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In this paper we investigate the chameleon effect in the different conformal frames of the Brans-Dicke
(BD) theory. Given that, in the standard literature on the subject, the chameleon is described in the Einstein
frame almost exclusively, herewe pay special attention to the description of this effect in the Jordan and in the
string frames. It is shown that, in general, terrestrial and solar system bounds on the mass of the BD scalar
field, and bounds of cosmological origin, are difficult to reconcile at once through a single chameleon
potential. We point out that, in a cosmological context, provided that the effective chameleon potential has a
minimum within a region of constant density of matter, the Brans-Dicke theory transmutes into general
relativity with a cosmological constant, in that region. This result, however, can be only locally valid.
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I. INTRODUCTION

The Brans-Dicke (BD) theory of gravity [1] represents
the simplest modification of general relativity (GR): in
addition to the 10 degrees which are associated with the
metric tensor gμν, a new scalar degree of freedom is also
responsible for propagating gravity. This theory has been
cornerstone for a better understanding of several other
modifications of general relativity, such as the fðRÞ
theories of gravity [2]. In contrast to Einstein’s GR, the
BD theory is not a fully geometrical theory of gravity,
since, while one of the carriers of the gravitational field,
the metric tensor, defines the metric properties of the
spacetime, the scalar field ϕ, which modifies the local
strength of the gravitational interactions through the
effective gravitational coupling Geff ∝ ϕ−1, is a nongeo-
metric field.
Although many aspects of BD theory have been well

explored in the past [3,4], other aspects have been cleared
up just recently. Thanks to the chameleon effect [5–15], for
instance, it was just recently understood that the exper-
imental bounds on the BD coupling parameter ωBD, which
were set up through experiments in the Solar System, might
not apply in the large cosmological scales if consider BD
theory with a potential. According to the chameleon effect,
the effective mass of the scalar field mϕ, depends on the
background energy density of the environment: in the large
cosmological scales where the background energy density
is of the order of the critical density ρcrit ∼ 10−31 g=cm3, the
effective mass is very small mϕ ∼H0 ∼ 10−33 eV, so that
the scalar field has impact in the cosmological dynamics.

Meanwhile, in the Solar System, where the averaged
energy density of the environment is huge compared
with ρcrit, the effective mass is large mϕ > 1 mm−1
(mϕ > 10−3 eV), so that the Yukawa-like contribution of
the scalar field to the gravitational interaction ∝ e−mϕr=r, is
short ranged, leading to an effective screening of the scalar
field in the Solar System.
There is one aspect of the chameleon effect that has not

yet been discussed in detail. If we take a look at the existing
bibliography on this subject one immediately finds that this
effect is almost exclusively described in the Einstein frame
(EF), where the scalar field (the chameleon) is minimally
coupled to the curvature scalar, at the cost of being
nonminimally coupled to the matter sector of the action.
A detailed description of this effect either in the Jordan
frame (JF) or in the string frame (SF) is yet lacking. Since
the chameleon effect is apparent in the density dependence
of the dilaton’s mass, we think that the absence of
appropriate discussion in the JF/SF is due to the unconven-
tional way which the self-interaction potential of the dilaton
arises in the JF/SF Klein-Gordon (KG) equation, that
governs its dynamics.
In the present paper we shall try to fill the gap and

the focus will be in the description of the chameleon
effect in the Jordan and in the string frames of the BD
theory with a potential (see Secs. II, III, IV, and VII).
Although a serious discussion of the very warped subject
of the conformal transformations controversy is behind
the scope of the present paper, the consequences for the
chameleon effect of the most widespread viewpoints on
the (in)equivalence of the JF/SF and the EF will be
discussed in some detail in Secs. XI, XII, and XIII (see,
specially, in Sec. XIII C).
In Sec. IX, we will show that, in a cosmological context,

provided that the effective chameleon potential has a
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minimum within a region of constant matter density, the
GR–de Sitter solution can be, at most, either a local
attractor or a saddle point of the Brans-Dicke theory within
that region. In contrast, as it has been shown in [16,17] by
means of the tools of the dynamical systems theory, in a
cosmological setting the GR–de Sitter solution can be a
global attractor of the BD theory exclusively for the
quadratic potential, VðϕÞ ¼ M2ϕ2, or for any BD potential
that asymptotes to the quadratic one, VðϕÞ → M2ϕ2 (see
Sec. VIII).1

In Sec. VI of this paper (see also Sec. X), we will show
that the expectation that the chameleon effect might have
had for the Brans-Dicke theory, especially for the relaxation
of the stringent lower bounds on the value of the BD
coupling constant ωBD > 40000, is unjustified in general. It
will be shown in Secs. V and VII (see the discussion in
Sec. XIV), that several BD models of importance for
cosmology, those whose dynamics is driven by the quad-
ratic potential VðϕÞ ∝ ϕ2, or by potentials that asymptote
to the quadratic one,2 do not develop the chameleon effect.
This latter effect is primordial for the relaxation of the
bounds on ωBD, since, what one expects is that, thanks to
the chameleon effect, the cosmological BD field is screened
from terrestrial and solar system experimentation, even
for ωBD ∼ 1.

II. BASIC SETUP

Here we assume the Brans-Dicke theory [1] with the
potential to dictate the dynamics of gravity and matter. In
the Jordan frame it is depicted by the following action:

SϕJF ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
ϕR −

ωBD

ϕ
ð∂ϕÞ2 − 2V þ 2Lm

�
; ð1Þ

where ð∂ϕÞ2 ≡ gμν∂μϕ∂νϕ, V ¼ VðϕÞ is the scalar field
self-interaction potential, ωBD is the BD coupling param-
eter, and Lm ¼ Lmðχ; ∂χ; gμνÞ is the Lagrangian density of
the matter degrees of freedom, collectively denoted by χ.
Unless the contrary is specified, the natural units,
8πG ¼ 1=M2

PL ¼ c ¼ 1, are adopted. The field equations
which are derived from (1) are the following:

Gμν ¼
ωBD

ϕ2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�
− gμν

V
ϕ

þ 1

ϕ
ð∇μ∂νϕ − gμν∇2ϕÞ þ 1

ϕ
TðmÞ
μν ; ð2Þ

∇2ϕ ¼ 2

3þ 2ωBD

�
ϕ∂ϕV − 2V þ 1

2
TðmÞ

�
; ð3Þ

where Gμν ¼ Rμν − gμνR=2 is the Einstein’s tensor, ∇2 ¼
gμν∇μ∇ν is the D’Alembertian operator, and

TðmÞ
μν ¼ −

2ffiffiffiffiffijgjp ∂ð ffiffiffiffiffijgjp
LmÞ

∂gμν

is the conserved stress-energy tensor of the matter degrees
of freedom

∇μTðmÞ
μν ¼ 0:

It is also convenient to rescale the BD scalar field and,
consequently, the self-interaction potential,

ϕ ¼ eφ; VðϕÞ ¼ eφUðφÞ; ð4Þ

so that, the action (1) is transformed into the string frame
BD action,

SφSF ¼
Z

d4x
ffiffiffiffiffi
jgj

p
eφfR − ωBDð∂φÞ2 − 2U þ 2e−φLmg:

ð5Þ

The following motion equations are obtained from (5):

Gμν ¼ ðωBD þ 1Þ
�
∂μφ∂νφ −

1

2
gμνð∂φÞ2

�

− gμν

�
1

2
ð∂φÞ2 þ UðφÞ

�

þ∇μ∂νφ − gμν∇2φþ e−φTðmÞ
μν ; ð6Þ

∇2φþ ð∂φÞ2 ¼ 2½∂φU −U þ e−φ
2
TðmÞ�

3þ 2ωBD
; ð7Þ

where ∇2 ≡ gμν∇μ∂ν, Gμν ¼ Rμν − gμνR=2, and, as before,

TðmÞ
μν is the (conserved) stress-energy tensor of the matter

degrees of freedom, ∇μTðmÞ
μν ¼ 0.

It is clear that Eqs. (1), (2), (3), in the one hand, and (5),
(6), (7), in the other, transform into each other under the
redefinitions in Eq. (4).

III. THE KLEIN-GORDON EQUATION AND THE
MASS OF THE SCALAR FIELD

The mass (squared) of the BD scalar field can be
computed with the help of the following equation [20]:

m2
ϕ ¼ 2

3þ 2ωBD
½ϕ∂2

ϕVðϕÞ − ∂ϕVðϕÞ�: ð8Þ

1There are found several works on the de Sitter (inflationary)
solutions within the scalar-tensor theory in the bibliography, in
particular within the Brans-Dicke theory, but just for illustration
here we mention those in the Refs. [18,19].

2As shown in Sec. VIII, these are the only BD cosmological
models that have the Lambda cold dark matter (ΛCDM) model as
a global attractor.
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This mass is the one which is associated with a Yukawa-like
term ϕðrÞ ∝ expð−mϕrÞ=r, when the Klein-Gordon equa-
tion (3) is considered in the weak-field, slow-motion
regime, and in the spherically symmetric case. The way
in which this result is obtained can be found in Ref. [20] in
all details. However, for completeness of our exposition,
here we shall explain the main reasoning line behind this
result.
In general for a scalar field which satisfies the standard

KG equation

∇2ϕ ¼ ∂ϕVeff þ S; ð9Þ

where Veff ¼ VeffðϕÞ is the effective self-interaction poten-
tial of the scalar field ϕ, and S is a source term (S does not
depend on ϕ); the effective mass squared of the scalar field
is defined by m2

ϕ ¼ ∂2
ϕVeff. The problem with this defi-

nition is that the BD scalar field does not satisfy the usual
KG equation, but the one in Eq. (3), where the self-
interaction potential of the BD field appears in an uncon-
ventional way. In order to fix this problem, one notices that,
if we introduce the effective potential [20]

VeffðϕÞ ¼
2

3þ 2ωBD

�
ϕVðϕÞ − 3

Z
dϕVðϕÞ

�
; ð10Þ

so that

∂ϕVeff ¼
2

3þ 2ωBD
½ϕ∂ϕVðϕÞ − 2VðϕÞ�;

then, the KG equation (3) can be rewritten in the more
conventional way,

∇2ϕ ¼ ∂ϕVeff þ
1

3þ 2ωBD
TðmÞ; ð11Þ

where the second term in the right-hand side (rhs) of this
equation, is the source term which does not depend
explicitly on the ϕ-field.

A. Perturbations around the minimum
of the effective potential

Usually the details of the derivation that leads to the
appearance of an effective mass of the scalar field are not
given. Here we want to include these details, since we want
to make clear that, what one usually calls as an effective
mass, is a concept that is linked with the oscillations of the
field around the minimum of the effective potential, which
propagate in spacetime. These oscillations, or excitations,
are the ones that carry energy-momentum and, if required,
may be quantized.
For simplicity consider the vacuum case TðmÞ

μν ¼ 0 of
Eq. (11). Let us assume next that Veff is a minimum at some
ϕ�. Given that Eq. (11) is nonlinear, one may consider

small deviations around ϕ�, ϕ ¼ ϕ� þ δϕ (δϕ ≪ 1), then,
up to terms linear in the deviation, one gets

∂ϕVeffðϕÞ ≈ ∂ϕVeffðϕ�Þ þ ∂2
ϕVeffðϕ�Þδϕþ � � � ¼ m2�δϕ;

where m2� ≡ ∂2
ϕVeffðϕ�Þ is the effective mass of the scalar

field perturbations.
Working in a flat Minkowski background (in spherical

coordinates)

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

which amounts to ignoring the curvature effects and the
backreaction of the scalar field perturbations on the metric,
and imposing separation of variables, the perturbations,

δφ ¼ δφðt; rÞ ¼
X
n

e−iωntψnðrÞ;

where ωn is the angular frequency of the oscillations of the
nth excitation of the field, obey the Helmholtz equation,

d2ψn

dr2
þ 2

r
dψn

dr
þ k2

nψn ¼ 0; ð12Þ

where k2
n ¼ ω2

n −m2�, is the wave number squared.
Equation (12) is solved by the spherical waves,

ψnðrÞ ¼ Cn
eijknjr

r
;

where the Cn–s are integration constants. For jωnj < m�,
Eq. (12) has the Yukawa-type solution,

ψnðrÞ ¼ Cn
e−

ffiffiffiffiffiffiffiffiffiffiffi
m2�−ω2

n

p
r

r
: ð13Þ

It is understood that the modes with the lowest energies,
En ¼ ℏωn ¼ ωn ≪ m�, are the ones which are more easily
excited in the small oscillations approximation, and, hence,
are the prevailing ones. In particular, ω0 ≪ m�, so that

ψðrÞ ∼ ψ0ðrÞ ¼ C
e−m�r

r
: ð14Þ

These lowest order modes are the ones with the shortest
effective Compton wavelength λ� ≈m−1� , and are the ones
which decide the range of the Yukawa-type interaction, i.e.,
these are the ones which decide the effective screening of
the ϕ-field.
In what follows, as it is usually done in the related

bibliography, when we talk about perturbations of the
scalar field around the minimum of the effective potential,
we ignore the oscillations in time by assuming the static
situation, etc. This amounts, effectively, to ignoring all of
the higher-energy excitations of the field. This assumption
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bears no consequences for the qualitative analysis.
However, once a friction term ∝ _ϕ arises (the dot accounts
for the time derivative), for instance, in a cosmological
context, the oscillations of the field in time, around the
minimum, are necessarily to be considered (see Sec. IX).

