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The geometry of a spacetime containing a wormhole generated by a spherically symmetric electric
field is investigated in detail. These solutions arise in high-energy extensions of general relativity
formulated within the Palatini approach and coupled to Maxwell electrodynamics. Even though
curvature divergences generically arise at the wormhole throat, we find that these spacetimes are
geodesically complete. This provides an explicit example where curvature divergences do not imply
spacetime singularities.
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I. INTRODUCTION

Finding exact solutions of the metric field equations
of general relativity (GR) is, in general, a nontrivial task,
though over the years a wide collection of such solutions
has been obtained [1]. Among them, we find those
representing the collapse of spherically symmetric bodies
(Schwarzschild) with charge (Reissner-Nordström) and
rotation (Kerr-Newman). These solutions put forward the
dramatic effects that massive bodies and electric charges
might have on the causal structure of spacetime. The
Schwarzschild black hole possesses a null hypersurface,
called event horizon, that prevents any particle that goes
through it from coming out again. The effect of electric
charge is also remarkable, since a second event horizon
may appear inside the black hole giving rise to a much more
complex causal structure, as is manifest from the corre-
sponding Penrose diagram.
Another relevant aspect of the internal structure of black

holes resulting from gravitational collapse is the existence
of a singularity at their center. Within GR this is an
unavoidable consequence provided that (i) there exists a
(future) trapped surface, (ii) the matter energy-momentum
tensor satisfies reasonable energy conditions, namely, the
null energy condition,1 and (iii) global hyperbolicity holds
[2] (see also [3]). Though the very definition of the concept
of spacetime singularities remains elusive, it is traditionally
seen as related with the existence of a troublesome region

of spacetime marked by the divergence of some geometric
magnitudes. A standard way to characterize them is to
consider invariant polynomials constructed from the
Riemann tensor Rμ

ναβ and see if they blow up somewhere.
In this sense, in the Schwarzschild case, the Kretschmann

scalar K ¼ Rα
βμνRα

βμν becomes KS ¼ 12r2S
r6 , whereas in the

Reissner-Nordström (RN) case we have KRN ¼
12r2S
r6

− 24rSr2q
r7 þ 14r4q

r8 , where rS ≡ 2M is the Schwarzschild
radius and r2q ¼ 2Gq2 is a length scale associated to the
charge. The higher degree of divergence as r → 0 in the
charged case suggests that the energy associated to
the electric field contributes to worsen the pathological
behavior of the geometry as the sources are approached.
A more powerful characterization of spacetimes con-

taining singularities, however, is provided by the notion of
geodesic completeness, namely, whether an affine param-
eter on every geodesic curve extends to arbitrarily large
values or not. In a singular spacetime, there exist geodesic
curves for which the affine parameter cannot be extended to
arbitrarily large values; i.e., they start or terminate at a finite
value of the affine parameter. This captures the intuitive
idea of a spacetime singularity as the phenomenon by
which “an observer’s future comes suddenly to an end.” If
the affine parameter can take arbitrarily large values on
the real line, then we say that the spacetime is geodesi-
cally complete and nonsingular regardless of the behavior
of the curvature invariants [4]. This is generally accepted
as the most reliable criterion to determine if a spacetime
has a singularity [5,6], and will be the one accepted in
this work.
To achieve singularity avoidance, one is thus forced to

remove at least one of the assumptions on which the
singularity theorems are based. For example, hypothetical
matter-energy sources violating the null energy conditions
have been introduced in the literature. Among these we find
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1Note that in the original formulation of the theorems, this is

rather a geometric statement on the positivity of the Ricci tensor
for null vectors Na, namely, RabNaNb > 0, which, in the case of
GR via the Einstein equations, becomes a statement on the energy
conditions.
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phantom black holes [7] or solutions supported by non-
linear electrodynamics [8], which are able in some cases to
obtain regular black hole solutions. In this work, however,
we shall take another way round and accept the viewpoint
that the divergent behavior of curvature scalars as r → 0 is
an indication that the classical description provided by GR
breaks down in that region, and that some improved theory
of the gravitational field should be used to correctly
describe the physics in the innermost regions of black
holes. In fact, it is widely assumed [9] that the quantum
effects of the gravitational field should manifest themselves
at curvature scales of order K ∼ 1=l4P, where l

2
P ≡ ℏG=c3 is

the Planck length squared, and thus modify the classical
description provided by GR. Given our current limited
understanding on quantum gravity, its impact on the
geometry around black hole singularities is difficult to
foresee, though some relevant results have been obtained
recently using powerful quantization techniques in sim-
plified scenarios [10]. A different approach to this funda-
mental question consists on assuming that the bulk of the
quantum effects of gravity can be captured by some
effective theory in which the undesirable features of
spacetime singularities can be avoided [11]. In fact, since
a basic identifying feature of quantum gravity is to cure
spacetime singularities, it seems reasonable to expect that
some effective classical geometry without the shortcomings
of GR should be recoverable in some low energy regime.
It is in this phenomenological context that this paper is
framed. We note that other approaches to this problem exist
in the literature such as those inspired on noncommutative
quantum gravity [12], variations of Newton’s constant such
as in RG gravity [13], modifications of the dispersion
relation E2 ¼ p2 þm2 within the so-called “gravity’s
rainbow” (see [14] for the original proposal and [15] for
black hole solutions), the non-Lorentz invariant (at high
energies) Horava-Lifshitz gravity [16], etc.
In a number of previous works [17], it has been shown

by some of us that the innermost structure of spherically
symmetric, electrically charged systems coupled to certain
metric-affine extensions of Einstein’s theory might be
completely free of curvature divergences. This happens,
in particular, when quadratic curvature terms are added to
the Lagrangian, and also for Born-Infeld-type modifica-
tions of the gravitational theory [18]. The metric-affine (or
Palatini) version of those theories is governed by second-
order equations and is ghost free. This allows us to obtain
exact analytical solutions and prevents severe shortcomings
that arise in the standard metric (or Riemannian) formu-
lation of those theories. The Riemannian approach assumes
that the connection should be metric compatible (and thus
given by the Christoffel symbols of the metric), which
generically leads to higher-order equations for the metric.
In the Palatini approach this a priori constraint is relaxed
and the connection is determined through the field equa-
tions (see e.g., [19] for a review on Palatini gravity), which

keeps the equations second order.2 The resulting equations
are more tractable and allow us to find exact solutions in
some cases of interest and explore their physical properties
without resorting to perturbative treatments. One then finds
that, for configurations extending the RN solution to this
framework, the central curvature divergence can be avoided
when a certain charge-to-mass ratio is satisfied. For
arbitrary values of the charge and mass parameters, how-
ever, curvature divergences arise on a sphere of area
A ¼ 4πr2c, with r4c ¼ l2ϵr2q, being lϵ the length scale char-
acterizing the high-curvature corrections in the gravity
Lagrangian [see (10) below]. These divergences are much
milder than in the GR case, dropping from K ∼ r4q=r8 to
K ∼ 1=ðr − rcÞ3 as r → rc is approached. This change
occurs in a smooth but nonperturbative way. It turns out
that the surface r ¼ rc represents the throat of a wormhole,
a tunnel to another region of spacetime, generated by the
interplay between the electric field and the Palatini gravity.
As we will see, the existence of this wormhole, a topo-
logically nontrivial structure, has deep implications for the
understanding of the properties of curvature divergences
and their relation with spacetime singularities.
The aim of this work is to progress in the understanding

