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We present a concrete and explicit construction of a new scalar constraint operator for loop quantum
gravity. The operator is defined on the recently introduced space of partially diffeomorphism invariant
states, and this space is preserved by the action of the operator. To define the Euclidean part of the scalar
constraint operator, we propose a specific regularization based on the idea of so-called “special” loops. The
Lorentzian part of the quantum scalar constraint is merely the curvature operator that has been introduced in
an earlier work. Due to the properties of the special loops assignment, the adjoint operator of the
nonsymmetric constraint operator is densely defined on the partially diffeomorphism invariant Hilbert
space. This fact opens up the possibility of defining a symmetric scalar constraint operator as a suitable
combination of the original operator and its adjoint. We also show that the algebra of the scalar constraint
operators is anomaly free, and describe the structure of the kernel of these operators on a general level.
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I. INTRODUCTION

The canonical quantization of general relativity has come
a long way since the formulation of the Ashtekar-Barbero
variables [1,2]. As a generally covariant theory, general
relativity has its dynamics encoded in constraints. Loop
quantum gravity (LQG) [3–6], that is the incarnation of the
canonical quantization program, succeeded in defining a
Hilbert space of kinematical quantum states, and imple-
menting and solving the Gauss constraints, which encode
the SUð2Þ gauge invariance, and the spatial diffeomor-
phism constraints [7]. The scalar constraints are technically
more involved because of their complicated expression in
terms of the Ashtekar-Barbero canonical variables.
The first rigorous proposal of a scalar constraint operator

was introduced by T. Thiemann in [8], based on some
concepts discovered by C. Rovelli and L. Smolin in [9].
The construction involves the volume operator [10] and
uses a mathematical artifact to suppress the nonpolynomial
character of the constraints in terms of LQG variables. As a
result, the constraint operator is gauge invariant and
anomaly-free. This operator acts on the Hilbert space of
diffeomorphism invariant states, but does not preserve this
space due to the presence of the lapse function in the
operator.
Recently, a new Hilbert space HG

vtx of partially diffeo-
morphism invariant states was introduced [11]. In that
article, it was shown that upon some changes in the
Thiemann’s regularization of the scalar constraints, the
resulting quantum operator would preserve HG

vtx.
Moreover, the operator would still be anomaly free and
there would be possibilities to define a symmetric

constraint operator, making discussions of self-adjoint-
ness extensions and spectral analysis more accessible.
In the present article, we explicitly implement the scalar

constraints for LQG verifying the criteria discussed in [11].
We base our construction on ideas and concepts introduced
in [8,12,13] to deal with the Euclidean part of the con-
straint, and the use of the curvature operator introduced in
[14] to define the Lorentzian part. The article is organized
as follows. In Sec. II we briefly review the classical
Ashtekar formulation of general relativity. In Sec. III we
review the Hilbert space of LQG, the implementation of
SUð2Þ gauge invariance and the construction of the
partially diffeomorphism invariant Hilbert space HG

vtx. In
Sec. IV we present the regularization of the classical scalar
constraint allowing us to define a nonsymmetric scalar
constraint operator and its adjoint, both densely defined.
We discuss the quantum algebra, the possibility of defining
a symmetric constraint operator, then the solutions of the
quantum scalar constraints; we close in Sec. V with some
comments and outlooks to future developments.

II. CLASSICAL THEORY IN ASHTEKAR
VARIABLES

The 3þ 1 Hamiltonian formulation of general relativity,
written in terms of the Ashtekar-Barbero variables [1,2]
ðAi

a; Ea
i Þ [the spatial index a and the suð2Þ index i take the

values 1,2,3], manifests as a constrained SUð2Þ gauge
theory. The spatial variable Ai

a and its conjugate momen-
tum Ea

i , the densitized triad, verify the canonical relations

fAi
aðxÞ; Eb

j ðyÞg ¼ kβδbaδijδðx; yÞ ð2:1Þ

fAi
aðxÞ; Aj

bðyÞg ¼ 0 ¼ fEa
i ðxÞ; Eb

j ðyÞg ð2:2Þ

where k ¼ 8πG and β is the Immirzi parameter.
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The constraints obtained in this formulation consist of
the Gauss constraints GiðxÞ (gauge constraints), spatial
diffeomorphism (vector) constraints CaðxÞ and scalar con-
straints CðxÞ. They are first class constraints and have the
following expressions

GiðxÞ ¼
1

kβ
ð∂aEa

i ðxÞ þ ϵij
kAj

aðxÞEa
kðxÞÞ;

CaðxÞ ¼
1

kβ
Fi
abðxÞEb

i ðxÞ;

