralmultipletsTI0 whose
linear combination4 plays a role of the inflaton field as
pointed out in Ref. [18]. In what follows, we define the zero
mode of chiral multiplets Φα asQα which involve the quark
chiral multiplets ðQi;U i;DiÞ, lepton chiral multiplets

ðLi; Ei; NiÞ with the number of generations i ¼ 1, 2, 3,
Higgs chiral multiplets ðHu;HdÞ, SUSY-breaking chiral
multipletX and the stabilizermultipletsHI0 . Thesemultiplets
have representations of the standardmodel gauge groups and
extraUð1ÞI0 gauge groups whose gauge fieldsAI

M,A
I0
M living

in vector multiplets VI and VI0 , respectively. It then assigns

Uð1ÞI0 charges cðαÞI0 to these hypermultiplets Hα. Here it is
assumed that the visible sector consists of the MSSM plus
right-handed (s)neutrinos and the same number of stabilizer
hypermultiplets as that of moduli multiplets in order to
generate the moduli and inflaton potential as can be
shown later.
Next, we show the effective action obtained from the

5D conformal supergravity action for vector and hyper-
multiplets which is an off-shell description of 5D SUGRA
[23,24]. The structure of the Kähler potential in 5D
SUGRA on S1=Z2 can be characterized by the cubic
polynomial of vector multiplets, the so-called norm
function, N ðMÞ ¼PnV

I;J;K¼1 CI;J;KMIMJMK with real
coefficients CI;J;K for I; J; K ¼ 1; 2;…; nV, and the
Uð1ÞI0 charges of hypermultiplets. After the off-shell
dimensional reduction discussed in Refs. [25–27] based
on the 4D N ¼ 1 superspace [28,29],5 the 4D effective
Lagrangian is given by

Leff ¼ −
1

4

�Z
d2θ
X
a

faðX; TÞtrðWaWaÞ þ H:c:

�

þ
Z

d4θjϕj2ΩeffðjQj2;ReTÞ

þ
�Z

d2θϕ3WðQ; TÞ þ H:c:

�
; ð4Þ

where ϕ is the compensator multiplet, Wa is the field
strength supermultiplet for massless 4D vector multiplets
Va with a ¼ Uð1ÞY; SUð2ÞL; SUð3ÞC originating from the
5D Z2-even multiplets Va, Qα are the 4D chiral multiplets,
X is the 4D chiral multiplet which induces the SUSY
breaking, and TI0 are the moduli chiral multiplets.
Then, the gauge kinetic functions faðX; TÞ in Eq. (4) are

supposed as

faðX; TÞ ¼ ξaXX þ
XnI0V
I0¼1

ξaI0T
I0 ; ð5Þ

where ξaI0 and ξaX are real constants determined by the real
coefficients CI0;J;K in the norm function and the gauge
kinetic functions at the orbifold fixed point y ¼ 0, respec-
tively. Since the gauge kinetic functions at the orbifold
fixed points depend on the dynamics of the SUSY-breaking
sector, we comment on the reason why we take the above
ansatz later.

3We will discuss it in the separate work.
4In the case nI

0
V ¼ 1, the radion multiplet corresponds to the

single modulus TI0¼1.

5The more general 5D action, including Z2-odd fields, is
discussed in Refs. [30,31].

MODULI STABILIZATION TO A NATURAL MSSM WITH … PHYSICAL REVIEW D 92, 045001 (2015)

045001-3



On the other hand, the effective Kähler potential in
Eq. (4) is given by

ΩeffðjQj2;ReTÞ ¼ N 1=3ðReTÞ
�
−3þ 2

X
a

Yðcα · TÞjQαj2

þ
X
α;β

~Ωð4Þ
α;βðReTÞjQαj2jQβj2 þOðjQj6Þ

�
;

ð6Þ

without the Kähler potential at the orbifold fixed
points y ¼ 0; L, where N ðReTÞ is the norm function,
YðzÞ≡ ð1 − e−2RezÞ=2Rez stands for the kinetic terms of
Qα which have appeared after solving their equation
of motion in the fifth direction, and cI

0
α denote the

Uð1ÞI0 charges of Qα. The four-point couplings ~Ωð4Þ
α;β are

defined as

~Ωð4Þ
α;β ≡ −

ðcα · Pa−1 · cβÞfYððcα þ cβÞ · TÞ − Yðcα · TÞYðcβ · TÞg
ðcα · ReTÞðcβ · ReTÞ

þ Yððcα þ cβÞ · TÞ
3

;

PI
JðXÞ≡ δIJ −

X IN J

3N
ðXÞ; ð7Þ

where PI
JðXÞ is the operator to project the moduli

multiplets out the radion multiplet. The notable feature
there is that the flavor structure of matter fields is
characterized by the Uð1ÞI0 charges of them in the Kähler
potential (6). By contrast, the superpotential can be allowed
only at the orbifold fixed points where the SUSY is reduced
to the 4DN ¼ 1. Therefore, we consider the superpotential
including the Yukawa couplings and μ-term in the MSSM,
moduli potential at y ¼ 0, and the moduli potential at
y ¼ L, respectively. The explicit form of the superpotential
in Eq. (4) is shown later.

B. Gravitino dark matter in 5D SUGRA

In this section, we show the realization ofmass hierarchies
between the gravitino and other sparticles in the framework
of 5D SUGRA. As shown in Eq. (6) in Sec. III A, the bulk
Kähler potential is rewritten as

Kbulk ¼ −lnN ðReTÞ þ
X
a

ZQa
ðReTÞjQaj2

þ ZXðReTÞjXj2 þOðjQj4Þ; ð8Þ

where the Kähler metricKXX̄ for the SUSY-breaking field X
is given by

KXX̄ ¼ ZXðReTÞ ¼
1 − e−2cX ·ReT

cX · ReT

≃
(

1
cX ·ReT

; cX · ReT > 0;

1
jcX ·ReT j expð2jcX · ReTjÞ cX · ReT < 0;

ð9Þ

where KXX̄ depends on the Uð1ÞI0 charges of the field X for
the Z2-odd vector multipletsVI0 and the VEVs of the moduli
TI0 , except for the case of the vanishing Uð1ÞI0 charges. For
the mild large volume of the fifth dimension, L≃
N 1=2ðhReTiÞ ≫ 1 and positive Uð1ÞI0 charges, the VEV

of theKählermetric is smaller thanOð1Þ, that is, hKXX̄i ≪ 1,
which is important to obtain so that the light gravitino can be
lower than the other sparticles.
The soft SUSY-breaking masses for the scalar compo-

nents of Qα are given by the four-point couplings ~Ωð4Þ
α;X in

Eq. (7). For typical Uð1ÞI0 charges of Qα to realize the
realistic Yukawa couplings, the soft SUSY-breaking masses
are larger than the gravitino mass as shown later.
Furthermore, the gauge kinetic functions in Eq. (5) lead
to the following gaugino masses at the compactification
scale by employing the formula (3),

Ma ¼
FX

g2a
ξaX þ

XnI0V
I0¼1

FTI0

g2a
ξaI0 : ð10Þ

When the compactification scale is close to the GUT scale,
we obtain the gaugino masses at the EW scale after solving
the one-loop RG equations from the GUT scale to the EW
scale,

M1ðMEWÞ≃ 0.4M1ðMGUTÞ;
M2ðMEWÞ≃ 0.8M2ðMGUTÞ;
M3ðMEWÞ≃ 2.9M3ðMGUTÞ: ð11Þ

Then, the gravitino LSP occurs if these gaugino masses at
the EW scale are larger than the gravitino, as pointed out in
Ref. [21]. In the case of 5D SUGRA, such situations can be
realized by properly choosing the parameters ξaX, ξ

a
I0 and at

the same time, the Higgsino mass should be larger than the
gravitino mass. Thus, one can consider the gravitino dark
matter in the gravity mediated SUSY-breaking scenario
without changing the VEVs of the F-terms as discussed in
Sec. II. In order to estimate thermal and nonthermal
abundances of gravitino via the moduli and/or inflaton
decay, we focus on the specific model which realizes the
successful moduli inflation as well as the moduli stabiliza-
tion [18] in the next section, III C.
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The mild large volume also reduces the contribution
from the Kähler potential at the orbifold fixed points y ¼
0; L to be small compared with the bulk Kähler potential
(8). Since their boundary terms are described by

Kboundary ¼ N −1=3ðKð0ÞðjXj2Þ þ KðLÞðe−cX _ðTþT̄ÞjXj2Þ
þ � � �Þ; ð12Þ

the overall factor N −1=3 suppress these contributions. The
one-loop corrections to the moduli Kähler potential [32] are
also suppressed by the mild large volume of the fifth
dimension.
By contrast, in the case of negative Uð1ÞI0 charges, the

VEV of the Kähler metric is bigger than Oð1Þ, that is,
hKXX̄i ≫ 1. From the mass formula of the gravitino and
sparticles given by Eqs. (2) and (3), one can expect that the
sparticles are lighter than the gravitino without changing
the F-term of the SUSY-breaking field. Thus, it is possible
to solve the gravitino and fine-tuning problems at the
same time.