B. The field-theoretical mass

The above analysis suggests that one may introduce a
general definition of the mass (squared) of the BD scalar
field m2

ϕ → m2� ¼ ∂2
ϕVeffðϕ�Þ,

m2
ϕ ¼ ∂2

ϕVeffðϕÞ ¼
2

3þ 2ωBD
½ϕ∂2

ϕVðϕÞ − ∂ϕVðϕÞ�;

which is just Eq. (8) at the beginning of this section.
What if the effective potential Veff has no minimums at

all? The quartic potential VðϕÞ ¼ λϕ4, for instance, has a
minimum at ϕ ¼ 0, however, the corresponding effective
potential,

VeffðϕÞ ¼
4λϕ5

5ð3þ 2ωBDÞ
; ð15Þ

has no minimums. In this case, our understanding of
what an effective mass means might have no meaning at
all. In particular, the screened Coulomb-type potential (the
mentioned Yukawa-like solution), being the most relevant
physical manifestation of a massive propagator, might not
arise. The corresponding “mass” in Eq. (8) would be just a
useful field-theoretical construction with the dimensions of
mass, no more.
In spite of this, following the most widespread point of

view on the correct definition of the mass of the BD field in
the Jordan frame [20], here we shall consider that, in
general, i.e., even away from the minimum of the effective
potential, the field parameterm2

ϕ given by Eq. (8) represents
the effective mass (squared) of the scalar field. In this paper,
in order to differentiate the mentioned field theoretic para-
meter from an actual effective mass (the one with conse-
quences for fifth-force experiments), we shall call the latter
as “effective mass,” while the former as “effective field-
theoretical mass” (see the related discussion in Sec. XII A).

IV. THE CHAMELEON MASS

Due to the chameleon mechanism, the screening effect
may arise even if the effective potential Veff does not
develop minimums. As we shall see, all what one needs is
to include the source term in the rhs of the KG equation (9),
within a redefined effective potential, which we shall call
effective chameleonic potential

Vch ¼ Veff þ ϕS ⇒ ∇2ϕ ¼ ∂ϕVch ¼ ∂ϕVeff þ S: ð16Þ

Usually the chameleon effect is discussed, exclusively, in
the Einstein frame formulation of the Brans-Dicke theory,

where the scalar field couples directly with the matter
degrees of freedom [5–15]. Due to the nontrivial way which
the self-interaction potential enters in the KG equation, the
discussion of the chameleon effect in the Jordan frame
formulation of BD theory seems more obscure than in the
Einstein frame.
Here we shall show that, regardless of the unconven-

tional form of the potential in the BD–KG equation (3), the
chameleon effect can be discussed in the Jordan frame as
well, if in Eq. (3) we introduce the following definition of
the effective chameleon potential:

VchðϕÞ ¼ VeffðϕÞ þ
1

3þ 2ωBD
ϕTðmÞ

¼ 2

3þ 2ωBD

�
ϕVðϕÞ − 3

Z
dϕVðϕÞ þ 1

2
ϕTðmÞ

�
;

ð17Þ

so that

∂ϕVch ¼
2

3þ 2ωBD

�
ϕ∂ϕV − 2V þ 1

2
TðmÞ

�
ð18Þ

coincides with the rhs of the KG equation (3), and the latter
can be written in the form of the conventional KG equation
without a source, ∇2ϕ ¼ ∂ϕVch.
As in the standard case, the effective mass squared,

m2
ϕ� ¼ ∂2

ϕVchðϕ�Þ, may be defined for the small perturba-
tions of the BD scalar field around the minimum ϕ� of the
chameleon potential Vch. Actually, under the assumption of
spherical symmetry, given that Vch is a minimum at some
ϕ�, if we follow the procedure explained in the former
Sec. III, in the weak-field and low-velocity limit (basically
the case when the curvature effects and the backreaction on
the metric are ignored),

d2ðδϕÞ
dr2

þ 2

r
dðδϕÞ
dr

¼ m2
ϕ�δϕ;

where

m2
ϕ� ¼ ∂2

ϕVchðϕ�Þ

is the effective mass of the perturbations around the
minimum of the chameleon potential.
We recall that, as shown in the Sec. III A, although when

dealing with the chameleon effect we care only about the
spatial deviation about the minimum δϕðrÞ, as a means to
linearize the Klein-Gordon equation, in general these
deviations are also time dependent, so that what we have
are time-dependent perturbations around the minimum of
the chameleon potential. These may be viewed as periodic
oscillations of the BD field about the minimum, and the
resulting effective mass can be interpreted as the mass of
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the corresponding scalar excitations propagating in a flat
background.
Solving for the above Helmholtz equation, one has for

ϕðrÞ ¼ ϕ� þ δϕðrÞ, the following solution:

ϕðrÞ ¼ ϕ� þ C1

e−mϕ� r

r
þ C2

emϕ�r

r
;

where C1 and C2 are integration constants which we can
determine through the boundary conditions. If we assume,
for instance, that ϕðrÞ tends asymptotically to a constant
value ϕ∞,

lim
r→∞

ϕðrÞ ¼ ϕ∞ ⇒ ϕðrÞ ¼ ϕ∞ þ C1

e−mϕ� r

r
:

Depending on the physical situation at hand, other
boundary conditions are required in order to fix the
remaining constants C1 and C2. For instance, if assume
regularity of the solution at the origin r ¼ 0, then
C1 ¼ −C2,

ϕðrÞ ¼ ϕ� þ C2

sinhðmϕ�rÞ
r

;

so that ϕð0Þ ¼ ϕ� þ C2m�, etc.
As we shall see, the interesting thing here is that the

effective chameleon mass mϕ� ¼ mϕ� ðρÞ, is a function of
the surrounding density ρ. This property of the effective
mass of the BD scalar field perturbations is what is called,
primarily, as the chameleon effect.

A. On the matter density

An interesting aspect of the BD chameleon effect is
related with the fact that the density of matter ρ in the
argument of the effective mass, mϕ� ðρÞ, is the density
measured by comoving observers (with four-velocity δμ0) in

the JF–BD theory, ρ ¼ TðmÞ
μν δμ0δ

ν
0. This is, besides, the

density of matter that is conserved in the JF (also in the
SF) formulation of the Brans-Dicke theory.
This is to be contrasted with the original chameleon

effect of Ref. [5], where the physically meaningful matter
density ρi is not the one measured by comoving observers
in the EF (this is not the conserved one in this frame),
neither in the conformal one, but a density which does not
depend on the dilaton. Actually, in [5] the matter fields

couple to the conformal metric gðiÞμν ¼ expð2βiϕ=MPLÞgμν,
while the density of the nonrelativistic fluid measured
by EF comoving observers is denoted by ~ρi. It is assumed
that what matters is the ϕ-independent density ρi ¼
~ρi expð3βiϕ=MPLÞ, which is the one conserved in the
EF. While this choice may not be unique, in the Jordan
frame of the Brans-Dicke theory (the same for the SF), one
does not have this ambiguity: the matter density measured
by JF(SF) comoving observers ρ is the one conserved in the

Jordan/string frames and, additionally, does not depend on
the BD field.

V. THE BD CHAMELEON: EXAMPLES

In this section we shall to illustrate how the chameleon
effect arises in the Jordan frame of the Brans-Dicke theory,
by exploring a pair of examples.

A. The quartic potential as an example

In order to illustrate our reasoning, let us choose the
example with the quartic potential [6],

VðϕÞ ¼ λϕ4; ð19Þ

where we assume that the free parameter λ ≥ 0 is a non-
negative constant. In this case, as said, the effective
potential (15), VeffðϕÞ ∝ ϕ5, does not develop minimums.
Yet the corresponding chameleon potential (17),

VchðϕÞ ¼
4

3þ 2ωBD

�
λ

5
ϕ5 þ TðmÞ

4
ϕ

�

¼ 4

3þ 2ωBD

�
λ

5
ϕ5 −

ρ

4
ϕ

�
; ð20Þ

where we have assumed a homogeneous, pressureless
dust background, TðmÞ ¼ −ρ, can have a minimum if
ωBD ≥ −3=2. Actually, at the value

ϕ� ¼
�
ρ

4λ

�
1=4

;

the derivatives of the above chameleon potential

∂ϕVchðϕ�Þ ¼ 0; ∂2
ϕVchðϕ�Þ ¼

16λ

3þ 2ωBD

�
ρ

4λ

�
3=4

:

Hence, provided that ωBD ≥ −3=2, since ∂2
ϕVchðϕ�Þ > 0,

the chameleon potential Vch in Eq. (20), is a minimum at
ϕ�. In this case we can identify a physically meaningful
effective mass of the BD field

m2
ϕ� ¼ ∂2

ϕVchðϕ�Þ ¼
16λ

3þ 2ωBD

�
ρ

4λ

�
3=4

: ð21Þ

Wewant to underline that, in general, ρ can be a function
of the spacetime point ρ ¼ ρðxÞ, however, in most appli-
cations the function ρðxÞ is assumed piecewise constant.
For instance, one may imagine a spherical spatial region of
radius R, filled with a static fluid with homogeneous and
isotropic constant density ρ0, and surrounded by a fluid
with a different (also homogeneous) constant density ρ∞,
so that
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ρðrÞ ¼
�
ρ0 if r ≤ R;

ρ∞ if r ≫ R:

In such a case the effective mass mϕ� of the BD scalar
field would be one for modes propagating inside the
spherical region mϕ0

, and another different value mϕ∞
,

for scalar modes propagating outside of (far from) the
spherical region

mϕ0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
ϕVchðϕ0Þ

q
; mϕ∞

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
ϕVchðϕ∞Þ

q
:

For the quartic potential, in particular, one would have that

mϕ0
¼ 2ð4λÞ1=8ρ3=80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2ωBD
p ; mϕ∞

¼ 2ð4λÞ1=8ρ3=8∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ωBD

p ;

inside and outside of the spherical region of radius R,
respectively.
In case the gravitational configuration of matter were

given by a point-dependent density profile ρ ¼ ρðxÞ, such
as, for instance, in a cosmological context where ρ ¼ ρðtÞ
(t is the cosmic time), the effective chameleon mass mϕ�
was point dependent as well. However, as it is well known,
the masses of point particles in the JF/SF formulations of
the BD theory are constants by definition. Otherwise, these
particles would not follow geodesics of the JF/SF metric. In
general, coexistence of particles of constant mass and
particle excitations with point-dependent mass bring about
problems with the equivalence principle. Besides, if
ρ ¼ ρðxÞ, then, the resulting effective mass will be a
field-theoretical construction which, as it will be shown
in Sec. XII A, has an anomalous behavior under the
conformal transformation of the metric.
In order to evade any possible discussion on the

equivalence principle, or on the anomalous behavior of
the effective field-theoretical chameleon mass under the
conformal transformations of the metric, here we adopt the
most widespread handling of the chameleon effect, and we
assume that the density of matter has piecewise constant
profile in the sense explained above. In Sec. IX we will
discuss more on this delicate subject.

B. The quadratic monomial: The massless BD field

One peculiar note about the effective chameleon poten-
tials, if we look at Eq. (17), one sees that the quadratic
potential VðϕÞ ¼ M2ϕ2, plays a singular role. Actually, if
we substitute this potential into (17), one obtains that the
resulting chameleon potential,

VchðϕÞ ¼
ϕTðmÞ

3þ 2ωBD
;

does not have a minimum. Besides, the second derivative
vanishes, ∂2

ϕVch ¼ 0. This means that the quadratic

potential does not generate the chameleon effect. The same
is true for any potential that asymptotes to ϕ2, for instance
VðϕÞ ∝ coshðλϕÞ − 1. Even the effective field-theoretical
mass squared (8) vanishes for the quadratic monomial.
As a consequence, assuming the “Mexican hat” potential

VðϕÞ ¼ −M2ϕ2 þ λϕ4;

the corresponding effective and chameleon potentials (10),
and (17), will be given by

Veff ¼
4λϕ5

5ð3þ 2ωBDÞ
; Vch ¼

4

3þ 2ωBD

�
λ

5
ϕ5 −

ρ

4
ϕ

�
;

respectively, which coincide with the effective and chame-
leon potentials for the quartic monomial (19). This means
that the quadratic monomial does not contribute neither to
the effective nor to the chameleon potentials.
In the case of a standard scalar field σ whose dynamics

is governed by the usual Klein-Gordon equation ∇2σ ¼
∂σVðσÞ, the quadractic monomial VðσÞ ∝ σ2 is also a
singular potential in the sense that, it is the only potential
for which the KG equation is a linear differential equation,
i.e., the superposition principle is satisfied.