CðxÞ ¼ 1

2kβ2

�
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEðxÞjp
þ ð1 − sβ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEðxÞj

p
RðxÞ

�
; ð2:3Þ

where s ¼ 1 in the case of spacetime with Euclidean
signature and −1 in the case of Lorenzian signature, Fi

ab
the curvature of the connection Ai

a and R is the Ricci scalar
of the metric tensor qab on the 3-dimensional manifold Σ.
This form of the scalar constraints was proposed by
Domagała [15], and was used also in our recent paper
[12]. It is an alternative to Thiemann’s form of the scalar
constraint [8] used in [11].
Imposing the constraints (2.3) is equivalent to imposing

their smeared versions

GðΛÞ¼
Z
Σ

d3xΛiðxÞGiðxÞ;

~Cð ~NÞ¼
Z
Σ

d3xNaðxÞCaðxÞ;

CðNÞ¼
Z
Σ

d3xNðxÞCðxÞ; ð2:4Þ

where ΛðxÞ ¼ τiΛiðxÞ is an arbitrary suð2Þ valued smear-
ing function, while NaðxÞ and NðxÞ are arbitrary real
valued smearing functions called the shift and lapse,
respectively.
The constraints algebra reads

fGðΛÞ;GðΛ0Þg ¼ Gð½Λ;Λ0�Þ; f~Cð ~MÞ; ~Cð ~NÞg ¼ ~CðL ~M
~NÞ;

fGðΛÞ; ~Cð ~NÞg ¼ −GðL ~NΛÞ; f~Cð ~MÞ; CðNÞg ¼ CðL ~MNÞ;
fGðΛÞ; CðNÞg ¼ 0;

fCðMÞ; CðNÞg ¼ ~Cðqab½NM;b − NM;b�Þ: ð2:5Þ

The Poisson bracket of two scalar constraints additionally
contains terms proportional to the Gauss constraint which
we refrained from writing as its expression is lengthy,
however it is not relevant for our discussion (see [3] for
details).

The quantization program of LQG is a canonical
quantization following Dirac’s procedure. Namely, the
phase space variables are quantized and a Hilbert space
of functionals of the configuration variable A is con-
structed, then classical functions on the phase space are
promoted to quantum operators and the constraints are
imposed on the quantum level as operators equations in
order to determine the physical Hilbert space. In the
following section, we briefly present the construction of
the Hilbert space in loop quantum gravity along with the
implementation of the Gauss and spatial diffeomorphism
constraints.

III. LOOP QUANTUM GRAVITY: KINEMATICS

Loop quantum gravity is an attempt to built a back-
ground independent quantum theory of gravity, therefore
there is no reference to any background metric in defining
the classical algebra to be quantized. Also, since the
Poisson brackets (2.1) are singular, we need to introduce
smeared variables, holonomies and fluxes (defined below),
obtained by integration of A and E, respectively over
appropriate submanifolds of Σ.

A. Kinematical Hilbert space

The kinematical space in LQG is defined as the space
of cylindrical functions of the variable A, i.e. complex
valued functions depending on the suð2Þ-valued differ-
ential 1-form A ¼ Ai

aτi ⊗ dxa, where τi ∈ suð2Þ is a
basis of suð2Þ, through finitely many parallel transports
(holonomies)

he½A� ¼ P exp

�
−
Z
e
A

�
; ð3:1Þ

where e is an oriented finite curve (edge) in Σ. Then a
kinematical quantum state Ψ has the form

Ψ½A� ¼ ψðhe1 ½A�;…; hen ½A�Þ ð3:2Þ

with a function ψ∶ SUð2Þn → C. The set γ ≔ fe1;…; eng
is called the graph of Ψ.
The space of all cylindrical functions with a graph γ is

denoted by Cylγ and the space of all cylindrical functions
by Cyl. The kinematical Hilbert space of LQG, Hkin, is
defined as the completion of Cyl with respect to the norm
defined by a natural scalar product [16]

Hkin ≔ Cyl: ð3:3Þ

While a connection operator “Â” is not defined, every
cylindrical functionΨ also defines a multiplication operator
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ð dΨðAÞΨ0Þ½A� ¼ Ψ½A�Ψ0½A�: ð3:4Þ

The derivative operator is the quantum flux operator,
obtained by quantization of the flux corresponding to E,

PS;ξ ≔
Z
S

1

2
dxb∧dxcϵabcξiðxÞEa

i ðxÞ; ð3:5Þ

through an oriented 2-dimensional surface S ⊂ Σ. Here
ξ∶ S → suð2Þ is a (generalized) smearing function that
may involve parallel transports depending on A. The flux
operator corresponding to the classical variable (3.5) is then

P̂S;ξ ¼
k
2

X
x∈S

ξiðxÞ
X
e

κSðeÞĴx;e;i; ð3:6Þ

where e runs through the germs1 beginning at x, and
κSðeÞ ¼ −1; 0; 1 depending on whether e goes down, along,
or, respectively, up the surface S. The operator Ĵx;e;i is
assigned to a pair ðx; eÞ. Its action on the function Ψ ∈ Cyl
defined in (3.2), with e1 belonging to the germ e, is given by