of the geometric properties of these solutions and the
physical meaning/implications of the existence or absence
of curvature divergences. Motivated by the fact that smooth
solutions, which are geodesically complete, can exist
arbitrarily close to solutions with curvature divergences,
we explore in detail the geodesic structure of these space-
times for the whole space of configurations of mass and
charge. One of our goals is to determine if the existence
of curvature divergences at r ¼ rc implies that geodesic
curves terminate there in a finite affine parameter (geodesic
incompleteness). We find the answer to this question to be
negative; i.e., despite having curvature divergences at
r ¼ rc, geodesics can be smoothly extended through that
region. This fact puts forward that a spacetime can be
nonsingular (geodesically complete) despite having local-
ized curvature divergences, which calls for a reconsidera-
tion of the role typically attributed in the literature to
curvature invariants for the characterization of spacetime
singularities. This is the main result of this work.
Our approach, therefore, consists of studying whether a

given spacetime, specified below in Eqs. (1)–(8), is singular
or not using standard methods developed in the well-
established classical literature on the theory of general
relativity. In particular, we are following Geroch’s analysis
[4], from which he concluded that geodesic completeness is

2Note that metric-affine geometries seem to be of relevance
for the proper description of solid state physics with defects on
their microstructure such as Bravais crystals or graphene [20].
This yields promising new avenues for our understanding
on the microscopic structure of spacetime and gravitational
phenomena [21].
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the fundamental criterion above other intuitive criteria such
as that of considering divergences of curvature scalars. The
crucial point of that approach is that geodesics exist and be
complete. The underlying reason is that the existence of
geodesics can be interpreted as the existence of physical
observers. The fact that those observers may experience
intense tidal forces or deformations in some regions due to
curvature divergences is irrelevant as long as they exist. In a
consistent theory, physical observers should always be well
defined (complete geodesics), not disappear at some future
time or come into existence at a given instant, which are
examples of incomplete geodesics.
We note that the criterion about geodesic completeness is

theory independent. Whether a given spacetime is singular
or not is independent of where that given geometry
originates; i.e., it is irrelevant if it is a solution of
Einstein’s equations or of any other physical theory. For
this reason, we neither discuss in detail the derivation of
the spacetime metric whose geodesics are analyzed in this
work nor the different models that give rise to that solution,
which have been the subject of previous works men-
tioned above.
The paper is organized as follows: in Sec. II, we introduce

the background geometry in which we are interested and
describe its wormhole and horizon properties. The
Euclidean embeddings of this geometry are constructed in
Sec. III, and the conformal diagrams in Sec. IV. In Sec. V we
provide a detailed description of the geodesic structure for
null and timelike curves and different configurations of the
mass and charge parameters. We conclude in Sec. VI with a
summary and some future perspectives.

II. BACKGROUND GEOMETRY

The geometry we are interested in has been derived in
detail in a number of previous works [17] and takes a
particularly simple form in ingoing Eddington-Finkelstein
coordinates [22],

ds2 ¼ −AðxÞdv2 þ 2

σþ
dvdxþ r2ðxÞdΩ2; ð1Þ

where

AðxÞ ¼ 1

σþ

�
1 −

rS
r
ð1þ δ1GðrÞÞ

σ1=2−

�
ð2Þ

δ1 ¼
1

2rS

ffiffiffiffiffi
r3q
lϵ

s
ð3Þ

σ� ¼ 1� r4c
r4ðxÞ ð4Þ

r2ðxÞ ¼ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 4r4c

p
2

; ð5Þ

with rc a constant defined as rc ¼
ffiffiffiffiffiffiffiffi
lϵrq

p
, where r2q ¼

2GNq2 is a length scale associated to the electric charge
that, together with the Schwarzschild mass, M0 ¼ rS=2,
characterizes the solution. The scale lϵ characterizes the
high-curvature corrections in the gravity Lagrangian. The
function GðzÞ, with z ¼ r=rc, can be written as an infinite
power series expansion of the form

GðzÞ ¼ −
1

δc
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
z4 − 1

p
½f3=4ðzÞ þ f7=4ðzÞ�; ð6Þ

where fλðzÞ ¼ 2F1½12 ; λ; 32 ; 1 − z4� is a hypergeometric
function, and δc ≈ 0.572069 is a constant. For z ≫ 1,
GðzÞ ≈ −1=z yields the expected RN solution of GR, with
σ� ≈ 1, r2ðxÞ ≈ x2, and

AðxÞ ≈ 1 −
rS
r
þ r2q
2r2

: ð7Þ

The location of the horizons in this spacetime is almost
coincident with the predictions of GR except for configu-
rations with small values of the parameters rS and rq
(microscopic black holes) [17].
With a local redefinition of the time coordinate,

dv ¼ dtþ dx=ðAσþÞ, the line element (1) can be written as

ds2 ¼ −AðxÞdt2 þ 1

BðxÞ dx
2 þ r2ðxÞdΩ2; ð8Þ

with BðxÞ ¼ AðxÞσ2þ. Note that one could absorb the factor
σþ into a redefinition of the coordinate x to turn the line
element into a more standard Schwarzschild-like form
with BðxÞ−1dx2 ¼ AðxÞ−1d~x2. Such a replacement, though
totally valid, would spoil the simple representation of r2ðxÞ
introduced in (5). It must be noted that the coordinate x is
defined on the whole real axis, x ∈� −∞;þ∞½ (see Fig. 1).
As a result, one can readily see that the area function
S ¼ 4πr2ðxÞ has a minimum of size Smin ¼ 4πr2c at x ¼ 0.
The existence of this minimal sphere signals the presence of
a wormhole (see e.g., [23] and [24] for references on the
topic). This wormhole is a nontrivial topological structure
supported by a spherically symmetric electric field without
sources [25,26], which can be interpreted as a geon in
Wheeler’s sense [27,28].
On the other hand, the possibility of using the function

rðxÞ as a coordinate is subject to an important restriction. In
fact, since dx2 ¼ σ2þdr2=σ−, the change of coordinates is ill
defined at x ¼ 0, where r ¼ rc, because dr=dx ¼ 0 at that
point. Therefore, the use of r as a coordinate is only valid in
those intervals in which rðxÞ is a monotonic function [1].
According to this, one would need two copies of the
coordinate rðxÞ to cover the whole range of x, one for
the interval in which r grows with growing x and another
for the interval in which r decreases with growing x
(where dx ¼ −σþdr=

ffiffiffiffiffiffi
σ−

p
).
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Insisting on the use of r as a coordinate leads to an
interesting effect related to the advanced Eddington-
Finkelstein coordinate v used in (1). For null and timelike
radial geodesics, we have ds2 ≤ 0, which implies

