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The general stationary cylindrically symmetric solution of Einstein-massless scalar field system with a
nonpositive cosmological constant is presented. It is shown that the general solution is characterized by
four integration constants. Two of these essential parameters have a local meaning and characterize the
gravitational field strength. The other two have a topological origin, as they define an improper coordinate
transformation that provides the stationary solution from the static one. The Petrov scheme is considered to
explore the effects of the scalar field on the algebraic classification of the solutions. In general, these
spacetimes are of type I. However, the presence of the scalar field allows us to find a nonvacuum type O
solution and a wider family of type D spacetimes, in comparison with the vacuum case. The mass and
angular momentum of the solution are computed using the Regge-Teitelboim method in the case of a
negative cosmological constant. In absence of a cosmological constant, the curvature singularities in the
vacuum solutions can be removed by including a phantom scalar field, yielding nontrivial locally
homogeneous spacetimes. These spacetimes are of particular interest, as they have all their curvature
invariants constant.
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I. INTRODUCTION

In vacuum, the static cylindrically symmetric spacetimes,
in the absence of a cosmological constant, was found by
Levi-Civita [1] just a few years after the emerging of
general relativity. However, the inclusion of a nonzero
cosmological constant was only achieved almost 70 years
later by Linet [2] and Tian [3]. More recently, some
geometrical properties of these spacetimes, such as the
presence of conical singularities, were reviewed in [4,5].
The stationary cylindrically symmetric vacuum solution
was discovered independently by Lanczos [6] and Lewis
[7]. The general solution contains a number of integration
constant, whose physical interpretation has been studied in
[8,9]. In vacuum, the cylindrical stationary spacetimewith a
nonvanishing cosmological constant was derived in [10]
and [11]. The interpretation of the integration constants was
clarified in [12], where it was proved that three of them are
indeed essential parameters. Two integration constants have
a topological origin [13], and a third one characterizes the
local gravitational field.
Despite the static cylindrically symmetric spacetimes are

widely known in vacuum, exact solutions containing a
massless scalar field as matter source in presence of a
cosmological constant have received almost null attention
until now. Previously, solutions with plane symmetry,
which are a particular case of the cylindrical ones, have
been reported [14,15] and other particular solutions in

[16,17].1 The main efforts on this subject can be found in
[18,19] and [20] for the static and stationary cases,
respectively. In these articles the existence of soliton and
wormhole solutions in the presence of an arbitrary self-
interaction potential for the scalar field was analyzed,
providing also a useful method for obtaining general
cylindrically symmetric solutions.
In this article, the general stationary cylindrically sym-

metric solution of Einstein-massless scalar field system
with a nonpositive cosmological constant Λ is found, and
its geometrical properties are studied. The aim of this work
is to determine the implications of a massless scalar field in
a cylindrically symmetric system. Due to the high interest
in exact solutions whose asymptotic behavior approaches
the anti-de Sitter spacetime, we include in the analysis a
negative cosmological constant. In fact, the solutions
presented here, for Λ < 0, have that asymptotic behavior.
Moreover, we study the effect of a massless scalar field in
the case of a vanishing cosmological constant, i.e., we
explore the backreaction generated by the scalar field in the
well-known Lanczos-Lewis and Levi-Civita spacetimes.
As is expected, in the absence of suitable potentials and

nonminimal couplings for the scalar field, the no-hair
theorem rules out solutions having event horizons, and
this is precisely our case. We are just considering a massless
scalar field with a constant potential (zero or negative).
Thus, in general, the solutions presented here contain naked
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1Unfortunately, along these two articles there are inconsisten-
cies in the signs of the cosmological constant and the kinetic term
of the scalar field.
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singularities, which however could have some physical
interest [21].
We find that the general stationary cylindrically sym-

metric solution contains two different classes. In the first of
them, the stationary spacetimes become static by adjusting
smoothly the integration constants related with the rotation.
For the second class this process is not possible, and in
consequence, such a class of solutions does not have a static
limit. In this sense, this class has an unclear physical
relevance and therefore we focus on the analysis of the
solutions belonging to the first class. For this reason,
hereafter we will refer to the first class as the general
solution.
The article is organized as follows. In the next section,

the action and the ansatz are established and the general
solution is presented as a linear combination of three
functions, according to the cosmological constant. Then,
for a negative cosmological constant, the local properties of
the solutions are studied using the Newman-Penrose (NP)
formalism, where the Weyl-NP scalars allow to obtain the
Petrov classification of these spacetimes. It is shown that a
parameter included through the scalar field enlarges the
family of spacetimes with respect to the vacuum ones.
Afterwards, following [13], the stationary spacetime is
obtained from the static one by means of a topological
construction. These formalisms allow us to identify the four
essential parameters of the general solution. One of them is
the amplitude of the scalar field, which in conjunction with
a second one describes the strength of the gravitational
field. The remaining parameters have a topological
origin and are just globally defined, because they cannot
be removed by a proper coordinate transformation.
Moreover, the mass and angular momentum are computed
by using the Regge-Teitelboim method [22]. These con-
served charges illustrate the physical meaning of the
essential parameters. The case of a vanishing cosmological
constant is considered in Sec. IV. We note that it is
necessary to integrate the field equations from scratch,
because a special class of solutions is not available by just
taking the limit Λ → 0 in the solutions presented in Sec. II.
We found that these spacetimes have all their scalar
invariants constant, and are supported by a phantom scalar
field. After of some concluding remarks, an appendix is
included. The appendix offers a very detailed derivation of
the general solution. The key point is to reduce the field
equations to a very simple uncoupled system of differential
equations, which allow us to find (i) all the solutions and
(ii) figure out how they split in two classes: the physical
one, which contains the static solution, and the one lacking
a static limit.