Ĵx;e;iΨ ¼ iℏ
d
dϵ

����
ϵ¼0

ψðheeϵτi ; he2 ;…; henÞ; ð3:7Þ

B. Gauss and spatial diffeomorphism constraints

In order to complete the quantization program, it is
necessary to implement the constraints (2.4) and solve
them. The Gauss constraint operator can be easily defined
in terms of fluxes, and its kernel is identified with the space
of gauge invariant cylindrical functions

fðAÞ ¼ fðg−1Agþ g−1dgÞ; for every g ∈ C1ðΣ; SUð2ÞÞ:
ð3:8Þ

We denote their algebra (a subalgebra of Cyl) by CylG, and
the corresponding Hilbert space HG

kin ⊂ Hkin. A dense
subspace ofHG

kin is spanned by the spin network functions.
A spin network function is defined by a graph γ with half
integer (nonzero) spins assigned to the edges, and SUð2Þ
invariant tensors (intertwiners) assigned to the vertices.
Then the space of all gauge invariant states can bewritten as
the orthogonal sum

HG
kin ¼ ⨁

γ
HG

γ ð3:9Þ

where γ ranges over all the classes of graphs,2 and HG
γ

is the Hilbert space defined as the completion of the

space CylGγ spanned by the spin-network functions of
graph γ.3

Let us now turn to the vector constraint. Due to the
absence of a well-defined operator corresponding to the
spatial diffeomorphism constraint functional, the construc-
tion of a space of diffeomorphism invariant states is
achieved through a diffeomorphism averaging procedure
[16]. The elements of each of the subspaces HG

γ are
averaged with respect to all the smooth diffeomorphisms
Diff∞ðΣÞ which map γ into analytic graphs. Recall that
given a diffeomorphism f∶ Σ → Σ, its induced action Uf

on a cylindrical function (3.2)) is

ðUfΨÞ½A� ¼ ψðhfðe1Þ½A�;…; hfðenÞ½A�Þ:

But since Diff∞ðΣÞ is a noncompact set and we do not
know any probability measure on it, we have to define the
averaging in Cyl�, the algebraic dual to Cyl. The resulting
space is a Hilbert space of diffeomorphism invariant states,
denoted HG

Diff , with a scalar product naturally inherited
from the scalar product on HG

kin.
However, we know that a quantum operator correspond-

ing to the scalar constraint CðNÞ in (2.4) would not
preserve the Hilbert space HG

Diff because of the presence
of the lapse functionN. In other words, an operator ĈðNÞ is
not invariant under spatial diffeomorphisms. This fact
raises serious difficulties in the treatment of relevant
questions such as self-adjointness, spectral resolution
and anomaly-freeness of the constraints algebra.
A solution to this issue was suggested recently in [11].

It consists of introducing an intermediate space, the vertex
Hilbert space HG

vtx. The idea is to construct from elements
of the Hilbert space HG

kin partial solutions to the vector
constraints, by averaging the elements of each of the
subspaces HG

γ with respect to all the smooth diffeo-
morphisms Diff∞ðΣÞVertðγÞ which act trivially in the set
of vertices VertðγÞ. Denote by TDiff∞ðΣÞγ the subset of
Diff∞ðΣÞwhich consists of all diffeomorphisms f such that
fðγÞ ¼ γ andUf acts trivially inHG

γ , and by Diff∞γ ðΣÞVertðγÞ
the set of elements of Diff∞ðΣÞVertðγÞ which preserve the
analyticity of γ. The set of the transformations HG

γ → Hkin

induced by Diff∞γ ðΣÞVertðγÞ can be identified with

Dγ ≔ Diff∞γ ðΣÞVertðγÞ=TDiffðΣÞγ: ð3:10Þ

The averaging is defined in Cyl� through a rigging map

1A germ beginning at a point x is the set of curves overlapping
on a connected initial segment containing x.

2Two graphs γ and γ0 belong to the same class if γ0 can be
obtained from γ by a sequence of the following moves: splitting of
an edge, connecting two edges, changing a orientation of an edge.

3An important subtlety is, that given a graph γ, we define
spin-network functions by nontrivial representations of SU(2)
assigned to the edges of γ. In general, CylGγ contains also
spin-network functions defined by a graph γ00 obtained from γ
by removing one of the edges.
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η∶ CylGγ → SG
½γ� ⊂ Cyl�

jΨγi ↦ ηðΨγÞ ¼
1

Nγ

X
½f�∈Dγ

hUfΨγj; ð3:11Þ

where Nγ is the number of elements of Dγ which preserve
the graph γ.
The resulting ηðΨγÞ is a well-defined linear functional on

CylG. One then extends ηðΨγÞ by linearity to the algebraic
orthogonal sum (3.9), obtaining a map

η∶ HG
kin → Cyl�: ð3:12Þ

The vertex Hilbert space HG
vtx is then defined as the

completion

HG
vtx ≔ ηðCyl∩HG

kinÞ ¼ ⨁
½γ�
SG
½γ� ð3:13Þ

under the norm induced by the natural scalar product

ðηðΨÞjηðΨ0ÞÞvtx ¼ ηðΨÞðηðΨ0ÞÞ: ð3:14Þ

Each state in SG
½γ� is invariant under the action of elements

in DiffωðΣÞVertðγÞ. In this sense, those states are partial
solutions to the quantum vector constraint. They can
become full solutions of the quantum vector constraint
by a similar averaging with respect to the remaining
diffeomorphisms DiffðΣÞ=DiffðΣÞVertðγÞ, forming the space
HG

Diff .