C. Moduli stabilization

Following the discussion about the small-field inflation
in Ref. [18], we choose the norm function as

N ðReTÞ ¼ ðReT1ÞðReT2ÞðReT3Þ; ð13Þ
which leads to the diagonal moduli Kähler metric. Because
it seems to be difficult to obtain the realistic masses and
mixings of quarks and leptons in the case of two moduli as
shown in Sec. IVA, we restrict ourselves to the case of
three moduli TI0¼1;2;3 in what follows. In order to generate
the moduli potential, we introduce the same number of
stabilizer chiral multiplets Hi as that of moduli chiral
multiplets as stated in Sec. III A. The effective Kähler
potential, except for the SUSY-breaking field X and other
matters in the MSSM are

K ¼ −lnN ðReTÞ þ
X3
i¼1

ZHi
ðReTI0¼iÞjHij2; ð14Þ

where it is then assumed that the stabilizer fields Hi have
only the Uð1ÞI0¼i charge with i ¼ 1, 2, 3, for simplicity. In
addition to it, the relevant superpotential for the moduli
inflation and stabilization is

Wmod ¼
X3
i¼1

JðiÞ0 Hð0Þ
i −

X3
i¼1

JðiÞL HðLÞ
i

¼
X3
i¼1

ðJðiÞ0 − JðiÞL e−c
ðiÞ
I0 T

I0 ÞHð0Þ
i ; ð15Þ

where JðiÞ0;L are constants at the orbifold fixed points y ¼
0; L and the exponential factor e−c

ðiÞ
I0 T

I0
comes from the

profile of the wave function of the stabilizer fields in the

fifth direction, HðLÞ
i ¼ e−c

ðiÞ
I0 T

I0
Hð0Þ

i . Here we assume that
these tadpole terms are dominant in the superpotential and
the other terms are negligible due to some symmetries or
dynamics.6 In the following, we omit the subscripts of the

stabilizer fields at the fixed point y ¼ 0, that is Hi ¼ Hð0Þ
i .

In fact, from the 4D scalar potential (1) given by the
Kähler and superpotential (14), (15), the expectation
values of the moduli TI0 and the stabilizer fields Hi are
found as [19]

cðiÞI0 hTI0 i ¼ ln
JðiÞL
JðiÞ0

; hHii ¼ 0; ð16Þ

which are determined by the stabilization conditions,
hDI0Wi ¼ hDiWi ¼ hWi ¼ 0, at which the supersymmet-
ric Minkowski minimum can be realized, hVi ¼ 0. Their
supersymmetric masses of moduli and stabilizer fields are
estimated as

m2
I0i ≃

ehKihWI0ii2
hKI0 Ī0 ihKiīi

; ð17Þ

where hWI0ii ¼ −cðiÞI0 J
ðiÞ
L e−c

ðiÞ
I0 T

I0
and Wij ¼ ∂i∂jW. Now

there are no mixing terms between the moduli and stabilizer
fields in the mass matrices due to the diagonal Kähler
metric of them. From the exponential behaviors of super-
symmetric masses (17), the mass scales of moduli and
stabilizer fields are controlled by the sizes of Uð1ÞI0¼i

charge and constants JðiÞ0;L.
So far, the SUSY is not broken in the superpotential (15).

For the SUSY-breaking sector, we consider the
O’Raifeartaigh model [34] which is simplified as the
following Kähler and superpotential of the SUSY-breaking
field X after integrating out the heavy modes:

K¼ZXðReT1;ReT2ÞjXj2− 1

Λ2
jXj4; W¼wþνX; ð18Þ

where w, ν are the real parameters and the SUSY-breaking
field X has no Uð1Þ3 charge, for simplicity. The Kähler
potential receives the loop corrections from the heavy
modes, whose mass scale is Λ [35].
In general, the true vacuum of the moduli and stabilizer

fields are deviated from the supersymmetric one due to the
SUSY-breaking effects and then the moduli and stabilizer
fields obtain their F-terms at the true vacuum. Since their
F-terms would change the cosmological history of the
Universe through the moduli decay into the gravitinos, it is
important to evaluate their F-terms at the true vacuum. For
that reason, we adopt the perturbation method, known as
the reference point method [36] to search for the true vacua
of all the fields.

6A similar moduli stabilization was proposed in Ref. [33] in
the case of nC ¼ 2.
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First, as the reference points for the moduli and stabilizer fields, we take them as given in Eq. (16) satisfying as

DHi
Wjref ¼ WHi

þ KHi
W ¼ 0; DTI0Wjref ¼ KTI0w; ð19Þ

and for the SUSY-breaking field X, its reference point is taken as that satisfying the following stabilization condition:

e−KVXjref ¼ ∂X

�X
I0
KTI0 T̄Ī0 jDTI0Wj2 þ KXX̄jDXWj2 − 3jWj2

�

≃ 3WXW̄ þ ∂XðKXX̄ÞjWXj2 þ KXX̄WXKXX̄W̄ − 3WXW̄

≃ 4jWXj2
Λ2ðZXÞ2

X̄ þWXW̄ ¼ 0; ð20Þ

in the limit w ≪ 1, where VX ¼ ∂XV. Thus, we obtain

Xjref ¼ −
Λ2ðZXÞ2

4

�
W
WX

�
≃ −

Λ2ðZXÞ2w
4ν

: ð21Þ

Next, we expand these fields as ϕ → ϕjref þ δϕ, ϕ ¼ TI0 ; Hi; X with I0; i ¼ 1; 2; 3 and evaluate their perturbations from the
reference points given by Eqs. (16) and (21) under the following conditions:

V ¼ Vjref þ VIjrefδϕI þ VĪjref ¯δϕI þ VIJjrefδϕIδϕJ þ VIJ̄jrefδϕI ¯δϕJ þ VĪ J̄jref ¯δϕI ¯δϕJ þOðδϕ3Þ;
jVIjrefδϕI þ VĪjref ¯δϕIj ≫ jVIJjrefδϕIδϕJ þ VIJ̄jrefδϕI ¯δϕJ þ VĪ J̄jref ¯δϕI ¯δϕJ j; ð22Þ

where VI ¼ ∂IV and VIJ ¼ ∂I∂JV are the derivatives for the relevant fields ϕ, and then ϕjref þ δϕ are considered as the
vacua of relevant fields. Note that these perturbations are valid even if the SUSY-breaking scale is smaller than the scale of
supersymmetric masses given by Eq. (17). As a result, the deviations of the fields from the reference points (16), (21) are

δHi ≃ w

2ReTI0WTI0Hi

; δTI0 ≃
�

w
WTI0Hi

�
2

; δX ≃
�
Λ2Z2

X

4w2

�
5wWX; ð23Þ

and the F-terms and squared masses of moduli, stabilizer, and SUSY-breaking fields are roughly estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KTI0 T̄I0

p
FTI0 ≃O

�
w3

m2

TI0

�
;

ffiffiffiffiffiffiffiffiffiffiffiffi
KHiH̄i

q
FHi ≃O

�
w3

m2
Hi

�
;

ffiffiffiffiffiffiffiffiffi
KXX̄

p
FX ≃ −ν

N 1=2Z1=2
X

m2

TI0 ≃m2
Hi

≃
eKW2

TI0Hi

KTI0 T̄I0KHiH̄i

ðI0 ¼ iÞ; m2
X ≃ eK

KXX̄

4w2

Λ2Z2
X
; ð24Þ

at the vacuum, ϕ ¼ ϕjref þ δϕ. The mass squares of real
and imaginary parts of moduli, stabilizer, and SUSY-
breaking fields are the same as each other and here and
in what follows, they are denoted as m2

TI0 , m
2
Hi
, and m2

X,

respectively. The details of these derivations are summa-
rized in Appendix A. The mass differences between mTI0¼i

and mHi
are of the order of the gravitino mass. It is

remarkable that the fields, except for the SUSY-breaking
field X, have almost vanishing F-terms due to their large
supersymmetric masses.

D. Moduli inflation

In this section, we briefly review the inflation
mechanism in which the inflaton is identified as one

of the real parts of the moduli. Although in Ref. [18],
both the small- and large-field inflation are discussed
in the light of recent Planck results, in this paper, we
restrict ourselves to the small-field inflation, for simplic-
ity.7 The inflaton potential is generated by the Kähler
and superpotential of the pair ðT3; H3Þ in Eqs. (14)
and (15),

K ¼ − lnN þ ZH3
ðReT3ÞjH3j2;

Winf ¼ ðJð3Þ0 − Jð3ÞL e−c
ð3Þ
3
T3ÞH3; ð25Þ

where

7The extension to the large-field inflation is straightforward.
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ZH3
ðReT3Þ ¼ 1 − e−2c

ð3Þ
3
ReT3

cð3Þ3 ReT3
; ð26Þ

and the effective scalar potential is obtained from Eq. (1)
with the above Kähler and superpotential (25),

V inf ¼ eKKH3H̄3 jWH3
j2 ≃ jJð3Þ0 − Jð3ÞL e−c

ð3Þ
3
T3 j2

hReT1ihReT2ið1 − e−c
ð3Þ
3
T3Þ

;

ð27Þ

where ReT3 is identified as the inflaton. Here, it is
supposed that the other moduli TI0 , stabilizer fields Hi

with I0; i ¼ 1; 2 are heavier than the pair ðT3; H3Þ and fixed
at their minima. This is because the minima of them are
fixed by their own superpotential in Eq. (16), and they can
be decoupled from the pair ðT3; H3Þ by choosing the
parameters in the superpotential (15),

