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We consider Λ ¼ 0 three-dimensional gravity with asymptotically flat boundary conditions. This system
was studied by Ashtekar and Varadarajan within the second-order formalism—with metric variables—who
showed that the Regge-Teitelboim formalism yields a consistent Hamiltonian description where,
surprisingly, the energy is bounded from below and from above. The energy of the spacetime is,
however, determined up to an arbitrary constant. The natural choice was to fix that freedom such that
Minkowski spacetime has zero energy. More recently, Marolf and Patiño started from the Einstein-Hilbert
action supplemented with the Gibbons-Hawking term and showed that, in the (2þ 1) decomposition of the
theory, the energy is shifted from the Ashtekar-Varadarajan analysis in such a way that Minkowski
spacetime possesses a negative energy. In this contribution we consider the first-order formalism, where the
fundamental variables are a soð2; 1Þ connection wa

I
J and a triad eIa. We consider two actions. A natural

extension to 3 dimensions of the consistent action in 4D Palatini gravity is shown to be finite and
differentiable. For this action, the (2þ 1) decomposition (that we perform using two methods) yields a
Hamiltonian boundary term that corresponds to energy. It assigns zero energy to Minkowski spacetime.
We then put forward a totally gauge invariant action and show that it is also well defined and
differentiable. Interestingly, it turns out to be related, on shell, to the 3D Palatini action by an additive
constant in such a way that its associated energy is given by the Marolf-Patiño expression. Thus, we
conclude that, from the perspective of the first-order formalism, Minkowski spacetime can consistently
have either zero, or a negative energy equal to −1=4G, depending on the choice of consistent action
employed as starting point.
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I. INTRODUCTION

Idealized and reduced models have been useful in
analyzing and studying, in a simplified arena, some aspects
of (3þ 1) general relativity. To be more precise, one can
consider the sector of Einstein theory that is invariant under
certain symmetries, that sometimes becomes tractable, in
order to gain some insight into the full theory. An out-
standing example of such simplified model is the (2þ 1)-
dimensional case which, apart from being much simpler
than the (3þ 1) case, has been “solved” in many different
contexts and by different approaches [1,2]. It is then natural
to explore and compare the resulting formalism with the
hope of learning something new about the full (3þ 1) case.
The issue that we shall here consider is the definition of

gravitational energy. This endeavor is certainly not new and
a sizeable amount of literature has been devoted to this

topic in both 4D [3] and 3D gravity [4]. In the case of 3D
gravity, the present situation is not devoid of some tension.
More precisely, the first systematic study of asymptotically
flat (Λ ¼ 0) boundary conditions was first put forward
by Ashtekar and Varadarajan in [5]. They made precise
the notion of asymptotically flat boundary conditions for
the canonical theory and concluded, within the Regge-
Teitelboim formalism [6] that the canonical energy is not
only bounded from below, as one could have expected,
but it is also bounded from above. This unexpected feature
has some interesting consequences when considering the
quantum theory [7]. The Regge-Teitelboim formalism
suffers, nevertheless, from an ambiguity in the definition
of the value of the energy it assigns to, say, its lowest energy
configuration. The ambiguity comes from the fact that one
could add an arbitrary constant to the Hamiltonian and the
formalism is still fully consistent. In the case of (3þ 1)
gravity, this special configuration is precisely Minkowski
spacetime and it is customary to assign to it a zero value of
energy. This choice is fully justified and is not subject to

*corichi@matmor.unam.mx
†irais11@gmail.com

PHYSICAL REVIEW D 92, 044040 (2015)

1550-7998=2015=92(4)=044040(23) 044040-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.044040
http://dx.doi.org/10.1103/PhysRevD.92.044040
http://dx.doi.org/10.1103/PhysRevD.92.044040
http://dx.doi.org/10.1103/PhysRevD.92.044040


any controversy. The same is not true for the 3D case. In [5]
the authors chose the same convention and assigned zero
energy to (2þ 1) Minkowski spacetime.
In [8] Marolf and Patiño followed a different approach.

