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We obtain bounds on the stability of various self-gravitating astrophysical objects using a new measure
of shape complexity known as configurational entropy. We apply the method to Newtonian polytropes,
neutron stars with an Oppenheimer-Volkoff equation of state, and to self-gravitating configurations of
complex scalar field (boson stars) with different self couplings, showing that the critical stability region of
these stellar configurations obtained from traditional perturbation methods correlates well with critical
points of the configurational entropy with accuracy of a few percent or better.
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I. INTRODUCTION

The issue of gravitational stability, how different assem-
blies of massive particles and objects can attain a gravi-
tationally stable state, has been one of the key problems of
astrophysical and cosmological research since the late 17th
century. Shortly after the publication of his monumental
Principia, Isaac Newton was led to consider the possibility
of a spatially infinite universe due to the instability of a
finite self-gravitating sphere of matter [1]. Barely a year
after Einstein published his landmark paper on the general
theory of relativity, he examined the gravitational stability
of a static, spherically symmetric universe [2]. That the
solution was unstable to perturbations led Einstein to
include the so-called cosmological term, which remains
a viable explanation to the accelerating recession of far-
away type Ia supernovae [3,4], although other explanations
based on slowly evolving fields are also consistent with
current data [5]. Moving from the Universe to the stability
of compact astrophysical objects—the focus of the present
manuscript—much depends on the object’s specific
material composition. In general, the object is modeled
with an effective equation of state which attempts to
describe the essential physical processes taking place in
its interior.
Without presuming to offer here a complete history of

how gravitational stability of stellar objects has been
examined over the past decades (for reviews see
Refs. [6,7]), we note that an essential aspect of such
stability is that the object’s binding energy Eb must be
negative definite, Eb ≡M −Qm < 0. (We take c ¼ ℏ ¼ 1
throughout, unless explicitly shown.) If Eb > 0 the star is
unstable to fission. Here, Q is the conserved number of
particles in the object, either baryon number in ordinary
stars or the net number of spin-0 bosons in boson stars [8],
M is the object’s mass, and m is the mass of the particle.

It is also well known that the negativity of the binding
energy is a necessary but not sufficient condition for
stability: configurations that have Eb < 0 may still be
unstable under radial perturbations. In order to establish
the stability of stellar configurations one needs to apply
perturbations to the effective equations describing the self-
gravitating matter. Leaving details aside (the interested
reader can consult Refs. [6,7]), the key point is that unstable
stellar configurationswill have exponentially growing radial
perturbations characterized by imaginary eigenvalues of the
perturbed linearized equations. Stability conditions are
established imposing that the perturbations conserve particle
number, as in Chandrasekhar’s variational formalism [9].
In the present work we examine the stability of self-

gravitating objects from a very different perspective.
Instead of the usual perturbative approach, we apply a
recently proposed measure of shape complexity known as
configurational entropy (CE) [10] to stellarlike objects,
investigating the stability of both Newtonian and fully
relativistic objects. In particular, we expand the results of
Ref. [11] and apply our formalism to three classes of
objects: general Newtonian polytropes that model non-
relativistic and ultrarelativistic white dwarfs [6,7]; neutron
stars modeled by an Oppenheimer-Volkoff equation of state
[12]; and boson stars, self-gravitating configurations made
of charge-conserving complex scalar fields [13–18].
We show that the configurational entropy, an extension

of Shannon’s information entropy [19] to spatially
localized mathematical functions based on their Fourier
transforms, can provide reliable bounds on the stability of
self-gravitating objects with accuracies of a few percent or
better. As such, the information-entropic method used here
provides an alternative approach to the study of gravita-
tional stability with broad applicability.
This paper is organized as follows. In Sec. II we briefly

review the formalism and obtain the equations describing
general relativistic, spherically symmetric compact objects.
In Sec. III we review the notion of CE. In Sec. IV we apply
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the formalism to cold white dwarfs, showing how the CE
can be used to obtain an estimate of Chandrasekhar’s
critical stability mass for these objects [11]. We show that
the mass for polytropes scales inversely with their CE,
allowing us to relate the mass instability region—a saddle
ridge in configuration space—to an equivalent instability
region in the object’s configurational entropy. In Sec. V we
investigate neutron stars modeled with an Oppenheimer-
Volkoff (OV) equation of state, showing how the CE gives a
bound on the compact object’s stability consistent with the
traditional perturbation method. We also show that an
inverse scaling relation similar to that found for
Newtonian polytropes relating the object’s mass and its
CE holds for OV neutron stars. In Sec. VI we apply the
formalism to boson stars with self-coupled scalar fields. We
show how the CE again gives reliable bounds on the
compact object’s critical stability mass and how the same
scaling between mass and CE found for polytropes and OV
neutron stars is also applicable for these objects. We
conclude in Sec. VII with final remarks and a discussion
of future projects.