−Adv2 þ 2

σþ
dvdx ≤ 0: ð9Þ

Inside the event horizon, A < 0 implies that dx < 0; i.e., all
null and timelike geodesics move in the decreasing direc-
tion of x as v moves forward in time. Now, given that r2ðxÞ
has a minimum at x ¼ 0, the relation between dx and dr in
the x > 0 sector is dx ¼ drσþ=σ1=2− , whereas in x < 0

it is dx ¼ −drσþ=σ1=2− . Therefore, ingoing geodesics inside
the horizon, for which the evolution always goes in the
decreasing dx direction, propagate in the decreasing
direction of the area function r2ðxÞ if x > 0 but in the
growing direction if x < 0. This means that for an observer
using r as a coordinate, ingoing geodesics move towards
the wormhole if x > 0 but away from it if x < 0. For
outgoing geodesics we find an analogous effect.
The line element (8) was first obtained in [17] as a

solution of the combined system of Maxwell’s equations
for a spherically symmetric, sourceless electric field plus a
quadratic extension of GR with action

SQuad ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ l2ϵðaR2 þ RμνRμνÞ�

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ð10Þ

where κ2 ≡ 8πG, a is a dimensionless constant, g is the
determinant of the spacetime metric gμν, R ¼ gμνRμνðΓÞ,
and RμνðΓÞ is the Ricci tensor of the connection Γ≡ Γλ

μν,
which is a priori independent of the metric gαβ (metric-
affine or Palatini formalism), and Fμν ¼ ∂μAν − ∂νAμ is the

field strength tensor of the vector potential Aμ. Torsion,
Tλ
½μν� ≡ ðΓλ

μν − Γλ
νμÞ=2, is set to zero for simplicity [29].

Quadratic actions of the form (10) are motivated by well-
established results from the theory of quantized fields in
curved spacetimes [30]. Remarkably, the line element (8) is
also an exact solution of the Born-Infeld gravity theory
originally proposed by Deser and Gibbons [31] and
investigated in further detail in [18]. Wormholes with
similar properties can also be found in the simpler scenarios
of fðRÞ theories [32] when nonlinear couplings in the
electromagnetic field are considered. This fact suggests that
wormholes are a generic consequence of Palatini theories
with higher-curvature corrections.
In these theories, metric and connection must be varied

independently in the action to obtain the field equations.
One then finds that the connection can be solved as the
Levi-Civita connection of an auxiliary metric hμν, related
with the spacetime metric gμν via the expressions

hμν ¼ gμαΣα
νffiffiffiffiffiffiffiffiffiffi

det Σ̂
p ; hμν ¼

� ffiffiffiffiffiffiffiffiffiffi
det Σ̂

p �
Σμ

αgαν; ð11Þ

where

Σ̂ ¼
�
σ−Î2×2 0̂

0̂ σþÎ2×2

�
ð12Þ

is a deformation induced by the energy density of the
electric field. Here σ� ¼ 1� r4c=r4, and Î2×2 represents a
2 × 2 identity matrix. From the metric field equations, one
finds that the line element defined by hμν takes the form

d~s2 ¼ −CðxÞdt2 þ 1

CðxÞ dx
2 þ x2dΩ2: ð13Þ

Using the relations (11), one readily verifies that
CðxÞ ¼ Aσþ, with A defined in (2), and that r2 ¼ x2=σ−,
which explains the dependence on x of r2 in Eq. (5).
As shown above, the line element (8) [and also (13)]

recovers the general relativistic Reissner-Nordström (RN)
solution for r ≫ rc. However, as r → rc (equivalently
x → 0) one finds important departures from the RN
solution. A series expansion of the function AðxÞ indicates
that depending on the value of the charge-to-mass ratio, δ1,
the behavior of the solutions might differ substantially. In
fact, defining the number of charges as Nq ¼ q=e, where e
is the electron charge, we have

lim
r→rc

AðxÞ ≈ Nq

4Nc

ðδ1 − δcÞ
δ1δc

ffiffiffiffiffiffiffiffiffiffiffiffi
rc

r − rc

r
þ Nc − Nq

2Nc

þOð ffiffiffiffiffiffiffiffiffiffiffiffi
r − rc

p Þ; ð14Þ

which shows that the metric is finite at r ¼ rc for
δ1 ¼ δc but diverges otherwise. For convenience we have

4 2 2 4
x

1

2

3

4

5
r x

FIG. 1 (color online). Representation of rðxÞ (solid curve),
defined in (5), as a function of the radial coordinate x in units of
the scale rc. The dotted lines represent the function jxj.
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introduced the constant Nc ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2=αem

p
≈ 16.55, where αem

is the fine structure constant. The smoothness of the
geometry in those configurations with δ1 ¼ δc and the
absence of sources that generate the electric field are crucial
elements to confirm that the coordinate x is defined over the
whole real axis. Once this is accepted, a wormhole structure
arises which naturally explains the electric charge of the
solutions as a topological effect. The resulting object
can thus be interpreted as a geon [27], a self-consistent
gravitational-electromagnetic entity, with a nontrivial topo-
logical structure [28].
A careful analysis of the horizons in these geometries

reveals the existence of the following different classes
of solutions, according to the charge-to-mass ratio, δ1, as
compared to the critical value δc [17]:

(i) δ1 < δc: In this case an event horizon always exists
on each side of the wormhole for all values of Nq.
We could say that these solutions behave somewhat
like Schwarzschild black holes.

(ii) δ1 > δc: The structure of horizons is more compli-
cated and (on each side of the wormhole) one can
find two, one (degenerate), or no horizons, like in the
usual RN solution of GR. Nevertheless, let us stress
that in all these cases the structure close to the center
undergoes important changes as compared to their
GR counterparts.

(iii) δ1 ¼ δc: If Nq > Nc, one finds that there are two
horizons located symmetrically on each side of the
wormhole. If Nq ¼ Nc, the two horizons meet at the
wormhole throat, r ¼ rc (or x ¼ 0). If Nq < Nc then
the horizons disappear yielding a kind of black hole
remnant. The existence of such remnants, which can
be originated as the end state of a black hole under
Hawking evaporation or due to large density fluc-
tuations in the early Universe [33], might be of
special relevance for the understanding of the
information loss problem [34]. Besides, they have
potential observational consequences [35].

III. EUCLIDEAN EMBEDDINGS

The divergence of the metric function (14) as r → rc
when δ1 ≠ δc also implies curvature divergences there.
However, the wormhole structure and physical properties
such as total charge, mass, and density of field lines are
finite and as well behaved as in the case δ1 ¼ δc, which is
completely free from curvature divergences.3 This suggests
that curvature divergences might not be as troublesome as

they seem to be in structureless scenarios, i.e., when they
occur at a point rather than around a finite-size topological
structure such as a wormhole. To get an intuitive idea of
the differences and similarities between the smooth case
δ1 ¼ δc and the divergent case δ1 ≠ δc, we find it useful to
construct an Euclidean embedding of the spatial equatorial
sections of these geometries. This can be done by consid-
ering the θ ¼ π=2 and t ¼ constant section of the line
element (8) expressed in terms of dx2 ¼ σ2þdr2=σ−, which
yields

dl2 ¼ 1

Aσ−
dr2 þ r2dφ2; ð15Þ

and embedding it into a three-dimensional Euclidean space
with cylindrical symmetry of the form [38]

dl2 ¼ dξ2 þ dr2 þ r2dφ2: ð16Þ

One just needs to find the function ξðrÞ that leads to the line
element (15). Since the region relevant to our discussion is
the neighborhood of r ∼ rc, where the wormhole throat is
located, we can take the near wormhole expansion (14)
together with σ− ≈ 4ðr − rcÞ=rc to get

dl2 ¼
8<
:

ðNc−NqÞ
8Nc

rc
ðr−rcÞ dr

2 þ r2dφ2 if δ1 ¼ δc

Nc
Nq

δ1δc
ðδ1−δcÞ

ffiffiffiffiffiffiffi
rc

r−rc

q
dr2 þ r2dφ2 if δ1 ≠ δc

: ð17Þ

To illustrate this procedure, we will restrict ourselves to the
simplest cases, namely, (i) regular, horizonless black hole
remnants (corresponding to δ1 ¼ δc and Nq < Nc) and
(ii) the Reissner-Nordström-like case, δ1 > δc, in those
cases in which AðxÞ > 0 near the wormhole. This latter
case represents both configurations without horizons
(naked) and configurations with two horizons. In general,
for a line element of the form dl2 ¼ CðrÞdr2 þ r2dΩ2, the
function ξðrÞ must be of the form ξ2r ¼ CðrÞ − 1. Since in
our case the functions CðrÞ both diverge as r → rc, we can
approximate ξ2r ≈ CðrÞ. We, thus, get that

ξðrÞ ¼
8<
:

� ðNc−NqÞ
4Nc

ffiffiffiffi
rc

p ffiffiffiffiffiffiffiffiffiffiffiffi
r − rc

p
if δ1 ¼ δc

� 4Nc
3Nq

δ1δc
ðδ1−δcÞ rc

�
r−rc
rc

�
3=4

if δ1 > δc
: ð18Þ

In Figs. 2 and 3we have plotted the resulting embeddings for
horizonless solutions. In the case of Reissner-Nordström-
like solutions with two horizons, a representation is also
possible, but the inner horizon and the wormhole surface
are very close to each other, which would require a
distortion of the radial coordinate for its graphical repre-
sentation. In both cases the presence of the wormhole

3We note that in GR electrovacuum scenarios resulting from
nonlinear theories of electrodynamics, such as Born-Infeld theory
[36], the metric may be finite at r ¼ 0 but nevertheless have
curvature divergences at that point [37]. As already mentioned,
singularity avoidance in such a context is done at the price of
violations of the energy conditions and/or ill-definiteness of the
underlying electromagnetic theory [8].
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structure becomes manifest. We note that, while in the
regular δ1 ¼ δc case the region around the wormhole throat
is completely smooth, for the δ1 > δc case it presents a cusp.
See also Fig. 4 for a two-dimensional comparison.
To see in a more quantitative way the differences between

those configurations, we consider the Kretschmann scalar
corresponding to the Euclidean surfaces represented in
Figs. 2 and 3, which can be computed with the line elements

given in (18) using the formula K2D ¼ 1
r2CðrÞ4 ð

∂CðrÞ
∂r Þ2. The

result is

K2D ¼
8<
:

64ðNc−NqÞ2
N2

c

1
r2cr2

if δ1 ¼ δc

N2
q

N2
c

ðδ1−δcÞ2
4δ2

1
δ2c

1
rcðr−rcÞr2 if δ1 > δc

: ð19Þ

This puts forward that two apparently similar surfaces can
have very different properties as far as curvature scalars are
concerned. From the definition ofK2D, one readily finds that
for CðrÞ ¼ ðr − rcÞα, the geometry is free from curvature
divergences if α ≤ −1 and diverges otherwise. The regular
configuration δ1 ¼ δc saturates the bound α ¼ −1.
Similarly, one can also verify [17] the finiteness of other
curvature invariants for the regular cases.

IV. CONFORMAL DIAGRAMS

We have already discussed the horizons of the geometry
from Eq. (14). In order to draw a conformal diagram of
the geometry we have to look into the nature of the
hypersurface x ¼ 0 (or r ¼ rc), where the wormhole throat

FIG. 2 (color online). Euclidean embedding of the θ ¼ π=2
spatial section of a regular wormhole (δ1 ¼ δc). The vertical axis
represents the function ξðrÞ.

FIG. 3 (color online). Euclidean embedding of the θ ¼ π=2
spatial section of a wormhole with curvature divergences at its
throat (naked singularity with δ1 > δc). The vertical axis repre-
sents the function ξðrÞ.

2 4 6 8 10 12 14
r

10
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10

r

FIG. 4 (color online). Representation of ξðrÞ as a function of r.
The dashed curve represents the regular wormhole configuration
(δ1 ¼ δc), while the continuous curve is one of the solutions with
curvature divergences. The curves have been normalized to make
them coincide at z ¼ 10. Note that both curves are continuous
everywhere and have divergent derivative at z ¼ 1.
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is located. A hypersurface S in a manifold M is called
spacelike, null, or timelike when the tangent space to S at
each point has this same character. Therefore, the normal to
a spacelike, timelike, or null hypersurface must be timelike,
spacelike, or null, respectively. For a given surface defined
by fðv; x; θ;ϕÞ ¼ f0 ¼ constant, the normal vector is
defined as nμ ¼ ∂f

∂xμ. For the hypersurfaces x ¼ f0, the
normal is nμ ¼ ð0; 1; 0; 0Þ, which yields nμnμ ¼ Aσ2þ.
Therefore, if A>0 the hypersurface is timelike, if A < 0
it is spacelike, and if A ¼ 0 then it is null. Accordingly,
looking at Eq. (14) we can distinguish the following cases:

(i) ðδ1 < δcÞ ⇒ x ¼ 0 is a spacelike hypersurface.
(ii) ðδ1 > δcÞ ⇒ x ¼ 0 is a timelike hypersurface.
(iii) ðδ1 ¼ δc; Nq > NcÞ ⇒ x ¼ 0 is a spacelike hyper-

surface.
(iv) ðδ1 ¼ δc; Nq ¼ NcÞ ⇒ x ¼ 0 is a null hypersurface.
(v) ðδ1 ¼ δc; Nq < NcÞ ⇒ x ¼ 0 is a timelike hyper-

surface.
Note that this classification of the surface x ¼ 0 (or r ¼ rc)
differs from that initially given in [17], where the metric
was represented using the function r as a coordinate. As
pointed out above following Eq. (8), r is not a valid
coordinate at r ¼ rc, which invalidates the classification
and some aspects of the Penrose diagrams provided in [17].
Taking into account the number and type of horizons,

together with the existence or not of curvature divergences,
one finds seven different possible causal structures. In this
sense, regular configurations without horizons appear in

Fig. 5, with horizons in Fig. 6, and with a horizon
coinciding with the wormhole throat in Fig. 7. In Fig. 8
we have represented the Schwarzschild-like solutions (a
single nondegenerate horizon) and Figs. 9, 10, and 11 are
the Reissner-Nordström-like solutions corresponding to
naked singularities, extreme black holes, and two-horizon
black holes, respectively.

V. GEODESICS

In this section we present a detailed description of the
geodesic behavior corresponding to different configura-
tions of our wormhole solutions, depending on the charge-
to-mass ratio and the number of charges involved. Our goal
is to determine whether geodesic curves crossing through
the wormhole can be extended to arbitrarily large values of
the affine parameter (geodesic completeness). Comparison
of some relevant results with their GR counterpart (the
standard Reissner-Nordström solution) is provided.

A. Geodesics in a metric-affine spacetime

Geodesics are curves whose tangent vector is parallel
transported along itself. This definition generalizes the

FIG. 5. Penrose diagram for the case δ1 ¼ δc, Nq < Nc. The
wormhole follows a timelike trajectory.