II. GENERAL STATIONARY CYLINDRICALLY
SYMMETRIC SOLUTIONS

We consider the Einstein-Hilbert action with a massless
scalar field and a cosmological constant Λ,

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ
2κ

−
1

2
gμν∂μΦ∂νΦ

�
; ð1Þ

where κ ¼ 8πG is the gravitational constant. The stress-
energy tensor turns out to be

Tμν ¼ ∂μΦ∂νΦ −
1

2
gμνgαβ∂αΦ∂βΦ; ð2Þ

and the field equations are given by

Gμν þ Λgμν ¼ κTμν; □Φ ¼ 0: ð3Þ

The general stationary, cylindrically symmetric2 con-
figuration can be described by the line element

ds2 ¼ gttðrÞdt2 þ gϕϕðrÞdϕ2 þ gzzðrÞdz2
þ 2gtϕðrÞdtdϕþ dr2; ð4Þ

where the coordinates range as t ∈ ð−∞;∞Þ, r ∈ ½0;∞Þ,
z ∈ ð−∞;∞Þ and ϕ ∈ ½0; 2πÞ, and a scalar field depending
just on the radial coordinate, Φ ¼ ΦðrÞ.
As shown in the Appendix, the general solution (4) of the

field equations (3) can be written as a linear combination of
three functions

gttðrÞ ¼ a1g1ðrÞ − a0g0ðrÞ;
gϕϕðrÞ ¼ b1g1ðrÞ − b0g0ðrÞ;
gtϕðrÞ ¼

ffiffiffiffiffiffiffiffiffiffi
a0b0

p
g0ðrÞ −

ffiffiffiffiffiffiffiffiffiffi
a1b1

p
g1ðrÞ;

gzzðrÞ ¼ c0g2ðrÞ; ð5Þ

where for a negative cosmological constant Λ ¼ −3l−2,

giðrÞ ¼
�
e3r=l − b

e3r=l þ b

�Ki

ðe3r=l − b2e−3r=lÞ2=3;

i ¼ f0; 1; 2g; ð6Þ

and the scalar field is given by

ΦðrÞ ¼ Φ0 þ
1

2

ffiffiffiffiffi
α

2κ

r
log

�
e3r=l − b

e3r=l þ b

�
2

: ð7Þ

For Λ ¼ 0, the functions are

giðrÞ ¼ r2=3þKi ; i ¼ f0; 1; 2g; ð8Þ

and the scalar field is

2In order to include spacetimes lacking a regular axis, we are
adopting the less restrictive definition of cylindrical symmetry
given in [12].

CRISTIÁN ERICES AND CRISTIÁN MARTÍNEZ PHYSICAL REVIEW D 92, 044051 (2015)

044051-2



Φ ¼ Φ0 þ
ffiffiffiffiffi
α

2κ

r
logðrÞ; ð9Þ

where the origin has been chosen at r ¼ 0.
Here Ki, a0, a1, b, b0, b1, c0, α and Φ0 are integration

constants. The constants Ki are not independent, since they
verify the algebraic relations

K0 þ K1 þ K2 ¼ 0; ð10Þ

K0K1 þ K1K2 þ K2K0 ¼ −
4

3
þ α: ð11Þ

In order to ensure a real metric and scalar field, the previous
algebraic relations fix bounds for the constants. The
constant α runs in the interval 0 ≤ α ≤ 4=3, and the
constants jKij are bounded from above by 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
,

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
, and 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
in any order.

Note that the presence of the scalar field is encoded in the
additional integration constant α in (11). In absence of
the scalar field, the stationary solutions presented in [11],
and the static ones in [2,3], are recovered.
The constant c0 can be absorbed by rescaling the

noncompact coordinate z, and only one of the constants
a0, a1, b0, b1 is essential, as it will become clear in the next
section.

III. ANALYSIS OF THE SOLUTIONS WITH Λ < 0

In order to get insight about the parameter b, it is
convenient to start with static metric

ds2 ¼ −g0ðrÞdt2 þ g1ðrÞl2dϕ2 þ g2ðrÞdz2 þ dr2: ð12Þ
The constant b determines the location of the axis of
symmetry at r0 ¼ l=3 log jbj, and it can be removed from
the scalar field by a shift of the radial coordinate
r → rþ r0. With this shift, b just appears as a multipli-
cative factor b2=3 in gi, and consequently, the invariants do
not depend on b. In other words, b could be removed from
the solution by rescaling the coordinates t; z;ϕ. However, ϕ
is a compact coordinate and global properties will be
modified with this rescaling. In fact, the metric with the
shifted radial coordinate reduces in the absence of the scalar
field to that shown in [5], where a conicity parameter
equivalent to b−1=3 is explicitly exhibited. In summary, b
has no relevance for the local properties, but it is a
topological parameter that contributes to the mass of the
solution (see subsection III D). On the contrary, note that
for Λ ¼ 0 a shift of the radial coordinate does not have any
local or global implication.
The general solution previously considered for the

vacuum case does not contain a locally anti-de Sitter
(AdS) spacetime [4]. Indeed, the locally AdS solution
appears as a special branch disconnected from the general
one [5]. The advantage of our general static solution is that

it is smoothly connected to a locally AdS spacetime, and in
fact, this is achieved just doing b ¼ 0 in (12). Explicitly, we
obtain

ds2 ¼ dr2 þ e2r=lð−dt2 þ l2dϕ2 þ dz2Þ; ð13Þ
which becomes the background required for computing the
conserved charges in subsection III D.

A. Local properties

In order to obtain a deeper insight into the geometrical
properties of the solution, we make use of an invariant
characterization of the spacetimes. Spacetimes are usually
classified according to the Petrov classification of their
Weyl invariants. Note that for analyzing the local properties
it is enough to consider the static solutions because, as it
will be shown in the next subsection, the stationary
solutions can be obtained from a topological construction,
and therefore they are locally equivalent. The general
solution presented above, (12), is of type I (named normally
algebraically general). However, as Linet pointed out in [2],
a particular choice of the constants K0, K1, and K2, makes
the solution an algebraically special spacetime of type D.
We find that, with the inclusion of the scalar field, i.e., by
means of the constant α, the Petrov type D spacetimes are
no longer determined only by those particular values of Ki,
but by a range of values driven by α. Namely, Petrov type D
spacetimes are found for values of Ki taken as any ordering
of � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
, ∓ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
, and ∓ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
, provided

