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Starting from Plebanski’s action for general relativity with cosmological constant, we show that by
integrating out all the auxiliary fields Krasnov’s action immediately emerges. We also perform the
Hamiltonian analysis of the latter and show that the constraints are those of the Ashtekar formalism.
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I. INTRODUCTION

Krasnov’s action principle is a pure connection formu-
lation for complex general relativity with a nonvanishing
cosmological constant. It was proposed in Ref. [1] and it
was shown there that this action principle is what remains
once one integrates out some of the auxiliary fields
involved in Plebanski's action. However, this approach
becomes a little tricky in the last step, when the field Ψ
must be eliminated from the action, because it requires
going to a particular basis where the curvature matrix
becomes diagonal and then certain conditions on its
eigenvalues must be imposed. On the other hand, we show
here that it is possible to obtain the same pure connection
action in a cleaner fashion. The strategy we follow is
simpler and has as the initial starting point the Plebanski
formulation where all the relevant fields and constraints are
encompassed. The key point of our method consists in
explicitly adding to the Plebanski action (through a
Lagrange multiplier) the condition that the field Ψ has
to be traceless (in [1] the field Ψ is traceless by itself), and
this, together with some facts about square roots of
matrices, allows us to go around the aforementioned
approach. Thus, by following a systematic procedure in
which we integrate out all the auxiliary fields step by step,
we finally arrive at the Krasnov formulation. Since a
detailed Hamiltonian analysis of this formulation has not
been performed yet, we carry out such an analysis here and
find that the associated phase space and constraints are the
same as those of the Ashtekar formalism.
The achievement of a formulation of gravity as a

diffeomorphism-invariant pure connection theory has been
one of the most tackled problems through the years (notice
that the first attempt to formulate general relativity as such
is due to Eddington [2]). For instance, this formulation
might help in the search for a unified description of general
relativity and the gauge theories describing the standard
model of particle physics. Since initially general relativity

was formulated as a metric theory, the introduction of
2-forms as fundamental fields established the first attempt
towards formulating gravity as a gauge theory [3], although
new fields were introduced in order to recover the metric at
the end; the metric itself thus became a derived object, and
it was later realized that the Urbantke metric [4] constructed
from the 2-forms was the right choice as the spacetime
metric.
Later, at the end of the eighties the first almost pure

connection formulation for general relativity was given [5]:
the Capovilla-Dell-Jacobson (CDJ) formulation showed
how to write general relativity with vanishing cosmological
constant as a gauge theory depending only on a SOð3;CÞ
connection and a Lagrange multiplier. The case of a
nonvanishing cosmological constant turned out to be harder
than the case Λ ¼ 0, but it was finally attained [6,7]. Notice
that another kind of generalization of the CDJ action
admitting an infinite number of parameters, one of which
could be identified with the cosmological constant, was
also reported in [8].
At around the same time, the discovery of the Ashtekar

formalism [9] for describing the phase space of general
relativity drew the researchers’ attention towards the
development of a nonperturbative quantum theory of
gravity. Although Ashtekar variables were originally
obtained through a canonical transformation performed
on the ADM variables, they naturally arise from the
Hamiltonian analysis of the Plebanski action [10]. The
Hamiltonian formulation of the CDJ action with Λ ¼ 0 also
leads to a phase space described by the variables and
constraints of the Ashtekar formalism (the same holds for
the intermediate step towards it in the case of Λ ≠ 0 [11]),
which shows again the equivalence of the CDJ formulation
with general relativity, and even the generalizations pro-
posed in [8] have the same number of physical degrees of
freedom (DOF) of gravity when they are written in terms of
such variables.
Thus, the metric was practically given up as the