VI. THE QUARTIC POTENTIAL: ESTIMATES

Notice that, similar to the chameleon effect arising in the
Einstein frame of the BD theory [5], the mass squared of the
BD field given by Eq. (21), i.e., the Jordan frame mass—
the one that determines the range of the Yukawa-like
correction [21]—depends on the background energy den-
sity mϕ� ∝ ρ3=8. As it can be seen, this dependence of the
mass of the scalar field on the ambient energy density
improves the one in Ref. [6], mϕ ∝ ρ1=3, just by a fraction.
In order to make estimates, let us write

mϕ� ¼
45=8λ1=8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ωBD

p
�

ρ

M4
PL

�
3=8

MPL;

or in “user-friendly” units (using the terminology of [6])

mϕ� ½mm−1� ≈ 10λ1=8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ωBD

p ðρ½g=cm3�Þ3=8: ð22Þ

Let us assume that the scalar field is immersed in the
Earth atmosphere with mean density ρatm ≈ 10−3 g=cm3,
then, provided that the millimeter-range screening [6],
ðmatm

ϕ� Þ−1 ∼ 1 mm, is undertaken, from Eq. (22) it follows
that

ωBD ≈ 1.6λ1=4 − 1.5;

so that, if we consider, for instance, that λ ∼ 1, one gets that
ωBD ≈ 0.1 can be of order unity or smaller. What this means
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is that the BD theory may describe the gravitational
phenomena with a coupling constant of order unity and,
yet, the chameleon potential (20) may effectively screen the
BD field from experiments that look for violation of the
Newton’s law, for distances above the millimeter.
The next question is whether the above potential can be a

good candidate for cosmology as well. The ratio of the
mass of the BD field measured at large cosmological scales
to the scalar field mass estimated in Earth’s atmosphere,

mcosm
ϕ�

matm
ϕ�

¼
�
ρcrit

ρatm

�
3=8

≈ 3 × 10−11; ð23Þ

where we have taken into account that the critical
energy density of the Universe ρcrit ∼ 10−31 g=cm3. If
we consider the millimeter-range screening above,
ðmatm

ϕ� Þ−1 ≈ 1 mm ⇒ matm
ϕ� ≈ 10−4 eV, then the estimated

mass of the cosmological BD scalar field,

mcosm
ϕ� ≈ 3 × 10−11matm

ϕ� ≈ 3 × 10−15 eV;

is by some 18 orders of magnitude heavier than the
expected value mcosm

ϕ ∼H0 ∼ 10−33 eV. Hence, if we
assume that the BD scalar field with a fixed potential,
VðϕÞ ¼ λϕ4, is effectively screened from solar system
experimentation, the BD field would not have cosmological
implications.
The “reconciliation” between terrestrial and cosmologi-

cal bounds, at once, can be achieved by power-law
potentials leading to BD chameleon mass, mϕ� ∝ ðρÞk=2,
with the power k ≈ 29=14 ≈ 2.071, or higher. Of course, the
reconciliation is natural if, for instance, mϕ� ∝ exp ρ.

A. Thin-shell effect

Our estimates above are unsatisfactory in many aspects.
First of all, a lot of simplification has been made for sake of
transparency of our analysis. For instance, the well-known
thin-shell effect [5], which arises due to the nonlinearity of
the BD scalar field, and which is significant for large bodies,
has not been considered in our analysis.3 Nevertheless, even
if we take into account the thin-shell effect, the physical
implications of the huge difference between the cosmic and
terrestrial mass scales, mcosm

ϕ� =matm
ϕ� ∼ 10−11, cannot be

erased by the (thin-shell mediated) weakening of the
effective coupling of the BD field to the surrounding matter.
Actually, the additional contribution of the chameleon BD
field to the Newtonian gravitational potential energy of a
given mass Mb is expressed by

ΔU�
N ∝ −β�2effMb

e−r=λeff

r
;

where β�eff is the effective coupling of the chameleon field to
the surrounding matter, and λeff ¼ m−1

ϕ� is its effective
Compton length. We have that

λatmϕ� ≈ 1018λatmϕ ; ð24Þ

where λatmϕ ∼ 1 mm is the Compton length of the chameleon
field which is consistent with the experiments on fifth-force,
while λatmϕ� is the effective range of the scalar field mediated
interaction, computed with the potential VðϕÞ ∝ ϕ4, under
the assumption that the cosmological bound λcosmϕ� ∼ 1026 m
is met

λatmϕ� ∼ 10−11λcosmϕ� ∼ 1015 m ¼ 1018 mm:

Then, requiring that

ΔU�
N

ΔUN
¼

�
β�eff
βeff

�
2 er=λ

atm
ϕ

er=λ
atm
ϕ�

≈ 1;

for the given potential VðϕÞ ∝ ϕ4, the expected weakening
of the effective coupling of the chameleon BD field to
the surrounding matter is an unnaturally large effect,
ðβ�effÞ2 ∼ exp ð−1020Þβ2eff , where we have assumed that
βeff ∼ 1. In order to obtain the above estimate, we have
arbitrarily set the distance from the source of gravity
r ≈ 102λatmϕ� , and Eq. (24) has been considered.
The above results are true, in general, for power-law

potentials of arbitrary power, VðϕÞ ∝ ϕλ. In this latter
case, for the mass squared of the BD field, one gets
m2 ∝ ρðλ−1Þ=λ, where, as λ → ∞, ðλ − 1Þ=λ → 1. This
means that the latter power can never exceed unity
ðλ − 1Þ=λ ≤ 1. Recall that, a necessary requirement, when
the power-law potential VðϕÞ ∝ ϕλ is allowed to explain
cosmological and terrestrial bounds at once, amounts
to ðλ − 1Þ=λ > 2.071.
Our conclusion is that, in general, terrestrial and solar

system bounds on the mass of the BD scalar field, and
bounds of cosmological origin, are difficult to reconcile
through a single chameleon potential.

VII. THE CHAMELEONIC MASS OF THE
DILATON

In several situations of interest, in particular when the
focus is in the low-energy effective string theory, it is useful
to turn to the field variables φ, and U ¼ UðφÞ, in Eq. (4).
This choice singles out the string frame formulation of this
theory. In terms of these variables the effective mass
squared of the dilaton, i.e., the one which is obtained from
Eq. (8) by substitution of (4), is written as

m2
φðφÞ ¼

2

3þ 2ωBD
½∂2

φUðφÞ −UðφÞ�: ð25Þ3For a detailed exposition of the thin-shell effect we recom-
mend [6] (See also the Appendix).
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However, as we will immediately show, the above expres-
sion for the effective mass of the dilaton has to be taken
with caution.
If we follow, step by step, the procedure in Secs. III and

IV, then, the KG equation (7) can be rewritten as

∇2φþ ð∂φÞ2 ¼ ∂φUch; ð26Þ

where the dilatonic chameleon potential Uch ¼ UchðφÞ, is
defined as

Uch ¼
2

3þ 2ωBD

�
U −

Z
dφU −

1

2
e−φTðmÞ

�
; ð27Þ

so that

∂φUch ¼
2

3þ 2ωBD

�
∂φU −U þ 1

2
e−φTðmÞ

�
;

coincides with the rhs of Eq. (7).
Assuming that Uch is a minimum at some φ�, small

deviations about φ�, φ ¼ φ� þ δφ (δφ ≪ 1), ∂μδφ →
∂μφ ⇒ ð∂δφÞ2 ∼Oðδφ2Þ, so that, the second term in the
left-hand side (lhs) of Eq. (26) may be ignored, and one
ends up with the standard KG equation for the fluctuations
of the dilaton, ∇2δφ ¼ ∂φUch. Since Uch develops a
minimum at φ�, then, one may define the effective mass
(squared) of the dilaton, m2

φ� ¼ ∂2
φUchðφ�Þ, which is the

one that determines the range of the Yukawa interaction in
the string frame

δφðrÞ ∝ e−mφ�r

r
:

Following the procedure exposed in the former sections,
III and IV, a straightforward generalization,

m2
φðφÞ ¼ ∂2

φUchðφÞ → m2
φ� ¼ ∂2

φUchðφ�Þ;

leads to the following definition of the effective field-
theoretical mass of the dilaton in the string frame:

m2
φðφÞ ¼

2

3þ 2ωBD

�
∂2
φU − ∂φU −

1

2
e−φTðmÞ

�
: ð28Þ

It is not Eq. (25), but the latter equation (28), the one to
be contrasted with the effective field-theoretical mass
parameter (8) of the BD scalar field in the Jordan frame.
Nevertheless, since, as assumed, Uch develops a minimum
at some φ�, then

∂φUchðφ�Þ ¼ 0 ⇒

∂φUðφ�Þ ¼ Uðφ�Þ −
1

2
e−φ�TðmÞ;

so that,

∂2
φUchðφ�Þ ¼

2

3þ 2ωBD

�
∂2
φUðφ�Þ− ∂φUðφ�Þ−

e−φ�

2
TðmÞ

�

¼ 2

3þ 2ωBD
½∂2

φUðφ�Þ−Uðφ�Þ�; ð29Þ

where the last equation above coincides with Eq. (25),
when given quantities are evaluated at the minimum φ� of
the chameleon potential (27).

A. Chameleonic dilaton

For sake of illustration, let us assume, as before, a
pressureless, homogeneous and isotropic background with
energy density ρ. Consider an exponential potential

UðφÞ ¼ M2eλφ; ð30Þ

where M and λ are free constants. Notice that, under the
replacements ϕ → eφ, M4−n → M2, and n − 1 → λ, the
latter potential in Eq. (30) is mapped into the potential

VðϕÞ ¼ M4−nϕn;

in terms of the JF-BD scalar field ϕ. The particular value
λ ¼ 3 (n ¼ 4) corresponds to the quartic potential dis-
cussed above. According to Eq. (27), the resulting chame-
leon potential looks like

UchðφÞ ¼
2M2ðλ − 1Þ
λð3þ 2ωBDÞ

�
eλφ þ λρe−φ

2M2ðλ − 1Þ
�
; ð31Þ

where, as before, we have assumed a homogeneous
pressureless fluid with trace of the stress-energy tensor
TðmÞ ¼ −ρ.
For λ > 1, the above potential is a minimum at4

φ� ¼ ln

�
ρ

2M2ðλ − 1Þ
� 1

λþ1

; ð32Þ

where the effective mass squared of the fluctuations of the
chameleonic dilaton is given by m2

φ� ¼ ∂2
φUchðφ�Þ,

m2
φ� ¼

ðλþ 1Þ½2M2ðλ − 1Þ� 1
λþ1

3þ 2ωBD
ρ

λ
λþ1: ð33Þ

For the particular value λ ¼ 3 which, as mentioned,
corresponds to the quartic potential in the Jordan frame of
BD theory, VðϕÞ ∝ ϕ4, the chameleonic mass of the dilaton
goes likemφ� ∝ ρ3=8, which is consistent with the results of
Sec. VI, as one should expect.

4For λ < 1, the chameleon potential (31) does not develop
minimums at all.
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As explained in former sections, an interesting thing
about the mass of the dilaton is related with the fact that,
for the specific exponential potential UðφÞ ∝ eφ, which,
in terms of the BD field ϕ, corresponds to the quadratic
monomial potential VðϕÞ ∝ ϕ2, the chameleonic dilaton
is massless. Actually, in this case, in Eq. (30) one has to
set λ ¼ 1. When this value of the free parameter is
substituted into Eq. (33) one gets m2

φ� ¼ 0. This con-
clusion is correct even if we consider the effective
potential (10). As shown in Sec. V B, in the Jordan
frame of the BD theory, where the effective mass squared
of the BD field is given by Eq. (8), for the quadratic
monomial VðϕÞ ¼ M2ϕ2=2, which corresponds to the
exponential potential for the dilaton UðφÞ ¼
M2 expðφÞ=2, since ∂ϕV ¼ M2ϕ, and ∂2

ϕV ¼ M2,
the mass squared (8) vanishes

m2
ϕ ¼ 2

3þ 2ωBD
½ϕ∂2

ϕVðϕÞ − ∂ϕVðϕÞ� ¼ 0:

Hence, the potential

UðφÞ ∝ eφ⇔VðϕÞ ∝ ϕ2

does not provides an effective mass for the BD scalar
field.
This means that, for the exponential potential (30) with

the specific value of the free parameter λ ¼ 1 (or for the
quadratic monomial if working with the Jordan frame BD
variables), the chameleon effect does not work, and the
dilaton cannot be screened from solar system experiments.
This looks like a bad news for the dilaton since, as shown in
Refs. [16,17] (see the next section), only for the exponential
potentialUðφÞ ¼ M2 expφ, or for potentials which asymp-
tote to M2 expφ, the BD theory has the ΛCDM solution—
also called as concordance model [22,23]—as a global
attractor.

VIII. WHAT DO THE DYNAMICAL SYSTEMS
HAVE TO SAY ABOUT THE BRANS-DICKE

CHAMELEON?