II. GENERAL FORMALISM

We consider static, spherically symmetric configurations
with spacetime metric (we follow the conventions of
Ref. [6]),

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ
and take c ¼ ℏ ¼ 1. Einstein’s field equations are

Gμν ¼ −8πGTμν; ð2Þ

where Tμν is the energy-momentum tensor. For Newtonian
polytropes and neutron stars, we model stellar matter as a
perfect fluid with energy-momentum tensor

Tμν ¼ pðrÞgμν þ ½pðrÞ þ ρðrÞ�UμUν; ð3Þ

where pðrÞ is the pressure, ρðrÞ is the energy density, and
Uμ is the velocity four-vector. Taking the fluid to be at rest,
Uμ has only one nonzero component, U0 ¼ −

ffiffiffiffiffiffiffiffiffi
BðrÞp

. For
boson stars, the energy-momentum tensor is computed
from a Lagrangian density to be defined later. We use the
energy density to define the mass of the object as

M ¼ 4π

Z
R

0

ρðrÞr2dr; ð4Þ

where the upper limit of integration,R, is to either the object’s
radius R, where ρðRÞ ¼ 0 or, for boson stars, to R ¼ ∞,
although most of the star’s mass is concentrated within an
effective radius Reff ≡

R
∞
0 ρðrÞr3dr= R∞

0 ρðrÞr2dr.
With these definitions, Einstein’s equations can be

written as

1

A

�
A0

Ar
−

1

r2

�
þ 1

r2
¼ 8πGρ;

1

A

�
B0

Br
þ 1

r2

�
−

1

r2
¼ 8πGp;

B0

B
¼ −

2p0

pþ ρ
; ð5Þ

where a prime denotes derivative with respect to the radial
direction. The last expression is the equation for hydrostatic
equilibrium. These equations, together with an equation
of state pðrÞ ¼ p½ρðrÞ�, are used to study a large variety
of self-gravitating objects, assuming that Að0Þ ¼ 1
and Bðr → ∞Þ ¼ 1. The equation involving AðrÞ and
ρðrÞ may be integrated as AðrÞ ¼ ½1 − 2GMðrÞ=r�−1,
where the mass density function is given by MðrÞ≡R
r
0 4πr

02ρðr0Þdr0.
As is well known, Eqs. (5) can be rearranged and, using

the above expression for AðrÞ, the gravitational fields AðrÞ
and BðrÞ can be eliminated to obtain [6]

−r2p0ðrÞ ¼ GMðrÞρðrÞ
�
1þ pðrÞ

ρðrÞ
�

×

�
1þ 4πr3pðrÞ

MðrÞ
��

1 −
2GMðrÞ

r

�
: ð6Þ

This equation describes self-gravitating stellar configu-
rations with general-relativistic corrections in the last three
terms. We are interested here only in isentropic stars, that is,
those with a constant entropy per particle across the star.
Such configurations model very low temperature white
dwarfs and neutron stars, as well as boson stars, which are
self-gravitating spin-0 boson condensates. Next we review
the main ideas behind the configurational entropy measure
of spatial complexity before we use it to establish stability
bounds for all three types of configurations.

III. CONFIGURATIONAL ENTROPY

Since we are interested in self-gravitating configurations
with spatially localized energy, consider the set of square-
integrable bounded functions fðxÞ ∈ L2ðRÞ and their
Fourier transforms FðkÞ. Plancherel’s theorem states that

Z
∞

−∞
jfðxÞj2ddx ¼

Z
∞

−∞
jFðkÞj2ddk: ð7Þ

Now define the modal fraction fðkÞ [10],

fðkÞ ¼ jFðkÞj2R jFðkÞj2ddk ; ð8Þ

where the integration is over all k where FðkÞ is well
defined and d is the number of spatial dimensions. fðkÞ
measures the relative weight of a given mode k. This can
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also be seen by noting that jFðkÞj2 is proportional to the
Fourier transform of the two-point correlation function of
the function fðxÞ, while R

∞
−∞ jFðkÞj2ddk is the integrated

power [20]. For periodic functions where a Fourier series is
defined, fðkÞ → fn ¼ jAnj2=

P jAnj2, where An is the
coefficient of the nth Fourier mode.
We define the configurational entropy SC½f� as [10]