IV. LOOP QUANTUM GRAVITY: DYNAMICS

The quantization of the scalar constraint we propose is
carried out by treating separately the two terms of the
constraint CðNÞ, expressed in Eq. (4.1) below. The first
term of CðNÞ [see (2.3)], is quantized using the loop
prescription introduced in [12] to regularize the curvature
of the Ashtekar connection, and Thiemann’s trick [8] to
remove the nonpolynomial dependence on the canonical
variables, caused by the presence of the factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEðxÞjp
. This is a special case of quantization of

this term proposed in [11]. The new element is a specific,
explicit proposal for the regulator. The second term of
CðNÞ was already regularized and promoted to a quantum
operator, the curvature operator [14], and we will go briefly
through the details of its construction below. Using that
operator in our definition of the quantum scalar constraint is
a true departure from the paper [11].

A. Regularization of the scalar constraint

The starting point is the expression

CðNÞ ¼ 1

2kβ2

Z
Σ

d3xNðxÞ
�
ϵijkEa

i ðxÞEb
j ðxÞFk

abðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEðxÞjp
þ ð1 − sβ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEðxÞj

p
RðxÞ

�
: ð4:1Þ

In the case of s ¼ 1 (the space-“time” signature þþþþ),
the choice β ¼ �1 kills the second term (and corresponds
to the original self-dual Ashtekar variables). For that reason
we call the first term the “Euclidean” part, and we call the
second term the “Lorenzian” part.

1. Euclidean part

We first consider the Euclidean part. To express it in a
nonsingular form, we use Thiemann’s trick, which consists
of using the identity

ϵijkEa
i ðxÞEb

j ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEðxÞjp ¼ 2

k
ϵabcfAk

cðxÞ; Vg; ð4:2Þ

where V is the volume of Σ,

V ≔
Z
Σ

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEðxÞj

p
: ð4:3Þ

The Euclidean part CEðNÞ then takes the form

CEðNÞ ≔ 1

k2β2

Z
Σ

d3xNðxÞϵabcFk
abðxÞfAk

cðxÞ; Vg; ð4:4Þ

The expression (4.4) is regularized via approximation
of the integral by a Riemannian sum over a partition Cϵ,
with ϵ being a parameter characterizing the size of the
cells Δ in Cϵ, by replacing NðxÞwith values of N at a point
xΔ chosen in each cell Δ, and replacing the connection
coefficients with parallel transports along open curves
sIðΔÞ and the curvature coefficients by the holonomies
along loops αIJðΔÞ

CE
CϵðNÞ ¼ −

1

k2β2W2
l

X
Δ∈Cϵ

NðxΔÞϵIJK

× Tr

�
hðlÞαIJðΔÞh

ðlÞ
sKðΔÞfh

ðlÞ−1
sKðΔÞ; VðΔÞg

�
; ð4:5Þ

where hðlÞ is the holonomy in a chosen SUð2Þ represen-
tation l and Wl ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þp

is a normalization
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factor,4 the curves sIðΔÞ and loops αIKðΔÞ are assigned to
each cell Δ such that this functional converges to CEðNÞ in
the limit ϵ → 0. Below we propose a specific assignment.
But before introducing it in detail, we will remind the
reader of another important element of the procedure. The
first, intermediate, step of the quantization is to define in
HG

kin a partition dependent quantum operator ĈE
CϵðNÞ. This

operator will not have a limit when ϵ → 0. Still, by duality
we want to obtain a well-defined operator on HG

vtx that
carries the diffeomorphism covariance property of the
classical constraint. To accomplish that, we need to adapt
our regulator to each graph γ and the corresponding
subspace HG

γ independently. We propose in this paper
the following prescription:
(1) Cϵ is a triangulation, i.e. each cell Δ is a tetrahedron;
(2) each tetrahedronΔ has at most one node of the graph

γ as one of its vertices;
(3) each node v of the graph γ coincides with a vertex of

a tetrahedron Δv and xΔv
¼ v;

(4) if v is a node of γ, then
(a) v is a vertex of nv tetrahedra Δi

v saturating the
neighborhood of v (i.e. the tetrahedra meet at v
and compose a closed neighborhood centered
at v);

(b) the edges of the tetrahedra Δi
v saturating the

neighborhood of v do not overlap with the edges
of γ meeting at v, except for one tetrahedron,
which we call ΔIJK

v . The tetrahedron ΔIJK
v is

adapted to one chosen ordered triple of edges
ðeI; eJ; eKÞ meeting at v, i.e. the edges
ðsI; sJ; sKÞ of ΔIJK

v meeting at v are segments
of the edges ðeI; eJ; eKÞ of the graph γ but do not
coincide with them;