0 ≤ α < 4=3. These type D spacetimes have a planar
section (two Ki are equal), which allows an additional
symmetry. This fourth Killing vector corresponds to a
rotation or a boost in this plane depending on its signature.
A novel feature introduced by the scalar field is a

nontrivial Petrov type O subfamily. In fact, for α ¼ 4
3
,

b ≠ 0 and vanishing Ki, a conformally flat spacetime
arises, and it is given by

ds2 ¼ dr2 þ ðe3r=l − b2e−3r=lÞ2=3ð−dt2 þ dz2 þ l2dϕ2Þ:
ð14Þ

In other words, the scalar field gives rise to a wider family
of spacetimes. This Petrov type O is a new subfamily
parametrized by b, which strictly emerges due to the scalar
field. In this case the number of isometries is enlarged to
six since we are dealing with a conformally flat spacetime.
It is remarkable to have such a number of symmetries in a
space endowed with a matter source, in particular since
for the vacuum (nontrivial) case there are at most four
Killing vectors [4]. For b ¼ 0 the scalar field is trivial—it
is a constant—and (14) reduces to the locally AdS
spacetime (13).
Studying the Weyl and Ricci scalars of the Newman-

Penrose formalism it is shown that they are singular at the
axis for the whole family of solutions, except in two cases.
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The first one, corresponds to the CSI spacetimes, which
will be discussed in Sec. IV B. The second case appears for
a constant scalar field (α ¼ 0) provided the constants Ki
take the values f� 4

3
;∓ 2

3
;∓ 2

3
g, or any permutation of them

[2]. Since this special solution is regular at the axis, a
change of the radial coordinate r can be performed to prove
that this type D solution is a black string. In fact, for
K0 ¼ 4=3, and K1 ¼ K2 ¼ −2=3 the transformation reads

r ¼ 2l
3
log

�
ρ3=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3 − 4bl3

p
2l3

�
; ð15Þ

yielding the black string

ds2 ¼ −
�
ρ2

l2
−
4lb
ρ

�
dt2 þ dρ2

ρ2

l2 −
4lb
ρ

þ ρ2

l2
dz2 þ ρ2dϕ2:

ð16Þ

Note that the original axis of symmetry at r0 ¼ l=3 log jbj
is mapped to the horizon ρþ ¼ 22=3lb1=3, and the new axis
of symmetry is located at ρ ¼ 0. This black string was
previously found by solving the Einstein field equations in
[23], and by using an adequate coordinate transformation
in [5].

B. Topological construction of the rotating
solution from a static one

As explained in [13], a diagonal static metric with
dependence on the spacelike coordinates r and z, and with
the “angular” coordinate stretched to infinity, can be locally
equivalent but globally different to a stationary axisym-
metric metric obtained from a topological identification in
the static spacetime. This identification is defined by two
essential parameters. This kind of essential parameters
cannot be removed by a permissible change of coordinates
since they encode topological information. In this section
we are going to build the stationary solution (4) with the
metric coefficients (5), using the procedure presented in
[13] in the particular case of cylindrical symmetry.
Let us consider the static solution with scalar field

ds2 ¼ −g0ðrÞdt̂2 þ g1ðrÞl2dϕ̂2 þ g2ðrÞdz2 þ dr2; ð17Þ

where gi is given by (6) in a coordinate system ðt̂; r; z; ϕ̂Þ
with t̂ ∈ ð−∞;∞Þ, r ∈ ½0;∞Þ, z ∈ ð−∞;∞Þ and ϕ̂ ∈
ð−∞;∞Þ. Note that ϕ̂ is not a compact coordinate. We
perform a coordinate transformation on the ðt̂; ϕ̂Þ plane
given by

t̂ ¼ β0ϕþ β1t; ϕ̂ ¼ α0ϕþ α1t; ð18Þ

where α0, α1, β0 and β1 are parameters. This transforms
(17) into (5) by defining these parameters as follows

α0 ¼
ffiffiffiffiffi
b1

p
l

;

α1 ¼ −
ffiffiffiffiffi
a1

p
l

;

β0 ¼ −
ffiffiffiffiffi
b0

p
;

β1 ¼ ffiffiffiffiffi
a0

p
: ð19Þ

As shown in [13], α1 and β1 are not essential parameters,
and they can be set as α1 ¼ 0 and β1 ¼ 1. On the contrary,
α0 and β0 are essential. However, after a topological
identification, which transforms the ðt̂; ϕ̂Þ plane into a
cylinder, one can fix the period of the angular coordinate ϕ
to 2π by choosing α0 ¼ 1. Since in (17) all the coordinates
are not compact, b can be absorbed by rescaling the
coordinates. After identification, ϕ̂ becomes periodic and
b has a topological meaning. The parameter α0 plays the
same topological role, and in fact it redefines b. Therefore,
without loss of generality α0 can be fixed, but not
simultaneously with b. In other words, since from the
beginning the static solution contains an arbitrary conicity
parameter b, the constant α0 can be fixed. Going back to
relations (19) we find that a0 ¼ 1, a1 ¼ 0, and b1 ¼ l2

reproduce the set of values chosen for α0; α1, and β1. Then,
after fixing the period as 2π there is just one essential
parameter β0 in the transformation, which will be named
−a hereafter. Then, the transformation (18) reduces to

t̂ ¼ t − aϕ;

ϕ̂ ¼ ϕ: ð20Þ

In summary, a topological construction can bring the
solution (17) into a locally equivalent, but globally differ-
ent, solution by doing the transformation (20) to get

ds2 ¼ −g0ðrÞðdt − adϕÞ2 þ g1ðrÞl2dϕ2 þ g2ðrÞdz2 þ dr2:

ð21Þ

Transformation (20) is not a proper coordinate transforma-
tion, since it converts an exact 1-form into a closed but not
exact 1-form, as was discussed in detail in [24]. Hence, (20)
only preserves the local geometry, but not the global one.
Therefore, the resulting manifold is globally stationary but
locally static. Hereafter, we will consider (21) instead of (5)
as the general solution, because it already contains all the
local and global essential information.

C. Asymptotic behavior

In order to display the asymptotic behavior of the fields,
it is convenient to use the coordinate ρ ¼ ler=l. In this way,
the behavior at large ρ is given by
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gttðρÞ ¼ −
ρ2

l2
þ 2blK0

ρ
þOðρ−4Þ;

gϕϕðρÞ ¼ ρ2
�
1 −

a2

l2

�
þ 2lbð−l2K1 þ a2K0Þ

ρ
þOðρ−4Þ;

gtϕðρÞ ¼
ρ2a
l2

−
2blaK0

ρ
þOðρ−4Þ;

gzzðρÞ ¼
ρ2

l2
−
2blK2

ρ
þOðρ−4Þ; gρρðρÞ ¼

l2

ρ2
;

ΦðρÞ ¼ Φ0 þ
ffiffiffiffiffiffi
2α

κ

r
bl3

ρ3
þOðρ−9Þ: ð22Þ

One can note that the metric asymptotically approaches
a locally AdS spacetime, as the scalar field becomes
constant. The background is fixed by setting a¼ b¼
α¼Φ0¼ 0, which corresponds to a locally AdS spacetime.