SC½f� ¼ −
X

fn lnðfnÞ; ð9Þ

in analogy with Shannon’s information entropy, SS ¼
−
P

pi log2 pi [19]. Note that if all N modes k carry the
same weight fn ¼ 1=N, the discrete configurational
entropy has a maximum at SC ¼ lnN. If only one mode
is present, SC ¼ 0. These limits motivate the definition
of Eq. (9).
For general, nonperiodic functions in the continuous

interval ða; bÞ, the case of interest here, the configurational
entropy SC½f� is [10]

SC½f� ¼ −
Z

~fðkÞ ln½ ~fðkÞ�ddk; ð10Þ

where ~fðkÞ ¼ fðkÞ=fðkÞmax and fðkÞmax is the maximum
fraction, in many cases of interest given by the zero mode,
k ¼ 0, or by the system’s longest physical mode,
jkminj ¼ π=R. This normalization guarantees that ~fðkÞ ≤
1 for all physical values of k. We call σðkÞ ¼
− ~fðkÞ ln½ ~fðkÞ� the configurational entropy density.
In this paper, we compute the configuration entropy from

the energy density ρðrÞ of the self-gravitating object. The
choice of the energy density is the most natural, given that it
is a spatially localized function that encapsulates all the
relevant physics and boundary conditions describing the
stellar configuration. Of course, this assumes that it is
possible to solve the relevant stellar equations to obtain
ρðrÞ and that ρðrÞ is a square-integrable function. The task
at hand is thus to solve the relevant Einstein equations to
obtain the equilibrium configurations in terms of ρðrÞ and
then use ρðrÞ to compute the CE as a function of the star’s
central density, ρðr ¼ 0Þ≡ ρ0.
For the sake of clarity, we describe the method to obtain

the Fourier transform FðkÞ from the energy density ρðrÞ ¼
ρðrÞ in the three-dimensional spherically symmetric case.
Writing

ρðrÞ ¼ ρðrÞ ¼ 1

ð2πÞ3
ZZZ

FðkÞeik·rd3k; ð11Þ

then the Fourier transform FðkÞ of ρðrÞ is

FðkÞ ¼
ZZZ

ρðrÞe−ik·rd3r

¼
ZZZ

ρðrÞe−ikr cos θ sin θr2dϕdθdr

¼ 2π

Z
R

0

ρðrÞr2dr
Z

π

0

e−ikr cos θ sin θdθ

¼ 4π

Z
R

0

ρðrÞr sinðkrÞ
k

dr: ð12Þ

We can now start with the simplest case, Newtonian
polytropes modeling cold white dwarfs.

IV. COLD WHITE DWARFS AND THE
CHANDRASEKHAR LIMIT

Newtonian polytropes are obtained from the hydrostatic
equation [setting the general relativistic corrections to zero
in Eq. (6)] [6,7]

d
dr

�
r2

ρðrÞ
dpðrÞ
dr

�
¼ −4πGr2ρðrÞ: ð13Þ

Equation (13) is supplemented by a general polytropic
equation of state

p ¼ Kργ; ð14Þ
where the constant K depends on the entropy per nucleon
and chemical composition. No heat flow throughout
the object requires γ to be the adiabatic index, defined
as the ratio of the heat capacities of the fluid at
constant pressure and volume. Small mass, stable non-
relativistic white dwarfs are well modeled by γ ¼ 5=3 and
K ¼ ℏ2

15meπ
2 ð 3π2mNμ

Þ5=3, where meðNÞ is the electron (nucleon)

mass, and μ ∼ 2 is the number of nucleons per electron. The
largest mass white dwarfs are modeled by γ ¼ 4=3 and
K ¼ ℏ

12π2
ð 3π2mNμ

Þ4=3, the well-known Chandrasekhar limit
[6,7]. The binding energy for polytropes with Q nucleons,

Eb ¼ M −QmN , can be written as Eb ¼ − ð3γ−4Þ
ð5γ−6Þ

GM2

R ,

where M is given by Eq. (4). There is a clear stability
boundary at γ ¼ 4=3 where Eb changes sign. We show
below that the configuration entropy captures the same
boundary.
Solutions to Eqs. (13)–(14) must satisfy ρð0Þ ¼ ρ0 and

ρ0ð0Þ ¼ 0, and are found introducing new variables ρðrÞ ¼
ρ0θðξÞ1=ðγ−1Þ and ξ ¼ r=α, with α2 ¼ Kγ

4πGðγ−1Þ ρ
ðγ−2Þ
0 .