They started from a well-defined second-order action for
the gravitational field consisting of the standard Einstein-
Hilbert action plus a boundary term given by the Gibbons-
Hawking term. After a (2þ 1) decomposition they
obtained the boundary contribution to the Hamiltonian
and found that there is an extra term that “shifts” the value
of the energy in such a way that Minkowski spacetime is
assigned a negative value equal to −1=4G, and the upper
bound on energy is zero. Even when this result might
appear to be counterintuitive from the perspective of
(3þ 1) gravity, there are several arguments to support this
behavior. First, one should note that the gravitational
constant G in three spacetime dimensions has dimensions
of inverse mass, so in this case one does have a mass scale
even for vacuum gravity. Second, the asymptotic conditions
at infinity are such that there is a preferred notion of time
translation. The symmetry group is much more restricted,
and it is not strange to assign a nonzero Arnowitt-Deser-
Misner (ADM) momentum to this preferred frame [9,10].1

Finally, the asymptotic spatial geometry corresponding to
configurations where the energy approaches its limiting
(upper) value correspond to two-dimensional conical
defects that “close up.” It is not then unnatural to assign
a zero energy to such spatially closed spacetimes [8].
The use of first-order variables for gravity in (3þ 1)

dimensions has proven to be rather convenient. Apart from
the necessity to consider them when coupling Fermions,
they allow for a simple well-defined action [11] in the case
of asymptotically flat configurations. A natural question is
whether a corresponding action principle can be defined for
(2þ 1) gravity. Here the main variables would be a cotriad
eIa, together with a connection waI

J taking values in the Lie
algebra of SOð2; 1Þ.
The purpose of this manuscript is to address several of

these issues. First we extend the results of [11] to three
dimensions and derive the asymptotically flat conditions
for the first-order variables. Then, we prove that the 3-
dimensional Palatini action with boundary term, which give
us the same equations of motion that the 3-dimensional
Einstein-Hilbert action, has a well-posed action principle.
That is, it is finite and differentiable under the asymptoti-
cally flat boundary conditions. Moreover, we define a new
action principle by introducing an additional boundary term
to the action. This new action is explicitly Lorentz invariant
and, as we prove in detail, it is equivalent to the Einstein-
Hilbert action with a Gibbons-Hawking term of [8]. The
next step is to consider the covariant Hamiltonian

formulation (CHF) defined by these two action principles
and explore some of its relevant quantities. In particular, we
prove that the energy is bounded from below and above, for
asymptotically 3-dimensional flat spacetimes, in agreement
with previous results in the metric variables via Regge-
Teitelboim methods [5]. Although the CHF provides an
elegant and short derivation for the energy (and other
relevant symmetry generators as discussed in [12,13]), the
energy is only determined up to a constant, that shifts the
region in which the energy is defined.
Next, we consider the (2þ 1) decomposition of the two

first-order actions. We follow two different strategies. The
first one, that we shall call the “Witten” approach (See [2]
and [14] for details), exploits the fact that the bulk action
has the structure of a BF theory, where no underlying
spacetime metric is assumed. The second approach, as put
forward by Barbero and Varadarajan [15], uses the fact that
there is an underlying metric structure, and resembles the
(3þ 1) first-order case (as described in [14]). In both cases,
we show that the resulting canonical theories are well
defined and obtain the Hamiltonian from the corresponding
boundary terms. We find that the energy associated to the
spacetime depends on the choice of action principle,
differing by a constant. For the simplest Palatini action,
the interval in which the energy is defined is positive, and
assigns a zero value of energy to Minkowski spacetime. For
the fully gauge-invariant action, we shall show that the
energy is always negative and coincides with the values
assigned by Marolf and Patiño. Thus, from the perspective
of the first-order formalism, Minkowski spacetime can
consistently have either, zero, or a negative energy equal to
−1=4G, depending on the choice of consistent action
employed as a starting point.
The structure of the manuscript is as follows. In Sec. II

we introduce the notion a asymptotic flatness for the first-
order variables. In Sec. III we define the two actions that we
shall consider in the manuscript. We study their finiteness
and differentiability. In Sec. IV we employ the covariant
Hamiltonian formalism to find the symplectic structure and
the corresponding conserved quantities. In particular, we
find an expression for the energy (up to a constant). In
Sec. V we perform the (2þ 1) decomposition of the action,
following two different methods and obtain the energy as
the contribution to the Hamiltonian coming from the
boundary. We end with a discussion in Sec. VI. We have
included two appendices.
Throughout the manuscript we set c ¼ 1, but leave the

gravitational constant G explicit. Note that we are not
setting 8πG ¼ 1 as is normally done in the (2þ 1)
literature.