(c) to the ordered triple of edges ðsI; sJ; sKÞmeeting
at v there are assigned three loops ðαIJ; αJK; αKIÞ
oriented according to the order of the triple
ðsI; sJ; sKÞ;

(d) A loop αIJ verifies the following conditions:
(i) αIJ is an analytic curve;
(ii) αIJ lies in a surface defined through a

canonical choice of coordinates adapted to
the edges ðsI; sJ; sKÞ and does not intersect
the graph5 γ at any point except at v;

(iii) αIJ is tangent to the two edges eI and eJ
of the graph γ at the vertex v up to orders

kIþ1 and kJþ1, respectively, where kIð≥0Þ
and kJð≥ 0Þ are respectively the orders of
tangentiality of eI and eJ at the node6;

(iv) Denote by sIJ the edge of ΔIJK
v that links

the edges ðsI; sJÞ to form a triangle of the
tetrahedron ΔIJK

v . The shape of the loop αIJ

marries the shape of the triangle ðsI; sJ; sIJÞ
as good as possible.

This prescription for the adapted partition is twofold:
The first part, which contains all the requirements except
the conditions on the loops [point (d)], coincides with some
of the requirements on the partition in Thiemann’s
approach to regularize the scalar constraint [8]. In addition,
in [8] the number nv is set to be equal to 8 for any node v of
the graph thanks to a specific procedure to construct the
saturating structure around v. We could adopt the same
procedure to fix nv but it is a priori possible to keep it as a
free parameter that is the same for all vertices, hence we
drop the v label in the rest of the article.
The second part of the above prescription is about the

conditions on the loop structure. Those conditions, first
introduced in [12], are different from the conditions in
Thiemann’s construction that make the loop αIJ coincides
with the triangle ðsI; sJ; sIJÞ of ΔIJK

v . The whole prescrip-
tion is diffeomorphism invariant and it makes a loop
assigned to a pair of edges unique up to diffeomorphisms.
As we will see later, the conditions on the loops also allow
us to introduce a densely defined adjoint operator of the
nonsymmetric scalar constraint operator,7 thereby provid-
ing a way to define a symmetric constraint operator (the key
condition is that as in [3,11] the loops do not overlap the
given graph). In the rest of the article we refer to those loops
as special loops.
Having the adapted partition, we straightforwardly

quantize the expression in (4.5) by replacing the Poisson
bracket of h−1sKðΔÞ and V with 1=iℏ times the commutator of
the corresponding operators, taking for V̂ the internally
regularized volume operator of [10],

V̂ ≔ l3p
X
x∈Σ

V̂x ¼ l3pκ0

×
X
x∈Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� 1

8 · 3!

X
I;J;K

ϵð_eI; _eJ; _eKÞϵijkĴx;eI ;iĴx;eJ;jĴx;eK;k
����

s
;

ð4:6Þ

where lp is the Planck length, κ0 an overall averaging
constant, eI runs through the set of germs starting at
the point x, and ϵð_eI; _eJ; _eKÞ ¼ sgn½detð_eI; _eJ; _eKÞ�.

4The representation l is left arbitrary in our construction. In
representation l, we choose a basis τðlÞi ði ¼ 1; 2; 3Þ of suð2Þ,
satisfying

TrðτðlÞi Þ ¼ 0; TrðτðlÞi τðlÞk Þ ¼ W2
l

3
δik:

5We do not show the construction of those coordinates or the
rooting procedure for the loop in this article, but we direct the
reader to [8] or [5] for the details.

6The order of tangentiality of an edge eI incident at a node v is
the highest order of tangentiality of the edge eI with the
remaining edges incident at v (see [12]).

7In case of Thiemann’s construction, the adjoint operator of the
nonsymmetric scalar constraint operator is not densely defined.
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Considering a gauge invariant state Ψγ with a graph γ, the
resulting operator acts as

ĈE
CϵðNÞΨγ ≔

X
Δ∈Cϵ

ĈE
ΔðNÞ

¼ −
1

iℏk2β2W2
l

X
Δ∈Cϵ

X
v∈Δ∩γ

NðvÞϵIJK

× Tr
�
hðlÞαIJðΔÞh

ðlÞ
sKðΔÞ½h

ðlÞ−1
sKðΔÞ; V̂�

�
Ψγ: ð4:7Þ

At this stage, the operator defined in (4.7) still depends
on the triangulation Cϵ. The dependence on the triangula-
tion is removed in three steps:

(i) Denote by RðvÞ the closed region formed by the n
tetrahedra Δð…Þ

v of Cϵ saturating a vertex v. Here (…)
contains the labels of the edges intersecting at v and
defining a specific tetrahedron. Classically, as we
take the limit ϵ → 0 in the sense of refining the
adapted triangulation Cϵ to another adapted triangu-
lation Cϵ