In this section we shall consider Friedmann-Robertson-
Walker (FRW) spacetimes with flat spatial sections for
which the line element takes the simple form

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; i; j ¼ 1; 2; 3:

We assume the matter content of the Universe in the form of
a cosmological perfect fluid, which is characterized by the
following state equation pm ¼ wmρm, relating the baro-
tropic pressure pm and the energy density ρm of the fluid,
where wm is the so-called equation of state parameter.
Under these assumptions the cosmological equations which
are derived from (5) are written as it follows:

3H2 ¼ ωBD

2
_φ2 − 3H _φþ U þ e−φρm;

_H ¼ −
ωBD

2
_φ2 þ 2H _φþ ∂φU −U

3þ 2ωBD

−
2þ ωBDð1þ wmÞ

3þ 2ωBD
e−φρm;

φ̈þ 3H _φþ _φ2 ¼ 2
U − ∂φU

3þ 2ωBD
þ 1 − 3wm

3þ 2ωBD
e−φρm;

_ρm þ 3Hðwm þ 1Þρm ¼ 0; ð34Þ

where H ≡ _a=a is the Hubble parameter.
Due to the complexity of the system of nonlinear

second-order differential equations (34), it is a very
difficult (and perhaps unsuccessful) task to find exact
solutions. Even when an analytic solution can be found
it will not be unique but just one in a large set of them.
This is in addition to the problem of the stability of
given solutions. In this case the dynamical systems tools
come to our rescue. The dynamical systems theory
provides powerful tools which are commonly used in
cosmology to extract essential information on the
dynamical properties of a variety of cosmological
models, in particular, those models where the scalar
field plays a role [16,24–43].
In general, when one deals with BD cosmological models

it is customary to choose the following variables [16]:

x≡ _φffiffiffi
6

p
H

¼ φ0ffiffiffi
6

p ; y≡
ffiffiffiffi
U

pffiffiffi
3

p
H
; ξ≡ 1 −

∂φU

U
;

ð35Þ
where the tilde means derivative with respect to the variable
τ≡ ln a, i.e., to the number of e-foldings. As a matter of
fact x and y in Eq. (35) are the same variables which are
usually considered in similar dynamical systems studies of
FRW cosmology, within the frame of Einstein’s general
relativity with a scalar field matter source [24]. In terms of
the above variables the Friedmann constraint can be written
as [17]

Ωeff
m ≡ e−φρm

3H2
¼ 1þ

ffiffiffi
6

p
x − ωBDx2 − y2 ≥ 0: ð36Þ

Notice that one might define a dimensionless potential
energy density and an “effective kinetic” energy density

ΩU ¼ U
3H2

¼ y2; Ωeff
K ¼ xðωBDx −

ffiffiffi
6

p
Þ; ð37Þ

respectively, so that the Friedmann constraint can be
rewritten in the following compact form:

Ωeff
K þ ΩU þ Ωeff

m ¼ 1:
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The definition for the dimensionless effective kinetic
energy densityΩeff

K has not the same meaning as in GR with
a scalar field. It may be a negative quantity without
challenging the known laws of physics. Besides, since
there is not restriction on the sign of Ωeff

K , then, it might
happen that ΩU ¼ U=3H2 > 1. This is due to the fact that
the dilaton field in the BD theory is not a standard matter
field but it is a part of the gravitational field itself. This
effective (dimensionless) kinetic energy density vanishes
whenever

x ¼
ffiffiffi
6

p

ωBD
⇒ _φ ¼ 6

ωBD
H ⇒ φ ¼ 6

ωBD
ln a;

or if x ¼ 0 ⇒ _φ ¼ 0 ⇒ φ ¼ const, which, provided that
the matter fluid is cold dark matter, corresponds to the
GR–de Sitter universe, i.e., to the ΛCDM model.5

A. The dynamical system

Our goal will be to write the resulting system of
cosmological equations (34), in the form of a system of
autonomous ordinary differential equations (ODEs) in
terms of the variables x, y, ξ, of some phase space. We
obtain the following autonomous system of ODEs:

x0 ¼ −3xð1þ
ffiffiffi
6

p
x − ωBDx2Þ þ

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

3y2ξ

þ
1−3wmffiffi

6
p þ ½2þ ωBDð1þ wmÞ�x

3þ 2ωBD
3Ωeff

m ;

y0 ¼ y

�
3x

�
ωBDx −

ξþ 3ffiffiffi
6

p
�
þ 3y2ξ
3þ 2ωBD

þ 2þ ωBDð1þ wmÞ
3þ 2ωBD

3Ωeff
m

�
;

ξ0 ¼ −
ffiffiffi
6

p
xð1 − ξÞ2ðΓ − 1Þ; ð38Þ

where Ωeff
m is given by Eq. (36), and it is assumed that

Γ ¼ U∂2
φU=ð∂φUÞ2 can be written as a function of ξ [29],

Γ ¼ ΓðξÞ. Hence, the properties of the dynamical system
(38) are highly dependent on the specific functional form of
the potential U ¼ UðφÞ.

B. Vacuum Brans-Dicke cosmology

A significant simplification of the dynamical equations is
achieved when matter degrees of freedom are not consid-
ered. In this case, since Ωeff

m ¼0⇒y2¼1þ ffiffiffi
6

p
x−ωBDx2,

then the system of ODEs (38) simplifies to a plane-
autonomous system of ODEs

x0 ¼
�
−3xþ 3

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

ξ

�
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ;

ξ0 ¼ −
ffiffiffi
6

p
xð1 − ξÞ2ðΓ − 1Þ: ð39Þ

In the present case one has

ΩU ¼ U
3H2

¼ y2 ¼ 1þ
ffiffiffi
6

p
x − ωBDx2;

Ωeff
K ¼ xðωBDx −

ffiffiffi
6

p
Þ ⇒ Ωeff

K þΩU ¼ 1; ð40Þ

where we recall that the definition of the effective (dimen-
sionless) kinetic energy density Ωeff

K has not the same
meaning as in GR with scalar field matter, and it may be,
even, a negative quantity. Here we consider non-negative
self-interaction potentials UðφÞ ≥ 0, so that the dimens-
ionless potential energy density ΩU ¼ y2 is restricted
to be always non-negative, ΩU ¼ 1þ ffiffiffi

6
p

x − ωBDx2 ≥ 0.
Otherwise, y2 < 0, and the phase plane would be a complex
plane. Besides, we shall be interested in expanding cos-
mological solutions exclusively (H ≥ 0), so that y ≥ 0.
Because of this the variable x is bounded to take values
within the following interval:

α− ≤ x ≤ αþ; α� ¼
ffiffiffi
3

2

r �
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ωBD=3
p

ωBD

�
: ð41Þ

This means that the phase space for the vacuum Brans-
Dicke theory Ψvac can be defined as follows:

Ψvac ¼ fðx; ξÞ∶α− ≤ x ≤ αþg; ð42Þ

where the bounds on the variable ξ—if any—are set by the
concrete form of the self-interaction potential.
There are found four dilatonic equilibrium points

Pi∶ðxi; ξiÞ, in the phase space corresponding to the
dynamical system (39). One of them is the GR–de Sitter
phase,

PdS∶ ð0; 0Þ ⇒ x ¼ 0 ⇒ φ ¼ φ0; and

y2 ¼ 1 ⇒ 3H2 ¼ U ¼ const;

which, since _H given by

5It is known that, but for some anomalies in the power
spectrum of the cosmic microwave background [44], at the
present stage of the cosmic evolution, any cosmological model
has to approach to the so-called concordance or ΛCDM model
[22]. The mathematical basis for the latter is the Einstein-Hilbert
action plus a matter action piece

SΛCDM ¼ 1

2

Z
d4x

ffiffiffiffiffi
jgj

p
ðR − 2ΛÞ þ

Z
d4x

ffiffiffiffiffi
jgj

p
LCDM;

where LCDM is the Lagrangian density of (pressureless) CDM.
The ΛCDM action above can be obtained from (5), provided that
the dilaton acquires some expectation value φ0, so that

eφ0 ¼ 1

2
; Uðφ0Þ ¼ Λ; LCDM → Lm:
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_H
H2

¼ ð2
ffiffiffi
6

p
− 3ωBDxÞx

−
3ð1þ ffiffiffi

6
p

x − ωBDx2Þξ
3þ 2ωBD

; ð43Þ

vanishes, then _H ¼ 0 ⇒ H ¼ H0 corresponds to acceler-
ated expansion q ¼ −1 − _H=H2 ¼ −1. Besides,

ξ ¼ 0⇔
∂φU

U
¼ 1 ⇒ UðφÞ ∝ eφ;

i.e., this point exists for this specific exponential potential
exclusively. The eigenvalues of the linearization matrix
around (0, 0) are λ1 ¼ −3, λ2 ¼ 0. This means that (0, 0) is
a nonhyperbolic point.
We found, also, another de Sitter solution, q ¼ −1 ⇒

_H ¼ 0, which is associated with scaling of the effective
kinetic and potential energies of the dilaton,

PBD
dS ∶

�
1ffiffiffi

6
p ð1þ ωBDÞ

; 1

�

⇒
Ωeff

K

ΩU
¼ −

6þ 5ωBD

12þ 17ωBD þ 6ω2
BD

;

λ1 ¼ −ð4þ 3ωBDÞ=ð1þ ωBDÞ, λ2 ¼ 0, where, as before,
λ1 and λ2 are the eigenvalues of the linearization
matrix around the critical point. We call this as BD–de
Sitter critical point to differentiate it from the GR–de
Sitter point.
In order to make clear what the difference is between

both de Sitter solutions,6 let us note that the Friedmann
constraint (36), evaluated at the BD–de Sitter point above,
can be written as

e−φρm ¼ 3H2
0 þ

6þ 5ωBD

6ð1þ ωBDÞ2
3H2

0 −U0;

i.e., e−φρm ¼ const. This means that the weakening/
strengthening of the effective gravitational coupling
(Geff ∝ e−φ) is accompanied by a compensating grow-
ing/decreasing property of the energy density of matter
ρm ∝ eφ, which leads to an exponential rate of expansion
aðtÞ ∝ eH0t. This is to be contrasted with the GR–de Sitter
solution, 3H2

0 ¼ U0 ⇒ aðtÞ ∝ e
ffiffiffiffiffiffiffiffi
U0=3

p
t, which is obtained

only for vacuum, ρvac ¼ U0; ρm ¼ 0.
The effective stiff-dilaton critical points (Ωeff

K ¼ 1),

P�∶ ðα�; 1Þ ⇒ q� ¼ 2þ
ffiffiffi
6

p
α�;

λ�1 ¼ 6

�
1þ

ffiffiffi
2

3

r
α�

�
; λ2 ¼ 0;

are also found, where the α� are defined in Eq. (41).

C. The exponential potential

In the general case when we have the exponential
potential (30), since ξ ¼ 1 − λ is a constant, i.e., it cannot
be a phase space variable anymore, the plane-autonomous
system of ODEs (39) simplifies to a single autonomous
ODE

x0 ¼ −

"ðλþ 2þ 2ωBDÞx −
ffiffi
2
3

q
ð1 − λÞ

1þ 2ωBD=3

#

× ð1þ
ffiffiffi
6

p
x − ωBDx2Þ: ð44Þ

The critical points of the latter dynamical system are

x1 ¼
ffiffiffiffiffiffiffiffi
2=3

p ð1 − λÞ
λþ 2þ 2ωBD

; x� ¼ α�; ð45Þ

where the α� are given by Eq. (41). Notice that, since
xi ≠ 0 (but for k ¼ 1, in which case x1 ¼ 0 and q ¼ −1),
there are not critical points associated with constant
φ ¼ φ0. This means that the de Sitter phase with _φ ¼ 0
(φ ¼ const), UðφÞ ¼ const, i.e., the one which occurs in
GR and which stands at the heart of theΛCDMmodel, does
not arise in the general case when λ ≠ 1.
Hence, only in the particular case of the exponential

potential (30) with λ ¼ 1 (ξ ¼ 0), which corresponds to the
quadratic potential in terms of the JF–BD variables,
VðϕÞ ¼ M2ϕ2, the GR–de Sitter phase is a critical point
of the dynamical system (44). In this case the critical points
are [see Eq. (45)] x1 ¼ 0, x� ¼ α�. Worth noticing that
x1 ¼ 0 corresponds to the GR–de Sitter solution 3H2 ¼
M2 expφ0, meanwhile, the x� ¼ α� correspond to the stiff-
fluid (kinetic energy) dominated phase, Ωeff

K ¼ 1.
For small (linear) perturbations ϵ ¼ ϵðτÞ around the

GR–de Sitter critical point, x ¼ 0þ ϵ, ϵ ≪ 1, one has that
ϵ0 ¼ −3ϵ ⇒ ϵðτÞ ∝ expð−3τÞ, so that it is an attractor
solution, independent on the value of the BD coupling
constant ωBD.

7

6The existence of the BD–de Sitter solution can be traced back
to the work in the second item of Ref. [18].

7Around the stiff-matter solutions x ¼ α� þ ϵ�,

ϵ�ðτÞ ∝ e3ð2þ
ffiffi
6

p
α�Þτ;

so that, if assume non-negativeωBD ≥ 0, the points x� are always
past attractors (unstable equilibrium points) since 2þ ffiffiffi

6
p

α− > 0.
For negative ωBD < 0, these points are both past attractors
whenever ωBD < −3=2. In this latter case, for −3=2<ωBD<0,
the point xþ is a past attractor, while the point x− is a future
attractor instead.
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In [17] it has been shown that, in general, only for the
specific exponential potential UðφÞ ¼ M2 expφ, or for
potentials which asymptote toM2 expφ, theΛCDMmodel,
which is associated with the GR–de Sitter point, can be an
attractor of the Brans-Dicke theory. In other words, only
BD cosmological models with UðφÞ ¼ M2 expφ, or
UðφÞ → M2 expφ, can pass the present observational
cosmological tests.

IX. EMERGENCE OF THE GR–DE SITTER
LOCAL ATTRACTOR

It is essential for the chameleon mechanism to work, that
the chameleon potential VchðϕÞ given by Eq. (17), be a
minimum at some ϕ�. Once this condition is met and the
chameleon mechanism is in action, the BD field does
oscillations around ϕ�, and it acquires an effective chame-
leonic mass as explained (see Sec. III A). This is more
easily seen in a cosmological context where, due to the
expansion of the Universe, the KG equation for the
chameleonic BD field develops a friction term ∝ _ϕ which
causes the oscillations to damp.8 In consequence, the BD
chameleon field does damped oscillations until it settles
down in the minimum of the potential. Once this stable
state is reached, the BD theory transmutes into general
relativity with a cosmological Λ-term.
The latter conclusion is true, however, only in the case

when the density of the surrounding matter is a constant.
Otherwise, if ρ ¼ ρðtÞ were a function of the cosmic time,
we would not have a point of minimum of the chameleon
potential, but a whole curve, φ� ¼ φ�ðρðtÞÞ. This would
entail that

_φ�ðtÞ ¼
∂φ�
∂ρ _ρðtÞ ≠ 0;

the t-gradient of the dilaton will be aligned with the t-
gradient of the density profile, so that we would not get
general relativity but Brans-Dicke theory will be retained
instead.

