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We consider the sector of Horndeski’s gravity characterized by the coupling between the kinetic scalar
field term and the Einstein tensor. We numerically construct neutron star configurations where the external
geometry is identical to the Schwarzschild metric but the interior structure is considerably different from
standard general relativity. We constrain the only parameter of this model from the requirement that
compact configurations exist, and we argue that solutions less compact than neutron stars, such as white
dwarfs, are also supported. Therefore, our model provides an explicit modification of general relativity that
is astrophysically viable and does not conflict with Solar System tests.
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I. INTRODUCTION

Compact objects, such as neutron stars are likely to
unveil soon an unexplored corner of gravity. Indeed, the
upcoming gravitational wave observation facilities are
expected to probe the strong field and strong velocity
regime of gravity typical of these extreme astrophysical
objects [1,2]. To date, the theory of general relativity (GR)
has passed all tests with flying colors; therefore, it is very
difficult to come up with extensions that do not violate any
of these tests. On the other hand, modifications of GR are
often invoked to cope with quantum effects at high energy
and large curvature, in particular in the presence of
spacetime singularities.
From a phenomenological point of view there are many

ways to modify gravity and astrophysical data proved
useful to assess their viability [2,3]. Historically, one of
the first extension of GR consists in the addition of a new
dynamical degree of freedom in the form of a scalar field
minimally coupled to gravity [4]. After this pioneering
work, the so-called tensor-scalar theories of gravity devel-
oped enormously [5].
In this paper, we consider a particular extension of GR

that was originally discovered by Horndeski in the early
1970s [6] consisting in the most general scalar-tensor
theory in four dimensions with at most second order
differential equations of motion. This feature is particularly
desirable since, while several theories with higher deriva-
tive terms exist (see e.g. [7]), they usually suffer from ghost

instabilities or fail to be hyperbolic [8] (see also [9] for
alternative models of gravity without ghosts).
Recently, Horndeski’s gravity was rediscovered and

called Galileon gravity, the name originating from the
invariance of the equations of motion under arbitrary shifts
of the scalar field in Minkowski spacetime [10]. In fact, the
covariantized version of this theory was proven to be
equivalent to Horndeski’s theory in [11]. An important
subclass of Horndeski’s gravity shows self-tuning proper-
ties offering a natural explanation for the cosmological
constant. This subclass, named “Fab Four” in [12], consists
in the combination of four main actions, each with different
properties that are in turn relevant for cosmology or
astrophysics.
One particular combination of these actions, named

“Johnþ George”, has the form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x½κðR − 2ΛÞ

−
1

2
ðαgμν − ηGμνÞ∇μϕ∇νϕ� þ Sm; ð1Þ

where ϕ is a real scalar field, Gμν is the Einstein tensor,
κ ¼ 1=ð16πGÞ, being G is the Newton’s constant, α; η are
real parameters, Λ is the cosmological constant, and Sm is
the action for ordinary matter fields, supposed to be
minimally coupled to gravity in the usual way. As we will
briefly review below, this model has exact analytical black
hole solutions, which are asymptotically anti–de Sitter and
have a nontrivial scalar field distribution. Therefore, in
order to be a viable alternative to GR, the deviations from
asymptotic flatness needs to be small enough to pass at
least Solar System tests. A first post-Newtonian analysis of
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this model (with vanishing cosmological constant) was
presented in [13], where very stringent constraints on the
parameters of the theory were found.
Here, we are interested in spherically symmetric sol-

utions of this theory in the presence of matter, focusing in
particular on neutron star models. Our goal is to investigate
the effect of the derivative coupling on the structure of
neutron stars and to constrain the parameter space.
While the lack of asymptotic flatness seems to make

these models physically unrealistic, it turns out that there
exist a region of the parameter space such that the exterior
metric is exactly the same as the Schwarzschild one
because the scalar field does not backreact on the geometry.
On the opposite, inside the star the scalar field behaves as a
sort of “internal hair” that interacts with the metric and
modifies pressure and matter density distributions consid-
erably with respect to GR. The size of these effects depends
on one parameter and the interesting aspect is that the
deviations from GR persist also when this parameter
vanishes. Therefore, at the level of the equations of motion,
there is no smooth limit to GR.
We begin by reviewing the black hole solutions of (1)

and their properties. We then consider the modifications
induced by the presence of a matter fluid and study the
configuration with external Schwarzschild metric. Next, we
solve the equations numerically in the range of mass and
density typical of neutron stars and compare the results
with GR.