0
such that ϵ0 < ϵ, we haveZ

RðvÞ

≈ n
Z
ΔIJK

v

; ð4:8Þ

the label IJK refers to one tetrahedron of RðvÞ. In
other words, the integral over RðvÞ converges to n
times the integral over any tetrahedron of RðvÞ as we
take the limit ϵ → 0. For the operator in (4.7), this
translates as

ĈE
CϵðNÞΨγ ≔−

n
iℏk2β2W2

l

X
v∈γ∩Cϵ

X
ΔIJK

v ∈Cϵ
NðvÞϵIJK

×Tr
�
hðlÞ
αIJðΔIJK

v Þh
ðlÞ
sKðΔIJK

v Þ½h
ðlÞ−1
sKðΔIJK

v Þ; V̂�
�
Ψγ:

ð4:9Þ

(ii) A triangulation Cϵ selects at each node v of a graph γ
a unique triple of edges ðeI; eJ; eKÞ meeting at v. In
order to remove this selection from the operator, it is
enough to average at each node v over the classes of
triangulations that select different triples meeting at
v. Therefore the operator would contain contribu-
tions from all possible triples meeting at the same
node and we obtain

ĈE
ϵ ðNÞΨγ ≔ −

n
iℏk2β2W2

l

X
v∈γ

NðvÞ
EðvÞ ϵ

IJK

× TrðhðlÞαIJðΔÞh
ðlÞ
sKðΔÞ½h

ðlÞ−1
sKðΔÞ; V̂�ÞΨγ

≕
X
v∈γ

NðvÞĈE
ϵ;vΨγ; ð4:10Þ

where now the IJK run through all triples of edges
of the graph γ meeting at the node v, and EðvÞ is the
number of unordered triples of edges meeting at v

[hence EðvÞ depends only on the graph γ]. Notice
that due to the presence of the volume operator in
its expression, ĈE

ϵ;v annihilates two-valent nodes
and nodes which have degenerate differential graph
structure. Therefore the action of the operator ĈE

ϵ ðNÞ
on a gauge invariant state is always finite and it also
preserves the gauge invariant space.

(iii) The only dependence left on the triangulation is in ϵ.
We then need to take the limit ϵ → 0. As we have
mentioned above, in this limit ĈE

ϵ ðNÞ does not
converge to any well-defined operator in the space
HG

kin. The way around this problem is to first pass the
operator ĈE

ϵ ðNÞ to the space HG
vtx by duality, then

take the limit [11]. The convergence is ensured and
the final operator is then defined as

ĈEðNÞ ≔ lim
ϵ→0

½ĈE
ϵ ðNÞ��; ð4:11Þ

acting in the space of gauge and partially diffeo-
morphism invariant states HG

vtx.
The operator ĈEðNÞ is densely defined on the space HG

vtx,
as it contains the span of partially diffeomorphism invariant
spin networks space ηðSÞ, and graph changing as it
removes special loops at the nodes.8 It maps its domain
DE ⊂ HG

vtx to a subset of HG
vtx and therefore preserves the

gauge and partial diffeomorphism invariance.

2. Lorentzian part

Now let us turn to the Lorentzian part of (4.1), namely,

CLðNÞ ¼ 1 − sβ2

2kβ2

Z
Σ

d3xNðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEðxÞj

p
RðxÞ: ð4:12Þ

The quantization of this classical functional was already
carried out in [14]. The regularization is external and based
on the Regge approximation [17] of the 3d Einstein-Hilbert
action. On a gauge invariant state Ψγ , the nonsymmetric
operator9 corresponding to the Lorentzian part acts as

ĈLðNÞΨγ ¼
1 − sβ2

8kβ2
X
I≠J

NðvÞκðvÞ

×
X
I≠J

ffiffiffiffiffiffiffiffi
ˆV−1

q
ŶeI ;eJ

ffiffiffiffiffiffiffiffi
ˆV−1

q
Θ̂eI;eJ

≕
X
v∈γ

NðvÞĈL
vΨγ; ð4:13Þ

8The operator ĈE
ϵ ðNÞ is regularized in the space HG

kin and it
changes the graph of a state by adding special loops at the nodes.
Therefore, the dual operator ĈEðNÞ acting HG

vtx is removing
special loops at the nodes.

9It was shown in [14] that it is possible to obtain a self-adjoint
curvature operator from the nonsymmetric operator.
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where

ŶeI ;eJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵijkĴv;eI ;jĴv;eJ;kÞðϵij0k0 Ĵv;eI ;j0 Ĵv;eJ;k0 Þ

q
; ð4:14Þ

Θ̂eI;eJ ¼
2π

λIJ
− π þ arccos

"
Ĵv;eI ;jĴv;eJ;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĵv;eI ;kĴv;eI ;k
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĵv;eJ;lĴv;eJ;l
q #

;

ð4:15Þ

where κðvÞ is an averaging coefficient that depends only on
the valence of the node v, λIJ is a free integer parameter

[14], and ˆV−1 is the “inverse volume” operator defined as

ˆV−1 ≔ lim
t→0

ðV̂2 þ t2l6pÞ−1V̂: ð4:16Þ

The operator ĈLðNÞ is not graph changing and passes
naturally to the space HG

vtx. It maps its dense domain DL ⊂
HG

vtx to a subset of HG
vtx and therefore preserves the gauge

and partial diffeomorphism invariance.