II. PRELIMINARIES: ASYMPTOTICS
IN 3 DIMENSIONS

In this section we shall recall some subtleties that appear
in the definition of asymptotically flat 3D spacetimes. We

1In (3þ 1) gravity a nonzero value for the ADM four-
momentum would select a preferred frame thus violating asymp-
totic Lorentz invariance.
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shall contrast the case at hand with that of ordinary 4D
spacetimes. Intuitively speaking, in (3þ 1) dimensions we
can think of an asymptotically flat spacetime as a spacetime
with certain matter content in a bounded region outside of
which the metric approaches the Minkowski metric. In the
standard definition we say that a smooth spacetime metric g
onR is weakly asymptotically flat at spatial infinity if there
exist a Minkowski metric η such that, outside a spatially
compact world tube, ðg − ηÞ admits an asymptotic expan-
sion to order 1 and limrm→∞ðg − ηÞ ¼ 0.2

In a (2þ 1) spacetime the situation is slightly different.
For illustrative purposes, let us consider a mass distribution,
say a point particle at the origin, r ¼ 0. Outside this region,
r > 0, the metric does not approach a flat metric, it is flat.
So, how can we define an asymptotically flat spacetime? In
order to define an (2þ 1) asymptotically flat spacetime, we
can first study this particular spacetime corresponding to a
point particle of mass M at the origin,

ds2 ¼ −dt2 þ r−8GMðdr2 þ r2dθ2Þ for r > 0 ð2:3Þ

where t; r; θ are the cylindrical coordinates, t∈ð−∞;þ∞Þ,
r ∈ ½0;∞Þ, and θ ∈ ½0; 2πÞ. This metric is flat everywhere
except at the origin. To see that, we can define ρ ≔ rα

α , θ̄ ≔
αθ with α ≔ 1–4GM. So the metric takes the form

ds2 ¼ −dt2 þ dρ2 þ ρ2dθ̄2; ð2:4Þ

from which the flatness of the metric is explicit. This is due
to the fact that in a three-dimensional manifold satisfying
Einstein’s equations, whenever Tab ¼ 0 the Riemann
tensor is zero, i.e., the spacetime is flat on those points.3

In order to further understand the global structure of this
spacetime, one can note that θ̄ ∈ ½0; 2παÞwith (0 < α ≤ 1).
Therefore, there is a deficit angle which, despite the local
flatness for r > 0, makes this spacetime not globally

equivalent to Minkowski space (due to the conic
singularity).
We are now in the position of specifying the notion of

asymptotic flatness for 3D gravity. Instead of requiring that
all metrics approach a “single” Minkowski metric at
infinity, one has now a one parameter family of possible,
inequivalent, asymptotic configurations labeled, intuitively,
by the “mass M” of the asymptotic spacetime. That is, we
are looking for a metric that at spatial infinity approaches
that of a point particle at the origin (2.3). Thus, we can
define a (2þ 1) spacetime to be asymptotically flat if the
line element admits an expansion of the form4 [8],

ds2 ¼ −
�
1þO

�
1

r

��
dt2 þ r−β

��
1þO

�
1

r

��
dr2

þ r2
�
1þO

�
1

r

��
dθ2

�
þOðr−1−β=2Þdtdθ: ð2:5Þ

Note that in the asymptotic region (when r → ∞) the
previous line element approaches to the background metric
(in Cartesian coordinates),