D. Mass and angular momentum

The mass and angular momentum of the solutions are
determined using the Regge-Teitelboim method [22]. In the
canonical formalism, the generator of an asymptotic sym-
metry associated to the vector ξ ¼ ðξ⊥; ξiÞ is built as a
linear combination of the constraints H⊥;Hi, with an
additional surface term Q½ξ�

H½ξ� ¼
Z

d3xðξ⊥H⊥ þ ξiHiÞ þQ½ξ�: ð23Þ

A suitable choice of this surface term attains the generator has
well-defined functional derivatives with respect to the
canonical variables [22]. The surface term Q½ξ� is the
conserved charge under deformations ξ provided the con-
straints vanish. For the action (1), the variation of Q½ξ� is
given by

δQ½ξ� ¼
I

d2Sl

�
Gijkl

2κ
ðξ⊥δgij;k − ξ⊥;kδgijÞ þ 2ξkδπ

kl

þð2ξkπjl − ξlπjkÞδgjk −ð ffiffiffi
g

p
ξ⊥gljΦ;j þ ξlπΦÞδΦ

�
;

ð24Þ
whereGijkl ≡ ffiffiffi

g
p ðgikgjl þ gilgjk − 2gijgklÞ=2 and the semi-

colon stands for the covariant differentiation in the spacelike
hypersurface. The canonical variables are the spatial metric
gij and the scalar field Φ together with their respective
conjugate momenta πij and πΦ.
To evaluate δQ½ξ� we consider as asymptotic conditions

just the asymptotic behavior of the solutions with a negative
cosmological constant (22), where the integration constants
Ki; a; b; α are allowed to be varied. The additive constant of
the scalar field Φ0 is considered as a fixed constant without
variation, in order to save the asymptotic scale invariance.3

Since the solution is in the comoving frame along z, the
corresponding momentum Q½∂z� vanishes. Then, the only
nonvanishing charges are those associated to symmetry
under time translations and the rotational invariance, the
mass and angular momentum, respectively. Defining q½ξ� as
the charge by unit length Q½ξ� ¼ R

q½ξ�dz, we can obtain
from (22) and (24), the explicit form of δq½ξ�

δq½ξ� ¼ 6π

κ
½−ξtδðbðK1 þ K2ÞÞ þ ξϕδðabðK1 − K0ÞÞ�:

ð25Þ

Thus, using κ ¼ 8πG, the mass M ¼ q½∂t� and angular
momentum J ¼ q½∂ϕ� per unit length are

M ¼ 3b
4G

K0; J ¼ 3ab
4G

ðK1 − K0Þ: ð26Þ

These global charges are defined up to an additive constant
without variation. In order to set the locally AdS spacetime
(13) as a background, these additive constants must be
chosen to be null.
As we can see from the expression for the angular

momentum, there are two manners of turning off the
angular momentum. The first one is by doing a ¼ 0, which
cancels the off-diagonal term gtϕ in the metric. The second
way is less obvious, since it is achieved by considering
K0 ¼ K1. Indeed, this particular choice of the parameters
yields a static solution of type D. This can be shown from
the coordinate transformation

dϕ → dϕþ a
ða2 − l2Þ dt; dt → dt: ð27Þ

As analyzed in [13], this transformation contains an
inessential parameter α1 ¼ a=ða2 − l2Þ, which does not
change the topology. Therefore, the solution with K0 ¼ K1

is no just locally equivalent to the static solution, but also
globally.

IV. ANALYSIS OF SOLUTIONS WITH Λ ¼ 0

The limit Λ → 0, or equivalently l → ∞, in the configu-
rations given by Eqs. (6) and (7) in Sec. II, does not provide
all the solutions coming from a direct integration of the
field equations. In fact, as shown in the Appendix, two
classes of solutions are obtained. The first type corresponds
to solutions that match the limit Λ → 0 in the configura-
tions introduced in Sec. III, and they are dubbed as Levi-
Civita type spacetimes. The second type is formed by
spacetimes having all their invariants constant. These two
types will be analyzed in detail below. The discussion in
this section is focused on static solutions. The topological
construction explained in Sec. III does not depend on the
value of the cosmological constant, and in consequence,
the stationary solutions for Λ ¼ 0 can be obtained from the

3For δΦ0 ≠ 0, δQ½ξ� contains a term proportional toH
d2Sξt

ffiffiffi
α

p
bδΦ0. The integration of this term requires a boundary

condition relating Φ0 with α and b.
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improper transformation (20). Since (20) is a local trans-
formation, the static configuration and its stationary
counterpart share the same local properties.

A. Levi-Civita type spacetimes

In this subsection, we analyze a Levi-Civita type
spacetime in presence of a massless scalar field. The
algebraic relations (10) and (11) determine two essential
constants related to the gravitational and scalar field
strengths. Since ϕ is an angular coordinate with a given
period, the constant b1 in (5) cannot be absorbed by a
rescaling of this coordinate keeping the same period. Then,
b1 is a third essential parameter and plays a topological role
in the same way as b in Sec. III. The transformation (20)
provides the fourth essential parameter for the stationary
solution.
As in Sec. III, we study the local properties through the

Petrov classification. Normally the solution is algebraically
general as occurs in vacuum [25], but algebraically special
spacetimes are also possible to be found. The scalar field
parametrizes three families of type D spacetimes, which
will be described in Table 1. Two of these families (S1 and
S2) are allowed only for a nonvanishing scalar field, while
the third one (S3) reduces to the three known vacuum type
D Levi-Civita spacetimes by switching off the scalar field
and by circular permutations of Ki. A nontrivial type O
spacetime emerges strictly from the scalar field. In this case
K0 ¼ K1 ¼ K2 ¼ 0 and α ¼ 4=3 yielding the conformally
flat metric

ds2 ¼ dr2 þ r2=3ð−dt2 þ dz2 þ b1dϕ2Þ: ð28Þ

This is the counterpart with Λ ¼ 0 of the conformally flat
spacetime described in (14).
It is found that the nonvanishing components of the

Riemann tensor Rμν
λρ and Kretschmann scalar are propor-

tional to r−2 and r−4, respectively. Then, the spacetime is
asymptotically locally flat.
Until now, we have considered a nonvanishing constant

u1 [defined by (A38) in the Appendix]. However, when we
consider u1 ¼ 0, the functional form of giðrÞ is drastically
modified. This new branch of solutions, which is not

directly provided by the limit Λ → 0 in Sec. III, are
analyzed in next subsection.