B. Quantum constraints algebra, symmetric
constraint operator and physical states

We can now introduce the nonsymmetric scalar
constraint operator

ĈðNÞ ≔ ĈEðNÞ þ ĈLðNÞ
¼

X
v∈γ

NðvÞðĈE
v þ ĈL

v Þ ≕
X
v∈γ

NðvÞĈv: ð4:17Þ

It is defined on a dense domain DðĈðNÞÞ ⊂ HG
vtx and

preserves HG
vtx. Since the classical scalar constraint func-

tional is an observable, it is generally assumed that the
quantum operator corresponding to it must be self-adjoint.
However the operator in (4.17) is not symmetric and it was
argued in [18] that it is not necessary to have a self-adjoint
constraint operator exactly because it is a constraint.10

Since we will be looking for the kernel of the scalar
constraint operator, it may not be relevant to construct a
self-adjoint operator as long as zero belongs to its spectrum.
We will show below how we could introduce a symmetric
constraint operator which is the first step toward defining a
self-adjoint operator.

1. Quantum constraints algebra

Let us for the moment assume that our constraint
operator is ĈðNÞ, then we can make a short calculation
to check if this operator is anomaly-free. The calculation
goes as follows: given a state Ψγ ∈ HG

vtx, we have

½ĈðNÞ; ĈðMÞ�Ψγ ¼
X
v;v0∈γ

NðvÞMðv0Þ½Ĉv; Ĉv0 �Ψγ: ð4:18Þ

Because the regularization used to construct the operator is
local with respect to each node, the commutator

½Ĉv; Ĉv0 �Ψγ ¼ 0; ∀ v ≠ v0; ð4:19Þ

hence

½ĈðNÞ; ĈðMÞ�Ψγ ¼
X
v∈γ

NðvÞMðvÞ½Ĉv; Ĉv�Ψγ: ð4:20Þ

In the space HG
vtx the commutator ½Ĉv; Ĉv� also vanishes

for the same reason in the case of Thiemann’s constraint
operator, namely the two terms of the last commutator,
when acting on a state in HG

kin (before taking the limits of
the regulators (4.11), produce two diffeomorphism equiv-
alent states, therefore the commutator vanishes11 on any
state in HG

vtx

½ĈðNÞ; ĈðMÞ� ¼ 0: ð4:21Þ

When it comes to the algebra with respect to the other
constraints, we already know that, on one hand, the
operator ĈðNÞ preserves the SUð2Þ gauge invariance, on
the other hand, a diffeomorphism constraint operator does
not exist in this representation and the only thing we could
check is whether it is covariant with respect to the action of
diffeomorphisms. The calculation and the result is not
different than in the case of Thiemann’s constraint operator
and we find that indeed the operator ĈðNÞ is diffeo-
morphism covariant

U−1
f ½ĈðNÞ�Uf ¼ Ĉðf�NÞ; ∀ f ∈ Diff∞ðΣÞ: ð4:22Þ

Therefore we conclude that the scalar constraint operator
ĈðNÞ is anomaly-free.

2. Symmetric scalar constraint operator
and physical states

Concerning the question of defining a symmetric scalar
constraint operator, it turns out that it is actually possible to
introduce a symmetric operator using ĈðNÞ and its adjoint
operator.12 The adjoint operator Ĉ†ðNÞ is closed and also

10It was also shown in [18] that a symmetric constraint
operator may not be anomaly-free in case of open constraints
algebras.

11The commutator vanishes with respect to URST (topology)
[5,9].

12Definition: Let T̂ be a densely defined linear operator on a
Hilbert spaceH. LetDðT̂†Þ be the set of φ ∈ H for which there is
an η ∈ H with

ðT̂ψ ;φÞ ¼ ðψ ; ηÞ for all ψ ∈ DðT̂Þ:
For each such φ ∈ DðT̂†Þ, we define T̂†φ ¼ η. The operator T̂† is
called the adjoint of T̂.
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densely defined [S ⊂ DðĈ†ðNÞÞ], hence the operator ĈðNÞ
is closable13 and ðĈ†ðNÞÞ† ¼ ĈðNÞ. Therefore in the rest of
the article we consider the closure of ĈðNÞ and Ĉ†ðNÞ as
being the nonsymmetric scalar constraint operators at our
disposal.
The operator Ĉ†ðNÞ could be by itself considered as a

quantization of the classical scalar constraint functional
(4.1) and it could stand as the quantum scalar constraint
operator in the theory on the same footing as the operator
ĈðNÞ. If the implementation of the scalar constraint is
appropriate, then in the semiclassical limit of the theory the
expectation values of the operator and its adjoint should
coincide, up to small quantum corrections. Hence, both
operators are equally good candidates for the scalar con-
straint operator in the theory. Notice that Ĉ†ðNÞ is also
anomaly free, i.e. it preserves SUð2Þ gauge invariance and
we have