Equation (13) then becomes the Lane-Emden equation
with boundary conditions θð0Þ ¼ 1 and θ0ð0Þ ¼ 0,

1

ξ2
d
dξ

ξ2
dθ
dξ

þ θ1=ðγ−1Þ ¼ 0: ð15Þ

Solutions were obtained via a fourth-order Runge-Kutta
method with step size 10−3. The CE is computed from the
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energy density using Eq. (10). Since polytropes have a
finite radius [where ρðRÞ ¼ 0 or, equivalently, θðξRÞ ¼ 0,
with ξR ≡ R=α], the k-integration is in the interval
k ∈ ½kmin ¼ π=R;∞Þ. This ensures that only modes with
wavelengths smaller than the polytrope contribute to the
configurational entropy [11]. In Fig. 1 we plot the nor-
malized modal fraction ~fðjkjÞ for sample values of the
polytropic index γ. The infrared cutoff is at kmin ¼ π=R,
defined by the star’s radius. The configurational entropy for
the various polytropes is computed using this modal
fraction to integrate the CE density as described in Sec. III.
We next present a simple scaling argument relating the

stellar mass to its configurational entropy. Using the
dimensionless variables θðξÞ and ξ in Eq. (4) we obtain

M ¼ 4π

Z
R

0

ρðrÞr2dr

¼ 4πρ0α
3

Z
ξR

0

θ1=ðγ−1ÞðξÞξ2dξ

∝ ρ0α
3 ∝ ρð3γ−4Þ=20 : ð16Þ

Using the dimensionless variables in the Fourier transform
of the energy density, we can express the modal fraction as

~fðkÞ ¼ hðαkÞ
hðαπR Þ

¼ hðαkÞ
hð πξRÞ

¼ hðαkÞ
CðγÞ ; ð17Þ

where CðγÞ is independent of ρ0, and hðαkÞ is

hðαkÞ ¼
����
Z

ξR

0

θ1=ðγ−1ÞðξÞ expðiαk · ξÞξ2dξ
����
2

: ð18Þ

The configurational entropy is then

S ¼ −4π
Z

∞

kmin

hðαkÞ
CðγÞ log

�
hðαkÞ
CðγÞ

�
k2dk

¼ −4πα−3
Z

∞

κmin

hðκÞ
CðγÞ log

�
hðκÞ
CðγÞ

�
κ2dκ ð19Þ

where κ ¼ αk, so that κmin ¼ π=ξR. We thus obtain

Sρ−10 ∝ α−3ρ−10 ∝ ρð4−3γÞ=20 : ð20Þ

Comparing with Eq. (16), we see that Sρ−10 ∝ M−1. Note
that at γ ¼ 4=3 the quantity Sρ−10 is independent of ρ0,
consistent with a boundary in the star’s stability [6]: as is
well known, stars with γ < 4=3 are unstable, while stars
with γ > 4=3 are stable. γ ¼ 4=3 defines an instability
ridge for the family of stellar configurations, as we show
next by exploring how both the mass and the configura-
tional entropy vary with central density and γ.
The mass and configurational entropy Sρ−10 are shown as

a function of polytropic index γ in Fig. 2, with ρ0 ¼ ρc,
where ρc is a fiducial value for the critical central density,
which can be computed for a few specific values of γ. For
example, for γ ¼ 5=3, ρc ¼ 0.97 × 106 μgm=cm3, where
μ≃ 2 is the number of nucleons per electron [6].
In Fig. 3 we show the contour plot of the stellar mass as a

function of ρ0=ρc and γ, where the existence of a saddle
ridge at γ ¼ 4=3 is clear. In Fig. 4 we show the contour plot
of the quantity Sρ−10 as a function of ρ0=ρc and γ. The
reader can verify that the shadings are approximately
reversed for the two plots (there are small deviations due

FIG. 1 (color online). Normalized modal fraction ~fðjkjÞ for
sample values of the polytropic index γ. From left to right,
γ ¼ 1.2, 1.4, and 1.7.