B. CSI spacetimes

In general, the Levi-Civita type spacetimes discussed
above possess curvature invariants which are singular at
r ¼ 0. However, it is possible to find regular spacetimes,
i.e., spacetimes free of any curvature singularity, where in
addition, all polynomial scalar invariants constructed from
the Riemann tensor and its covariant derivatives are
constant. These spacetimes are known as constant scalar
invariant (CSI) spacetimes. In this subsection, a nontrivial
CSI spacetime due to the presence of the scalar field is
presented. It is found that it is required to switch off the
cosmological constant in order to get this class of space-
times. This case is of particular interest since it provides a
nonvacuum solution with constant curvature scalars. For
simplicity, only the static cases will be considered, since the
stationary CSI spacetimes containing a static limit can be
obtained by performing the coordinate transformation (20).
From the field equations (3) one can obtain the Ricci

scalar, which reads

R ¼ 4Λþ κΦ02 ¼ 4Λþ P2
0

2U2
; ð29Þ

where the last equality comes from (A28). Assuming
P0 ≠ 0, i.e., a nontrivial scalar field, U ¼ u0 ¼ constant
is a necessary condition for a CSI spacetime. Since U0 ¼ 0
is not a solution for a nonvanishing Λ, there are no CSI
spacetimes in this case. However, for Λ ¼ 0 the function U
becomes a constant by setting u1 ¼ 0 in Eq. (A38), and
consequently, a must be negative. Thus, the candidates to
CSI spacetimes are the ones lacking a static limit.
Nevertheless, if a phantom scalar field is considered, i.e.,
if we replace P2

0 by−P2
0, there are no restrictions on the sign

of a for u1 ¼ 0. In this way, it is possible to find the static
CSI solution with a ≥ 0.
The solution in this case are given by exponentials,

giðrÞ ¼ eKir; i ¼ f0; 1; 2g; ð30Þ
and the scalar field is a linear function, ΦðrÞ ¼ Φ0þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ð2κÞp

r, where α ¼ −P2
0=u

2
0. The integration constants

satisfy the algebraic relations,

K0 þ K1 þ K2 ¼ 0;

K0K1 þ K1K2 þ K2K0 ¼ α: ð31Þ
Thus, from (31) we obtain,

K0 ¼
1

2

�
−K2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ðK2Þ2 − 4α

q �
; ð32Þ

K1 ¼
1

2

�
−K2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ðK2Þ2 − 4α

q �
: ð33Þ

TABLE I. Petrov D spacetimes for Λ ¼ 0. The constants Ki are
classified in three sets, and depend on the amplitude of the scalar
field α. Within each set K0, K1, and K2 can be taken in any order.
The last column shows the range of α allowed for each set. The
first two sets are exclusive for a nonconstant scalar field (α ≠ 0),
and the third one also includes a trivial scalar field.

K0 K1 K2 α

S1 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
− 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
− 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p ð0; 4
3
Þ

S2 − 2
3

1
3
� ffiffiffiffiffiffiffiffiffiffiffi

1 − α
p

1
3
∓ ffiffiffiffiffiffiffiffiffiffiffi

1 − α
p ð0; 1�

S3 − 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α

p ½0; 4
3
Þ
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Note that the reality condition of the line element demands
α < − 3

4
ðK2Þ2 in accordance with the fact of considering a

phantom scalar field. This means that the presence of a
phantom scalar field makes it possible to remove curvature
singularities present in the vacuum solutions. The Petrov
classification indicates that these spacetimes are type D.
In order to verify that these spacetimes are indeed CSI

spacetimes, we make use of a theorem proved in [26,27].
The theorem states that any four dimensional locally
homogeneous spacetime is a CSI spacetime. The static
line element with the metric coefficients (30) has three
trivial Killing vectors ∂t, ∂z, and ∂ϕ. However, it is possible
to find a fourth Killing vector given by

ξð4Þ ¼
�
−
1

2
K0t;−

1

2
K1ϕ;−

1

2
K2z; 1

�
; ð34Þ

in the coordinate system ðt;ϕ; z; rÞ, which in addition to the
trivial ones, form a transitive group of isometries.
Therefore, this spacetime is locally homogeneous.

V. CONCLUDING REMARKS

In this paper, the general stationary cylindrically sym-
metric solution of Einstein-massless scalar field system
with a nonpositive cosmological constant has been found,
and its local and global properties has been studied. As
shown in the Appendix, there is an additional class of
solutions, which fail in having a static limit. Due to their
still unclear physical relevance, we have exclude them from
the discussion along the main text.
Four integration constants are essential parameters for

the general solution. This means that these parameters
encode all the relevant physical information. One is the
amplitude of the scalar field, which beside a second one
present in the metric, characterize the gravitational field
strength. The other two parameters have a topological
origin, since they appear in the improper gauge trans-
formation that allows us to obtain the stationary solution
from the static one. The meaning of these parameters can be
also analyzed from the expressions for the mass and
angular momentum of the solutions with a negative
cosmological constant.
The Petrov classification was performed to explore the

effects of the scalar field on the vacuum solutions for a
negative and a vanishing cosmological constant. The
inclusion of the scalar field enlarges the family of solutions
in comparison with the vacuum case. Thus, type D
solutions are now parametrized by the amplitude of the
scalar field and nontrivial type O solutions have been found
in presence of a nonvanishing scalar field. These confor-
mally flat solutions endowed with a matter field have six
Killing vectors. Note that in the vacuum case, there are not
type O solutions apart from the trivial ones, the locally
Minkowski (for Λ ¼ 0) and the locally AdS spacetime
(for Λ < 0).