FIG. 6. Penrose diagram for the case δ1 ¼ δc, Nq > Nc. The
wormhole represents a spacelike hypersurface.

FIG. 7. Penrose diagram for the case δ1 ¼ δc, Nq ¼ Nc. In this
case the event horizons coincide with the location of the worm-
hole throat, which becomes a null hypersurface.

FIG. 8. Penrose diagram for the case δ1 < δc. The wormhole is
a spacelike hypersurface with curvature divergences at r ¼ rc.
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concept of “straight lines” of Euclidean geometry to curved
geometry. A geodesic curve γμ ¼ xμðλÞwith tangent vector
uμ ¼ dxμ

dλ and affine parameter λ satisfies, in a coordinate
basis, the following equation [6],

uμ∇μuν ¼
duν

dλ
þ Γν

μσuμuσ ¼ 0; ð20Þ

or, equivalently,

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ 0; ð21Þ

which is a set of second-order differential equations. These
equations have a unique solution for a given connection Γν

μσ

and initial conditions xμð0Þ, ðdxμ=dλÞj0.
In metric-affine theories like the ones considered here,

one assumes the a priori existence of independent metric
and affine structures. As is well known, the metric (or
causal) structure can be used to define an affine structure in

terms of the Christoffel symbols of the metric (Levi-Civita
connection). This determines a set of geodesics which,
according to the Einstein equivalence principle (EEP),
coincide with the paths followed by test particles. These
curves also extremize the length between its endpoints [6].
In the metric-affine case, the independent connection can
also be used to define a different set of geodesic paths. If the
theory is constructed assuming the EEP, i.e., not coupling
the connection to the matter fields, then the independent
connection should just be a gravitational field which
contributes to generate the spacetime metric but is expected
not to act directly on the matter fields [39]. If, on the
contrary, the matter fields are coupled directly to the
independent connection in the action, one should then
study those geodesics as physically meaningful.4 In our
case, the geometry has been derived assuming the existence
of just an electric field, which is insensitive to the details
of the (symmetric) connection. In fact, variation of the
Maxwell action leads to ∇μð ffiffiffiffiffiffi−gp

FμνÞ ¼ 0, and given that
∇μ

ffiffiffiffiffiffi−gp ¼ ∂μ
ffiffiffiffiffiffi−gp − Γλ

μλ, this equation boils down to
∂μð ffiffiffiffiffiffi−gp

FμνÞ ¼ 0, which has no dependence on the par-
ticular connection Γλ

μν used to define the covariant deriva-
tive. For this reason, our focus will be on the geodesics
of gμν.
Instead of considering the geodesic equation itself to

obtain the paths followed by test particles, it is more
convenient to exploit the symmetries of the problem to
obtain conserved quantities that simplify the analysis

FIG. 9. Penrose diagram for the case δ1 > δc (in GR this
represents a naked singularity.

FIG. 10. Penrose diagram for the case δ1 > δc (one extremal
horizon).

FIG. 11. Penrose diagram for the case δ1 > δc (two horizons).

4We note that in Palatini theories the situation is not as simple
as generally thought because even if one assumes the postulates
of metric theories of gravity in the construction of the theory,
violations of the EEP are still possible [40].
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[6,41]. To proceed, we note that the geodesic equations (21)
can be derived from an action principle S ¼ R

dλL with
Lagrangian L ¼ 1

2
gμν

dxμ
dλ

dxν
dλ . The momenta associated to

this Lagrangian are given by pμ ¼ ∂L=∂ _xμ, with _xμ ≡ dxμ
dλ ,

which leads to pμ ¼ gμν _xν. One, thus, finds that
H ¼ pμ _xμ − L ¼ L, which in terms of the momenta reads
as H ¼ 1

2
gμνðxÞpμpν. Note that the absence of a potential

term in this Hamiltonian puts forward that geodesic
trajectories can be seen as representing free particles in a
curved geometry. The Hamiltonian equations of motion
are, thus, _xμ ¼ ∂H=∂pμ ¼ gμνpν and _pμ ¼ −∂H=∂xμ ¼
− 1

2
pαpβ∂μgαβ. Using these equations, one can easily verify

that d_xμ=dλ reproduces the geodesic equation (21). It is also
a trivial matter to show that dH=dλ ¼ 0, which implies that
the Hamiltonian is a conserved quantity. Given that gμν
does not depend explicitly on the coordinates t and φ, one
finds that _pt ¼ 0 and _pφ ¼ 0 represent other two conserved
quantities. In terms of the line element (8), we thus have
that dt=dλ ¼ E=A and dφ=dλ ¼ L=r2, with E and L
constants, where we have taken θ ¼ π=2 because due to
spherical symmetry the geodesics must lie on a plane. If
one uses (1) then E ¼ A dv

dλ −
1
σþ

dx
dλ. For timelike geodesics,

E can be interpreted as the total energy per unit mass, and L
as the angular momentum per unit mass. For null geodesics
E and L lack meaning by themselves, since it is not
possible to normalize the tangent vector, but the quotient
L=E can be interpreted as the apparent impact parameter in
the asymptotically flat infinity. By rescaling the affine
parameter by a constant, the Hamiltonian can be set to ∓1
for timelike/spacelike geodesics, respectively, whereas for
null geodesics H ¼ 0. The constancy of the Hamiltonian,
therefore, allows us to write the following constraint for the
geodesic tangent vector,

−κ ¼ −A
�
dt
dλ

�
2

þ 1

Aσ2þ

�
dx
dλ

�
2

þ r2ðxÞ
�
dφ
dλ

�
2

; ð22Þ

where κ ¼ 0 for null geodesics and κ ¼ 1 for timelike
geodesics. For timelike geodesics, λ represents the proper
time of the particle following the geodesic, whereas for null
geodesics it is an affine parameter. Using the conservation
relations, (22) turns into

1

σ2þ

�
dx
dλ

�
2

¼ E2 − A

�
κ þ L2

r2ðxÞ
�
: ð23Þ

Under a rescaling of the form dy ¼ dx=σþ, (23) can be
seen as a single differential equation akin to that of a
classical particle in a one dimensional potential of the
form

VðxÞ ¼ A

�
κ þ L2

r2ðxÞ
�
: ð24Þ

Had we used the line element (1), which is also valid in
the case of having event horizons, Eq. (23) would still be
valid. From now on, we will study the behavior of the
geodesics in terms of the potential. Since VðxÞ is a
function of rðxÞ, which is even in the variable x, it turns
out to be also an even function. Our description of the
potential will thus be restricted to the x ≥ 0 sector, which
has a direct correspondence with the GR case.