FIG. 2 (color online). Configurational entropy times ρ−10
(continuous line) and mass (dotted line) versus polytropic index
γ for ρ0 ¼ ρc.
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to the γ dependence of the relevant quantities), illustrating
qualitatively the inverse scaling between mass and con-
figurational entropy discussed above.
In Fig. 5 we plot the configurational entropy versus

polytropic index γ for various choices of cutoff for kmin. We
do this to illustrate the sensitivity of the results to the choice
of cutoff and to establish that it is best to choose what is
physically more natural, that is, no arbitrary fine-tuning of
cutoff, and thus kmin ¼ π=R. Even if the results are not
perfectly accurate with this choice, they lie within a few
percent from the critical points for CE: the maximum of CE
lies at 1.3% from γ ¼ 4=3, the polytropic index for an
ultrarelativistic white dwarf, and the minimum of CE at
2.1% from γ ¼ 5=3, the polytropic index for the most stable

nonrelativistic white dwarf. In particular, the CE has a
maximum for γ ¼ 1.316. Since the mass decreases with γ
for fixed ρ0=ρc (cf. Fig. 2), the CE gives an upper bound on
the maximum mass for stability, Mmax. This mass approx-
imates the Chandrasekhar mass (MChandra) at γ ¼ 4=3 as
Mmax ¼ 1.0373MChandra, so within 3.73% of the correct
value. We also correct a typo in Ref. [11] in the vertical
axis, which should read Sα3 and not SR3.
We see that the CE accurately captures the stability

properties ofNewtonian polytropes. This gives us confidence
that we can use similar methods to examine the stability of
general relativistic compact objects, which we do next.

V. NEUTRON STARS WITH OPPENHEIMER-
VOLKOFF EQUATION OF STATE

As we move into general-relativistic objects, we start
with a simple but representative model, neutron stars with
an OV equation of state, where neutrons are treated as a
pure ideal gas [12]. Much work has been done in the past
decades extending the results of OV to more realistic
situations, where calculations try to incorporate a variety
of effects taking into account the role of the strong nuclear
force at the star’s core. These approaches are treated in
many books and reviews, such as those listed in
Refs. [7,21]. Our interest at this point is not to explore
different equations of state modeling a neutron star interior,
but how the effects of general relativity, in particular their
impact on a star’s stability, are reflected in its equivalent
configurational entropy. Can we obtain information about a
compact relativistic object’s stability from its information-
entropic complexity?
Considering a gas of particles with rest mass μ0 obeying

Fermi-Dirac statistics, the related equation of state may be
written in parametric form as [12]

FIG. 3. Contour plot for the mass of polytropes as a function of
the central density ρ0=ρc and polytropic index γ. There is an
instability ridge—a saddle line—for γ ¼ 4=3. The vertical bar
specifies the values in units given at its bottom.

FIG. 4. Contour plot for the configurational entropy of poly-
tropes as a function of the central density ρ0=ρc and polytropic
index γ. There is an instability ridge—a saddle line—for γ ¼ 4=3.
The vertical bar specifies the values in units given at its bottom.

FIG. 5 (color online). Configurational entropy versus poly-
tropic index γ for polytropes. We display results for several
choices of cutoff for kmin.
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ρ ¼ Kðsinh t − tÞ

p ¼ 1

3
K

�
sinh t − 8 sinh

1

2
tþ 3t

�
; ð21Þ

where K ¼ πμ40c
5=4h2 and

t ¼ 4 log
�
kF
μ0c

þ
�
1þ

�
kF
μ0c

�
2
�
1=2

�
; ð22Þ

with kF being the maximum momentum in the Fermi
distribution, related to the particle number density n as
n ¼ k3F=3π

2ℏ3. We follow OV and introduce a new mass
function variable uðrÞ [equivalent to the mass density
function GMðrÞ defined in Sec. II],

1

A
¼ 1 − 2u=r; ð23Þ

so that u obeys

du=dr ¼ 4πρr2: ð24Þ

Einstein’s equations [Eqs. (5)] become

du
dr

¼ r2ðsinh t − tÞ
dt
dr

¼ −
4

rðr − 2uÞ
sinh t − 2 sinh 1

2
t

cosh t − 4 cosh 1
2
tþ 3

×

�
1

3
r3
�
sinh t − 8 sinh

1

2
tþ 3t

�
þ u

�
; ð25Þ

whereK ¼ 1=4π, and the units of length a and mass b have
been fixed as

a ¼ 1

π

�
h
μ0c

�
3=2 c

ðμ0GÞ1=2
; b ¼ c2

G
a: ð26Þ

We can now solve numerically Einstein’s equations with
boundary conditions

uðr ¼ 0Þ ¼ 0; tðr ¼ 0Þ ¼ t0

uðr ¼ rbÞ ¼ ub; tðr ¼ rbÞ ¼ 0; ð27Þ

so that pðr ¼ rbÞ ¼ ρðr ¼ rbÞ ¼ 0 and rb is the radius of
the star and ub is its mass. Results are thus parametrized in
terms of t0, related to the star’s central density ρ0 by
Eq. (21). In Fig. 6 we plot the mass of the OV neutron star
for values of the central density parameter ρ0. Stars with
ρ0 > ρc are perturbatively unstable to gravitational col-
lapse, as is well known.
As with the Newtonian polytropes, we compute the