Jð1Þ0 ¼ Jð2Þ0 ¼ 1

9
; Jð1ÞL ¼ Jð2ÞL ¼ 1; ð28Þ

and the nonvanishing Uð1Þ1;2;3 charges of H1;2,

cð1Þ1 ¼ cð2Þ2 ¼ 1

50
; ð29Þ

whereas the constants Jð3Þ0;L are chosen to be small com-

pared with Jð1Þ;ð2Þ0;L as shown later. Furthermore, in the
following analysis, we omit the fluctuation of H3 and X,
because their minima are fixed around the origin by the
Hubble-induced mass during the inflation. Im T3 is also
fixed at the origin during and after the inflation. They can
be checked that the fluctuations of these fields are
negligible to the inflaton dynamics as explicitly shown
in Appendix B.
When Re T3 is identified as the inflaton, the effective

scalar potential (27) is similar to the one in the Starobinski
model [37] and is drawn in Fig. 1 with the parameters given
by Eqs. (28), (29), and (36). From Fig. 1, the inflaton, Re
T3 can roll its potential slowly down to its minimum from
the large value of Re T3. In order to evaluate the
cosmological observables for the cosmic microwave back-
ground (CMB) observed by Planck, we define the slow-roll
parameters for the inflaton, σ ≡ ReT3,

ϵ≡M2
Pl

2

∇σV infKσσ∇σV inf

V2
inf

;

η≡∇σ∇σVinf

V inf
; ð30Þ

where ∇σ is the Kähler covariant derivative for the field σ.
With these slow-roll approximations, the power spectrum

of the scalar curvature perturbation, its spectral index, and
tensor-to-scalar ratio can be expressed as

PξðkÞ ¼
1

24π2
V inf

ϵ
;

ns ¼ 1þ d lnPξðkÞ
d ln k

≃ 1 − 6ϵþ 2η;

r ¼ 16ϵ: ð31Þ

The recent data reported by the Planck Collaboration
shows the almost scale invariant spectrum and the upper
limit of r [22],

PξðkÞ≃ 2.20� 0.10 × 10−9; ns ¼ 0.9655� 0.0062;

r < 0.11; ð32Þ

at the scale k� ¼ 0.05 ½Mpc−1�. The inflaton dynamics is
obeyed by its equation of motion,

σ00 ¼ −
�
1 −

gσσðσ0Þ2
6

��
3σ0 þ 6σ2

V0

V

�
þ ðσ0Þ2

σ0
; ð33Þ

where 0 denotes the d=dN by employing the number
of e-foldings N rather than time;

aðtÞ ¼ eN;
d
dt

¼ dN
dt

d
dN

¼ H
d
dN

; ð34Þ

where aðtÞ is the scale factor of 4D spacetime. The metric
gσσ is connected to the Kähler metric KT3T̄3 such that
1
2
gσσ∂σ∂σ ¼ KT3T̄3∂T3∂T̄3 and Γσ

σσ ¼ −1=σ is the
Christoffel symbol. As a result, it is found that the power
spectrum of scalar curvature perturbation, its spectral index,
and tensor-to-scalar ratio are consistent with the current
cosmological data,

PξðkÞ≃ 2.2 × 10−9; ns ≃ 0.96; r≃ 10−5; ð35Þ

with enough e-foldingsN ≃ 58 and then the parameters are
chosen as

10 20 30 40 50 60
Re T3

1 10 13

5 10 13

1 10 12

Vinf

FIG. 1 (color online). Inflaton potential V inf on the ImT1 ¼ 0
hypersurface.
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Jð3Þ0 ¼ 1

4000
; Jð3ÞL ¼ 3

4000
; cð3Þ3 ¼ 1

10
: ð36Þ

The running of the scalar spectral index is negligible,
relative to the current observational sensitivity.
When the numerical values of the parameters are

chosen as those in Eqs. (28), (29) and (36), the moduli
VEVs become

ðRehT1i;RehT2i;RehT3iÞ≃ ð110; 110; 11Þ; ð37Þ

in the unit MPl ¼ 1. According to these moduli VEVs, the
typical Kaluza-Klein mass scale is found as

Mc ¼
π

L
≃ π

hN 1=2i≃ 2.1 × 1016 GeV; ð38Þ

which is close to the GUT scale due to the mild large
volume of the fifth dimension, hN 1=2i≃ 364. The mass of
moduli TI0 and stabilizer fields Hi are also given by

mT1 ≃mT2 ≃mH1
≃mH2

≃ 4.8 × 1015 GeV;

mT3 ≃mH3
≃ 4 × 1012 GeV; ð39Þ

and their F-terms become

FT1 ≃ FT2 ≃ FH1 ≃ FH2 ≃ 1 × 10−42;

FT3 ≃ FH3 ≃ 1.6 × 10−36; ð40Þ

in the unit MPl ¼ 1.
So far, we have specified the parameters relevant for the

moduli and stabilizer fields. The parameters in the Kähler
and superpotential (18) for the SUSY-breaking sector are
considered as

ν≃−1.567 � � �×10−14; w¼−6×10−14;

Λ¼ 10−4; cð1ÞX ¼ 3

10
; cð2ÞX ¼ 1

10
; cð3ÞX ¼ 0; ð41Þ

where ν is proper chosen as realizing the Minkowski
minimum. Then, the mass of the gravitino and the mass
and F-term of X are obtained as

m3=2 ≃ 395 GeV; mX ≃ 6 × 108 GeV;

FX

MPl
≃ 4541 GeV; ð42Þ

which implies that the gravitino mass is suppressed by
the Kähler metric of the SUSY-breaking field, KXX̄ ≃
1=ðcX · ReTÞ≃ 0.023 as discussed in Sec. III B and the
concrete sparticle spectra are shown in Sec. IV C.

E. Moduli-induced gravitino problem
and reheating temperature

As mentioned in Sec. III C, the moduli and stabilizer
fields are so heavy that they decay into the particles in the
MSSM before the BBN. However, even if they are much
heavier thanOð100 TeVÞ, it has to be taken into account of
the cosmological problem, e.g., the moduli-induced grav-
itino problem [38,39].
The moduli decay width into the gravitino pair can be

evaluated by the couplings between moduli and gravitinos
in the unitary gauge,

L3=2 ¼ ϵμνρσψ̄μσ̄ν ~Dρψσ − eK=2W�ψμσ
μνψν

− eK=2Wψ̄μσ̄
μνψ̄ν; ð43Þ

where ψμ denotes the gravitino in two-component formal-
ism and the relevant covariant derivatives of the gravitino
are ~Dρψσ ¼ ∂ρψσ þ 1

4
ðKJ∂ρϕ

J − KJ̄∂ρϕ̄
J̄Þ. After carrying

out a field-dependent chiral transformation,

ψμ →

�
W
W̄

�
−1=4

ψμ; ð44Þ

the Lagrangian (43) is simplified as

L3=2 ¼ ϵμνρσψ̄μσ̄ν∂ρψσ þ
ϵμνρσ

4
ðGJ∂ρϕ

J − GJ̄∂ρϕ̄
J̄Þψ̄μσ̄νψσ − eG=2ðψμσ

μνψν þ ψ̄μσ̄
μνψ̄νÞ; ð45Þ

where G ¼ K þ ln jWj2 and GJ ¼ ∂JG. When we expand the moduli TI0 around the vacuum given by employing the
reference point method (16) and (23), the Lagrangian (43) reduces to

L3=2 ¼ −
ϵμνρσ

2
Ψ̄μγ5γν∂ρΨσ þ

ϵμνρσ

8
ðhGTJ0 i∂ρδTJ0 − hGT̄J0 i∂ρδT̄J̄0 ÞΨ̄μγνΨσ

−
1

4
heG=2iΨ̄μ½γμ; γν�Ψν −

1

8
heG=2iðhGTJ0 iδTJ0 þ hGT̄J̄0 iδT̄J̄0 ÞΨ̄μ½γμ; γν�Ψν; ð46Þ

in the four-component formalism of the gravitino Ψμ. As shown in Eq. (39), the moduli and stabilizer fields, except for the
pair ðT3; H3Þ, are decoupled from the inflaton dynamics due to their heavy masses. Therefore, their decays can be neglected
and do not give the sizable effects in the thermal history of the Universe. In this respect, we focus on the decay processes of
T3, H3, and SUSY-breaking field X.
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1. The inflaton decay

First, we concentrate on the inflaton decay into the
gravitino pair. Since the gravitinowave function is described
in terms of helicity �1=2 components of the gravitino at a
high-energy limit by the equivalence theorem, the inflaton
decay width into the gravitino pair is estimated as

Γðσ3 → Ψ3=2Ψ3=2Þ≃ 1

288πhKT3T̄3i
����
�
DT3W
W

	����2 m5
T3

m2
3=2M

2
Pl

≃ 1

288πhKT3T̄3N i
mT3m2

3=2

M2
Pl

≃ 1.6 × 10−18 GeV; ð47Þ

by employing the F-term of modulus (24) and numerical
values of the mass, F-term of inflaton, and gravitino mass
given by Eqs. (39) and (40). Here, the reduced Planck mass
has been explicitly written. When the inflaton has the sizable
F-term at the vacuum, the enhancement factor m−2