η̄ab ¼

0
B@

−1 0 0

0 r−β 0

0 0 r−β

1
CA: ð2:6Þ

Note that we are approaching spatial infinity by some
one-parameter family of boundaries of regions Mρ ⊂ M
(cylinders throughout the present work, since they are more
suited for Hamiltonian methods, as we plan to use in the
following sections. Furthermore, the use of hyperboloids
in the 3D context is less natural than in the 4D case
[11–13,16], due to the lack of asympototic Lorentz invari-
ance, since, unlessM ¼ 0, the asymptotically flat spacetime
previously defined is not globally isometric to the three-
dimensional Minkowski space). fMρjρ > 0g are an
increasing family, i.e., Mρ ⊂ Mρ0 whenever ρ < ρ0 and
such that they cover M (⋃ρMρ ¼ M). This procedure of
taking a finite region Mρ represents a cutoff for spacetime
and then we remove it by the limiting process ρ → ∞. We
take ρ ¼ rþOðr0Þ. This is called a “cylindrical cutoff”
in [17].
To summarize, an asymptotically flat spacetime

approaches that of a point particle (as opposed to a fixed
Minkowski metric in the 4D case). In terms of the matter
fields that might be present in the spacetime, the particular
falloff conditions in the geometric degrees of freedom
imply certain decay rates for matter. Since they do not have
much of an impact in the quantities we are considering here

2The explicit form of the expansion depends on the coordi-
nates. For instance, in 3-dimensions and cylindrical coordinates,
as we shall use through the present work, an asymptotic
expansion to order m of a function f has the form,

fðr; θÞ ¼
Xm
n¼0

nfðθÞ
rn

þ oðr−mÞ; ð2:1Þ

where r and θ are the coordinates on cylinders with r ¼ const and
the remainder oðr−mÞ has the property that

lim
r→∞

roðr−mÞ ¼ 0: ð2:2Þ
3We know that the Riemann tensor can be split into its trace

and trace-free part, the Ricci tensor and scalar, and the Weyl
tensor, respectively. In 3-dimensions the Weyl tensor is identi-
cally zero, and by Einstein’s equations if Tab ¼ 0 implies that the
Ricci tensor and scalar are also zero. Therefore the Riemann
tensor is zero, so locally the spacetime is flat. Note also that here
we are dealing with asymptotically flat spacetime, in contrast to
the conformally flat picture where the vanishing of the Cotton
tensor is equivalent to the metric being conformally flat.

4Aword on notation, Oðr−mÞ means that those terms include a
term proportional to r−m and terms that decay faster, in contrast
with oðr−mÞ that only includes terms that decay faster than r−m,
for instance, terms of the form f

r−mþϵ.
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[just as in the (3þ 1) case] we shall not consider any matter
content in particular. For a related treatment of asymptoti-
cally flatness from the conformal perspective (where the
particular decay rates on matter are discussed), see [10].

III. THE ACTION AND THE BOUNDARY
CONDITIONS OF THE FIRST ORDER VARIABLES

We can consider the Palatini action in three dimensions,
whose equations of motion are equivalent to those given
by the three-dimensional Einstein-Hilbert action. Now the
dynamical variables instead of the metric are a triad e and a
Lorentz connection ω, both valued on the Lie algebra of
SOð2; 1Þ.5 Furthermore, we add to the Palatini action a
boundary term in order to have a well-posed action
principle, that is, we want the action to be finite when
evaluated on histories compatible with the boundary con-
ditions, and also differentiable.6

As we have emphasized, we want to begin with a well-
posed action principle, so it is natural to start with the three-
dimensional analogue of the four-dimensional well-posed
Palatini action [11]. That is, let us define the Standard
Palatini action with boundary term (SPB) as,

SSPB½e;ω� ¼ −
1

κ

Z
M

eI ∧ FI −
1

κ

Z
∂M

eI ∧ ωI; ð3:1Þ

where κ ¼ 8πG. Now, the natural question arises: is the
boundary term gauge invariant? (under local Lorentz
transformations). We can answer this in two ways. The
first is by noting that we can perform a Lorentz trans-
formation on the internal indices in (3.8), (3.9) and we still
have an asymptotically flat configuration. So, in a sense,
the internal directions are “arbitrary,” therefore without loss
of generality we can fix on the boundary one of the internal
directions ∂anI ¼ 0 as in the 4-dimensional case [11,18],
and the boundary term will be invariant under the residual
gauge transformations. One should also expect that, just as
in the (3þ 1) case one has to fix the asymptotic tetrad in
order to have a consistent formalism [19], in our case this is
also needed.
On the other hand we can add the following term to the