appropriate variable for describing the phase space of
general relativity, and the gauge formulations of gravity
soon became the starting point of the emerging (canonical)
quantization approaches of gravity (for instance, the
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Ashtekar formulation established the foundations for the
loop quantum gravity approach [12], whereas the Plebanski
formulation was taken as the starting point of the spinfoam
models [13]), and in fact all the efforts turned towards the
successful accomplishment of this long-dreamed quantum
theory. However, none of the previous formulations of
gravity was a pure connection one (although the closest
ones differed from it just by a nondynamical variable).
Before the pure connection formulation of gravity

was discovered, somehow a more general class of dieo-
morphism-invariant gauge theories [depending only on a
SOð3;CÞ gauge connection] were conceived in Ref. [14];
this class of theories, whose action principle takes the
form S½A� ¼ R

d4xfðFi ∧ FjÞ, with f being a holomorphic
function homogeneous of degree one and gauge invariant,
also propagates two degrees of freedom [15] (notice,
however, that the Pontryagin term, which is topological,
also belongs to this class of theories). In fact, it turned out
that the Krasnov’s action describing general relativity with
cosmological constant was a particular member of this class
of theories, the one for which f ∼ ðTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi ∧ Fj

p
Þ2, and then

the search for a pure connection formulation of general
relativity finally came to an end.

II. FROM PLEBANSKI TO KRASNOV

We start from the Plebanski formulation for general
relativity with cosmological constant, which is given by
[3,7,10]

S½A;Σ;Ψ;ρ�¼
Z �

Σi∧Fi

−
1

2

�

Ψijþ
1

3
Λδij

�

Σi∧Σj−ρTrΨ
�

; ð1Þ

where Σi are three soð3;CÞ-valued 2-forms, Fi ¼ dAi þ
ð1=2ÞεijkAj ∧ Ak is the curvature of the SOð3;CÞ gauge
connection Ai, Ψ is a 3 × 3 complex symmetric matrix, ρ is
a Lagrange multiplier and Λ is the cosmological constant.
The indices i; j;… ¼ 1; 2; 3 are raised and lowered with
the Kronecker delta δij and εijk is the Levi-Cività symbol
(ε123 ¼ þ1). The action (1) reduces to the self-dual Palatini
action (with cosmological constant) when the constraint
imposed on the field Σ is solved and the solution is put back
into the action [16–18], but in order to make contact with
Krasnov’s action we follow another approach. First of all,
the equation of motion corresponding to Σi is

Fi ¼
�

Ψi
j þ

Λ
3
δij

�

Σj: ð2Þ

From this expression we want to express the 2-form field
Σ in terms of the remaining fields and put it back into the
action (1). In such a way, we obtain an action principle
which is classically equivalent to the initial one [19], but
with fewer variables. Let us define the 3 × 3 symmetric

matrix Xij ≔ Ψij þ ðΛ=3Þδij and suppose that it is non-
singular [1,7,20]. Then, Eq. (2) can be rewritten as

Σi ¼ ðX−1ÞijFj: ð3Þ

It is important to stress that the invertibility of X is
necessary in order to solve Eq. (2) for Σ, and this implies
that the case when X is singular is excluded from our
approach. Substituting Eq. (3) into Eq. (1) yields

S½A;Ψ; ρ� ¼
Z �

1

2
ðX−1ÞijFi ∧ Fj − ρTrΨ

�

: ð4Þ

The next step consists in integrating out the field Ψ from
the action principle (4). We first write (4) as

S½A;Ψ; ρ� ¼
Z

d4x

�
1

2
ðX−1Þij ~Mij − ~ρTrΨ

�

; ð5Þ

where we have defined Fi ∧ Fj ≕ ~Mijd4x and ρ ≕ ~ρd4x.
The variation of (5) with respect to Ψ leads to

~M þ 2~ρX2 ¼ 0; ð6Þ
which now must be solved for Ψ. Since X is nonsingular,
then, from (6), ~M is also nonsingular. Besides, this matrix
equation says that X is essentially the square root of ~M.
Although square roots of matrices do not always exist, the
fact that ~M is invertible guarantees the existence of a square
root of ~M [21] (which in this case is also symmetric), albeit
it is not unique in general. Therefore, Eq. (6) implies