3=2, as the
longitudinal mode of the gravitino, induces the significant
amount of gravitinos which would threaten to destroy the
success of BBN.However, in ourmoduli inflation, this direct
decay is so suppressed due to the almost vanishingF-term of
the inflaton. Therefore, the dominant decay process of
inflaton comes from the interactions with the gauge bosons,

LTgg ¼ −
1

4ðgaÞ2
Fa
μνFaμν −

1

4
ξaJ0δT

J0
RF

a
μνFaμν

−
1

8
ξaJ0δT

J0
I ϵ

μνρσFa
μνFa

ρσ; ð48Þ

where TJ0
R ¼ ReTJ0 , TJ0

I ¼ ImTJ0 . Now, the gauge kinetic
functions faðX; TÞ are considered as in Eq. (5). In general,
ξaXX in the gauge kinetic function (5) could appear, because
the R-symmetry is explicitly broken by the constant super-
potential w in Eq. (18).
The inflaton decay width into the gauge bosons are

X3
a¼1

Γðσ3 → gðaÞgðaÞÞ≃X3
a¼1

Na
G

128π

�
ξa3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KT3T̄3

p
	

2 m3
T3

M2
Pl

≃ 3.95 GeV; ð49Þ

with the numerical values of mass andVEVofmodulus (37),
(39), where Na

G are the number of the gauge bosons for the
gauge groupsUð1ÞY , SUð2ÞL, SUð3ÞC and the nonvanishing
coefficients in the gauge kinetic function are chosen as ξ13 ¼
ξ23 ¼ ξ33 ¼ 0.22 to realize the gauge coupling unification at
the GUT scale MGUT ≃ 2 × 1016 GeV. Although there are
the other decay processes via the inflaton decay into the
gauginos λa given by the interactions,

LTλλ ¼ −
i
2

X
a

RefaðλaσμDμλ̄
a þ ðH:c:ÞÞ

þ i
2

X
a

ImfaDμðλaσμλ̄aÞ

þ
X
a

�
1

4

∂fa
∂TI0 F

TI0
λaλa þ ðH:c:Þ

�
; ð50Þ

whereDμ is the covariant derivative for gaugino, such decay
channels are suppressed by the small masses of gauginos and
almost vanishing F-term of inflaton such as

X3
a¼1

Γðσ3 → ~λa ~λaÞ≃X3
a¼1

mT3

16π

ðξa3Þ2m2
λa

M2
Pl

≃ 1.5 × 10−21 GeV; ð51Þ
with mλ3 ≃ 1.5 TeV and the derivative of F-term for the
inflaton,�∂FT3

∂T3

	
¼
� ∂
∂T3

eK=2ðKT3T̄3 jDT3Wj2

þ KT3H̄3

DT3W ¯DH3WÞ
	
∼O

�
m4

3=2

m2
T3

�
: ð52Þ

The decays from the inflaton into sfermions are also
suppressed because of the factor, msfermion=mT3 , if the
masses of sfermions are of Oð1 TeVÞ. Other decays from
the inflaton into the fermion pairs and quark-quark-gluon
are negligible due to their small masses and phase factors,
respectively, as pointed out in Ref. [39]. The μ-term does
not give the sizable effects for the inflaton decay process,
because we consider the tiny μ-term (∼500 GeV) in the
light of naturalness as shown in Sec. IVA. Finally, we
comment on a single gravitino production via the inflaton
decay into the modulino and gravitino. Since the mixing
terms between T3 and H3 in the mass squared matrices are
controlled by the SUSY-breaking scale, i.e., the gravitino
mass, the mass difference between the inflaton and mod-
ulino as its superpartner is of the order of the gravitino
mass. Therefore, the inflaton decay width into the mod-
ulino ~σ3 and gravitino is suppressed by the phase factor
m3=2=mT3 ,

Γðσ3 → ~σ3Ψ3=2Þ≃ 1

48π

�
mT3

MPl

�
2
�
m3=2

mT3

�
m3=2

≃ 7.2 × 10−22 GeV; ð53Þ
with m3=2 ¼ 395 GeV, mT3 ¼ 4 × 1012 GeV given by
Eqs. (39) and (42). The inflaton decay into the SUSY-
breaking field X is also suppressed, because there is no tree-
level interaction between X and T3 due to the vanishing
Uð1Þ3 charge of X. As a result, the branching ratios of the
moduli decaying into the gravitino(s) are summarized as
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Γσ3
all ≡ Γðσ3 → allÞ≃X3

a¼1

Γðσ3 → gðaÞgðaÞÞ≃ 3.95 GeV;

Brðσ3 → Ψ3=2Ψ3=2Þ≃ Γðσ3 → Ψ3=2Ψ3=2Þ
Γσ3
all

≃ 1.4 × 10−20;

Brðσ3 → ~σ3Ψ3=2Þ≃ Γðσ3 → ~σ3Ψ3=2Þ
Γσ3
all

≃ 1.8 × 10−22;

ð54Þ

and then the reheating temperature is roughly estimated by
equaling the expansion rate of the Universe to the total
decay width of inflaton,

Γσ3
all ¼ HR⇔TR ¼

�
π2g�
90

�−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓallMPl

p
≃ 1.38 × 109 GeV; ð55Þ

where HR ¼ HðTRÞ and g�ðTRÞ ¼ 915=4 is the effective
degrees of freedom of the radiation in the MSSM at the
reheating. The gravitino yield Y3=2 via the inflaton decay is
suppressed due to the tiny branching ratio of the inflaton
decay into the gravitino(s),

Y3=2¼
n3=2
s

≃Brðσ3→ ~σ3Ψ3=2Þ
3TR

4mT3

≃3.8×10−24; ð56Þ

withm3=2 ¼ 395 GeV, TR ¼ 1.38 × 109 GeV, s ¼ 4ρ=3T,
where n3=2, s, and ρ are the number density of the gravitino,
entropy, and energy density of the Universe, respectively.
Now it is supposed that the coherent oscillation of the
inflaton field dominates the energy density of the Universe
after the inflation and there is no entropy production after
the inflation as shown later.
It is remarkable that the supersymmetric moduli stabi-

lization is important to suppress the direct decays from the
inflaton into the gravitino(s) which give the solution to the
cosmological moduli problem, especially the moduli-
induced gravitino problem. The other gravitino production
from the stabilizer fields, the SUSY-breaking field, and the
thermal bath can be estimated in the next section.

2. The decay of stabilizer and SUSY-breaking fields

The stabilizer field H3 is stabilized at the origin during
the inflation and after that, Re H3 oscillates around its
vacuum (23) deviated from the supersymmetric one (16).
On the other hand, Im H3 and Im X evolve to the origin
during inflation and do not oscillate after the inflation as
shown in Appendixes A and B. Similarly, the SUSY-
breaking field Re X oscillates around its vacuum after the
inflation. From the analyses in Appendixes A and B, the
amplitudes of both fields are found as

Δh3 ≃m3=2

mH3

; Δx≃
�
m3=2

mX

�
2

; ð57Þ

with h3 ¼ ReH3 and x ¼ ReX. By comparing their masses
given in Eq. (39) with the reheating temperature (55), the
coherent oscillations of both fields h3 and x start before the
reheating process. WhenH3 does not couple to the fields in
the MSSM, the dominant decay process is

Γh3
all ≡ Γðh3 → Ψ3=2Ψ3=2Þ

≃ 1

288πKH3H̄3

����
�
DH3

W

W

	����2 m5
H3

m2
3=2M

2
Pl

≃ 1

288πhKH3H̄3
N i

m3
H3

M2
Pl

≃ 0.02 GeV; ð58Þ

which implies the decay time of h3 is smaller than
the time of the coherent oscillation of h3 and reheating,
that is, Hh3

osc > HðTRÞ > Hh3
dec, with H

h3
osc ≃mh3 and H

h3
dec≃

Γðh3 → Ψ3=2Ψ3=2Þ. Here and in what follows, HR, HΦ
osc,

and HΦ
dec refer to the Hubble parameters at the time of

reheating, beginning of oscillation of relevant fields Φ, and
decay of Φ. The scale factors of 4D spacetime aR, aΦosc, and
aΦdec are also defined in the same way as the Hubble
parameters, HR, HΦ

osc, and HΦ
dec. The energy density of

coherent oscillation h3 is

ρh3 ≃
1

2
m2

H3
ðΔh3Þ2 ≃ 1

2
m2

3=2

�
a

ah3osc

�
−3
; ð59Þ

where ah3osc stands for the scale factor at the time when h3
begins to oscillate and ρh3 is converted into the gravitino
yield hereafter,

Yh3
3=2 ¼

2ρh3
mH3

s
≃ 1

4

m2
3=2TR

m3
H3

≃ 8.2 × 10−25; ð60Þ

with m3=2 ¼ 395 GeV, TR ¼ 1.38 × 109 GeV, and mH3
¼

4 × 1012 GeV. Here we employed that the entropy pro-
duction from h3 can be neglected. In our model, the
following inequality is satisfied due to the tiny mass of
the gravitino and then h3 does not dominate the Universe
and release the significant entropy,

1≫
ρh3
ρR

����
T¼T

h3
dec

¼ρh3
ρ

����
end

�
TR

T
t
h3
dec

�
≃m2

3=2M
2
Pl

2V inf

�
TR

T
t
h3
dec

�
; ð61Þ

where ρh3 , ρR are the energy densities of h3 and radiation,
respectively. ρjend ¼ V inf ≃Oð10−13Þ denotes the energy
density at the end of inflation and Th3

dec is the decay
temperature of h3,
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Th3
dec ¼