action,

α

κ

Z
∂M

1

n · n
εIKLeI ∧ nKdnL ð3:2Þ

where nK is a spacetime scalar that is an internal vector. We
can define it by nK=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ RaeaK where Ra is the

spacetime unit normal to the boundary,7 that can either
be na for the unit normal to the spacelike surfaces or ra for
the unit normal to the timelike boundary, we have intro-
duced a normalization factor 1

n·n to allow freedom in
rescaling nK , so we can use any multiple of nK and the
results will remain the same. Since nK is a spacetime scalar
dnL is a one-form as well as eI then the previous boundary
term is the integral of a two form over a two-dimensional
boundary. With the addition of the term (3.2), when α ¼ 1,
the boundary term in (3.1) becomes,8

−
1

κ

Z
∂M

eI ∧ ωI −
1

κ

Z
∂M

1

n · n
εIKLeI ∧ nKdnL

¼ −
1

κ

Z
∂M

1

n · n
εIKLeI ∧ nKDnL: ð3:4Þ

So instead of the action (3.1) we can begin with the
manifestly Lorentz invariant well-posed action (LIP),9

SLIP½e;ω� ¼−
1

κ

Z
M
eI ∧FI −

1

κ

Z
∂M

1

n ·n
εIKLeI ∧ nKDnL:

ð3:5Þ
Note that the general Palatini action contains both the SPB
and LIP cases, when α ¼ 0 and α ¼ 1, respectively, we
shall use it to compare both actions,

SGP½e;ω� ¼ −
1

κ

Z
M

eI ∧ FI −
1

κ

Z
∂M

eI ∧ ωI −
α

κ

×
Z
∂M

1

n · n
εIKLeI ∧ nKdnL: ð3:6Þ

Moreover, we can show that (3.2) is a constant when
evaluated on asymptotically flat boundary conditions (see
Appendix A for the details on the derivation), so it does not
spoil finiteness nor differentiability of the action. Therefore
(3.5) is still a well-posed action. Further, the term (3.4)

5The cotetrad eIa has an internal index I “living” in an internal
3-dimensional vector space. Since the Lie algebra of SOð2; 1Þ is
three dimensional, we can identify them.

6For further discussion on what it means for an action to be
differentiable see [12,13].

7Note that we have extended the usual definition of nK ¼
naeaK for the Cauchy surfaces in the first-order formalism to
nk=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ RaeaK that allows, in principle, nK to be rescaled,

and now is extended also to include the timelike boundary.
8 Z

∂M
1

n · n
εIKLeI ∧ nKDnL

¼
Z
∂M

1

n · n
εIKLeI ∧ nKðdnK þ εLMNω

MnNÞ

¼
Z
∂M

1

n · n
εIKLeI ∧ nKdnL

þ
Z
∂M

1

n · n
εIKLeI ∧ nKεLMNω

MnN ð3:3Þ
9Note the global minus sign, this is introduced since the

Einstein-Hilbert action with Gibbons-Hawking term is equivalent
to this action with minus sign (see Appendix B for more details),
so we can compare our results here with those obtained in the
second-order formulation [5,8].
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is related the Gibbons-Hawking term needed for the
Einstein-Hilbert action to be well posed and the action
(3.5) is the same as the Einstein-Hilbert action with
Gibbons-Hawking term [8].
As in the four-dimensional case this is a first-order

action, we only have first derivatives on our configuration
variables, that is why we also refer to these variables as
first-order variables.
Some comments are in order. We are writing the action in

a way that is independent of the Lie group G on which is
defined [14], which does not need the existence of a metric
to be defined. In the case of an arbitrary G, eaI can no
longer be thought of as the cotriad. The action (3.1) is then
a functional of a £G-valued connection one-form ωI

a and a
£�G-valued covector field eaI. Where £G- stands out for the
Lie algebra of G and £⋆G- its dual. When we chose G ¼
SOð2; 1Þ we recover three-dimensional general relativity
and we can think of eaI as a cotriad. This coincidence is
exclusive of the three-dimensional case.