II. BLACK HOLE SOLUTIONS

The equations of motion deriving from the action (1)
read

Gμν þ Λgμν −Hμν ¼ TðmÞ
μν ; ð2Þ

∇μJμ ¼ 0; ð3Þ

∇μTðmÞμν ¼ 0; ð4Þ

where

Hμν ¼
α

2κ

�
∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ

�

þ η

2κ

�
1

2
∇μϕ∇νϕR − 2∇λϕ∇ðμϕRλ

νÞ

−∇λϕ∇ρϕRμλνρ − ð∇μ∇λϕÞð∇ν∇λϕÞ

þ 1

2
gμνð∇λ∇ρϕÞð∇λ∇ρϕÞ −

1

2
gμνð□ϕÞ2

þ ð∇μ∇νϕÞ□ϕþ 1

2
Gμνð∇ϕÞ2

þ gμν∇λϕ∇ρϕRλρ

�
; ð5Þ

TðmÞ
μν ¼ ðρþ PÞuμuν þ Pgμν; ð6Þ

Jμ ¼ ðαgμν − ηGμνÞ∇νϕ; ð7Þ

and where u is the unit 4-velocity of a perfect fluid with
pressure P and density ρ.
One of the first analytical black hole solutions was found

in [14], by imposing the diagonal metric

ds2 ¼ −bðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð8Þ

with TðmÞ
μν ¼ 0 and Λ ¼ 0. Thanks to the shift symmetry

ϕ → ϕþ const, the equation of motion for the scalar field
turns into the current conservation law (3). This symmetry
also implies that the solution depends only on ϕ02, where,
from now on, the prime denotes the derivative with respect
to r. In addition, to avoid a diverging current norm on the
horizon, it is necessary to set Jr ¼ 0 [15]. In this configu-
ration, ϕ02 becomes negative outside the event horizon, but
this seems not to introduce any thermodynamical instability
[14]. This model was further developed in a series of
papers, see e.g. [16–24]. In particular, it was shown in [16]
that the scalar field can be real outside the event horizon
provided one adds a negative cosmological constant Λ in
the action. In this case, ϕ is finite at the horizon but ϕ0
diverges. The stability and the quasinormal mode spectrum
of these asymptotically anti–de Sitter solutions were
investigated in [22,23].
A more general solution was proposed in [17], where the

scalar field has the form ϕðt; rÞ ¼ Qtþ FðrÞ, for some
function F and constant Q. In this case, the equations do
not depend explicitly on time and Jr ¼ 0 is required to
satisfy the ðtrÞ metric equations. Note that this sector of
Horndeski’s gravity is equivalent to a fðR; T; TμνRμνÞ
model, where Tμν is the scalar field stress tensor [25].
It is interesting to understand in which limit one recovers

GR. In the case Q ¼ 0, this limit is Λ ¼ 0 and η → ∞,
revealing that η is a nonperturbative parameter if α is fixed
[14]. For Q ≠ 0, the limit Λ ¼ α ¼ 0 leads to a nontrivial
scalar field with a Schwarzschild metric. This happens
because the scalar field satisfies Hμν ¼ 0 so it doesn’t
backreact on the metric. Such solutions were dubbed
“stealth” configurations in [17].
The crucial point is that these considerations hold true

only in vacuum. In fact, inside matter Hμν ≠ 0 and the
metric is affected, also when Λ ¼ α ¼ 0, resulting in a
modified theory of gravity whose deviations from GR are
well hidden inside the star, so that they do not conflict with
Solar System tests. In the following we focus on this case.