�
π2g�
90

�−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γh3
allMPl

q
≃ 8.6 × 107 GeV: ð62Þ

Furthermore, the SUSY-breaking field also produces the
gravitinos through the following dominant decay channel:

Γðx → Ψ3=2Ψ3=2Þ≃ 1

288πhKXX̄i
����
�
DXW
W

	����2 m5
X

m2
3=2M

2
Pl

≃ 1

288πhKXX̄i
���� νw
����2 m5

X

m2
3=2M

2
Pl

: ð63Þ

With the parameters (41), the VEVs of moduli (37), and
mass of Ψ3=2 and X (42), the total decay width of X then
becomes

Γx
all ≡ Γðx → Ψ3=2Ψ3=2Þ≃ 3.7 × 108 GeV: ð64Þ

Therefore, the decay time of x is smaller than that of
reheating, that is, Hx

osc > Hx
dec ≫ HðTRÞ, with Hx

osc ≃mX

and Hx
dec ≃ Γðx → Ψ3=2Ψ3=2Þ. The energy density of the

coherent oscillation x is converted into that of the
gravitino as

ρx ≃ 1

2
m2

xðΔxÞ2 ≃ 1

2

�
m4

3=2

m2
x

��
axdec
axosc

�
−3
�
aR
axdec

�
−4
; ð65Þ

at the time of reheating, where the gravitino is relativistic at
the time of production. By employing the scale factors,

aR
aσ

3

osc

¼
� ffiffiffi

6
p

Γσ3
all

mT3

�−2=3
;

axosc
aσ

3

osc

¼
� ffiffiffi

6
p

mX

mT3

�−2=3
;

axdec
aσ

3

osc

¼
�
6ðΓx

allmXÞ2
m4

3=2

�−1=3
; ð66Þ

the gravitino yield is

Yx
3=2 ¼

2ρx
mxs

≃ 3

2

TR

mX

�
m3=2

mX

�
16=3
�
Γσ3
all

Γx
all

�2=3

≃ 2 × 10−32;

ð67Þ
with the numerical values given by Eqs. (42), (54), (55),
and (64). It is found that the gravitino production via x
decay is suppressed by the tiny mass of the gravitino and it
is not the dominant source for the relic abundance of the
gravitino. The entropy production from x can be also
neglected in the same way as that of h3. As pointed out in
Ref. [40], under m3=2 ≪ mX ≪ mT3 ≤ Λ, the gravitino
production is significantly relaxed and this condition is
satisfied in our model. Note that when Λ is smaller than the
inflaton mass, we have to take account of the inflaton decay
into the fields in the hidden sector.

IV. GRAVITINO DARK MATTER AND
THE HIGGS BOSON MASS

A. Yukawa couplings and naturalness

Before estimating the relic abundance of the gravitino,
we specify the Yukawa couplings and μ-term in the
superpotential which can be only introduced at the orbifold
fixed points y ¼ 0; L, where the SUSY is reduced to 4D
N ¼ 1. As stated in Sec. III A, we consider the Yukawa
interactions in the MSSM at the orbifold fixed point y ¼ 0,

WYukawa ¼ λuijQiHuUj þ λdijQiHdDj þ λeijLiHdEj

þ λnijLiHuNj; ð68Þ

where λu;d;e;nij are the holomorphic Yukawa coupling con-
stants and are supposed to be of Oð1Þ. After the canonical
normalization of fields in the MSSM, the physical Yukawa
couplings are expressed as

yuij ¼
λuijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hYQi
YHu

YUj
i

q ; ydij ¼
λdijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hYQi
YHd

YDj
i

q ;

yeij ¼
λeijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hYLi
YHd

YEj
i

q ; ynij ¼
λnijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hYLi
YHu

YN j
i

q ; ð69Þ

where

Ya≡2N 1=3ðReTÞfYðca ·TÞþ ~Ωð4Þ
a;XðReTÞjXj2þOðjXj4Þg:

ð70Þ

The function YðzÞ is always positive, and approximated as

YðzÞ≡1−e−2Rez

2Rez
≃

 1

2Rez; Rez>0

1
2jRezjexpð2jRezjÞ: Rez<0:

ð71Þ

In the 5D viewpoint, the wave functions of fields are
localized toward y ¼ 0 (y ¼ L) in the case that ca · hReTi
is positive (negative). As can be seen in Eq. (71), yu;d;e;nij are
of Oð1Þ or exponentially small when all the relevant fields
are localized toward y ¼ 0 or y ¼ L, respectively.
Therefore, we expect that the mass hierarchies of

elementary particles and the extreme smallness of the
neutrino masses can be realized even in the case of
Dirac neutrinos. In fact, when we choose theUð1ÞI0 charges
and Oð1Þ values of the holomorphic Yukawa couplings
λu;d;e;ni;j in Tables I and II, the observed masses and mixing
angles of quarks and leptons at the electroweak scale can be
realized. Here, we employ the full one-loop RG equations
of the MSSM from the GUT to the EW scale. It is
remarkable that the flavor structure of soft SUSY-breaking
terms is determined by the Uð1ÞI0 charge assignment as can
be seen in the Kähler potential (6). In fact, the soft
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SUSY-breaking terms at the GUT scale are determined by
the following formula [41,42]:

Ma ¼ hFI∂I ln ðRefaÞi;
m2

Qα
¼ −hFIF̄J̄∂I∂ J̄ lnYQα

i;
Au
ij ¼ hFI∂I ln ðYHu

YQi
YUj

Þi;
Ad
ij ¼ hFI∂I ln ðYHd

YQi
YDj

Þi;
Ae
ij ¼ hFI∂I ln ðYHd

YLi
YEj

Þi;
An
ij ¼ hFI∂I ln ðYHu

YLi
YN j

Þi; ð72Þ

where indices I and J run over all the chiral multiplets. Then,
the Uð1ÞI0 charge assignment in Table I and the F-term
of the SUSY-breaking field X given by Eq. (42) give rise to
the soft scalar masses and gluino mass in Table III. By
contrast, the A-terms are almost vanishing due to the tiny
F-terms of moduli. Here and hereafter, we parametrize the
ratios of gaugino masses at the GUT scale as

r1 ¼
M1ðMGUTÞ
M3ðMGUTÞ

; r2 ¼
M2ðMGUTÞ
M3ðMGUTÞ

; ð73Þ

whereM1ðMGUTÞ,M2ðMGUTÞ, andM3ðMGUTÞ are the bino,
wino, and gluino masses at the GUT scale, MGUT≃
2 × 1016 GeV. The ratios of gaugino masses are controlled

by the parameters ξaX in the gauge kinetic function (5)
without spoiling the gauge coupling unification due to the
tiny VEVof X.
On the other hand, the μ-term can be generated by the

following superpotential:

Wμ-term ¼
X3
i¼1

κiHiHuHd; ð74Þ

where κi are the Oð1Þ dimensionless couplings, Hi are the
stabilizer fields with R-charge 2, whereas Higgs chiral
superfields do not have the R-charge. These cubic inter-
actions do not affect the moduli stabilization as well as the
moduli inflation due to the almost vanishing VEVs of the
Higgs fields. Thus, it is possible to consider the VEVs of
the stabilizer fields Hi as the origin of the μ-term. After the
canonical normalization of the relevant fields, the μ-term at
the GUT scale becomes

TABLE I. Uð1ÞI0 flavor charges of the quarks, leptons, and Higgs.

cI
0¼1
Qi

¼ ð0.1; 0.1; 1.1Þ cI
0¼1
Li

¼ ð0.1; 0.1; 1.6Þ cI
0¼1
Hu

¼ 0

cI
0¼2
Qi

¼ ð−0.1;−0.1; 0.8Þ cI
0¼2
Li

¼ ð−0.1;−0.1; 0Þ cI
0¼2
Hu

¼ 0.1

cI
0¼3
Qi

¼ ð0.1; 0.4; 1Þ cI
0¼3
Li

¼ ð0.1; 0.5; 0Þ cI
0¼3
Hu

¼ −0.9
cI

0¼1
Ui

¼ ð0.1; 0.1; 0.6Þ cI
0¼1
Ei

¼ ð0.1; 0.2; 0.2Þ cI
0¼1
Hd

¼ 0

cI
0¼2
Ui

¼ ð−0.1;−0.1; 0.3Þ cI
0¼2
Ei

¼ ð−0.1;−0.1; 0Þ cI
0¼2
Hd

¼ 0

cI
0¼3
Ui

¼ ð−0.2; 0.2; 1Þ cI
0¼3
Ei

¼ ð−0.2; 0;−0.5Þ cI
0¼3
Hd

¼ −0.1
cI

0¼1
Di

¼ ð0.1; 0.1; 0.2Þ cI
0¼1
Ni

¼ ð0.1; 0.1; 0.1Þ
cI

0¼2
Di

¼ ð−0.1;−0.1; 0Þ cI
0¼2
Ni

¼ ð−0.3;−0.3;−0.3Þ
cI

0¼3
Di

¼ ð0.3; 0.2;−0.5Þ cI
0¼3
Ni

¼ ð−0.7;−0.7;−0.7Þ

TABLE III. The soft scalar masses m ~Qα
, the up- and down-type

Higgs masses MHu;d
, and the gluino mass M3 at the GUT scale.