XðA; ρÞ ¼ i
ffiffiffi
2

p ~ρ−1=2 ~M1=2; ð7Þ

where ~M ¼ ~M1=2 ~M1=2, and we have absorbed all the
arbitrariness carried by the square root (like the choice
of the branch) in the definition of ~M1=2. We point out that
the expression (7) involves a choice of a particular square
root of ~M, but the procedure we follow is independent of
the specific root chosen, that is, any (symmetric) square
root of ~M can be taken. Inserting (7) into the action
principle (5) yields

S½A; ρ� ¼ −
Z

d4xð
ffiffiffi
2

p
i~ρ1=2Tr ~M1=2 − Λ~ρÞ: ð8Þ

Notice that here (7) and (8) are results, not hypotheses as
in Ref. [20]. The action principle (8) describes general
relativity for both vanishing and nonvanishing cosmologi-
cal constant. In fact, for Λ ¼ 0 this action constitutes an
intermediate step in the road towards the CDJ formu-
lation [20].
We are just one step behind Krasnov's action; all we need

to do is to integrate out the field ρ from the action (8). The
equation of motion for ρ from (8) is
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i
ffiffiffi
2

p ~ρ−1=2Tr ~M1=2 − Λ ¼ 0: ð9Þ

Note that this equation can be solved for ~ρ only if Λ ≠ 0. In
this case, ~ρ takes the form

~ρ ¼ −
1

2Λ2
ðTr ~M1=2Þ2: ð10Þ

By substituting this expression back into Eq. (8) we finally
arrive at the action principle

S½A� ¼ 1

2Λ

Z
d4xðTr ~M1=2Þ2; ð11Þ

which constitutes the Krasnov formulation of general
relativity with nonvanishing cosmological constant [1].

III. HAMILTONIAN ANALYSIS
OF KRASNOV’S ACTION

In this section we perform the canonical analysis of the
action principle (11), which sets up the first step towards a
canonical quantization of this formulation. For such a
purpose, we perform the 3þ 1 decomposition of the action
(11). We foliate the spacetime by 3-manifolds Ωt at a
constant global time function t, so that the spacetime has
the topology R ×Ω, where Ω is a spacial compact
3-manifold without a boundary. We refer to the time
component as the 0-component, and denote the spacial
indices by a; b;… ¼ 1; 2; 3. From the definition of the
matrix ~M [see the line after Eq. (5)], we obtain

~Mij ¼ 1

4
~ημνλσFμν

iFλσ
j

¼ 1

2
~ηabcðF0a

iFbc
j þ F0a

jFbc
iÞ; ð12Þ

where ~ημνλσ is a totally antisymmetric tensor density of
weight 1 (~η0123 ¼ þ1) and ~ηabc ≔ ~η0abc. The inverse of
~M1=2 is denoted by ~M−1=2; multiplying (12) by ð ~M−1=2Þij
yields

Tr ~M1=2 ¼ ~ηabcF0a
ið ~M−1=2ÞijFbc

j: ð13Þ

This expression implies

1

2Λ
ðTr ~M1=2Þ2 ¼ F0a

i ~Πa
i; ð14Þ

with ~Πa
i defined by

~Πa
i ≔

1

2Λ
Tr ~M1=2ð ~M−1=2Þij ~ηabcFbc

j: ð15Þ

Now, by using the expression for the components of
the curvature, namely F0a

i ¼ _Aa
i − ∂aA0

i þ εijkA0
jAa

k

(a dot over a variable means a time derivative of such a
variable), Eq. (14) reads