configurational entropy using the energy density of the
equilibrium configurations. The range of integration is

again kmin ¼ π=R ≤ k < ∞, reflecting the fact that neutron
stars have well-defined radii where ρðRÞ ¼ 0. The results
are shown in Fig. 7, where we can see that the quantity Sρ−10
has a minimum (ρmin) near the critical equilibrium value of
the central density (ρc) where the stellar mass is a
maximum. The configurational entropy is multiplied by
the inverse central density to have a quantity that scales
with dimensions of inverse mass. The inset shows the
results in more detail near the CE minimum at ρmin ¼
0.619ba−3 and thus within 5.3% from ρc. We can translate
the value of ρmin to an estimate of the critical mass based on
CE, thus establishing a bound in the critical OV neutron

FIG. 6 (color online). OV neutron star mass vs central density
ρ0. Stars with ρ0 > ρc ¼ 0.588ba−3 are known to be unstable to
gravitational collapse.

FIG. 7 (color online). Configurational entropy times ρ−10 for the
OV neutron star vs central density ρ0. Stars with ρ0 > ρc ¼
0.588ba−3 are perturbatively unstable to gravitational collapse.
The inset shows the result near the CE minimum.
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star mass with accuracy of 0.58%. (The flatness near the
mass function maximum helps.)
The reader should not confuse the results of Sec. IV for

Newtonian polytropes, where the prediction for the
Chandrasekhar mass was given at the maximum of the
CE with respect to the polytropic index γ, with the results
here, where the estimate for the critical mass comes at the
minimum of the CE with respect to central density ρ0. The
OVequation of state is only well modeled by a polytrope in
the nonrelativistic limit for neutrons, with γ ¼ 5=3. For this
value of γ, the star’s mass is a decreasing monotonic
function of ρ0 [6]. The maximum mass in the mass vs
central density plot appears only when general relativistic
effects are included. From Fig. 7, we see that the configu-
rational entropy offers a reliable measure for the stability of
OV neutron stars, providing an accurate estimate for the
critical mass. We also verified numerically that neutron
stars obey the same approximate scaling as Newtonian
polytropes, in that the product Sρ−10 M is nearly constant
with ρ0. The result is shown in Fig. 8. This inverse scaling
justifies why the critical mass, being a maximum, correlates
well with the minimum of the configurational entropy.
We now extend our approach to another class of general-

relativistic bound objects, boson stars.

VI. BOSON STARS

Boson stars are self-gravitating spheres of scalar fields
[8,13,14]. These hypothetical objects are possible both in
the Newtonian and general-relativistic limits, and for free
and self-interacting fields. Due to their remarkable proper-
ties, boson stars have attracted much interest over the past
decades [8]. Being made from self-gravitating spin-0

bosons, these objects are supported against gravitational
collapse from Heisenberg’s uncertainty pressure and, when
applicable, from repulsive interactions among the particles
[15]. Indeed, for a free complex scalar field with Uð1Þ-
conserving charge Q, these objects have masses M ∼
ðM2

Pl=mÞ and radii R ∼ 1=m, where m is the mass of the
particle excitation of the field, and MPl is the Planck mass
[8,13,14]. If a repulsive self interaction is added, the mass
scales asM ∼ λ1=2ðM3

Pl=m
2Þ [15]. Furthermore, boson stars

have many qualitative similarities with neutron stars, with a
maximum mass M marking the stability boundary against
radial perturbations [16,17]. Stars made of real scalar fields
are also possible, but the configurations are time dependent,
known as oscilatons [22]. Given the many similarities, and
the potential applicability of boson stars to many questions
of current interest, from being dark matter candidates to
serving as exploratory tools probing the boundary between
classical and quantum field theory, we now investigate
whether the configurational entropy of boson stars can
furnish information about their stability.