B. Radial null geodesics

Radial null geodesics are characterized by κ ¼ 0 and
L ¼ 0 and, therefore, satisfy the equation

1

σ2þ

�
dx
dλ

�
2

¼ E2; ð25Þ

which is insensitive to the details of the function A. Using
the relation between r and x, one can write x2 ¼ r2σ−,
which implies dx=dr ¼ �σþ=σ1=2− , with the minus sign
corresponding to x ≤ 0. This turns (25) into

1

σ−

�
dr
dλ

�
2

¼ E2: ð26Þ

This last equation admits an exact solution of the form

�E · λðxÞ ¼
(

2F1

h
− 1

4
; 1
2
; 3
4
; r

4
c
r4

i
r if x ≥ 0

2x0 − 2F1

h
− 1

4
; 1
2
; 3
4
; r

4
c
r4

i
r if x ≤ 0

;

ð27Þ

where 2F1½a; b; c; y� is a hypergeometric function, x0 ¼
2F1½− 1

4
; 1
2
; 3
4
; 1� ¼

ffiffi
π

p
Γ½3=4�

Γ½1=4� ≈ 0.59907, and the � sign cor-

responds to outgoing/ingoing null rays in the x > 0 region.
It should be noted that given that dr=dλ is a continuous
function, the solution (27) is also unique. For x → ∞
the series expansion of this expression yields EλðxÞ ≈ rþ
Oðr−3Þ ≈ x and naturally recovers the GR behavior for
large radii (see Fig. 12). As the wormhole throat is
approached, one finds EλðxÞ ≈ x0 � ffiffiffiffiffiffiffiffiffiffiffiffi

r − rc
p ≈ x0 þ x=2,

with theþ (−) sign corresponding to the branch with x > 0
(x < 0). Numerically one verifies that this approximation is
very good within the interval x=rc ∈� − 1; 1½. In the limit
x → −∞, λðxÞ ≈ xþ 2x0 recovers the linear behavior but
shifted by a constant factor.
It is remarkable that the affine parameter λ ¼ λðxÞ given

in (27) extends over the whole real axis. This contrasts with
the GR prediction for electrovacuum configurations, where
null radial geodesics take the form ðdr=dλÞ2 ¼ E2 and
whose solution for outgoing/ingoing geodesics is of the
form rðλÞ ¼ �Eλ. In the GR case, therefore, the affine
parameter λ is only defined on the positive/negative
(outgoing/ingoing) side of the real axis because the
function rðλÞ is positive definite. The Schwarzschild and
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Reissner-Nordström black holes in GR are thus said to be
geodesically incomplete as far as null geodesics are
concerned. In our case, on the contrary, radial null geo-
desics are complete and this occurs for arbitrary choices
of the parameter δ1. This is relevant because generically a
curvature divergence occurs at x ¼ 0, where the wormhole
throat is located. Only for the case δ1 ¼ δc is the geometry
completely regular [17]. Eq. (27), therefore, puts forward
that radial null geodesics are the same for all the wormhole
configurations, regardless of the possible existence of
curvature divergences. We also note that the radial null
geodesics of the metric gμν are the same as those corre-
sponding to the auxiliary metric hμν defined in (11).

C. Null geodesics with L ≠ 0

For null geodesics (κ ¼ 0) with angular momentum
L ≠ 0, a geodesic coming from r → ∞ (or, equivalently,
x → �∞) starts seeing the typical centrifugal barrier term
of GR, which grows from zero like V ≈ L

x2. This barrier is
positive and negligible far away but grows as the center is
approached. The behavior as x → 0 depends crucially on
the parameters δ1 and δ2 ≡ δ1Nc=Nq that characterize the
background geometry. In fact, in the limit x → 0, we have

VðxÞ ≈ −
a
jxj − b ð28Þ

with a ¼ ðκ þ L2

r2c
Þ ðδc−δ1Þ

2δcδ2
and b ¼ ðκ þ L2

r2c
Þ ðδ1−δ2Þ

2δ2
. This leads

to the following cases when κ ¼ 0:
(i) If δ1 > δc (Reissner-Nordström-like case) one finds

an infinite repulsive barrier as x ¼ 0which makes all
geodesics bounce at some r > rc, preventing them

from reaching the wormhole in much the same way
as it happens in the usual Reissner-Nordström
solution of GR [41], where L ≠ 0 null geodesics
cannot reach the central singularity. For certain
values of the charge, the potential may have a local
maximum and then a minimum before reaching the
divergent barrier as x → 0 (see Fig. 13 case A for
details). Note that, unlike in the case of a particle in a
potential, in our case the parameter E2 > 0 always.
This means that no stable photon orbits may exist
at the minimum of the potential in the dotted curve
of plot A in Fig. 13, which occurs in a region
where VðxÞ < 0.

(ii) If δ1 ¼ δc (regular case), the potential is regular at
x ¼ 0 (see Fig. 13 case B for details), behaving
there as

VðxÞ=L2 ≈
1

2

�
1 −

Nq

Nc

�
þ Nq

12Nc
x2

−
5

80

�
1 −

4Nq

5Nc

�
x4 ð29Þ

(recall that δ2 ¼ δ1Nc=Nq). The potential has an
extremum at x ¼ 0, which can be a minimum in
between two local maxima for some values of the
parameters. All geodesics with energy greater than
the maximum of the potential will go through the
wormhole (see Fig. 14 for details). Stable photon
orbits are possible at the minimum of the potential if
Nq < Nc because then Vð0Þ > 0. Bounded orbits
can also exist near the wormhole if a photon is
emitted with 0 < E2 < Vmax, being Vmax the maxi-
mum value of the potential (due mainly to the
centrifugal barrier). A glance at Fig. 15 shows that
bounded photon orbits can exist around the worm-
hole throat if a photon is emitted inside this region
(not coming from infinity) with an E2 smaller than
the potential barrier. The dotted potential in Fig. 15
indicates that such photon trajectories would be
bounded by the centrifugal barrier. These geodesics
can get into a black hole region after crossing an
external event horizon, go through the wormhole,
and get out of the black hole region after crossing the
other event horizon (recall that, from the definition
of VðxÞ, the zeros of VðxÞ coincide with the zeros of
AðxÞ, which signals the presence of horizons). This
photon would then bounce due to the centrifugal
barrier and enter the black hole region to repeat the
process in reversed direction.5

FIG. 12 (color online). Affine parameter λðxÞ as a function of
the radial coordinate x for radial null geodesics (outgoing in
x > 0). In the GR case (green dashed curve in the upper right
quadrant), λ ¼ x is only defined for x ≥ 0. For radial null
geodesics in our wormhole spacetime (solid red curve), λðxÞ
interpolates between the GR prediction and a shifted straight line
λðxÞ ≈ xþ 2x0, with x0 ≈ 0.59907. In this plot E ¼ 1 and the
horizontal axis is measured in units of rc.

5It might be useful at this point to recall the discussion about
the advanced Eddington-Finkelstein coordinate provided in the
paragraph containing Eq. (9).
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(iii) If δ1 < δc (Schwarzschild-like case) the potential
becomes infinitely attractive at x ¼ 0, with the
possibility of having a maximum before that point,
depending on the number of charges Nq. All geo-
desics with energy above that maximum hit the
wormhole (see Fig. 13 case C for details). With the
approximate form of the potential in the x → 0
region, namely, Eq. (29), one can verify that

dλ
dx

≈
1

2a1=2
jxj12 − ðbþ E2Þ

4a
3
2

jxj32; ð30Þ

which leads to

λðxÞ ≈ x
3

				 xa
				
1
2

�
1 −

3ðbþ E2Þ
10

				 xa
				
�
; ð31Þ

where the integration constant has been chosen so as
to make λð0Þ ¼ 0. Note that despite the divergence

FIG. 13 (color online). Representation of the effective potential for null geodesics with L ¼ 1. Plots A, B, and C correspond to the
charge-to-mass ratios δ1 ¼ 1.5δc, δ1 ¼ δc and δ1 ¼ 0.3δc, respectively, where the curves represent the cases with Nq ¼ 1; Nc; 8Nc

(solid curve, dashed curve, and dotted curve, respectively). Plots D, E, and F provide a comparison of different values of δ1 for Nq ¼ 1

(plot D), Nq ¼ Nc (plot E), and Nq ¼ 8Nc (plot F), being δ1 ¼ 1.5δc the dashed (red) curve, δ1 ¼ 0.3δc the dotted (blue) curve, and
δ1 ¼ δc the solid (green) curve. The same colors have been used in plots A, B, and C to represent the value of δ1.
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FIG. 14 (color online). Maximum of the potential for null
geodesics with δ1 ¼ δc, against the number of charges. All
photons emitted from infinity with E=L > 0.5 will be able to
go through the wormhole.