A. Transmutation of BD theory into GR

In order to visualize how the transmutation of BD theory
into GR–de Sitter theory operates, let us take a look at the
Jordan frame BD action (1). We will assume that the given
effective chameleon potential is a minimum at some
constant expectation value of the JF–BD field ϕ ¼ ϕ�,
within a region of constant matter density. As commented
above, these are necessary requirements for the trans-
mutation of BD theory into general relativity.
At the minimum ϕ�, the gravitational sector of (1)

transforms into the Einstein-Hilbert action

S� ¼
Z

d4x
ffiffiffiffiffi
jgj

p
ϕ�

�
R − 2

Vðϕ�Þ
ϕ�

�
: ð46Þ

In a similar way, at ϕ ¼ ϕ�, the BD field equations (2),
(3), transform into the Einstein’s field equations of general
relativity with a cosmological constant

Gμν ¼
1

ϕ�
TðmÞ
μν −

Vðϕ�Þ
ϕ�

gμν;

where, in the above equations, we have to set

ϕ� ¼ M2
PL ¼ 1

8πG
; and

Vðϕ�Þ
ϕ�

¼ Λ;

respectively. Hence, the chameleon effect in the BD theory
warrants that the ΛCDM model is a local attractor of the
Brans-Dicke cosmology. We have to point out, once again,
that for this to happen it is indispensable that the given
chameleon potential develops a minimum in a region of
constant density. Otherwise the former statement would not
be true. This means the GR–de Sitter solution can be, at
most, a local attractor (it can be also a saddle point), since a
global attractor would entail a constant density of the
cosmological background. But, as known, any form of
matter in a cosmological setting, but for the quantum
vacuum with constant density ρvac, would have, necessarily,
an evolving density ρ ¼ ρðtÞ (see Sec. IX B).
In order to compare with the results of the dynamical

systems study (see Sec. VIII), it is easier to work with the
dilatonic variable. Hence, assuming that the chameleon
potentialUchðφÞ in Eq. (27) is a minimum at some constant
φ ¼ φ�, within a region of constant density ρ, at the
minimum the SF–BD equation of motion (6) decays into
the Einstein’s GR equation,

Gμν ¼ e−φ�TðmÞ
μν − gμνUðφ�Þ;

where eφ� ¼ M2
PL, and Λ ¼ Uðφ�Þ. In terms of the FRW

metric we can say that the cosmological SF–BD equa-
tions (34) transmute into the standard cosmological
equations

3H2 ¼ e−φ�ρm þUðφ�Þ ¼ M2
PLρm þ Λ;

_H ¼ −
wm þ 1

2
e−φ�ρm ¼ −

wm þ 1

2
M2

PLρm:

Let us assume, for definiteness, that the spacetime
dynamics is driven by the exponential potential (30),
UðφÞ ¼ M2 expðλφÞ. Then, as shown, for λ > 1, the
corresponding chameleon potential (31) is a minimum at
[see Eq. (32)]

φ� ¼ ln

�
ρ

2M2ðλ − 1Þ
� 1

λþ1

:8One important example is the BD–KG equation in a cosmo-
logical Friedmann-Robertson-Walker space.
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Due to the expansion, i.e., to the friction term in the
FRW–KG equation ∝ H _φ, within the region with constant
ρ, the dilaton does damped oscillations around this φ� until,
eventually, the SF–BD theory gives way to Einstein’s GR
with a cosmological constant. This result is quite indepen-
dent of the assumed dilaton potential UðφÞ. In the dis-
cussed case [the exponential potential UðφÞ ∝ expφ], for
instance, the result is independent of λ (λ > 1).
How do we reconcile this result with the result of

Sec. VIII (see Refs. [16,17])? In Sec. VIII, by means of
the tools of the dynamical systems theory, it has been
shown that, only for the exponential potential UðφÞ ¼
M2 expφ [this corresponds to the quadratic potential
VðϕÞ ∝ ϕ2 in terms of the JF–BD field], or for potentials
that asymptote toM2 expφ, the GR–de Sitter solution is an
attractor of the BD theory. Meanwhile, in this subsection it
has been shown that the GR–de Sitter space is an attractor
of SF–BD theory, provided that the effective chameleon
potential is a minimum within a region of constant density
of matter. This result has been shown for the most general
exponential potential UðφÞ ∝ expðλφÞ, independent of the
free parameter λ. I.e., the ΛCDM model is an attractor of
SF–BD theory not only for the specific exponential
potential UðφÞ ∝ expφ, but for arbitrary exponentials.
The answer to the above question is simple enough: in a

cosmological setting, but for the quantum vacuum, the
density of the background matter is an evolving function of
the cosmic time t, ρ ¼ ρðtÞ. Hence, assuming that the
chameleon potential UchðφÞ is a minimum at some

φ� ¼ φ�ðρðtÞÞ ⇒ _φ� ¼
dφ�
dρ

_ρ ≠ 0;

which means, in turn, that at the minimum of the chame-
leon potential what we have is Brans-Dicke theory and not
GR. Besides, since φ� ¼ φ�ðρðtÞÞ is an implicit function of
the cosmic time, then the resulting effective mass squared
m2

φ� ¼ m2
φ� ðρðtÞÞ, would be so. Consequently, this cannot

be a stable state of BD theory, since in the latter the masses
of particles (including any field excitations) are constants.
This entails that the GR–de Sitter solution can be, at most, a
saddle point, unless either the potential UðφÞ ∝ expφ or it
asymptotes to the exponentialUðφÞ → expφ, as it has been
shown in Sec. VIII. In general, only for regions of constant
density of matter, for instance, regions filled with quantum
vacuum, the GR–de Sitter space can be a (local) attractor of
the BD theory.

B. Damped oscillations of the dilaton

In order to illustrate our arguments above, let us
investigate the oscillations of the dilaton around the
minimum of the exponential potential in a FRW spacetime
with flat spatial sections (see Sec. VIII). As before we shall
assume that the FRW spacetime is filled with pressureless
dust. The corresponding SF–KG equation (7) reads

φ̈þ 3H _φþ _φ2 ¼ −
2M2ðλ − 1Þ
3þ 2ωBD

�
eλφ −

ρme−φ

2M2ðλ − 1Þ
�
:

ð47Þ

The second term in the lhs of this equation, i.e., the friction
term ∝ H _φ, is due to the implicit consideration of the
curvature effects in FRW cosmological backgrounds.
Next we expand this equation around the minimum of

the chameleon potential (31)

eλφ� −
ρme−φ�

2M2ðλ − 1Þ ¼ 0

⇒ φ� ¼ ln
�

ρm
2M2ðλ − 1Þ

� 1
λþ1

: ð48Þ

Hence, in Eq. (47), we make the replacement,

φ� þ δφ → φ; _δφ → _φ; δ̈φ → φ̈;

where the perturbation δφ ≪ 1, i.e., δ̈φ ∼ _δφ ∼ δφ ∼Oð1Þ,
etc. Up to linear terms, the corresponding KG equation for
the perturbation reads

δ̈φþ 3H _δφ ¼ −
ðλþ 1Þ½2M2ðλ − 1Þ� 1

λþ1

3þ 2ωBD
ρ

λ
λþ1
m δφ:

The problematic terms in the above equation are the
time-dependent terms HðtÞ and ρmðtÞ. Since the rhs term
can be written as −m2

φ�δφ, where

m2
φ� ¼

ðλþ 1Þ½2M2ðλ − 1Þ� 1
λþ1

3þ 2ωBD
ρ

λ
λþ1
m

is the effective mass squared of the perturbation, then, as
long as ρm is a function of the cosmic time, the effective
mass is so, mφ� ¼ mφ� ðtÞ. But then, this mass would not
be a standard mass of an elementary perturbation in
SF–BD theory, since any physically meaningful mass
parameter in the SF/JF formulations of the Brans-Dicke
theory should be independent of the spacetime point.
Otherwise, as mentioned, coexistence of particles with
constant mass and elementary perturbations with point-
dependent mass would entail serious problems with the
equivalence principle.
As a consequence of the above analysis, in a cosmo-

logical setting, the chameleon effect makes sense only
during small enough intervals of cosmic time, so that the
background energy density may be considered as a con-
stant. Only if the background were the quantum vacuum
with constant density ρvac during the course of the cosmic
evolution, the chameleon effect may have cosmological
sense. During a small time interval δt ∼Oð1Þ, HðtÞ≈
H0ð1þ α0δtÞ, and ρmðtÞ ≈ ρ0mð1þ β0δtÞ. Substituting
these equations back into the SF–KG equation above,
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and keeping the terms linear in the perturbations
δφ ∼ δt ∼Oð1Þ, one obtains

δ̈φþ 3H0
_δφ ≈ −ðm0

φ�Þ2δφ;

ðm0
φ� Þ2 ¼

ðλþ 1Þ½2M2ðλ − 1Þ� 1
λþ1

3þ 2ωBD
ðρ0mÞ λ

λþ1: ð49Þ

Thanks to the friction term 3H0
_δφ, the solution of the

linear approximation to the SF–KG equation above is the
damped oscillations,

δφðtÞ ¼ Ce−
3H0
2
t sin ðωtþ ΦÞ; ð50Þ

where Φ is an arbitrary phase which depends on the initial
conditions chosen, C is an integration constant, and

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0

φ� Þ2 −
	3H0

2


2
r

:

This solution is valid only during small enough interval
of the cosmic time δt ≪ 2=3H0∼ lifetime of the Universe.
Hence, the damped oscillations that transmute the SF–BD
theory into Einstein’s GR with a cosmological constant,
which are valid for any chameleon potential with a
minimum, cannot be an equilibrium configuration in the
equivalent phase space. These can be, at most, a local
attractor or, even, a saddle point. A global attractor in the
phase space is a stable equilibrium point which does not
depend on how far into the past the initial conditions for a
specific orbit are given. As shown in Sec. VIII, this is
obtained only for the exponential potential UðφÞ ∝ expφ,
or for potentials that asymptote to expφ.
Our conclusion is that one should trust the results of the

study based on the dynamical systems theory (see Sec. VIII
and Refs. [16,17]), where the chameleon effect is not
explicitly considered, over the results based on the above
explained transmutation, since in a cosmological setting the
latter effect is valid only during short stages of the cosmic
evolution, where the background density of matter may be
considered almost a constant value and, consequently, it
cannot give rise to a global attractor. This does not mean
that the chameleon effect is not physically meaningful, but
rather that, in a cosmological setting, its consequences are
of limited reach.
Our results here differ from those in Ref. [10], where the

cosmological chameleon is also investigated, but not within
the context of the BD theory, and not in the Jordan/string
frames, but in the Einstein frame. In that reference, the
chameleon obviously violates the Einstein’s equivalence
principle, since its effective mass evolves during the course
of the cosmic evolution. This might be related with the fact
that in [10] (see also [5]), the physically meaningful matter
density is not the one measured by comoving observers in
the EF (this is not the conserved one in the EF), neither the

conformal one, but a density which does not depend on the
dilaton. In [10], the matter fields couple to the conformal
metric gðiÞμν ¼ expð2βiϕ=MPLÞgμν, while the density of the
nonrelativistic fluid measured by EF comoving observers
is denoted by ~ρi. It is assumed that what matters is the
ϕ-independent density ρi ¼ ~ρi expð3βiϕ=MPLÞ, which is
the one conserved in the EF. While this choice may not
be unique, in the Jordan as well as in the string frames of
the Brans-Dicke theory one does not have this ambiguity:
the matter density measured by JF(SF) comoving observers
ρ is the one conserved in the Jordan/string frames and,
additionally, does not depend on the BD field (on the
dilaton).

X. THE COSMOLOGICAL CONSTANT PROBLEM

The chameleon transmutation of BD theory into GR
within regions of constant density of matter poses a new
problem that can be stated as follows. Let us imagine two
separate spatial regions: one region with mean (constant)
density of matter ρ0, and another region with (also constant)
density ρ∞. Let the chameleon potential UchðφÞ to have
different minimums at each one of these regions, φ0 and
φ∞, respectively. We have that

eφ0 ¼
�

ρ0
2M2ðλ − 1Þ

� 1
λþ1

; eφ∞ ¼
�

ρ∞
2M2ðλ − 1Þ

� 1
λþ1

:

The resulting problem is that we will have two different
values of the measured “Planck mass” M2

PL ¼ expφ. Their
ratio can be written as

ðM0Þ2PL
ðM∞Þ2PL

¼
�
ρ0
ρ∞

� 1
λþ1

: ð51Þ

An also related problem is the well-known (old)
cosmological constant problem [23,45–48]: why the
present energy density of vacuum, ρcosmvac ∼ 10−48 GeV4,
is so small compared with the expected (theoretical) value,
ρPLvac ∼ 1072 GeV4. In our example the present (cosmologi-
cal) energy density will be identified with the mean density
ρ∞, meanwhile, the theoretical expected value may be the
mean density ρ0. In consequence, we have that

Λ0

Λ∞
¼ Uðφ0Þ

Uðφ∞Þ
¼

�
ρ0
ρ∞

� λ
λþ1

; ð52Þ

where Λ0 ¼ Uðφ0Þ and Λ∞ ¼ Uðφ∞Þ, are the values of the
cosmological constant measured in each one of the regions.
Hence, we have two related problems that, for the

exponential potential case, are expressed by Eqs. (51)
and (52), respectively, which are associated with the
occurrence of the chameleon effect in the SF–BD theory.
A way out may be to assume large λ ≫ 1 (λ ≫ 119 to be
precise). In this case we have
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ðM0Þ2PL
ðM∞Þ2PL

¼ 10
120
λþ1 ≈ 1; ð53Þ

i.e., the measured value of the Planck mass is almost the
same in both regions. At the same time, there can be a huge
difference between the value of the cosmological constant
measured in one region when compared with the value
measured in the other region,

Λ0

Λ∞
¼ 10

120λ
λþ1 ≈ 10120; ð54Þ

as observed. In this case the origin of the cosmological
constant problem may be attributed to the chameleon effect
itself.
Notice that, in order to get a consistent picture, here we

have to set λ ≫ 1, while the global GR–de Sitter attractor
occurs for λ ¼ 1 (see Sec. VIII).