A. Formalism

For completeness, we briefly review the essential for-
malism to find boson stars. Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ L

	
; ð28Þ

where L is the Lagrangian density,

L ¼ gμν∂μϕ∂νϕ
� −m2jϕj2 − λ

4
jϕj4: ð29Þ

We write the spherically symmetric complex scalar field as
ϕðr; tÞ ¼ ΦðrÞe−iωt, where ΦðrÞ is real and has no nodes.
This means that we will only be investigating the stability
properties of boson stars in their ground state. Stars can be
found in excited states and their decay properties have
interesting consequences, including the generation of
gravitational wave bursts [23]. We define the dimensionless
variables x ¼ mr and ~t ¼ mt. Primes are derivatives with
respect to x. We also absorb the dimensionless frequency
~ω≡ ω=m into the metric coefficient B, ~B ¼ B= ~ω2 and
define the dimensionless field σðxÞ≡ ΦðxÞ= ffiffiffiffiffiffiffiffiffi

8πG
p

.
(Henceforth we suppress tildes.) It proves convenient to
rewrite the dimensionless coupling constant λ as [15]

Λ ¼ λ
M2

Pl

8πm2
: ð30Þ

With these definitions, variation with respect to the metric
of Eq. (1) and with respect to the scalar field gives
Einstein’s equations [Eqs. (2)] and the Klein-Gordon
equation as

FIG. 8 (color online). Behavior of the quantity Sρ−10 M as a
function of central density ρ0 for OV neutron stars. The
approximate linear scaling persists for a wide range of central
densities. The inset shows the result near ρc ¼ 0.588ba−3, the
critical value for stability.
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A0 ¼ xA2

�
σ02

A
þ
�
1

B
þ 1

�
σ2 þ Λσ4

4

�
−
A
x
ðA − 1Þ

B0 ¼ xAB

�
σ02

A
þ
�
1

B
− 1

�
σ2 −

Λσ4

4

�
þ B

x
ðA − 1Þ

σ00 ¼ −
�
2

x
þ 1

2

�
B0

B
−
A0

A

��
σ0 − A

��
1

B
− 1

�
σ −

Λ
2
σ3
�
:

ð31Þ

These equations are solved for the boundary conditions
Að0Þ ¼ 1;Bð∞Þ ¼ 1;σð0Þ ¼ σ0;σð∞Þ ¼ 0;σ0ð0Þ ¼ 0. Note
that solutions are parametrized by the central value of
the scalar field σ0, which determines the star’s central
density.
In Fig. 9 we plot the boson star mass and conserved

charge for the free field case (Λ ¼ 0). Note that the
maximum mass is also where the binding energy Eb is
maximal, where Eb ¼ M −Qm (lower line). As shown in
Refs. [16,17] the maximum mass is also the stability
boundary for the boson star. This is also the case for the
interacting case, Λ ≠ 0 [16,17]. Note also that stars with
σ0 > 0.540 have Eb > 0, and are thus unstable to fission.

B. Configurational entropy for boson stars

We now compute the configurational entropy for boson
stars from Eq. (10) using the Fourier transform of the
energy density as we did with Newtonian polytropes and
neutron stars. This means that for each value of σ0 we find
the solution of the coupled Einstein-Klein-Gordon system
of equations and use it to compute the star’s energy density
ρðrÞ. We do this for several values of the scalar self
coupling. Note that since the scalar field only vanishes

at spatial infinity, boson stars do not have a specific radius
where the energy density and pressure vanish. We thus do
not use a momentum cutoff, computing the CE for all
momenta 0 ≤ jkj ≤ ∞. The results are shown in Fig. (10)
as a function of the field’s central value σ0 for different
values of the coupling Λ. The vertical lines denote the
critical value of the field (σc) beyond which the star is
unstable under radial, charge-conserving perturbations. It is
apparent that these lines are very near the minima of CE for
all values of Λ. Just as for OV neutron stars, the configu-
rational entropy provides a reliable bound on the star’s
stability.
Specifically, we can use the minimum of the configu-

rational entropy to obtain a bound on the star’s maximum
mass, as was done previously for neutron stars. The results
are summarized in the table below for different values of Λ.

FIG. 9 (color online). Boson star mass (continuous line) and
conserved charge Q (dot-dashed line) vs central value of the
scalar field σ0. We also show the binding energy Eb (dotted line).
Stars with σ0 > σc ¼ 0.271 are known to be unstable to gravi-
tational collapse.

FIG. 10 (color online). The configurational entropy for boson
stars multiplied by inverse central density Sρ−10 as a function of
the scalar field’s central value σ0 for different values of the scalar
field coupling Λ. The dashed vertical line denotes σc, the
instability boundary for the star under radial perturbations. As
in the case with neutron stars, the CE provides a reliable estimate
for the critical mass, with precision better than ∼1%. Values of
maximum stellar masses for different values of Λ are listed in
Table I.

TABLE I. Comparison of maximum stable mass for boson stars
obtained from traditional perturbation methods (second column,
Mcrit) and from the configurational entropy (third column, MCE

crit)
for different values of the scalar field self coupling Λ. The fourth
column lists the percentile error of the estimate using the CE.