Another interesting case occurs for Λ ¼ 0. There are
special type D solutions which are possible only if the
scalar field is present. We have shown that these spacetimes
have a fourth Killing vector, which completes a transitive
group of isometries, and consequently they are locally
homogeneous. Thus, these solutions become CSI space-
times dressed by a phantom scalar field.
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APPENDIX: SOLVING THE FIELD EQUATIONS

In this Appendix we present a complete and detailed
derivation of the general solution for a massless stationary
cylindrically symmetric scalar field in the presence of a
nonpositive cosmological constant in four spacetime
dimensions. The methodology used in this derivation is
based on that proposed in [20].4

Let us consider the general stationary cylindrically
symmetric metric

ds2 ¼ e2αdr2 þ e2μdz2 þ e2βdϕ2 − e2γðdt − Se−2γdϕÞ2;
ðA1Þ

where α; β; γ; μ; S are functions of the radial coordinate r.
The nonvanishing components of the Ricci tensor are

Rr
r ¼ R̄r

r þ 2ω2; ðA2Þ

Rz
z ¼ R̄z

z; ðA3Þ

Rϕ
ϕ ¼ R̄ϕ

ϕ þ 2ω2 þWSe−2γ; ðA4Þ

Rt
t ¼ R̄t

t − 2ω2 −WSe−2γ; ðA5Þ

Rϕ
t ¼ −W; ðA6Þ

Rt
ϕ ¼ e−2γ½SðR̄ϕ

ϕ − R̄t
t þ 4ω2Þ þWðe2β þ S2e−2γÞ�:

ðA7Þ

The auxiliary functions ω and W appearing above are
defined as

4Our results contain the static solution with Λ < 0 in [19], and
the stationary solution with Λ ¼ 0 in [20], in the case of a normal
scalar field.
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ω≡ 1

2
eγ−β−αðSe−2γÞ0; ðA8Þ

W ≡ e−α−β−γ−μðωe2γþμÞ0; ðA9Þ

and the barred symbols denote the Ricci tensor components
for the static metric obtained from (A1) by setting S ¼ 0,
which are

−e2αR̄r
r ¼ β00 þ γ00 þ μ00 þ β02 þ γ02 þ μ02

− α0ðβ0 þ γ0 þ μ0Þ; ðA10Þ

−e2αR̄z
z ¼ μ00 þ μ0ðβ0 þ γ0 þ μ0 − α0Þ; ðA11Þ

−e2αR̄ϕ
ϕ ¼ β00 þ β0ðβ0 þ γ0 þ μ0 − α0Þ; ðA12Þ

−e2αR̄t
t ¼ γ00 þ γ0ðβ0 þ γ0 þ μ0 − α0Þ: ðA13Þ

The field equations can be expressed as

Rμ
ν ¼ Λδμν þ κ∂μΦ∂νΦ≡ τμν; ðA14Þ

where τμν is reduced to diagðΛþ κe−2αΦ02;Λ;Λ;ΛÞ for the
metric (A1) and a scalar field depending only on r.
Since τϕt ¼ 0, Eq. (A6) impliesW ¼ 0. Then, from (A9)

we obtain

ω ¼ ω0e−2γ−μ; ðA15Þ

where ω0 is an integration constant. The definition (A8)
yields ðSe−2γÞ0 ¼ 2ω0eβþα−3γ−μ, so that

S ¼ e2γ
�
S0 þ 2ω0

Z
eαþβ−3γ−μdr

�
; ðA16Þ

where S0 is a second integration constant (hereafter, all the
quantities with subscripts 0, 1, or 2 denote integration
constants). Then, the field equations are reduced to

R̄r
r ¼ Λþ κe−2αΦ02 − 2ω2; ðA17Þ

R̄z
z ¼ Λ; ðA18Þ

R̄ϕ
ϕ ¼ Λ − 2ω2; ðA19Þ

R̄t
t ¼ Λþ 2ω2: ðA20Þ

The components ϕt and tϕ of the field equations are
satisfied by virtue of W ¼ 0 and Eqs. (A19), (A20).
The equation for the scalar field,

Φ00 þ ðβ0 þ γ0 þ μ0 − α0ÞΦ0 ¼ 0; ðA21Þ

admits a first integral given by

Φ0 ¼ P0ffiffiffiffiffi
2κ

p eα−β−γ−μ: ðA22Þ

We choose the gauge α ¼ 0. Introducing the functions
U;V; σ as follows,

μ ¼ logU − σ; β ¼ 1

2
ðσ − logVÞ;

γ ¼ 1

2
ðσ þ logVÞ; ðA23Þ

an equivalent system of equations is obtained,

R̄z
z þ R̄ϕ

ϕ þ R̄t
t ¼ −

U00

U
¼ 3Λ; ðA24Þ

R̄ϕ
ϕ þ R̄t

t ¼ −σ00 −
U0

U
σ0 ¼ 2Λ; ðA25Þ

R̄ϕ
ϕ − R̄t

t ¼
V 00

V
−
V 02

V2
þ U0V 0

UV
¼ −

4ω2
0

U2V2
; ðA26Þ

R̄r
r ¼ −

3

2
σ02 −

U00

U
þ 2σ0U0

U
−

V 02

2V2
¼ Λþ P2

0

2U2
−

2ω2
0

U2V2
:

ðA27Þ

In terms of these functions, the scalar field and the metric
reads

Φ ¼ Φ0 þ
P0ffiffiffiffiffi
2κ

p
Z

dr
U

; ðA28Þ

and

ds2 ¼ dr2 þU2e−2σdz2 þ eσ

V
dϕ2 − Veσ

�
dt −

S
Veσ

dϕ

�
2

;

ðA29Þ
respectively, with

S ¼ Veσ
�
S0 þ 2ω0

Z
dr
UV2

�
: ðA30Þ

Note that U2V 0V × Eq:ðA26Þ ¼ −ðU2 × Eq:ðA27ÞÞ0, so
that in the general case V 0 ≠ 0 it is enough to consider just
Eq. (A27) because it implies (A26). In the special case
V 0 ¼ 0, Eq. (A26) yields ω0 ¼ 0 and (A27) becomes