XI. JORDAN/STRING AND EINSTEIN FRAMES
OF BRANS-DICKE THEORY

The conformal transformations controversy [49–51] is
still a subject of debate [52–54]. Under a conformal
transformation of the metric,

ḡμν ¼ Ω2gμν ⇒
ffiffiffiffiffi
jgj

p
¼ Ω−4

ffiffiffiffiffi
jḡj

p
; ð55Þ

with Ω2 ¼ ϕ, the JF–DB theory, depicted by the action (1),
is transformed into the Einstein frame formulation of BD
theory,

SϕEF ¼
Z

d4x
ffiffiffiffiffi
jḡj

p �
R̄ −

�
ωBD þ 3

2

��∂ϕ
ϕ

�
2

− 2ϕ−2VðϕÞ
�

þ 2

Z
d4x

ffiffiffiffiffi
jḡj

p
ϕ−2Lm; ð56Þ

where, as before, Lm¼Lmðχ; ∂̄χ;ϕ−1ḡμνÞ is the Lagrangian
of the matter fields χ, which are coupled to the JF
metric gμν ¼ ϕ−1ḡμν.
There is an ongoing debate on whether theory (1) or

theory (56) has the physical meaning [49–54]. In this
regard, the chameleon effect has been investigated, exclu-
sively, in the Einstein frame version of the scalar-tensor
theory. This fact leaves room for a certain suspicion on the
real physical meaning of this effect. This is why we are
discussing in the present paper the chameleon effect from
the perspective of the Jordan and string frames formulation
of Brans-Dicke theory. Although any deep discussion on
the very warped subject of the conformal transformation’s
issue is behind the scope of this paper, nevertheless, certain
features related with these transformations will be dis-
cussed within the context of the chameleon effect.

A. String-frame BD theory

The string frame formulation of the dilaton-gravity
action [55] admits, in principle, that different matter fields
may couple to different conformal metrics, instead of the
SF metric gμν,

LmðχðiÞ; ∂χðiÞ; gðiÞμν Þ;
where the matter fields χðiÞ couple to the conformal metrics

gðiÞμν ¼ eβiφgμν: ð57Þ

The βi’s are different coupling strengths of order unity.
Let us assume, for simplicity, a single matter species, so

that gð1Þμν ¼ eβφgμν. The SF dilaton-gravity action plus the
matter fields reads

SφSF ¼
Z

d4x
ffiffiffiffiffi
jgj

p
eφ½R − ωBDð∂φÞ2 − 2UðφÞ�

þ 2

Z
d4x

ffiffiffiffiffi
jgj

p
e2βφLmðχ; ∂χ; eβφgμνÞ; ð58Þ

where we have dropped the subscript i, so that, as before, χ
stands collectively for the matter fields. For β ¼ 0 we
recover the string frame formulation of the BD theory given
by the action (5).
Under a conformal transformation of the metric (55) with

Ω2 ¼ eφ, the above action is transformed into the EF action

SφEF ¼
Z

d4x
ffiffiffiffiffi
jḡj

p �
R̄ −

�
ωBD þ 3

2

�
ð∂̄φÞ2 − 2ŪðφÞ

�

þ 2

Z
d4x

ffiffiffiffiffi
jḡj

p
e2ðβ−1ÞφLmðχ; ∂̄χ; eðβ−1ÞφḡμνÞ; ð59Þ

where ŪðφÞ ¼ e−φUðφÞ. Besides, under (55) (Ω2 ¼ eφ),
the stress-energy tensor of the matter fields,

T̄ðmÞ
μν ¼ −2

∂½ ffiffiffiffiffijḡjp
e2ðβ−1ÞφLmðχ; ∂̄χ; eðβ−1ÞφḡμνÞ�ffiffiffiffiffijḡjp ∂gμν ;

transforms like T̄ðmÞ
μν ¼ e−φTðmÞ

μν , where

TðmÞ
μν ¼ −2

∂½ ffiffiffiffiffijgjp
Lmðχ; ∂χ; gμνÞ�ffiffiffiffiffijgjp ∂gμν :

The coupling of the matter fields to the conformal metric
and not to the SF metric gμν means that the stress energy is
not separately conserved in the string frame, but that there
is exchange of energy-momentum between the matter fields
χ and the dilaton

∇μTðmÞ
μν ¼ β

2
∂νφTðmÞ;
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where TðmÞ ¼ gμνTðmÞ
μν is the trace of the stress-energy

tensor of matter. Under the conformal transformation
(55) with Ω2 ¼ eφ, the above “continuity” equation is
transformed into

∇̄μT̄ðmÞ
μν ¼ β − 1

2
∂νφT̄ðmÞ;

so that the energy is not conserved in the Einstein frame
neither.
Setting β ¼ 0 in the former equations amounts to the

assumption that the matter fields are minimally coupled to
the SF metric, which corresponds to the standard Brans-
Dicke theory depicted by the dilatonic (SF) variables. This
means, in turn, that, in the string frame, the standard

conservation equation is satisfied,∇μTðmÞ
μν ¼ 0, while in the

EF the stress energy is not separately conserved

∇̄μT̄ðmÞ
μν ¼ −

1

2
∂νφT̄ðmÞ: ð60Þ

Instead ∇̄μT̄ðmÞ
μν þ ∇̄μT̄ðφÞ

μν ¼ 0, where

T̄ðφÞ
μν ¼

�
ωBD þ 3

2

��
∂μφ∂νφ −

1

2
ḡμνð∂̄φÞ2

�
− ḡμνŪðφÞ;

so that

∇̄μT̄ðφÞ
μν ¼

��
ωBD þ 3

2

�
∇̄2φ − ∂φŪ

�
∂νφ:

These equations lead to the EF–KG equation

∇̄2φ ¼ 2

3þ 2ωBD

�
∂φŪ þ 1

2
T̄ðmÞ

�
; ð61Þ

which can be obtained, alternatively, by performing the
conformal transformation (55), in Eq. (7), with Ω2 ¼ eφ.
If we choose β ¼ 1 in the equations above, then the

stress energy of the matter fields is conserved in the
Einstein frame, and the EF action (59) coincides with
the standard Einstein-Hilbert action of general relativity. In
this case the action (58) will amount to the string frame
(conformal) formulation of general relativity [56].

XII. EFFECTIVE MASS OF THE CHAMELEONIC
DILATON IN THE EINSTEIN FRAME

Let us to compute the effective mass m̄2
eff , of the

chameleonic dilaton in the Einstein frame. This is the
mass which determines the range of the Yukawa-like
modification of the Newtonian potential

ΔŪN ∝ −
e−r=λ̄eff

r
;

where λ̄eff ¼ m̄−1
eff is the Compton length of the dilaton in

the Einstein frame.
For definiteness we will consider the Brans-Dicke

theory, which, in the string frame is given by (5), i.e.,
by the action (58) with β ¼ 0. Hence, in the EF action (58),
and in the related equations, one has to set β ¼ 0 as
well. This means that we will be dealing with the EF–KG
equation (61). Following the same procedure of Secs. III,
IV, and VII, we get that the effective mass squared of the
dilaton in the Einstein frame is given by m̄2

eff ¼ ∂2
φŪch.

In the Einstein frame the chameleon potential is
depicted by

Ūch ¼
2

3þ 2ωBD

�
ŪðφÞ − 1

4
T̄ðmÞ

�
; ð62Þ

where there is subtlety that is to be explained. Assuming
that in the Jordan/string frames the masses of particles m0,
and the related quantities such as the density of matter ρ0,
do not depend on spacetime position, their conformal
cousins in the Einstein frame m̄0ðφÞ ¼ Ω−1m0 ¼
expð−φ=2Þm0, and ρ̄0ðφÞ ¼ Ω−4ρ0 ¼ expð−2φÞρ0, will
be point-dependent quantities. Hence, for instance,

∂φρ̄0 ¼ −2ρ̄0; ∂2
φρ̄0 ¼ 4ρ̄0;…; ð63Þ

etc. Then, since in the EF what the comoving observers
with 4-velocity ūμ ¼ δμ0 measure is the energy density

ρ̄0 ¼ T̄ðmÞ
μν ūμūν ¼ T̄ðmÞ

00 ;

and assuming, as before, that in the EF we have a
pressureless (nonrelativistic) fluid T̄ðmÞ ¼ −ρ̄0, the deriva-
tive of the chameleon potential (62)

∂φŪch ¼
2

3þ 2ωBD

�
∂φŪðφÞ − 1

2
ρ̄0ðφÞ

�
;

coincides with the rhs of Eq. (61).
Let us consider the SF exponential potential (30), so that,

in the Einstein frame,

ŪðφÞ ¼ M2eðλ−1Þφ: ð64Þ

The resulting EF chameleonic potential (62), reads

Ūch ¼
2M2

3þ 2ωBD

�
eðλ−1Þφ þ ρ̄0ðφÞ

4M2

�
: ð65Þ

It is a minimum at the value φ� which solves the equation

eðλ−1Þφ� ¼ ρ̄0ðφ�Þ
2M2ðλ − 1Þ ;

i.e., since ρ̄0ðφÞ¼ expð−2φÞρ0, where ρ0 is a constant, then
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φ� ¼
1

λþ 1
ln

�
ρ0

2M2ðλ − 1Þ
�
:

This position of the minimum in the φ-direction coincides
with the one in the string frame in Eq. (32). We have
that

ρ̄0ðφ�Þ ¼ ½4M4ðλ − 1Þ2� 1
λþ1ρ

λ−1
λþ1

0 : ð66Þ

The effective chameleonic mass squared of the dilaton in
the Einstein frame m̄2

eff ¼ m̄2
φ̄� is given by the following

expression:

m̄2
φ� ¼ ∂2

φŪchðφ�Þ ¼
ðλþ 1Þρ̄0ðφ�Þ
3þ 2ωBD

; ð67Þ

where we prefer to keep the dependence on ρ̄0, which is the
density of matter measured by EF comoving observers,
instead of on the SF constant ρ0. In other words, the
effective EF mass squared of the dilaton depends linearly
with the density of the surrounding matter m̄2

φ� ∝ ρ̄0, as
measured by EF comoving observers.
If desired, the EF mass squared m̄2

φ� in Eq. (67) can be
straightforwardly written in terms of the SF constant ρ0 as
well, by substituting (66) in Eq. (67)

m̄2
φ� ¼

ðλþ 1Þ½4M4ðλ − 1Þ2� 1
λþ1

3þ 2ωBD
ρ

λ−1
λþ1

0 : ð68Þ

This equation confirms the transformation law for the
mass under (55), m̄φ� ¼ Ω−1mφ� . Actually, under the
conformal transformation (55) with Ω2 ¼ expφ,

m̄2
φ� ¼ e−φ�m2

φ� ¼
�

ρ0
2M2ðλ − 1Þ

�
− 1
λþ1

m2
φ� ;

which, if we substitute m2
φ� from Eq. (33), yields (68).

A. The effective field-theoretical mass

According to Eq. (28), the effective field-theoretical
mass squared of the dilaton in the string frame is given by

m2
φðφÞ ¼

2

3þ 2ωBD

�
∂2
φU − ∂φU −

TðmÞ

2
e−φ

�
;

while, in the Einstein frame, given the chameleon potential
(62), it is depicted by

m̄2
φðφÞ ¼ ∂2

φŪch ¼
2

3þ 2ωBD
½∂2

φŪ − T̄ðmÞ�;

where it has been taken into account that ∂φT̄ðmÞ ¼ −2T̄ðmÞ.
There is no way in which one of the above equations can be
obtained from the other one by means of a conformal

transformation of the metric. Actually, if in the first
equation above we make the substitutions,

UðφÞ ¼ Ω2ŪðφÞ; TðmÞ ¼ Ω4T̄ðmÞ; Ω2 ¼ eφ;

one obtains that

m2
φðφÞ ¼

2eφ

3þ 2ωBD

�
∂2
φŪ þ ∂φŪ −

T̄ðmÞ

2

�
; ð69Þ

that cannot be written in the form of the corresponding
conformal transformation of a mass parameter, m2

φ ¼
Ω2m̄2

φ ¼ eφm̄2
φ. Only if the chameleon potential (in either

frame) is a minimum at some φ ¼ φ�, the obtained effective
mass retains the sense of an ordinary mass parameter. As a
matter of fact, if Ūch in (62) has a minimum, this means
that, at the minimum,

∂φŪch ¼ 0 ⇒ ∂φŪ ¼ −
1

2
T̄ðmÞ;

so that, Eq. (69) can be written as

m2
φ ¼ 2eφ

3þ 2ωBD
½∂2

φŪ − T̄ðmÞ� ¼ eφm̄2
φ:

This means that the physical meaning is with the
effective mass which is obtained from second derivatives
of a chameleon potential evaluated at the minimum. In
contrast, the effective field-theoretical mass has limited
physical implications.

XIII. CONFORMAL FRAMES AND THE
CHAMELEON EFFECT

The controversy on which one of the conformal frames
where the Brans-Dicke theory can be formulated, the JF/SF
or the EF, is the physical one started with the paper by
Dicke [49], who stated that these are both equivalent
representations of the same theory. However, no matter
how trivial the question seems, the debate has not ceased
for over the last 53 years [50–54]. In the present section we
want to extend the debate to the discussion on the physical
implications of the chameleon effect for the BD theory.