The subscripts ~Qα denote the mass eigenvalues for the left-
handed ~Qi, up-type right-handed ~U i, down-type right-handed ~Di

squarks, left-handed ~Li, right-handed ~Ei charged sleptons, and
right-handed sneutrinos ~Ni with the three-generation i ¼ 1, 2, 3.

Sparticles Mass [GeV] (S)Particles Mass [GeV]

m ~Q1
1682 m ~L3

2834
m ~Q2

1530 m ~E1
1157

m ~Q3
581 m ~E2

2390
m ~U1

1157 m ~E3
2298

m ~U2
1698 m ~N1

414.5
m ~U3

799 m ~N2
414.5

m ~D1
1636 m ~N3

414.5
m ~D2

1698 MHu
1100

m ~D3
2298 MHd

298.5
m ~L1

1682 M3 550
m ~L2

1396

TABLE II. Oð1Þ values of the holomorphic Yukawa couplings
λu;d;e;nij in the superpotential (68).

jλuijj jλdijj 
0.32 0.35 0.95
0.22 0.42 0.33
0.51 0.48 1.5

1
A

0
@ 0.45 0.5 0.59

0.28 0.24 0.38
1.03 1.02 0.81

1
A

jλeijj jλnijj0
@ 0.28 0.22 0.52

0.4 1.15 0.31
0.8 1.02 1.05

1
A

0
@ 0.77 0.85 0.69

0.25 0.98 0.58
0.34 0.26 1.03

1
A
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μ ¼
X3
i¼1

κihHii
hYHi

YHu
YHd

i : ð75Þ

Especially, in the case of κ2 ¼ κ3 ¼ 0, the scale of the
μ-term is chosen as TeV scale,

μ≃ 3.8 × 10−3
m3=2

mH1

MPl ≃Oð500 GeVÞ; ð76Þ

where κ1¼2=3, m3=2 ¼ 395 GeV, mH1
≃4.8×1015GeV,

and hH1i≃m3=2=mH1
are given by Eq. (23) and the factor

3.8 × 10−3 comes from the mild large volume of the
fifth dimension and normalization factors for H1, Hu,
andHd. The EW symmetry breaking requires the following
relation between the mass of the Z-boson, mZ and soft
SUSY-breaking masses of the up-type Higgs mHu

:

m2
Z

2
≃ −m2

Hu
ðMEWÞ − jμðMEWÞj2 þO

�
1

tan2β

�
; ð77Þ

in the limit of large value of tan β, where μðMEWÞ and
mHu

ðMEWÞ are the μ-term and mHu
at the EW scale,

respectively. The VEVs of up- and down-type Higgs fields
are denoted by vu ¼ v sin β and vd ¼ v cos β with v ¼
174 GeV. Thus, the observed Z-boson mass indicates
jμðMEWÞj ∼ jmHu

ðMEWÞj ∼mZ; otherwise μ and mHu
have

to be properly tuned to obtain the EW vacuum. We adopt
the measure of the degree of tuning the μ-term at the GUT
scale as

Δμ ¼
1

2

∂ lnm2
Z

∂ ln jμj ; ð78Þ

and then 100 × jΔ−1
μ j% represents the degree of tuning to

obtain theZ-bosonmassmZ ¼ 91.2 GeV [43].Although the
conventional CMSSM scenario requires more severe tuning
than the degree of 0.1%, as pointed out in Ref. [2], certain
ratios of the nonuniversal gaugino masses at the GUT scale
relax the degree of tuning and observed 125 GeV Higgs
boson mass at the same time.

B. Relic abundance of the gravitino

We are now ready to estimate the relic abundance of the
gravitino. As stated in Sec. III E, there are no significant
gravitino productions from the inflaton, moduli, stabilizer,
and SUSY-breaking fields after the inflation. However,
there are two processes to produce the gravitinos associated
with the decay of other particles in the MSSM.
One of them is the decay from the thermal bath which is

constituted of the relativistic particles after the reheating
process. On the thermal bath, the dominant decay process
comes from gauginos into gravitinos, because the couplings
between the gravitino and other sparticles are more sup-
pressed than those of gauginos as discussed in Refs. [44,45].
The abundance of the gravitino is estimated as

ΩTP
3=2h

2 ¼
X3
a¼1

�
1þMaðTRÞ2

3m2
3=2

�
wagaðTRÞ2

× ln

�
ka

gaðTRÞ
��

m3=2

100 GeV

��
TR

1010 GeV

�
; ð79Þ

where wa and ka are the parameters whose values are
defined in Ref. [45] and h is a dimensionless Hubble
parameter. The thermal production of the gravitino is drawn
in Fig. 2 in terms of the ratios of gaugino masses at the GUT
scale MGUT, r1 ¼ M1ðMGUTÞ=M3ðMGUTÞ and r2 ¼
M2ðMGUTÞ=M3ðMGUTÞ with M3ðMGUTÞ ¼ 550 GeV. The
gaugino masses at the reheating temperatureMaðTRÞ can be
expressed as MaðMGUTÞ by employing the one-loop RG
equations in the MSSM. The Planck Collaboration reported
that the abundance of dark matter resides in the range of
0.1175 ≤ ΩTP

3=2h
2 ≤ 0.1219 [22], where the upper and lower

limits correspond to the dotted curves in Fig. 2. Here we
assume that the darkmatter only consists of the abundance of
the thermally produced gravitino.
The other process is the nonthermal gravitino produc-

tions from the NLSP and/or next-to-next-to-lightest super-
symmetric particle (NNLSP). As shown in Table IV, when
we take the ratios of gaugino masses ðr1; r2Þ ¼ ð6; 3.5Þ
consistent with the observed relic abundance of dark matter
in Fig. 2, the NLSPs and NNLSP correspond to the
degenerated sneutrinos and Higgsino-like neutralino,
respectively. The relevant sparticle spectra are obtained
by employing the one-loop RG equations in the MSSM
from the GUT to EW scale with ðr1; r2Þ ¼ ð6; 3.5Þ and the
input parameters in Table III. The full sparticle spectra are
shown in the next section. Note that the degenerated
sneutrinos do not have sizable interactions with the other

FIG. 2 (color online). Contours of the thermal abundance of the
gravitino in the ðr1; r2Þ-plane.
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(s)particles due to the tiny Yukawa couplings of Dirac-type
neutrinos and then the soft SUSY-breaking masses of
right-handed sneutrinos do not receive significant loop
corrections.
Since the gravitino and right-handed sneutrinos are

weakly coupled with the other (s)particles, they are not
thermalized. Thus, the nonthermal gravitino productions
from the Higgsino-like neutralino and sneutrinos are
roughly estimated as

ΩNTP
3=2 h2 ¼ m3=2

m~χ0
3

Ω~χ0
3
h2; ð80Þ

where m~χ0
3
and Ω~χ0

3
are the mass and the thermal abundance

of the Higgsino-like neutralino ~χ03, respectively. The ther-
mal abundance of the Higgsino-like neutralino is known to
be small when the μ-term is smaller than wino and bino
masses. Since the chargino and Higgsino-like neutralino
are degenerated, both decay into the particles of the SM at
almost the same decoupled time, which leads to the
smallness of the thermal abundance of ~χ03. After all, the
nonthermal abundance of the gravitino can be neglected,

ΩNTP
3=2 h2 ≪ 0.11; ð81Þ

and the total relic abundance of the gravitino is approxi-
mated by the thermal abundance of it,8

Ω3=2h2 ≃ ΩTP
3=2h

2: ð82Þ

However, the decays of neutralino and sneutrinos into
the gravitino dark matter would threaten to spoil the
successful BBN. The produced right-handed neutrinos
via the sneutrino decay into the gravitino are suppressed
due to the thermal abundance of ~χ03, and then they are
harmless for the BBN. On the other hand, the Higgsino-like
neutralino decay into the gravitino affects the BBN. The
authors of Ref. [47] suggest a way to relax the constraints
from the BBN by assuming that the NLSP is the Dirac-type

right-handed sneutrino. Although they consider the bino-
like neutralino as the NNLSP, the sparticle spectra are
almost the same as our obtained one. Because of the small
thermal abundance of the Higgsino-like neutralino, it is
then expected that our spectra are consistent with the BBN.
Note that the nonthermal production of the gravitino is

enhanced when the binolike neutralino is NNLSP which
corresponds to the small value of jr1j in Fig. 2. In this case,
it would break the successful BBN because of the large
thermal abundance of the binolike neutralino [10,17,47].