FIG. 15 (color online). Representation of the potential VðxÞ for
null geodesics in the regular case δ1 ¼ δc. The solid curve
represents the case Nq ¼ 1, the dashed curve corresponds to
Nq ¼ Nc, and the dotted curve [with two event horizons located
at the zeros of VðxÞ] represents the case Nq ¼ 1.2Nc.

GEODESIC COMPLETENESS IN A WORMHOLE SPACETIME … PHYSICAL REVIEW D 92, 044047 (2015)

044047-11



of the potential at x → 0, the affine parameter is
smooth across that point, as shown in Fig. 16. In
fact, given that the right-hand side of dλ=dx is a
smooth function, the solution (31) turns out to be
unique once initial conditions are specified. This
confirms that null geodesics with L ≠ 0 are also
complete in this spacetime. Note in this sense that
L ≠ 0 null geodesics in Schwarzschild spacetime are
not complete because r ¼ 0 is reached in a finite
affine time and there is no way to extend the affine
parameter to an hypothetical region r < 0. Another
way to see the incompleteness of these geodesics in
GR is through the conservation of angular momen-
tum equation, L ¼ r2 dφ

dλ, which makes the angle φ
undefined as r → 0. In the wormhole case, on the
contrary, the angular velocity is finite at the worm-
hole throat r ¼ rc, which avoids this problem too.
Similarly as in the δ1 ¼ δc case with Nq > Nc,
bounded photon trajectories with 0 < E2 < Vmax
can exist in the region close to the wormhole.

D. Radial timelike geodesics

In the radial timelike case (κ ¼ 1, L ¼ 0), the behavior
far away from the wormhole (on both sides) is identical
to that found in GR, being dominated by an attractive
potential VðxÞ≃ 1 − 1

δ2x
. As x → 0, the potential is domi-

nated by the approximation (28). The dependence on δ1,
therefore, determines the evolution of the geodesics:

(i) In the RN-like case, δ1 > δc, there is an infinite
repulsive barrier at x ¼ 0, which arises right after a
minimum. Massive particles with L ¼ 0, therefore,
cannot reach the wormhole (this is similar to GR,

where massive particles cannot reach the central
singularity [41]). From plot A of Fig. 17, one finds
that there exist bound orbits for particles with
0 < E2 < 1, having a stable point near the worm-
hole if Vmin > 0.

(ii) For δ1 ¼ δc the potential is finite at x ¼ 0, having
the form

VðxÞ ≈ 1

2

�
1 −

Nq

Nc

�
þ 1

4

�
1 −

2Nq

3Nc

�
x2

þ 7

240

Nq

Nc
x4: ð32Þ

If Nq < 3
2
Nc, then x ¼ 0 is a minimum of the

potential. This means that massive particles can stay
at rest at x ¼ 0 if Nq < Nc, because then Vð0Þ > 0.
For larger values of the charge, the wormhole throat
x ¼ 0 is hidden behind an event horizon (one on
each side) and Vð0Þ < 0, which prevents the exist-
ence of stationary points. Bound orbits may exist
in this region as long as E2 is smaller than the
maximum of the centrifugal barrier, similarly as in
the case of photons with L ≠ 0. Therefore, a massive
particle whose E2 drops below the maximum of the
potential in the region near the wormhole can
oscillate around the wormhole bounded by the
centrifugal barrier. This oscillatory motion would
be possible even when Nq > Nc, i.e., when the
wormhole is hidden by event horizons (one on each
side). Note that for Nq > Nc we cannot have the
particle at rest at the minimum of the potential
because Vð0Þ < 0 can never satisfy dx=dλ ¼ 0. This
is consistent with the fact that a massive particle
within the event horizon cannot stay at rest.

(iii) In the Schwarzschild-like case, δ1 < δc, there is an
infinite attractive well as x → 0. All radial timelike
geodesics, therefore, reach the wormhole. From the
approximate form of the potential in this region, one
can verify that (31) provides a good description of
the geodesics around x ¼ 0. Therefore, the affine
parameter can be smoothly extended across x ¼ 0
also in the timelike case (see Fig. 16 for a com-
parison of this case with the null and approximated
cases). Bounded orbits around the wormhole also
exist in this case.

E. Timelike geodesics with L ≠ 0

For nonzero angular momentum timelike geodesics obey
a potential which is the sum of the two previous cases. The
qualitative features of the previous cases are also manifest
here when L > 0. For δ1 < δc the approximate formulas
developed in the null case for the affine parameter near
x ¼ 0 are also valid. In Fig. 18 we have plotted the
potentials in the particular case L ¼ 2 in the three cases

FIG. 16 (color online). Representation of the affine parameter
λðxÞ for geodesics with δ1 ¼ 0.3δc, and Nq ¼ 2Nc. The solid
(red) curve represents the approximation (31), the dashed (green)
curve represents the null case with L ¼ 1, and the dotted (blue)
curve is the timelike case with L ¼ 0. The potential that generates
the dashed curve is similar to the dashed curve of plot C in
Fig. 13. The potential of the dotted curve is similar to the dotted
potential of plot C in Fig. 17.
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FIG. 17 (color online). Representation of the effective potential for timelike radial geodesics (with L ¼ 0). In plots A, B, and C the
curves represent cases with different values of the charge parameter Nq (the solid curve is Nq ¼ 1, the dashed curve has Nq > 1, and the
dotted curve has the largest charge). Plots D, E, and F provide a comparison of different values of δ1 for Nq ¼ 1 (plot D), Nq ¼ Nc (plot
E), and Nq ¼ 2Nc (plot F), being δ1 ¼ 1.5δc the dashed (red) curve, δ1 ¼ 0.3δc the dotted (blue) curve, and δ1 ¼ δc the solid (green)
curve. The same colors have been used in plots A,B, and C to represent the value of δ1.

FIG. 18 (color online). Representation of the effective potential for timelike geodesics with L ¼ 2. In plots A,B, and C the curves
represent cases with different values of the charge parameter Nq (the solid curve is Nq ¼ 1, the dashed curve has Nq > 1, and the dotted
curve has the largest charge). Plots D, E, and F provide a comparison of different values of δ1 forNq ¼ 1 (plot D), Nq ¼ Nc (plot E), and
Nq ¼ 4Nc (plot F), being δ1 ¼ 1.5δc the dashed (red) curve, δ1 ¼ 0.3δc the dotted (blue) curve, and δ1 ¼ δc the solid (green) curve. The
same colors have been used in plots A, B, and C to represent the value of δ1.
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δ1 > δc, δ1 ¼ δc and δ1 < δc and different values of the
number of charges Nc. We can thus conclude that timelike
geodesics are also complete in our wormhole spacetime,
which clearly contrasts with the results for Schwarzschild
and Reissner-Nordström black holes of GR.