A. The SF and the EF are equivalent representations
of the same theory

According to one of the most popular points of view on
the meaning of the conformal transformations of the metric
[49,51], both conformal frames, the SF/JF and the EF, are
physically equivalent. The basic idea is that the two
conformal frames are physically equivalent provided that
in the EF the units of time, length, mass, and derived
quantities are allowed to scale with appropriate powers of
the conformal factor Ω. If one adheres to this point of view,
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as we temporarily do here, one must accept that, instead of
a system of units rigidly attached to the spacetime, the
Einstein frame contains a system of units that depend on
the spacetime point [51] (for an alternative point of view on
the equivalence see Ref. [53] and Sec. XIII C below).
Let us consider that the mass of a given field, say,mf, is a

constant in the string frame. Under a conformal trans-
formation ḡμν ¼ Ω2gμν ⇒ m̄f ¼ Ω−1mf, so that, in the EF
the mass of the field will be point dependent, provided that
in the SF the mass of the particle mf is a constant. The fine
point is that, in an experiment what one measures is the
ratio m̄f=m̄u between the mass of the field and an arbitrarily
chosen mass unit m̄u. Hence, in the EF it is the conformal
invariant ratio

m̄f

m̄u
¼ Ω−1mf

Ω−1mu
¼ mf

mu
; ð70Þ

that really matters [51]. As a consequence, a measurement
of the field’s mass yields a same value in the EF and in the
SF. In other words, according to the present point of view,
the given measurement cannot differentiate between the
different conformal frames.
In order to illustrate this case, we take, for instance, the

exponential potential UðφÞ ∝ expðλφÞ, and use the equa-
tion for the EF effective mass squared (68), instead of (67).
In this case one has

m̄φ�
m̄u

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 1

3þ 2ωBD

s
½2M2ðλ − 1Þ� 1

λþ1ρ
λ−1

2ðλþ1Þ
0

Ω−1ðφ�Þmu

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 1

3þ 2ωBD

s
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2ðλ − 1Þ

p
� 1
λþ1ρ

λ
2ðλþ1Þ
0

mu
¼ mφ�

mu
:

In this case the chameleon effect is the same independent
of the frame, and, provided that the observational bounds
are met in one frame within a certain accuracy, these will be
met in its conformal partner with the same accuracy as well.
The contrary statement is also true.

B. The SF and the EF nest different theories

There is a radically different point of view on the (in)
equivalence of the different conformal formulations of BD
theory. According to this viewpoint, the SF–BD theory and
the EF–BD theory are totally different theories: (i) same
metric affinity (pseudo-Riemann spaces), (ii) different
equations of motion, i.e., different laws of gravity, (iii) dif-
ferent experimental bounds to meet (see Sec. XIII C
below). In this case the conformal transformations of the
metric are understood just as the deformation of one theory,
that leads to the conformal one.
In what regards to the chameleon effect within the BD

theory, this viewpoint is supported by Eq. (67) for the EF
dilaton’s effective mass squared. It is understood that, what

really matters in the Einstein frame are the quantities that
EF comoving observers with 4-velocity ūμ ¼ δμ0 measure.
Comoving observers in the EF see, for instance, exchange
of energy-momentum between the dilaton fluid and the
standard matter fields, i.e., they “see” a fifth-force which
makes the motion of pointlike particles to depart from
geodesic motion in the EF metric ḡμν. This is to be
contrasted with what SF comoving observers with
4-velocity uμ ¼ δμ0 see: the stress-energy tensor of each
one of the matter species is separately conserved. In other
words, the SF comoving observers do not see any fifth-
force effect. Besides, while the EF comoving observers

measure the energy density ρ̄0 ¼ T̄ðmÞ
00 ¼ T̄ðmÞ

μν ūμūν, the JF
comoving observers measure the constant energy den-

sity, ρ0 ¼ TðmÞ
00 .

If assume that the present viewpoint is correct, i.e., that
m̄φ� ∝

ffiffiffiffiffi
ρ̄0

p
, then the EF–BD theory with exponential

potential ŪðφÞ ∝ exp½ðλ − 1Þφ�, which is the EF cousin
of UðφÞ ∝ expðλφÞ, improves the estimates of Sec. VI by
several orders of magnitude. Actually, working as we did in
Sec. VI, we obtain that

m̄cosm
φ�

m̄atm
φ�

¼
ffiffiffiffiffiffiffiffi
ρ̄crit0

ρ̄atm0

s
∼ 10−14; ð71Þ

which is to be contrasted with (23). In the above equation
we have considered that ρ̄crit0 ∼ 10−31 g=cm3, and ρ̄atm0 ∼
10−3 g=cm3, are the critical energy density of the Universe
and the mean density of the Earth atmosphere, respectively,
which are measured by EF comoving observers.
In spite of the very discrete improvement of the EF-based

estimate over the SF-based one for the exponential poten-
tial, it might represent a convenient observational signature,
that may differentiate between the SF and EF formulations
of the Brans-Dicke theory.

C. Jordan frame vs Einstein’s frame

What are the physical implications of one’s choice of a
specific frame, say the JF, when formulating the BD
theory? In the present paper, for instance, we studied the
chameleon effect within the JF–BD theory, while in
[5,6,10] (to cite a few) the same effect is investigated in
the EF–BD instead. As seen from the discussion above, the
answer to the above question depends on one’s choice of
the existing feasible points of view on the physical and
geometrical meaning of the conformal transformations.
This is what is known as the conformal transformations
issue [50,51,53,54]. Given that the longstanding debate on
this subject has not found a definitive solution, in this
subsection we want to discuss on this delicate subject on
the basis of our own point of view [53] (see also [56]).
Our main thesis is that, unless the geometrical aspect of

the conformal transformations is adequately discussed, the
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conformal transformations issue, which one of the con-
formal frames is the physical one? is a meaningless
question. Actually, under a conformal transformation of
the metric (55), the Christoffel symbols of the metric
transform as

�
α

μν

�
¼

�
ᾱ

μν

�
−Ω−1ðδαμ∂νΩ

þδαν∂μΩ − ḡμνḡασ∂σΩÞ; ð72Þ

where the quantities with the bar are defined with respect to
the conformal metric. One is left with two possible
geometrical interpretations of Eq. (72):
(1) Equation (72) is understood just as the transforma-

tion law for the Christoffels under (55). In this case
the affine properties of the spacetime manifold are
not affected by the conformal transformation, so
that, the latter is to be interpreted as a mapping from
a Riemann spacetime into a Riemann spacetime,
ðM; gμνÞ → ðM; ḡμνÞ.
Under this understanding, it happens, for instance,

that timelike geodesics in the starting Riemannian
spacetime,

d
ds

�
dxα

ds

�
þ
�

α

μν

�
dxμ

ds
dxν

ds
¼ 0; ð73Þ

are mapped into timelike curves which are not
geodesics in the conformal (also Riemannian)
space,9

d
ds̄

�
dxα

ds̄

�
þ
�

ᾱ

μν

�
dxμ

ds̄
dxν

ds̄

¼ ∂μΩ
Ω

�
dxμ

ds̄
dxα

ds̄
− ḡμα

�
; ð74Þ

where, as it can be shown, by means of an appro-
priate parametrization one could remove the first
term in the rhs of Eq. (74), however, the second term
cannot be eliminated. Hence, the above equation
does not admit an affine parametrization whatsoever,
signaling a truly nongeodesic character of (74).
From the physical point of view, i.e., if we identify
the latter equation with the equation of motion of a
test point particle, the second term in the rhs can be
identified with an additional force of nongravita-
tional origin acting on the test particle, commonly
called “fifth-force.”

(2) Equation (72) can be written, alternatively, as

�
α

μν

�
¼ Γ̄ðWÞα

μν ≔
�

ᾱ

μν

�
− Ω−1ðδαμ∂νΩ

þδαν∂μΩ − ḡμνḡασ∂σΩÞ; ð75Þ

where Γ̄ðWÞα
μν is to be understood as the affine

connection of a Weyl-integrable (also known as
conformal Riemann) manifold ðM; ḡμν; lnΩ2Þ, with
lnΩ2 being the Weyl gauge field [53,57]. Under this
viewpoint the conformal transformation (55) entails
a transformation from a Riemann spacetime into a
Weyl-integrable one, ðM; gμνÞ → ðM; ḡμν; lnΩ2Þ.
In a Weyl-integrable spacetime the existence of
the gauge field lnΩ2 brings about a neat variation
of the length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνlμlν
p

of a vector l during the
parallel transport from point P1 to P2,

Δl ¼ l0 exp
Z

P2

P1

dxμ∂μ lnΩ ¼ l0½ΩðP2Þ − ΩðP1Þ�;

where, as seen, after parallel transport in a closed
path (P1 ¼ P2), the neat variation of the length of
the vector vanishes.
It is not difficult to prove that under (55),

Riemannian timelike geodesics (73) are mapped
into timelike geodesics of the Weyl-integrable
spacetime

d
ds̄

�
dxα

ds̄

�
þ Γ̄ðWÞα

μν
dxμ

ds̄
dxν

ds̄
þ ∂μΩ

Ω
dxμ

ds̄
dxα

ds̄
¼ 0;

ð76Þ

or, if we choose an appropriate affine parametriza-
tion, σ̄ ¼ σ̄ðs̄Þ → dσ̄ ¼ Ω−1ds̄, the above equation
can be rewritten in the more standard way

d
dσ̄

�
dxα

dσ̄

�
þ Γ̄ðWÞα

μν
dxμ

dσ̄
dxν

dσ̄
¼ 0: ð77Þ

1. First viewpoint

If we adopt the first geometrical interpretation of Eq. (72)
above (first viewpoint): the conformal transformations
do not modify the affine properties of the spacetime, then
the fifth-force effect inevitably arises. This is reflected in
that the usual conservation equation in the conformal

spacetime is not satisfied, instead one has that ∇̄μT̄ðmÞ
μν ¼

−∂ν lnΩT̄ðmÞ, where T̄ðmÞ is the trace of the stress-energy
tensor of matter. Besides, under this viewpoint the laws of
gravity in one frame, expressed for instance by the action

9A different point of view on this property is exposed in [51]
(see, however, the discussion in Sec. 7.2 of [53]).
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S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

16πGeff
Rþ LðmÞ½χ; ∂χ; gμν�

�
;

where Geff is the effective gravitational coupling, and LðmÞ
is the Lagrangian density of the matter fields χ, are
transformed into completely different laws of gravity
depicted by the action

S̄ ¼
Z

d4x
ffiffiffiffiffi
jḡj

p �
1

16πḠeff
½R̄þ 6∇̄2 lnΩ − 6ð∂̄ lnΩÞ2�

þ L̄ðmÞ½χ̄; ∂̄ χ̄;Ω−2ḡμν�
�
;

where Ḡeff ¼ Ω2Geff . The latter theory can be understood
as a deformation of the former one and the conformal
transformations are the deformation transformations.
Notice that, since both theories work in Riemannian

manifolds, one may safely remove the bar everywhere in
the second action above, in order to make apparent that
these are truly different theories operating in a same
Riemannian manifold ðM; gμνÞ. Actually, assuming for
instance that in the first theory the gravitational coupling
Geff ¼ Ω−2GN is a point-dependent quantity due to the
point-dependent function Ω (GN is a constant), in the
second theory the gravitational coupling Geff ¼ GN will be
a constant. Additionally, while in the first theory the matter
particles are coupled to the metric gμν (this is a different
way of saying that these particles follow geodesics of the
metric), in the second one the matter particles are coupled
to the conformal metric Ω−2gμν, which is a different way of
saying that a fifth-force inevitably arises which makes the
world lines of the particles to depart from the geodesics of
the metric. Hence, while the first theory has to meet
stringent bounds on the variation of the gravitational
constant, the second theory has to overcome very stringent
observational bounds on fifth-force instead.
It is apparent that the adoption of this viewpoint makes

the question of which one of the conformal frames, the JF
or the EF, is the physical one, a meaningless question. Each
frame itself is a different theory and each theory has its own
physical content.