C. The Higgs boson mass, gravitino dark matter,
and sparticle spectra

The ratios of gaugino masses at the GUT scale, r1 and r2,
are severely constrained by the relic abundance of the
gravitino as can be seen in Fig. 2. In this section, we show
that the mass of the Higgs boson further constrains the ratios
of gaugino masses, r1 and r2. The lightest CP-even Higgs
boson corresponds to the SM-like Higgs in the framework of
MSSM.Without the loop corrections, the Higgs boson mass
is much lower than the observed mass of the Higgs reported
by the LHC experiment [48]. Although, the high-scale
SUSY-breaking scenario is a simple solution as one of the
possibilities to raise the Higgs mass, it requires the tuning to
obtain the EW vacuum. Therefore, we consider the maximal
mixing of left- and right-handed top squarks to raise the
Higgs boson mass without a severe fine-tuning.
With an approximation that the mass eigenstates of top

squarks are nearly degenerate, the mass of the lightest CP-
even Higgs boson cannot be realized. Thus, as pointed out
in [2], we add the contribution from the mass differences
between left- and right-handed top squarks in order to
realize the observed Higgs boson mass and relax the degree
of tuning at the same time. By employing the full one-loop
RG equations of the MSSM from the GUT to the EW scale,
we numerically calculate the Higgs boson mass which
resides in the range of 124.4 ≤ mh ≤ 126.8 [1], which is
represented as the blue colored region in Fig. 3 and the
degree of tuning a μ-term, jΔμj × 100%, is also given by the
green dashed (1%) and solid lines (10%), respectively.
From Fig. 3, there are the parameter spaces which are
consistent with the relic abundance of the gravitino and the
Higgs boson mass reported by the current cosmological
observations [22] as well as the collider experiments [1]
without a severe fine-tuning.
In particular, at the reference point ðr1; r2Þ ¼ ð6; 3.5Þ,

the sparticle spectra, the Higgs boson mass mh, and the
degree of tuning a μ-term jΔμj × 100ð%Þ are summarized in
Tables IV, V, and VI. It is then satisfied by all the
experimental lower bounds from the LHC experiments
for the masses of all sparticles in Refs. [13] and [49]. In
general, the SUSY flavor violations are dangerous in the
gravity mediated SUSY-breaking scenario due to the flavor
dependent interactions. In our setup, there are vanishing
A-terms and no flavor dependent soft SUSY-breaking terms

TABLE IV. The masses of NNLSP, NLSPs, and the gravitino at
the EW scale for the reference point ðr1; r2Þ ¼ ð6; 3.5Þ. The
subscripts denote the mass eigenvalues for the sneutrinos (~ν), the
Higgsino-like neutralino (~χ).

NNLSP (Higgsino-like Neutralino) Mass [GeV]
~χ03 441
NLSPs (right-handed sneutrinos) Mass [GeV]
~νe2 415
~νμ2 415
~ντ2 415
LSP (gravitino) Mass [GeV]
Ψ3=2 395

8In this paper, we do not take the gravitino production by the
primordial black hole into account [46].
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at the GUT scale because the moduli do not have the F-
terms. Even if the moduli have the F-terms at the vacuum,
the SUSY flavor violations can be suppressed from the
structure of theUð1ÞI0 charge assignments [50]. Thus, there

are no serious SUSY flavor violations; especially, the decay
rates such as μ → eγ and b → sγ evade the present
limits [51,52].

V. CONCLUSION

In this paper, we proposed the gravitino dark matter in
the gravity mediated SUSY-breaking scenario based on the
4D N ¼ 1 SUGRA. The nontrivial Kähler metric of the
SUSY-breaking field induces the mass hierarchies between
the gravitino and the other sparticles for any value of the F-
term of the SUSY-breaking field. Especially, the small
Kähler metric of the SUSY-breaking field leads to the stable
gravitino of mass Oð100Þ GeV with TeV scale gauginos
and sparticles which would be the typical features in the
natural MSSM with gravity mediation, if the gauge kinetic
functions and the kinetic terms of the matter fields satisfy
certain conditions. (See Ref. [21] for the case of CMSSM.)
In the stable gravitino scenario, one can consider the low-
scale SUSY without the cosmological gravitino problem,
only if the NLSP decays do not spoil the success of BBN.
As a concrete model, we considered the 5D SUGRA

model on S1=Z2. Since the successful inflation mechanism
as well as the moduli stabilization have been realized in 5D
SUGRA [19,22], we have estimated the moduli and
inflaton decays into the gravitino dark matter. Although
the produced gravitinos via the moduli decays seem to be
dangerous from the cosmological point of view, their
decays can be suppressed only if the moduli do not have
the F-terms. Such a situation can be applied in our model,
because the moduli, inflaton, and stabilizer fields have
supersymmetric masses at the vacuum. Even if the super-
symmetry is broken in the SUSY-breaking sector, their
F-terms are suppressed by the gravitino mass at the SUSY-
breaking minimum. When the NLSP and NNLSP are taken
as the sneutrino and Higgsino-like neutralino, the non-
thermal productions of the gravitino are negligible due to
the small thermal abundance of the Higgsino-like neutra-
lino. The smallness of the thermal abundance of NNLSP
also relaxes the constraints from the BBN [10,17,47], and
at the same time, the amount of neutrinos via the sneutrino
decay can be suppressed. Thus, the total relic abundance of
the gravitino is approximated by the thermal abundance of
it which depends on the gaugino masses. As pointed out in

FIG. 3 (color online). The Higgs boson mass, the degree of
tuning a μ-term, jΔμj × 100ð%Þ, and the relic abundance of the
gravitino Ω3=2h2 on the ðr1; r2Þ-plane. In the blue shaded regions,
the Higgs boson mass resides in the allowed range, 124.4 ≤ mh ≤
126.8 GeV [1]. The green dashed and solid lines show the 1% and
10% tuning, respectively. The red dashed curves show the relic
abundance of the gravitino within ranges 0.1179 ≤ Ω3=2h2 ≤
0.1215, reported by the Planck Collaboration [22].

TABLE V. A typical sparticle spectra at the EW scale for the
reference point, ðr1; r2Þ ¼ ð6; 3.5Þ. The subscripts denote themass
eigenvalues for the following: up ( ~u), charm (~c), top (~t), down ( ~d),
strange (~s), bottom ( ~b) squarks, the scalar electron (~e), muon (~μ),
tauon (~τ), neutrino (~ν), the neutralino (~χ), and the chargino (~χ�).

Sparticles Mass [GeV] Sparticles Mass [GeV]

~u1 2618 ~e1 3241
~u2 2359 ~e2 2525
~c1 2520 ~μ1 2421
~c2 2011 ~μ2 2331
~t1 1735 ~τ1 2133
~t2 974 ~τ2 1447
~d1 2625 ~νe1 3240
~d2 2620 ~νe2 415
~s1 2522 ~νμ1 2330
~s2 2189 ~νμ2 415
~b1 2117 ~ντ1 2132
~b2 1724 ~ντ2 415

~χ01 1723 ~χ�1 444
~χ02 1135 ~χ�2 1723
~χ03 448
~χ04 441

TABLE VI. The neutral and charged Higgs boson masses mh,
mH , mA, and mH� , the degree of tuning a μ-term, jΔμj × 100ð%Þ,
and the gaugino masses at the EW scale for the reference point
ðr1; r2Þ ¼ ð6; 3.5Þ.
mh½GeV� mH½GeV� mA½GeV� mH�½GeV�
125.4 1423 1423 1425

Δ−1
μ × 100ð%Þ M1ðmZÞ½GeV� M2ðmZÞ½GeV� M3ðmZÞ½GeV�

2.1 1133 1719 1575
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[2], the certain ratios of gaugino masses are also important
to raise the Higgs boson mass in the MSSM without a
severe fine-tuning. From Fig. 3, it is found that certain
ratios of gaugino masses are consistent with the relic
abundance of the gravitino as well as the Higgs boson
mass reported by the recent Planck and LHC data [1,22].
In this paper, we focus on the 5D SUGRA in order to

show the realistic gravitino dark matter in the gravity
mediation, and then the suppressed Kähler metric of the
SUSY-breaking field is important to generate the mass
hierarchies between the gravitino and other sparticles.
When the 5D SUGRA is derived as the effective theory
of superstring theories on a warped throat and/or M-theory
on the Calabi-Yau manifold [53], the SUSY-breaking sector
would be constructed from the gauge theory living on Dp-
branes and/or NS5-branes. Especially, in the type II string
theory, the visible and hidden sectors can be realized on the
different D-branes which wrap the certain cycles in the
internal manifold. In such cases, the different volumes of
the internal cycles lead to the hierarchical Kähler metric
between the SUSY-breaking field and matter fields in the
visible sector.
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APPENDIX A: THE F-TERMS OF FIELDS
AT THE VACUUM

In this Appendix, we derive the F-terms of the moduli,
stabilizer, and SUSY-breaking fields at the vacuum by
employing the reference point method. As discussed in
Sec. III C, when we expand the fields around the reference
points given by Eqs. (16) and (21), ϕ → ϕjref þ δϕ, ϕ ¼
TI0 ; Hi; X with I0; i ¼ 1, 2, 3, the Kähler metric with Kähler
potentials (14) and (18) are expanded by