1

2Λ
ðTr ~M1=2Þ2 ¼ ~Πa

i
_Aa

i þ A0
iDa

~Πa
i − ∂að ~Πa

iA0
iÞ:
ð16Þ

By inserting (16) into the action (11) we obtain

S½A� ¼
Z

R
dt

Z

Ω
d3xð ~Πa

i
_Aa

i þ A0
iDa

~Πa
iÞ; ð17Þ

where the total derivative in (16) vanishes since Ω has no
boundary, and Da is the SOð3;CÞ-covariant derivative.
From this expression we identify the canonical pair
ðAa

i; ~Πa
iÞ whose fundamental Poisson bracket satisfies

fAa
iðxÞ; ~Πb

jðyÞg ¼ δbaδ
i
jδ

3ðx − yÞ. Notice that A0
i appears

linearly in the action (17), and so it plays the role of a
Lagrange multiplier imposing the constraint

~Gi ≔ Da
~Πa

i ≈ 0; ð18Þ

which is the Gauss constraint that generates SOð3;CÞ
transformations. But this is not the end of the story, since
there are more constraints coming from the definition of the
canonical momenta. Indeed, from Eq. (15) we find the
following primary constraints,

~Va ≔ ~Πb
iFba

i ≈ 0; ð19Þ

~~H ≔ η
~
abcεijk ~Πai ~Πbj ~Bck −

Λ
3
η
~
abcεijk ~Πai ~Πbj ~Πck ≈ 0; ð20Þ

where ~Bai ≔ ð1=2Þ~ηabcFbc
i. The expressions (19)–(20)

define the vector and the scalar constraints, respectively.
To include these constraints into the formalism, we intro-
duce new Lagrange multipliers Na and N

~
so that the

extended action reads

S½Aa
i; ~Πa

i; A0
i; Na; N

~
�

¼
Z

R
dt

Z

Ω
d3xð ~Πa

i
_Aa

i þ A0
i ~Gi þ Na ~Va þ N

~

~~HÞ: ð21Þ

Since the constraints are first class (they have the same
form of the Ashtekar constraints for complex general
relativity with cosmological constant) [9,11,22], their
evolution is trivial and no new constraints arise.
Therefore, they constitute a set of seven first-class con-
straints, and since we have nine configuration variables Aa

i,
the number of physical (complex) DOF per space point is
two. Besides, one can introduce the diffeomorphism con-
straint defined by ~Da ≔ ~Va þ Aa

i ~Gi, and the action (21)
takes the equivalent form
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S½Aa
i; ~Πa

i; A0
i; Na; N

~
�

¼
Z

R
dt

Z

Ω
d3xð ~Πa

i
_Aa

i þ λi ~Gi þ Na ~Da þ N
~

~~HÞ; ð22Þ

where λi ≔ A0
i − Aa

iNa. This implies that the Hamiltonian
is given by

H ¼ −
Z

Ω
d3xðλi ~Gi þ Na ~Da þ N

~

~~HÞ; ð23Þ

which is a linear combination of the constraints and
therefore vanishes on shell. Thus, we have shown that
the Hamiltonian formulation of Krasnov’s action leads to
the same phase space of the Ashtekar formalism.

IV. CONCLUSION

By starting from the Plebanski formulation (1) for
general relativity with cosmological constant, we have
obtained its equivalent pure connection formulation
(Krasnov’s action) (11) in a systematic fashion.
Although it depends on a particular square root of ~M,
the resulting equations of motion can be shown to imply

Plebanski’s equations regardless of the chosen root [1],
and so it describes complex general relativity with a
nonvanishing cosmological constant. A pure connection
formulation for vanishing cosmological constant is still
lacking.
We also performed the Hamiltonian analysis à la Dirac

of Krasnov’s action, and we found that the phase space
agrees with that of the Ashtekar formalism, as expected.
Notice that a Hamiltonian analysis of a linearized version of
(11) was given in Ref. [15] (see also [23]), but no strict
Hamiltonian analysis of (11) had been performed before.
The procedure followed here could be applied to the real

BF formulations of general relativity [24,25] to find pure
connection formulations of them. It would be very inter-
esting to see the role played by the Immirzi parameter in
those formulations if such formulations really existed.
Work in this direction is in progress.
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