Λ Mcrit MCE
crit Δ (%)

0 0.6330 0.6324 0.10
10 0.7863 0.7845 0.25
50 1.2450 1.2367 0.66
100 1.6522 1.6351 1.04
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The third column is the value of the critical mass obtained
from the CE, while the last column gives the percentile
error of the estimate.
Given the qualitatively similar results between neutron

stars and boson stars, we should be able to show that the
quantity Sσ−40 M is approximately constant with respect to
the central field value σ0, leading to the inverse scaling
Sσ−40 ∼M−1. The fourth power of the field ensures the same
dimensionality as when the energy density is used, as was
the case with polytropes and OV neutron stars. The result is
shown in the inset of Fig. 11, where it can be seen that an

approximate linear scaling holds in the region near and
above the critical energy density. The main plot shows the
second derivative of the quantity approaching zero near
the critical value σc ¼ 0.271. In Fig. 12 we present the
equivalent results for stars with Λ ¼ 100, where a similar
scaling holds.

VII. CONCLUDING REMARKS

We investigated the stability properties of a variety of
self-gravitating compact objects using the recently pro-
posed configurational entropy [10], a quantity that com-
putes the relative weights of different Fourier modes
making up a given configuration inspired by Shannon’s
information entropy [19]. We extended previous results for
Newtonian polytropes, where the Chandrasekhar mass for
ultrarelativistic white dwarfs is estimated to within 3.73%
of the correct value, to fully general-relativistic neutron
stars modeled with an Oppenheimer-Volkoff equation of
state and to boson stars made of self-interacting complex
scalar fields. Using the energy density of the configurations
to compute their respective configurational entropy, we
were able to obtain predictions to the critical stable mass
with precision better than one percent for all these objects.
Our approach should be seen as an alternative to the usual
perturbation techniques based on finding unstable eigen-
values [6,7]. Given that finding the eigenfunctions to
determine perturbative stability can often be quite taxing,
the configurational entropy offers another avenue to com-
pute the critical mass of a variety of stellar objects.
We have further shown that an inverse scaling relation

holds between the star’s configurational entropy and its
mass near the critical region and beyond. This scaling helps
clarify why a critical value for the mass is reflected in a
critical value for the configurational entropy, although we
are still pursuing a first-principles derivation relating the
two quantities.
We are currently investigating several related questions.

First, we are computing the configurational entropy of
excited states of boson stars [23] in order to relate their
decay and gravitational radiation emission to their con-
figurational-entropic properties. Preliminary results indi-
cate that the configurational entropy grows with the
quantum numbers labeling excited states (n;l; m), as is
the case with simple quantum mechanical systems. It will
be interesting to see whether the configurational entropy
will provide information to resolve energy-degenerate
states, i.e., states with the same binding energy and
different quantum numbers. Within the context of boson
stars, it will be interesting to examine whether the CE gives
information about fissioning, which occurs when the
binding energy turns positive (see Fig. 9.) [16,24].
Preliminary results show that at σð0Þ ¼ 0.681 the first
derivative of S=ρ0 reaches a maximum, which can be
tentatively interpreted as marking the onset of highly
unstable configurations (see Fig. 10, top left).

FIG. 11 (color online). The inset shows the quantity Sϕ−4
0 M as

a function of the scalar field’s central value σ0 for Λ ¼ 0. The
main plot shows the second derivative of Sϕ−4

0 M with respect to
σ0, displaying the same saddle ridge behavior found for poly-
tropes.

FIG. 12 (color online). The inset shows the quantity Sϕ−4
0 M as

a function of the scalar field’s central value σ0 for Λ ¼ 100. The
main plot shows the second derivative of Sϕ−4

0 M with respect
to σ0, displaying the same saddle ridge behavior found for
polytropes.
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Interestingly, this is also where the binding energy has the
same absolute value as at σð0Þ ¼ 0.271, the boundary
between stability and instability.
Another question of great interest is the examination of

how to expand our method to include objects with lower
symmetries, for example axial-symmetric bound states or
even asymmetric bound states. In principle we should be
able to compute the Fourier transform for these cases and
thus obtain the configurational entropy and determine their
stability properties. Work in this topic is under investiga-
tion. Finally, we are also investigating the evolution of the
configurational entropy during gravitational collapse. We
expect that as the star becomes more localized its

configurational entropy will increase. An important ques-
tion is to determine whether the configurational entropy
reaches a maximum when the event horizon forms and
whether there is a relation between this hypothetical
maximum value and Bekenstein’s entropy based on the
surface area of the black hole [25].
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