2. Second viewpoint

According to the second interpretation of (72) (second
viewpoint),

ḡμν ¼ Ω2gμν ⇒ ðM; gμνÞ → ðM; ḡμν; lnΩ2Þ;

i.e., the affine properties of the spacetime are indeed
modified by the conformal transformation, what one has
are two different yet fully equivalent geometrical repre-
sentations of a same theory.
In order to make our point clear let us assume that the

metric gμν obeys the Einstein’s field equations

Gμν ¼ 8πGNT
ðmÞ
μν :

This means that, after the adoption of the second viewpoint,
the conformal metric ḡμν ¼ Ω2gμν will obey the Weyl-
integrable Einstein’s equations

ḠðWÞ
μν ¼ 8πḠNT̄

ðmÞ
μν ; ḠN ¼ Ω2GN;

where the geometrical quantities with the index “ðWÞ,”
such as the Einstein’s tensor ḠðWÞ

μν , are defined in terms of

the affine connection Γ̄ðWÞα
μν of the Weyl-integrable con-

formal spacetime, and it has been taken into account that
under (55) the stress-energy tensor of the matter degrees of

freedom transforms like T̄ðmÞ
μν ¼ Ω−2TðmÞ

μν .
As seen the laws of gravity look the same in both frames,

however, while the gravitational coupling GN is a constant
in the representation where the Einstein’s field equations

Gμν ¼ 8πGNT
ðmÞ
μν are satisfied, in the conformal represen-

tation the gravitational coupling ḠN ¼ Ω2GN is a point-
dependent quantity thanks to the function Ω2. At this point
we recall that, from the observational point of view, the
length’s variations cannot be measured since, in Weyl-
integrable spaces the lengths of vectors are point-dependent
quantities l̄ ¼ l0Ω so that, in particular, the Planck length
l̄pl ¼ Ωlpl is a varying length unit. Hence, the measured
quantity,

ḠN

l̄2pl
¼ Ω2GN

Ω2l2pl
¼ GN

l2pl
;

is the same in the original and in the conformal
representation.
The main difference between the Riemannian and the

Weyl-integrable representations of the same physical reality
(whatever this means) resides in the fact that, while in the
Riemannian representation a single class of spacetimes
ðM; gμνÞ solves the Einstein’s field equations, in the
conformal Weyl-integrable representation a whole con-
formal class of spacetimes ðM; ḡμν; lnΩ2Þ, which are
related by Weyl rescalings

ḡμν → λ2ḡμν; Ω → λ−1Ω;

where λ is non-negative point-dependent function, satisfy
the Weyl-integrable Einstein’s equations

ḠðWÞ
μν ¼ 8πḠNT̄

ðmÞ
μν :

In this case the conformal transformation’s issue does not
arise since both conformal representations amount to
different physically equivalent geometrical descriptions
of a given gravitational phenomenon.
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There is a third viewpoint but it does not involve any
controversy with regard to the physical meaning of the
conformal frames. According to this viewpoint, the con-
formal transformations are used just as a mathematical tool
to handle the equations of the given gravitational theory:
one transforms the original equations into the conformal
frame representation where these are more easily solved
and then, when one wants to interpret the results, one goes
back to the original formulation of the theory by means of
the inverse conformal transformation.
The lesson to be learned is that there is not any conformal

controversy:
(i) If under a conformal transformation (55) one as-

sumes that10

ðM; gμνÞ → ðM; ḡμνÞ;

then, from the start, the conformal representations
are in fact different theories with their own (different
for each theory) physical content, which imply
different observational consequences.

(ii) If under (55) it is postulated that

ðM; gμνÞ → ðM; ḡμν; lnΩ2Þ;

then, the conformal representations amount to differ-
ent (physically equivalent) geometrical descriptions
of a same phenomenon.

Finally we want to notice that the latter point of view is
radically different from the one discussed in XIII A. This is
in spite of the fact that it shares certain statements regarding
physical measurements with the viewpoint of [51] (see also
[49]). For a detailed discussion on this subject see [53].

XIV. DISCUSSION AND CONCLUSION

According to Eq. (31), for the exponential potential
UðφÞ ∝ expðλφÞ, the effective mass squared of the dilaton
is given by

m2
φ� ¼

ðλþ 1Þ½2ðλ − 1ÞM2� 1
λþ1

3þ 2ωBD
ρ

λ
λþ1: ð78Þ

The dependence of the dilaton’s effective mass on the
density of the environment mφ� ¼ mφ� ðρÞ is the basis for
the chameleon effect. The interest in the latter as an
effective screening mechanism resides in that the dilaton
field might have impact in the cosmological dynamics and,
yet, it might be effectively screened from the solar system
and terrestrial experiments. This is in contrast to the mass
due to an effective potential which does not depend on ρ. In
this case, provided that the effective mass is small enough,

the dilaton may modify the cosmological dynamics.
However, since the mass is small no matter where the
experiments with the dilaton are performed, one has to care
about the stringent bounds coming from the terrestrial fifth-
force experiments, the solar system experiments to test the
equivalence principle, etc.
In the case of the Brans-Dicke theory, one interesting

application of the chameleon effect is related with the
possible relaxation of the stringent lower bounds on the BD
coupling parameter ωBD > 40000. In order to illustrate
the way such a relaxation may occur, let us assume, as
we did in Sec. VI, that the dilaton is immersed in the
Earth atmosphere with mean density ρatm ∼ 10−3 g=cm3.
Assume, besides, that the 1 mm lower bound on the
modification of the Newton’s law of gravitation applies,
i.e., that m−1

φ� ∼ 1 mm, and, for sake of definiteness, let us
set λ ¼ 3. This value of the free parameter λ corresponds to
the quartic potential VðϕÞ ∝ ϕ4 in terms of the Jordan
frame variables. If we substitute the above numbers into
Eq. (78)

m2
φ� ¼

4ð4M2Þ1=4ρ3=4
3þ 2ωBD

⇒

m−1
φ� ½mm� ≈ 0.1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ωBD

p
2ð4M2Þ1=8ðρ½gr=cm3�Þ3=8 ;

one gets that

ωBD ≈ 1.6
ffiffiffiffiffi
M

p
− 1.5; ð79Þ

meaning that for M ∼ 1, one can have that the BD theory
with anωBD of order unity may be the correct description of
gravity, without conflict with the existing experimental
bounds, coming from terrestrial and solar system tests of
the equivalence principle, fifth-force and modifications of
the Newtonian gravitational potential.
The interesting question is whether the same theory can

explain the observational data of cosmological origin as
well. Worth noticing that the effective mass squared m2

φ� in
Eq. (78) vanishes if λ ¼ 1, i.e., for the specific exponential
UðφÞ ∝ expφ. This result is independent of the conformal
frame: in the EF we have that [see Eq. (68)]

m̄2
φ� ¼

ðλþ 1Þ½4M4ðλ − 1Þ2� 1
λþ1

3þ 2ωBD
ρ

λ−1
λþ1;

so that, the EF effective mass squared of the dilaton
vanishes if λ ¼ 1 as well. As a consequence, for λ ¼ 1,
the chameleon effect does not arise in neither frame. This
means that the dilaton-mediated interaction of matter is of
long range (it is not screened), and we would have had
detected the BD dilaton in terrestrial and solar system
experiments. If, on the contrary, one assumes that λ ≠ 1, as
we have shown above, the chameleon effect arises but, then
the GR–de Sitter solution is not an equilibrium point of the

10This assumption is in fact an independent geometrical
postulate.

CHAMELEON EFFECT IN THE JORDAN FRAME OF THE … PHYSICAL REVIEW D 92, 044055 (2015)

044055-21



dynamical system (39), neither of the simpler ODE (44).
This means, in turn, that the ΛCDM model is not an
attractor of the vacuum Brans-Dicke cosmology.11 The
absence of the GR–de Sitter critical point entails that, in
case it was an exact solution of the BD cosmological field
equations (34), it was a nongeneric unstable one, without
interest for describing a long-lasting period of the cosmo-
logical evolution.
Another essential aspect of the chameleon mechanism is

related with the fact that a convenient effective chameleon
potential Uchðφ; ρÞ, is a minimum at some φ�, where

∂φUchðφ�Þ ¼ 0; m2
φ� ¼ ∂2

φUchðφ�Þ > 0:

In a cosmological setting this entails that the dilaton does
damped oscillations around the expectation value φ�, until
it stabilizes at the minimum of the potential. As a
consequence, the Brans-Dicke theory with a chameleonic
dilaton renders general relativity at the minimum of the
potential. Notice, however, that, in general, the density of
the environment ρ ¼ ρðtÞ is a function of the cosmic time.
This is particularly true if one considers nonstatic distri-
butions of matter. In this more general case what one has is
not a point of minimum, but a whole curve φ�ðtÞ ¼
φ�ðρðtÞÞ. Hence, the dilaton does not acquire an expect-
ation value, but an expectation curve, whatever this means.
In such a case, _φ�ðtÞ ≠ 0 and one does not end up with
general relativity but with Brans-Dicke theory instead.
Hence, a necessary condition for the GR–de Sitter space
to be a local attractor (or a saddle point) of the BD
cosmology is that the density of matter ρ be a constant
within a given region.
One gets the following big picture: provided that the laws

of cosmological expansion are governed by the Brans-
Dicke theory with the potential UðφÞ, if there were regions
Ri in our Universe where the density of matter ρi were a
constant (perhaps a different constant in each region), and
assuming that within each one of such regions the potential
UðφÞ were a minimum at some φi� ¼ φi�ðρiÞ (different for
each region also), then, thanks to the chameleon effect, after
different periods of damped oscillations around the differ-
ent minimums φi�, the BD theory transmutes into GR–de
Sitter gravity within each one of these regions, with
different sets of fundamental constants ðM2

PL;i;ΛiÞ. Yet,
if the potential UðφÞ were one that asymptotes to the
exponential UðφÞ → expφ, then the Universe as a whole
evolved into the final stable GR–de Sitter state.

A. Concluding remarks

Now we are in position to put together the main results of
the present research, in order to get to physical conclusions
(we shall include, also, results of [16,17]).

(i) It is a very difficult (perhaps hopeless) task to find a
BD potential that allows us to meet at once the
terrestrial/solar system bounds and the bounds
coming from cosmological considerations (Sec. VI).

(ii) The potential U ∝ expφ is singular in the sense that
the dilaton is strictly massless during the course of
the entire cosmic history, since the corresponding
UchðφÞ does not develop minimums [see Eq. (78)
with λ ¼ 1]. Consequently, the chameleon effect
does not arise.

(iii) Only for the specific exponential potential
UðφÞ ∝ expφ, or for potentials that asymptote
to expφ, the GR–de Sitter solution is an attractor
of the corresponding dynamical system [16,17] (see
Sec. VIII of the present paper). Coincidentally, in
these cases, since the effective chameleon mass is
exactly vanishing at the attractor, the chameleon
effect does not arise within the frame of the BD
theory.

(iv) In order to get a consistent local picture of trans-
mutation of the Brans-Dicke theory into de Sitter
general relativity (see Sec. IX), assuming that the
cosmological dynamics is dictated by the exponen-
tial potential UðφÞ ∝ expðλφÞ, it is required that
λ ≫ 1 (Sec. X).

The conclusion is that, if assume that the BD theory can
explain the present acceleration of the expansion within the
required accuracy, then the BD scalar field (our dilaton) has
had to be detected in solar system and/or in terrestrial
experiments. The contrary statement is also true: if the BD
theory explains the local gravitational laws and, simulta-
neously, the dilaton is effectively screened from terrestrial
and solar system detection, then it cannot explain the
present accelerated stage of the cosmic evolution. This
conclusion is independent of the conformal frame chosen to
describe the BD theory.
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APPENDIX: THE THIN-SHELL EFFECT

The chameleon effect is primarily linked with the
dependence of the effective mass of the BD scalar field
upon the density of the surroundings. There is, however,
another source of further screening of the fifth-force which
can be associated with the BD scalar field. This is called as
the thin-shell effect [5–7]. This effect, which is significant
only for large objects, is originated from the dependence of
the strength of the coupling of the BD field to the matter, on

11As shown in the Ref. [17], this result is also true for Brans-
Dicke cosmology with pressureless matter.
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the density of the environment as well. As a matter of fact,
the BD scalar field outside such a large object couples to
matter with an effective coupling strength βeff which is
much smaller than the “bare” coupling β (in the case of the
BD theory considered in this paper β ¼ 1). In order to
consider the classical example [6], imagine a large enough
spherical body of mass Mc, homogeneous density ρc and
radius Rc, which is immersed in an homogeneous envi-
ronment of density ρ∞. Denote by ϕc and ϕ∞, the values of
the BD scalar field which minimize the chameleon poten-
tial VchðϕÞ for ρc and ρ∞, respectively. The mass of the
small perturbations of the BD scalar field about these
minima will be denoted by mc and m∞, respectively. We
have that [see Eq. (17)]

VchðϕðrÞÞ ¼ VeffðϕðrÞÞ −
ϕðrÞ

3þ 2ωBD
ρðrÞ;

where ρ ¼ ρc for r < Rc, while ρ ¼ ρ∞ for r > Rc. The

same for mϕ ¼ mϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
ϕVchðϕðrÞÞ

q
, mϕ ¼ mc if

r < Rc, while mϕ ¼ m∞ if r > Rc. The resulting
Helmholtz equation,

1

r2
d
dr

�
r2
dðδϕÞ
dr

�
¼ m2

ϕδϕ;

for the perturbations around ϕc and ϕ∞, is subject to the
following reasonable boundary conditions: (i) the field is
regular at the origin, and (ii) far away from the body the
field tends to its minimum value ϕ∞,

dϕðrÞ
dr

����
r¼0

¼ 0; lim
r→∞

ϕðrÞ ¼ ϕ∞:

The solutions of the Helmholtz equation are [6]

ϕðr < RcÞ ¼ ϕc þ
C1 sinhðmcrÞ

r
;

inside of the body, and

ϕðr ≫ RcÞ ¼ ϕ∞ þ C2e−m∞r

r
;

outside it, respectively. Requiring, additionally, continuity
of the field and its first derivative at the boundary r ¼ Rc,
allows us to fix the constants C1 and C2. In order to make
estimates it is usually assumed that the density contrast
between the body and the environment is large: ϕc ≫ ϕ∞,
mc ≫ m∞. After the mentioned assumptions, the exterior
solution above can be written as

ϕðr > RcÞ ≈ 2βeff
Mce−m∞ðr−RcÞ

r
þ ϕ∞;

where

βeff ¼
3ϕc

ρcR2
c
¼ 9

m2
cR2

c

is the effective coupling of the chameleon field to the
surrounding matter. For large objects with Rc ≫ m−1

c , where
m−1

c is the Compton wavelength of the chameleon field, the
exterior solution is that of a point particle, but with a much
weaker effective coupling to matter βeff ≪ 1. This suppres-
sion mechanism is what is called a thin-shell effect. The
name is motivated by the fact that the BD (chameleon) field
ϕðrÞ is almost a constant throughout the bulk of the object
except within a thin shell of thickness ∼m−1

c . Only that part
of the body located within this thin shell contributes to the
fifth-force exerted on a test particle. This fact results in a very
suppressed effective coupling βeff ≪ 1.
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