III. MODIFIED TOLMAN-OPPENHEIMER-
VOLKOFF EQUATIONS

According to the discussion above, we set α ¼ Λ ¼ 0
and look for neutron starlike solutions assuming the usual
equation for the matter fluid
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P0 þ ðPþ ρÞ b
0

2b
¼ 0: ð9Þ

The scalar current components are

Jt ¼ ηQ
r2b

ðrf0 þ b − 1Þ; Jr ¼ ηfF0

r2b
½ð1 − fÞb − rfb0�:

The ðttÞ and ðrrÞ components of Eq. (2) yield other two
equations and we have

rfb0 ¼ ð1 − fÞb; Af0 ¼ −B; ð10Þ

where

A ¼ rbf−1ðPr2 þ 4κÞ − 3ηQ2r;

B ¼ 3ð1 − fÞηQ2

þ bf−1½6r2fPþ ð1þ fÞr2ρ − 4κð1 − fÞ�: ð11Þ

Finally, the scalar field equation

ηfbF02 ¼ ð1 − fÞηQ2 þ bPr2; ð12Þ

closes the system. By expanding around r ¼ 0 [with the
regularity conditions bð0Þ ¼ b0 > 0; b0ð0Þ ¼ 0; fð0Þ ¼ 1
and Pð0Þ ¼ Pc], we find that

F02 ¼ r2
�
Pc

η
−
2Q2

0ð3Pc þ ρcÞ
3ð3Q2

0η − 4κÞ
�
þOðr4Þ;

P ¼ Pc þ
ðPc þ ρcÞð3Pc þ ρcÞ

6ð3Q2
0η − 4κÞ r2 þOðr4Þ; ð13Þ

where we rescaled Q2
0 ¼ Q2=b0. We note that 3Q2

0η < 4κ
corresponds to the condition P00ð0Þ < 0. In fact, the latter is
the only physically acceptable condition. One can show
that, if this condition is violated, P is a monotonic growing
function of r so compact configurations cannot exist. This
constraint, however, is not sufficient to guarantee that F0ðrÞ
is real inside the star when η is negative. In fact, in this case
one needs also

1

4πð2ρc
3Pc

− 1Þ < Q2
0jηj <

1

12π
: ð14Þ

All these conditions are summarized in Fig. 1.
For the numerical computations we choose the polytrope

equation of state P ¼ Kρ1þ1=n
B , where ρB is the baryonic

mass density, n is the polytropic index and K is a constant.
Integrating the first law of thermodynamics leads to
ρ ¼ Pþ ðP=KÞn=ðnþ1Þ, and we set K ¼ 123M2⊙; n ¼ 2

since this models leads to compact objects with accepted
mass and radius of neutron stars [26]. We leave a systematic
study of tabulated equation of states (as well as cases with
nonvanishing α and Λ) for future work.

Equipped with the equation of state, we numerically
solve (9)–(12), following this strategy: we choose Pð0Þ ¼
Pc for a set of values for Q and integrate the system as a
Cauchy problem up to the star’s surface at r ¼ r�, deter-
mined by Pðr�Þ ¼ 0. Next, we match the interior solution to
the Schwarzschild external solution and to a constant scalar
field. The boundary conditions are bð0Þ ¼ 1; b0ð0Þ ¼ 0;
Pð0Þ ¼ Pc. Finally, we set η ¼ �1 without loss of general-
ity since the system depends on the product Q2

0η only.
The total mass M is determined by solving bðr�Þ ¼

b∞ð1 − 2M=r�Þ; b0ðr�Þ ¼ 2Mb∞=r2�, where M is the mass
and b∞ is a constant. We redefine the time coordinate
according to tp ¼ t

ffiffiffiffiffiffi
b∞

p
, so it matches with the time

measured by a distant observer in the flat asymptotic
region. As a consequence, since the scalar field is linear
in time, we must also rescale Q∞ ¼ Q=

ffiffiffiffiffiffi
b∞

p
, which is the

value measured by the same distant observer. In summary,
the input parameters are the central pressure and the bare
value of Q, from which we numerically compute Q∞
and the mass-radius relation. We work in units where
G ¼ c ¼ 1.
Note that the typical values of central density and

pressure for white dwarfs (ρc ≈ 106 g · cm−3 and
Pc ≈ 2.5×1024 Dyne · cm−2, obtained from realistic equa-
tion of state tables describing nuclear matter in the low
density regime) lead to larger values of ρc=Pc than for
neutron stars. Since they are within the range of parameters
leading to compact configurations with a real scalar field,
we infer that white dwarfs also exists in our theory.