F. Stationary null orbits

A stationary orbit occurs when the energy of a particle
coincides with the potential energy at an extremum of the
potential, i.e., when E2 ¼ Vðx0Þ and Vxjx¼x0 ¼ 0. If this
extremum is a minimum, a slight perturbation will make the
orbit oscillate around the minimum. If it is a maximum,
then the stationary point is unstable.
Since for given values of the parameters δ1 and δ2 our

geometry for jxj ≫ 1 is locally indistinguishable from that
provided by GR, the stationary orbits that one finds at large

FIG. 19 (color online). Comparison of the effective potential for null geodesics in the GR and wormhole cases. The solid (blue) curves
represent the wormhole case and the dashed (orange) curves the GR case. The GR potential is only defined for x > 0. Note that the
convergence between the GR and wormhole cases occurs very quickly for not very large values of x > 0, which manifests the
nonperturbative nature of the wormhole geometry. Plot A represents the Reissner-Nordström-like case (δ1 > δc). Plot B corresponds to
the regular configurations (δ1 ¼ δc). Plot C is the Schwarzschild-like case (δ1 < δc).
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FIG. 20 (color online). Radius of the stationary null orbits in
units of rc (vertical axis) against the number of charges
(horizontal axis) for a black hole with δ1 ¼ δc. The blue (upper)
and green (flat) solid lines are for the wormhole configuration, the
dashed (orange) line is for the RN black hole of GR. Notice that
the stable (flat) branch of stationary orbits ends at Nq ¼ Nc. The
upper solid (blue) curve smoothly tends to the GR prediction for
large values of Nq.
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FIG. 21 (color online). Radius of the stationary null orbits in
units of rc (vertical axis) against the number of charges
(horizontal axis) for a black hole with δ1 ¼ 0.5 � δc. The solid
(blue) line is for the wormhole, the dashed (orange) line is for the
RN black hole of GR.
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FIG. 22 (color online). Radius of the stationary null orbits in
units of rc (vertical axis) against the number of charges
(horizontal axis) for a black hole with δ1 ¼ 1.05 � δc. The solid
blue and green lines are for the Palatini black hole, the dashed
(orange) line is for the RN black hole of GR.
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radii are almost coincident with those found in the standard
Reissner-Nordström solution (see Fig. 19). The stationary
orbits that occur near the wormhole depart from those
found in GR as we get closer to x ¼ 0. In Figs. 20, 21,
and 22 we plot the location of the stationary null orbits as a
function of the number of charges for both the Reissner-
Nordström solution of GR and for our wormhole geometry
and for various values of δ1, equal to, lower and greater
than δc, respectively. One can verify that for certain values
of the charge, the stationary orbits may not exist in the
GR case but persist in the wormhole scenario. Note that
stationary null orbits exist at the wormhole throat for
Nq < Nc when δ1 ¼ δc (Fig. 20).

VI. SUMMARY AND CONCLUSIONS

In this work we have studied geometrical aspects of a
family of wormhole solutions supported by a spherically
symmetric electric field which arise in high-energy exten-
sions of Einstein’s theory formulated à la Palatini.
Euclidean embeddings have been used to illustrate that
similar wormhole structures may possess very different
properties as far as curvature scalars are concerned.
Conformal diagrams of the different wormhole configura-
tions have been provided to update preliminary analyses
carried out in [17]. It should be noted that the conformal
diagrams containing curvature divergences can be extended
to include the region across the wormhole. By doing this,
Fig. 9 would look like Fig. 5 with the straight diagonal line
replaced by a zigzag line. Similar modifications would be
necessary in Figs. 10 and 11.
We have carried out a detailed study of the geodesic

structure of these spacetimes finding that the three possible
configurations, namely, Reissner-Nordström-like (δ1 > δc),
Schwarzschild-like (δ1 < δc), and Minkowski-like
(δ1 ¼ δc) are geodesically complete. This is so despite
the fact that only in the case δ1 ¼ δc are curvature scalars
regular everywhere. In the other cases, δ1 ≠ δc, curvature
divergences appear at the wormhole throat. This result puts
forward, through an explicit example, that the blowup of
curvature invariants such as the squared Ricci tensor or the
Kretschmann scalar does not necessarily imply geodesic
incompleteness, which is the principal criterion to deter-
mine if a spacetime is singular or not [4]. We, thus,
conclude that the family of geonic wormhole solutions
(with or without event horizons) provided by the Palatini
version of quadratic gravity and/or the Born-Infeld theory
of gravity represent nonsingular spacetimes. Remarkably,
this result follows from the interplay between the Palatini
gravity model and the standard Maxwell field, not from the
introduction of exotic energy sources in the framework
of GR [42].
We would like to stress that the wormhole (topological)

structure of our spherically symmetric solutions is the
crucial element that avoids geodesic incompleteness [43].
The case of radial null geodesics in the Schwarzschild-like

case (δ1 < δc) is very illustrative to understand this point.
For ingoing null or timelike geodesics, as the time v in (1)
passes by, the radial coordinate x must decrease [see the
discussion around (9)]. This coordinate goes from þ∞ to
−∞ while the radial function rðxÞ always remains positive.
A spherical shell of particles or radiation going in from
x → þ∞ is seen to collapse into a minimal surface of area
A ¼ 4πr2c at x ¼ 0 before bouncing off as an outgoing shell
of particles/radiation as the wormhole is crossed in the
direction of x → −∞. In the case of GR, the same shell of
particles/radiation would have reached the center r ¼ 0 in a
finite affine parameter with no possible extension beyond
that point (because r is always positive, r ¼ 0 represents its
minimum value, and there is no possibility to go back to
larger values of r within the event horizon). If angular
momentum is considered, the situation worsens in GR,
as the angular velocity dφ=dλ ¼ L=r2 diverges as r → 0
and the hypothetical extensions beyond that point would
have completely undetermined the angular coordinate φ.
In the wormhole case, φ is well defined at r ¼ rc, which
guarantees its smooth continuation across x ¼ 0. The
Euclidean embeddings of Sec. III can be used to visualize
how any smooth curve (such as spatial geodesics satisfying
dφ=dλ ¼ L=r2) reaching the wormhole throat can be
continued to the other side despite the possibility of having
curvature divergences at the throat.
Before concluding, we note that our analysis has focused

on the properties of individual geodesics. Since physical
observers are sometimes represented as congruences of
geodesics, there remains to determine how congruences
behave as they approach regions with curvature divergences.
This point, in fact, has been used in the literature to classify
the strength of curvature singularities, by considering the
behavior of the volume element associated to a physical
observer travelling through the singularity, to determine
whether it is crushed or ripped apart in the process or can
safely cross it [44–50]. In addition, one could also consider
the fundamental wavelike nature of particles and test the
singularity by quantum scattering experiments [51]. A
detailed study of these aspects is currently underway and
a preliminary analysis has been reported in [52].
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