½Ĉ†ðNÞ; Ĉ†ðMÞ� ¼ 0;

U−1
f ½Ĉ†ðNÞ�Uf ¼ Ĉ†ðf�NÞ; ∀ f ∈ Diff∞ðΣÞ: ð4:23Þ

In order to construct a symmetric scalar constraint
operator ĈsymðNÞ, we suggest to define it as a combination
of ĈðNÞ and Ĉ†ðNÞ. The simplest example is

ĈsymðNÞ ≔ 1

2
ðĈðNÞ þ Ĉ†ðNÞÞ;

DðĈsymðNÞÞ ¼ DðĈðNÞÞ∩DðĈ†ðNÞÞ: ð4:24Þ

It is obvious that this operator is closable, densely defined
and anomaly-free. The question of existence of self-adjoint
extensions is still open. However it is a strongly eligible
candidate for the scalar constraint operator in the theory.
The structure of its kernel, equivalently the solutions to
this constraint in the space HG

vtx, can to some extent be
described quite easily. The properties we know so far of the
kernel elements of ĈðNÞ and Ĉ†ðNÞ can be summarized as
follows:

(i) every state that is in the kernel of the volume
operator V̂ and has coplanar edges at all the vertices
of its graph, is in the kernels of ĈðNÞ and Ĉ†ðNÞ;

(ii) the set of states of nonzero volume14 in the kernel of
ĈðNÞ contains an infinite number of states that have
the form of finite linear combinations of spin net-
work states15;

(iii) states of nonzero volume that are in the kernel of
ĈðNÞ† have the form of infinite linear combinations
of spin network states;

(iv) states of nonzero volume with graphs that do not
contain special loops are neither in the kernel of
ĈðNÞ nor the kernel of Ĉ†ðNÞ.

With those properties, we can deduce that the kernel of
ĈsymðNÞ has the following structure:

(i) every state that is in the kernel of the volume
operator V̂ and has coplanar edges at all the vertices
of its graph, is in the kernel of ĈsymðNÞ;

(ii) states of nonzero volume that are in the kernel of
ĈsymðNÞ have the form of infinite linear combina-
tions of spin network states:

(iii) states of nonzero volume with graphs that do not
contain special loops are not in the kernel
of ĈsymðNÞ.

Having a scalar constraint operator, as we mentioned
before, the construction of physical states is achieved
via averaging of the elements of its kernel, subset of
HG

vtx, with respect to the rest of diffeomorphisms in
DiffðΣÞ=DiffðΣÞVertðγÞ.

V. COMMENTS AND OUTLOOKS

In this article, we presented a concrete implementa-
tion of the scalar constraint operator in loop quantum
gravity. The construction of the Euclidean part of
the constraint operator uses a regularization based on
the assignment of “special” loops [12], while for the
Lorentzian part of the constraint we use the curvature
operator of [14]. The resulting nonsymmetric operator
ĈðNÞ is densely defined on the Hilbert space of partially
diffeomorphism invariant states HG

vtx, introduced in [11].
The operator ĈðNÞ is SUð2Þ gauge invariant and diffeo-
morphism covariant, it preserves the space HG

vtx and its
algebra is anomaly-free.
Thanks to the properties of the special loops, the adjoint

Ĉ†ðNÞ is a densely defined operator on HG
vtx, and has the

same properties as ĈðNÞ. It also allows us to construct
symmetric constraint operators, ĈsymðNÞ, as combinations
of the operators ĈðNÞ and Ĉ†ðNÞ. The operators ĈðNÞ,
Ĉ†ðNÞ and ĈsymðNÞ are all equally suitable candidates for
the scalar constraint operator in loop quantum gravity. In
each case, the general structure of the kernel of the
constraint operator is known on a qualitative level, as
outlined in Sec. IV B 2.
The regularization proposed in this article could also be

applied in order to define a Master constraint operator,
corresponding to the classical Master constraint functional
introduced by Thiemann [19] as a way of reformulating the
singular scalar constraints CðxÞ of Eq. (2.3). Carrying out
the construction, one would obtain a densely defined
operator on HG

Diff which is symmetric, gauge and diffeo-
morphism invariant, and anomaly-free. However, further
work is needed in order to investigate the structure of the
kernel of this operator.

13We keep the same notation for ĈðNÞ and its closure.
14By a state of nonzero volume we mean any state which is not

in the kernel of the volume operator.
15Simple examples of such states can be straightforwardly

derived.
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The freedom of choice between different eligible
scalar constraint operators should be regarded as a
quantization ambiguity that can be fixed only through
a semiclassical analysis of the dynamics in the theory.
Therefore the next step of our program is the challeng-
ing task of constructing, or at least approximating,
semiclassical states in the theory. The example of the
operator ĈðNÞ is encouraging in this direction since its

kernel is more tractable with respect to the spin net-
work basis.
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