IV. RESULTS

One of our main results is that, for η < 0ðη > 0Þ, the
model allows for bigger (smaller) and more (less) massive
neutron stars than in GR. This is illustrated in Fig. 2, where
we show the mass-radius relation for different values ofQ∞

FIG. 1 (color online). Range of Q2
0η where F

0 is real and where
compact solutions exist. Here, ρc=Pc is dimensionless. The red
(blue) shaded area corresponds to F02 > 0 for η < 0 ðη > 0Þ.
Typical solar mass neutron stars lie inside the black rectangle.
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and η ¼ �1. Note that a similar effect was found for
anisotropic stars in [27]. From Fig. 3 we see that the range
of allowed central pressures shrinks with increasing Q∞.
For a given value of Q∞, the maximum central pressure is
determined by the constraint ηQ2

∞ < 4κ=3 and its value is
marked by the black dots in Fig. 2, which mark a sharp end
point for most curves.
We remark that our solutions are not smoothly connected

to GR. The limitQ∞ ¼ 0 does not lead to general relativity,
neither does the η → ∞ limit. This was expected from the
discussion in the last section. From the action it would
appear that the natural GR limit is η → 0, but from Eq. (12),
we see that the scalar field diverges in this case.
It is interesting to look at the scalar field inside the star.

As mentioned above, for Q ¼ 0, F0 vanishes exactly
outside the star. On the opposite, for Q ≠ 0, the field

smoothly connects, through the star’s surface, to the
external field that decays at infinity, without affecting
the metric. This is shown in Fig. 4, where we display
the plot of F02ðrÞ. We note that, as anticipated, the field is
always real for η > 0, while it can be imaginary for η < 0.
In both cases, however, the field is real for r� < r < ∞.
We note that where the field becomes imaginary, its

kinetic term has the wrong sign in the action. In GR this
would inevitably lead to classical and quantum instabilities.
However, in the present case, the situation is less clear due
to the coupling of the kinetic term to the Einstein tensor.
The stability of these configurations with imaginary field is
an interesting and open question.

V. CONCLUSION

In this paper, we investigated the effect of a scalar field
with a nonminimal kinetic coupling to gravity. This model
is a sector of the Horndeski’s theory of gravity and has a
deep connection with Galileon gravity. We focused on the
case with vanishing cosmological constant and vanishing
standard kinetic term coupling, since it admits exact
vacuum Schwarzschild solutions. When the scalar field
is linear in time we find that neutron stars exist for some
range of the only free parameter of the theory ηQ2. The
equation of state used here captures very well the main
effects of the derivative coupling. In particular, the reality
conditions on the scalar field are independent of the
equation of state so we do not expect large deviations if
one chooses more realistic ones.
We derived a constraint on ηQ2 from the existence of

compact configurations, and argued that less dense stars,
such as white dwarfs, are supported by this model. To date,
this is the first constraint and astrophysical viability check
of this model. The parameter Q is clearly nonperturbative
since the “extremal” case Q ¼ 0 still shows a deviation
from GR. In general, when Q ≠ 0 the scalar field grows
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FIG. 2 (color online). The mass-radius relation for various
values of Q∞ and η ¼ þ1;−1. The thick black curve is the GR
prediction while the dashed one has Q∞ ¼ 0. The black dots are
the points where the solutions cease to exist. Note that, for η > 0,
the curves withQ∞ ¼ 0.016 andQ∞ ¼ 0.032 do not reach such a
point in the chosen range of central pressures.
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linearly in time but, since the dynamics depends only on its
gradient, there are no diverging physical observables. In
fact, the scalar field plays the mere role of a “clock”, just
like the scale factor in cosmology.
A very attractive feature of our model is that the external

metric is the same as in GR. From an observational point of
view, this means that Horndeski’s stars pass all Solar
System tests. In this respect, the model is similar to
Palatini fðRÞ or Eddington-inspired Born Infeld models
[28] (with similar effects on compact configurations
[29,30]). In fact, these theories are also indistinguishable
from GR in vacuum, but they are modified in the presence
of matter fields [31].
In summary, we show that ours is a sound astrophysical

model, which requires a minimal modification of GR and
that does not violate any Solar System test. The underlying
Horndeski’s gravity is currently under thorough scrutiny as
a possible candidate to explain fundamental problems, such

as inflation and dark energy. Therefore, we think that also
the Horndeski’s star deserves full attention as it can shed
some light on the general theory. We think that, to further
asses the viability of our model, it would be very interesting
to address questions such as the gravitational wave spec-
trum during a merger of Horndeski’s neutron stars or the
observational signature on the pulsar emission in the
presence of strong magnetic fields, and we hope to report
soon on these issues.
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