−
3

2
σ02 þ 2σ0U0

U
¼ −2Λþ P2

0

2U2
: ðA31Þ

Equations (A25) and (A24) yield

σ ¼
	
σ0 þ σ1

R
dr
U ∶ Λ ¼ 0;

σ0 þ logU2=3 þ σ1
R

dr
U ∶ Λ ≠ 0:

ðA32Þ
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Replacing (A32) and (A24) in (A27) we get

U2V 02 − aV2 − 4ω2
0 ¼ 0; ðA33Þ

where a ¼ 4σ1U0 − 3σ21 − P2
0 for Λ ¼ 0, and a ¼ 4U02=

3þ 4ΛU2 − P2
0 − 3σ21 otherwise. Equation (A24) implies

that U0 and 4U02=3þ 4ΛU2 are constants for Λ ¼ 0 and
Λ ≠ 0, respectively. Therefore, in both cases a is a constant.
The change of variable

x ¼
Z

dr
U

; ðA34Þ

transforms Eq. (A33) into

�
dV
dx

�
2

− aV2 − 4ω2
0 ¼ 0; ðA35Þ

which can be integrated by quadrature yielding

V ¼ e
ffiffi
a

p ðx−x0Þ −
ω2
0

a
e−

ffiffi
a

p ðx−x0Þ; if a > 0; ðA36aÞ

V ¼ 2ω0xþ V0; if a ¼ 0; ðA36bÞ

V ¼ 2ω0ffiffiffiffiffiffi
−a

p sin ½ ffiffiffiffiffiffi
−a

p ðx − x0Þ�; if a < 0: ðA36cÞ

The integral appearing in Eq. (A30) is equivalent toR
dxV−2. Then, from (A36) we obtain

Z
dx
V2

¼

8>>>>>>>><
>>>>>>>>:

−
ffiffi
a

p
2

e−
ffiffi
a

p ðx−x0Þ
ae

ffiffi
a

p ðx−x0Þ−ω2
0
e−

ffiffi
a

p ðx−x0Þ ∶ a > 0;

− 1
2ω0ð2ω0xþV0Þ ∶ a ¼ 0;ω0 ≠ 0;

x
V2
0

∶ a ¼ 0;ω0 ¼ 0;

−
ffiffiffiffiffi
−a

p
4ω2

0
tan ½ ffiffiffiffiffi

−a
p ðx−x0Þ� ∶ a < 0:

ðA37Þ

An important consequence can be derived from
Eq. (A33) [or equivalently from (A35)]. For a < 0 there
are no real nonvanishing solutions for this equation if
ω0 ¼ 0. This means that all the real solutions are stationary,
but they do not contain a static limit. This class of solutions
has a “windmill” form, as explained in [13]. On the
contrary, the solutions in the case a > 0 can be reduced
to static ones. The case a ¼ 0 has two different branches.
The first one, defined by the conditions V 0 ≠ 0;ω0 ≠ 0,
provides stationary solutions that fail in containing a static
limit. The second branch, V 0 ¼ 0;ω0 ¼ 0, corresponds to
the special case mentioned before. In fact, Eq. (A31)
implies a ¼ 0 regardless of the value of the cosmological

constant. This special branch contains solutions with
static limit.
In what follows, we explicitly show all the possible

solutions, which will classify according the value of a.

1. General solution with Λ ¼ 0

From (A24) we obtain

U ¼ u0 þ u1r; ðA38Þ

and from (A32),

σ ¼
(
σ0 þ σ1

u1
logðu0 þ u1rÞ if u1 ≠ 0;

σ0 þ σ1
u0
r if u1 ¼ 0.

ðA39Þ

Moreover, from (A34) we get

x ¼ logðu0 þ u1rÞ
u1

if u1 ≠ 0; ðA40aÞ

x ¼ r
u0

if u1 ¼ 0; ðA40bÞ

and the constant a is given by

a ¼ 4σ1u1 − 3σ21 − P2
0: ðA41Þ

a. Type A solutions: a > 0

A necessary condition for a > 0 is σ1u1 > 0. Then, from
(A36a) and (A40a) we obtain

V ¼ V0ðu0 þ u1rÞ
ffiffi
a

p
u1 −

ω2
0

aV0

ðu0 þ u1rÞ−
ffiffi
a

p
u1 ; ðA42Þ

where the constant V0 is a redefinition of e−
ffiffi
a

p
x0 .

After some algebraic manipulations we can express the
general solution in the manner indicated in the main text.
The functions g0; g1, and g2 are given by

gi ¼ ðrþ ū0ÞKiþ2
3; ðA43Þ

where

K0 ¼
σ1 þ

ffiffiffi
a

p
u1

−
2

3
;

K1 ¼
σ1 −

ffiffiffi
a

p
u1

−
2

3
;

K2 ¼
4

3
−
2σ1
u1

; ðA44Þ

and ū0 ¼ u0=u1. The constants a0; a1; b0; b1; c0, and α are
given by
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a0 ¼ eσ0V0u
σ1þ

ffiffi
a

p
u1

1 ; b0 ¼ S20a0; ðA45Þ

a1 ¼
eσ0ω2

0

aV0

u
σ1−

ffiffi
a

p
u1

1 ;

b1 ¼
eσ0

aV0

�
1þ ω0S0ffiffiffi

a
p

�
u

σ1−
ffiffi
a

p
u1

1 ; ðA46Þ

c0 ¼ e−2σ0u
2−2σ1

u1
1 ; α ¼ P2

0

u21
: ðA47Þ

It is possible to map the condition a > 0 to an equivalent
one in terms of K2 and α,

ðK2Þ2 <
4

3

�
4

3
− α

�
: ðA48Þ

b. Type B solutions: a ¼ 0

As before, this case requires σ1u1 > 0. From (A36b) and
(A40a) we get

V ¼ V0 þ
2ω0

u1
logðu0 þ u1rÞ: ðA49Þ

In the general case ω0 ≠ 0, the function V is not a constant
and the metric has no static limit. The special case V ¼ V0

appears provided ω0 ¼ 0 and the corresponding metric can
be obtained from an improper gauge transformation in the
t − ϕ plane. In this case, the functions g0; g1, and g2 are
given by (A43), where

K0 ¼ K1 ¼
σ1
u1

−
2

3
;