KIJ̄ ¼ Kð0Þ
IJ̄ þ Kð1Þ

IJ̄ ; ðA1Þ

where

Kð0Þ
IJ̄ ¼

0
BBBBBBBBBBBB@

1=ð2ReT1Þ2 0 0 0 0 0 0

0 1=ð2ReT2Þ2 0 0 0 0 0

0 0 1=ð2ReT3Þ2 0 0 0 0

0 0 0 ZH1
0 0 0

0 0 0 0 ZH2
0 0

0 0 0 0 0 ZH3
0

0 0 0 0 0 0 ZX − 4jXj2=Λ2

1
CCCCCCCCCCCCA
; ðA2Þ

and

Kð1Þ
IJ̄ ¼

0
BBBBBBBBBBBB@

0 0 0 aH1
H1 0 0 a1XX

0 0 0 0 aH2
H2 0 a2XX

0 0 0 0 0 aH3
H3 a3XX

aH1
H̄1 0 0 0 0 0 0

0 aH2
H̄2 0 0 0 0 0

0 0 aH3
H̄3 0 0 0 0

a1XX̄ a2XX̄ a3XX 0 0 0 0

1
CCCCCCCCCCCCA
; ðA3Þ

in the field basis ðT1; T2; T3; H1; H2; H3; XÞ, with

aHi
≡ ∂ZHi

∂TI0 ¼
1

ReTI0

�
e−2cHi

ReTI0
−
ZHi

2

�
; ðI0 ¼ iÞ;

aiX ≡ ∂ZX

∂TI0 ¼
ciX

cX · ReT

�
e−2cX ·ReT −

ZX

2

�
; ðA4Þ

and the inverse of the Kähler metric is given by
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KTI0 T̄I0 ≃ ð2ReTI0 Þ2 þ 8ReTI0ReδTI0 ; KTI0 H̄i ≃ −AHi
δHi;

KTI0 X̄ ≃ −Ai
XX − Ai

XδX; KHiH̄i ≃ 1

ZHi

−
2aHi

ðZHi
Þ2 ReδT

I0 ;

KXX̄ ≃ 1

ZX
−

2aiX
ðZXÞ2

ReδTI0 þ 4

Λ2ðZXÞ2
jδXj2; ðA5Þ

where

AHi
≡ ð2ReTI0 Þ2 aHi

ZHi

; Ai
X ≡ ð2ReTI0 Þ2 a

i
X

ZX
: ðA6Þ

Here and hereafter, we omit the subscript of ϕ at the reference point, that is, ϕ ¼ ϕjref . From the relevant expansions in the
scalar potential (1) with the Kähler and superpotential (14), (15), and (18),

DTI0W ≃ KTI0w;þWTI0Hi
δHi þ KTI0 T̄I0wðδTI0 þ δT̄I0 Þ þ KTI0WXδX

þWTI0TI0Hi
δTI0δHi þ

X
J0¼k

KTI0WTJ0Hk
δTkδHk;

DHi
W ≃WTI0Hi

δTI0 þ KHiH̄i
wδH̄i þ

WTI0TI0Hi

2
ðδTI0 Þ2;

DXW ≃WX þ KXX̄wδX̄ þ 1

2
∂XðKXX̄Þwð2jδXj2 þ ðδXÞ2 þ ðδX̄Þ2Þ;

W ≃ wþWXδX þ
X3
I0¼i

WTI0Hi
δTI0δHi;

K ≃X3
I0¼1

�
− lnðReTI0 Þ − ReδTI0

ReTI0 þ
1

2

�
ReδTk

ReTI0

�
2
�
; ðA7Þ

we obtain the scalar potential at the second order δϕ,

V ≃W2
X

ZX
− 2wWXðδX þ δX̄Þ −

X
I0¼i

ð2ReTI0 ÞwWTI0Hi
ðδHi þ δH̄iÞ

þ 4w2

Λ2Z2
X
jδXj2 þ

X
I0¼i

W2

TI0Hi

ZHi

jδTI0 j2 þ
X3
I0¼i

ð2ReTI0 Þ2W2

TI0Hi
jδHij2

þ
X3
I0¼i

ð−2ReTI0wWTI0TI0Hi
þ wWTI0Hi

ÞðδTI0δHi þ δT̄I0δH̄iÞ

þ
X
I0¼i

AHi

2ReTI0 wWTI0Hi
ðδTI0δH̄i þ δT̄I0δHiÞ −

X3
i¼1

wWTI0Hi
ðδTI0 þ δT̄I0 ÞðδHi þ δH̄iÞ

þ
X3
I0¼i

2ReTI0WXWTI0Hi
ðδHiδX̄ þ δH̄iδXÞ

þ
X3
I0¼i

X3
J0¼1

TI0 þ T̄I0

TJ0 þ T̄J0 wWTI0Hi
ðδTJ0 þ δT̄J0 ÞðδHi þ δH̄iÞ: ðA8Þ

Finally, the extremal conditions for the relevant fields lead to the following variations of them:
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δHi ≃ w

2ReTI0WTI0Hi

∼O
�
m3=2

mHi

�
; δX ≃

�
Λ2Z2

X

4w2

�
5wWX;

δTI0 ≃
�

w
WTI0Hi

�
2

ZHi

�
1þ AHi

KTI0

2ReTI0 þ
WTI0TI0Hi

WTI0Hi

−
3

ReTI0

�
∼O

�
m3=2

mTI0

�
; ðA9Þ

and their F-terms become

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KTI0 T̄I0

p
FTI0 ¼ −eK=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KTI0 T̄I0

p
KTI0 J̄ ¯DJW ∼O

�
m3

3=2

m2

TI0

�
;

ffiffiffiffiffiffiffiffiffiffiffiffi
KHiH̄i

q
FHi ¼ −eK=2

ffiffiffiffiffiffiffiffiffiffiffiffi
KHiH̄i

q
KHiJ̄ ¯DJW ∼O

�
m3

3=2

m2
Hi

�
;

ffiffiffiffiffiffiffiffiffi
KXX̄

p
FX ≃ −eK=2

ffiffiffiffiffiffiffiffiffi
KXX̄

p
KXX̄DXW ≃ −WX

ðReT1ReT2ReT3Þ1=2Z1=2
X

; ðA10Þ

where

DTI0W ¼ min

�
O
�m3

3=2

m2

TI0

�
;O
�m3

3=2

m2
X

��
; ðI0 ¼ 1; 2Þ;

DT3W ¼ O
�m3

3=2

m2
T3

�
; DHi

W ¼ O
�
m2

3=2

mHi

�
; ði ¼ 1; 2; 3Þ; DXW ≃ ν: ðA11Þ

We also numerically checked these results, and then their F-terms can be suppressed by the tiny mass of the gravitino.

APPENDIX B: THE MINIMA OF FIELDS
DURING THE INFLATION

By contrast, the minima of fields during the inflation are
different from those at the true vacuum. In this section, we
derive the minima of fields by employing the reference
point method. The reference points of fields during the
inflation are chosen in the sameway as those at the vacuum.

Similarly, we expand the fields except for the inflaton Re
T3 around the reference points given by Eqs. (16) and (21),
ϕ → ϕjref þ δϕ, ϕ ¼ TI0 ; ImT3; Hi; X with I0 ¼ 1; 2,
i ¼ 1; 2; 3. It is then supposed that H3 is fixed at the
origin due to the Hubble-induced mass. From the scalar
potential (1) with the Kähler and superpotentials (14), (15),
and (18) given by the following expansions:

DTI0W ≃ KTI0wþWTI0Hi
δHi þ KTI0 T̄I0wðδTI0 þ δT̄I0 Þ þ KTI0 ðWH3

δH3 þWXδXÞ

þ KTI0 T̄I0WH3
ðδTI0 þ δT̄I0 ÞδH3 þWTI0TI0Hi

δTI0δHi þ KTI0
X3
J0¼j

WTJ0HjδTJ0δHj;

DH1
W ≃WT1H1

δT1 þ KH1H̄1
wδH̄1 þ KH1H̄1

WH3
δH̄1δH3;

DH2
W ≃WT2H2

δT2 þ KH2H̄2
wδH̄2 þ KH2H̄2

WH3
δH̄2δH3;

DH3
W ≃WH3

þWT3H3
δT3 þ KH3H̄3

WδH̄3 þ ∂T3ðKH3H̄3
ÞwðδT3 þ δT̄3ÞδH̄3;

þ KH3H̄3
ðWH3

jδH3j2 þWXδH̄3δXÞ þ
WT3T3H3

2
ðδT3Þ2;

DXW ≃WX þ KXX̄wδX̄ þ 1

2
∂XðKXX̄Þwð2jδXj2 þ ðδXÞ2 þ ðδX̄Þ2Þ þ KXX̄WH3

δH3δX̄;

W ≃ wþWXδX þWH3
δH3 þ

X3
I0¼i

WTI0Hi
δTI0δHi;

K ≃X3
I0¼i

�
− ln ReTI0 −

ReδTI0

ReTI0 þ
1

2

�
ReδTI0

ReTI0

�
2
�
þ
X
i

ZHi
jδHij2 þ ZXjδXj2; ðB1Þ
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we obtain the extremal conditions for the relevant fields, and then their variations become

δτ1 ¼ δτ2 ¼ δτ3 ¼ δk1 ¼ δk2 ¼ δk3 ¼ δy ¼ 0;

δσI
0 ∼O

�
ZHi

W2

TI0Hi
ReTI0

jWH3
j2

ZH3

�
≃O

��
Hinf

mTI0

�
2
�
; ðI0 ¼ 1; 2Þ;

δhi ∼O
�

KTI0w

WTI0Hi
ð2ReTI0 Þ2

�
≃O

�
m3=2

mHi

�
; ði ¼ 1; 2Þ;

δh3 ∼O
�

w
WH3

�
≃O

�
m3=2

mH3

�
;

δx ∼O
�
Λ2Z2

X

4W2
X
WXw

�
≃O

��
m3=2

mX

�
2
�
; ðB2Þ

where

δTI0 ≡ δσI
0 þ iδτI

0
; δHi ≡ δhi þ iδki; δX ≡ δxþ iδy; ðB3Þ

with I0; i ¼ 1; 2; 3.
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