K2 ¼
4

3
−
2σ1
u1

: ðA50Þ

The constants a0; a1; b0; b1; c0, and α are given by

a0 ¼ eσ0V0u
σ1
u1
1 ; b0 ¼ S20a0; ðA51Þ

a1 ¼ 0; b1 ¼
eσ0

V0

u
σ1
u1
1 ; ðA52Þ

c0 ¼ e−2σ0u
2−2σ1

u1
1 ;

α ¼ P2
0

u21
: ðA53Þ

In terms of K2 and α, the condition a ¼ 0 becomes

ðK2Þ2 ¼
4

3

�
4

3
− α

�
: ðA54Þ

c. Type C solutions: a < 0

From (A36c) and (A40a)–(A40b), we get

V ¼

8>>><
>>>:

2ω0ffiffiffiffiffi
−a

p sin

� ffiffiffiffiffiffi
−a

p �
logðu0þu1rÞ

u1
− x0

��
∶ u1 ≠ 0

2ω0ffiffiffiffiffi
−a

p sin

� ffiffiffiffiffiffi
−a

p �
r
u0
− x0

��
∶ u1 ¼ 0:

ðA55Þ

Since that V has no definitive sign, the norm of the Killing
vectors ∂t and ∂ϕ does not maintain a fixed sign. This type
of solution has no static limit.

2. General solution with Λ ¼ −3l−2 < 0

Let us consider a negative cosmological constant
Λ ¼ −3l−2. Equation (A24) is easily solved. It gives

U ¼ c1e3r=l − c2e−3r=l; ðA56Þ

and Eq. (A32) provides σ as

σ ¼ σ0 þ logU2=3 þ σ1

Z
dr
U

; ðA57Þ

where

x ¼
Z

dr
U

¼

8>>>>>>>><
>>>>>>>>:

l sgnðc2Þ
6
ffiffiffiffiffiffiffi
c1c2

p log

�
e3r=l−

ffiffiffiffiffiffiffiffi
c2=c1

p
e3r=lþ

ffiffiffiffiffiffiffiffi
c2=c1

p
�

∶ c1c2 > 0;

− le−3r=l
3c1

∶ c2 ¼ 0;

− le3r=l
3c2

∶ c1 ¼ 0;

− l sgnðc2Þ
3
ffiffiffiffiffiffiffiffiffi−c1c2

p arctan
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c1=c2
p

e3r=l
�

∶ c1c2 < 0:

ðA58Þ
In this case, the constant a becomes

a ¼ 48c1c2l−2 − 3σ21 − P2
0: ðA59Þ

a. Type A solutions: a > 0

The case a > 0 requires the necessary condition
c1c2 > 0. From (A36a) and the first line in (A58)

V ¼ V0

�
e3r=l −

ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
e3r=l þ ffiffiffiffiffiffiffiffiffiffiffi

c2=c1
p � l

ffiffi
a

p
6
ffiffiffiffiffiffi
c1c2

p

−
ω2
0

aV0

�
e3r=l −

ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
e3r=l þ ffiffiffiffiffiffiffiffiffiffiffi

c2=c1
p �− l

ffiffi
a

p
6
ffiffiffiffiffiffi
c1c2

p

: ðA60Þ
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In the same way as for the case Λ ¼ 0, algebraic
manipulations allow us to express the general solution of
this type in the form indicated in the main text. The
functions g0; g1, and g2 are given by

gi ¼ ðe3r=l − b2e−3r=lÞ2=3
�
e3r=l − b

e3r=l þ b

�Ki

; ðA61Þ

where

K0 ¼
ðσ1 þ

ffiffiffi
a

p Þl
6

ffiffiffiffiffiffiffiffiffi
c1c2

p ; K1 ¼
ðσ1 −

ffiffiffi
a

p Þl
6

ffiffiffiffiffiffiffiffiffi
c1c2

p ;

K2 ¼
−2σ1l
6

ffiffiffiffiffiffiffiffiffi
c1c2

p ; ðA62Þ

and b ¼ ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
. The constants a0; a1; b0; b1; c0, and α are

given by

a0 ¼ eσ0V0c
2=3
1 ; b0 ¼ S20a0; ðA63Þ

a1 ¼
eσ0ω2

0

aV0

c2=31 ; b1 ¼
eσ0

aV0

�
1þ ω0S0ffiffiffi

a
p

�
c2=31 ; ðA64Þ

c0 ¼ e−2σ0c2=31 ; α ¼ P2
0l

2

36c1c2
: ðA65Þ

In terms of K2 and α the condition a > 0 reads

ðK2Þ2 <
4

3

�
4

3
− α

�
: ðA66Þ

b. Type B solutions: a ¼ 0

For a ¼ 0, the condition c1c2 > 0 is also necessary.
From (A36b) and the first line in (A58) we get

V ¼ V0 þ
ω0l

3
ffiffiffiffiffiffiffiffiffi
c1c2

p log
�
e3r=l −

ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
e3r=l þ ffiffiffiffiffiffiffiffiffiffiffi

c2=c1
p �

: ðA67Þ

The special case V ¼ V0 appears provided ω0 ¼ 0 and a
corresponding metric can be obtained from an improper
gauge transformation in the t − ϕ plane. In this case, the
functions g0; g1, and g2 are given by (A61), where

K0 ¼ K1 ¼
σ1l

6
ffiffiffiffiffiffiffiffiffi
c1c2

p ; K2 ¼
−2σ1l
6

ffiffiffiffiffiffiffiffiffi
c1c2

p : ðA68Þ

The constants a0; a1; b0; b1; c0, and α are given by

a0 ¼ eσ0V0c
2=3
1 ; b0 ¼ S20a0; ðA69Þ

a1 ¼ 0; b1 ¼
eσ0

V0

c2=31 ; ðA70Þ

c0 ¼ e−2σ0c2=31 ; α ¼ P2
0l

2

36c1c2
: ðA71Þ

In terms of K2 and α, the condition a ¼ 0 becomes

ðK2Þ2 ¼
4

3

�
4

3
− α

�
: ðA72Þ

c. Type C solutions: a < 0

In this case V is given by (A36c), where x is provided by
(A58) according to the constants c1 and c2 appearing in the
definition of U in Eq. (A56). Analogously to the case of a
vanishing cosmological constant, the Killing vectors ∂t and∂ϕ do not have a norm with definite sign, and the solutions
do not contain a static limit.
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