A. Fall-off conditions

To check that, in fact, the previous action is well posed
we need to specify the boundary conditions on the first-
order variables e and ω, in this case asymptotically flat
boundary conditions.
From the line element (2.5),

ds2 ¼ −
�
1þO

�
1

r

��
dt2

þ r−β
��

1þO
�
1

r

��
dr2 þ r2

�
1þO

�
1

r

��
dθ2

�

þOðr−1−β=2Þdtdθ; ð3:7Þ
we can find the fall-off conditions of gab as in [5,8], with
a; b; c ¼ 0; 1; 2 spacetime indices, and therefore remem-
bering that gab ¼ ηIJeIaeJb where ηIJ ¼ diagð−1; 1; 1Þ is the
Minkowski metric, the fall-off conditions of the first-order
variables.
We can assume that the cotriads and the triads admit an

asymptotic expansion of the form10

eIa ¼ δ0a

�
oēI0 þ

1ēI0ðθÞ
r

þ oðr−1Þ
�

þ r−β=2
�

oēIā þ
1ēIāðθÞ

r
þ oðr−1Þ

�
δāa; ð3:8Þ

and

eaI ¼ δa0

�
oē0I þ

1ē0I ðθÞ
r

þ oðr−1Þ
�

þ rβ=2
�

oēāI þ
1ēāI ðθÞ

r
þ oðr−1Þ

�
δaā: ð3:9Þ

We define,

0eIa ≔ 0ēI0δ
0
a þ r−β=20ēIāδ

ā
a and

1eIa ≔
1ēI0
r

δ0a þ r−β=2
1ēIā
r

δāa ð3:10Þ

such that η̄ab ¼ ηIJ
0eIa0eJb given by (2.6), where ηIJ ¼

diagð−1; 1; 1Þ is the Minkowski metric.
As for the triads, we assume that the connection ωI

a
admits an expansion of the form

ωI
a ¼ oω̄I

a þ
1ω̄I

aðθÞ
r

þ
2ω̄I

aðθÞ
r2

þ oðr−2Þ: ð3:11Þ

Even though this expansion seems different from that of the
triad, we can check that this expansion is derived from that
of the triad and cotriad by means of the condition, De ¼ 0,
to first order.
Now we have to recall that any connection D can be

written as D ¼ D̄
∘
þ ω, where D̄

∘
is any other connection.

When there is a “preferred” connection available, we can
write all the other connections as that one plus a vector
potential ω. Since there is no canonical choice of this

standard flat connection, D̄
∘
, within this particular problem

it will be convenient to choose that D̄
∘
½a0ēIb� ¼ 0. Using

local coordinates and a local trivialization of E ¼ UM ×
SOð2; 1Þ, where UM is an open set onM, the components
of the connection for the condition of the compatibility of
the triad with the connection, De ¼ 0 will look like

D½aeIb� ¼ D̄
∘
½aeIb� þ εIJKω½ajJeb�K ¼ 0: ð3:12Þ

From (3.12) it is a straightforward calculation to see that
the spin connection can be written in terms of the triad as

ωM
c ¼ −

1

2
ðεLKMeaKebLecID̄

∘
½aeIb� − εL

KMeaKD̄
∘
½ceLa�

− εL
KMebLD̄

∘
½bec�KÞ: ð3:13Þ

The leading term of the spin connection can be found
from the previous equation considering the leading terms of
the triad and cotriad,

10A tensor field Ta…b
c…d will be said to admit an asymptotic

expansion to order m if all its components in the Cartesian chart
xa do so. Note that apart from the r−β factor in the spatial part of
(2.5) the components in Cartesian coordinates admit an expan-
sion of order 1 in analogy with the standard definition of an
asymptotically flat spacetime for 4-dimensional spacetimes
[11–13,16], and also we assume that the first-order variables,
apart from a factor of r−β=2, do so.
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LeadingωM
c ¼ −

1

2
ðεLKM0eaK

0ebL0ecID̄
∘
½a0eIb�

− εL
KM0eaKD̄

∘
½c0eLa� − εL

KM0ebLD̄
∘
½b0ec�KÞ;

ð3:14Þ

where D̄
∘
b
0ēIa ¼ 0. Note that from (3.8),

D̄
∘
b
0eIa ¼ D̄

∘
bð0ēI0δ0aÞ þ D̄

∘
bðr−β=20ēIāδāaÞ

¼ D̄
∘
bðr−β=2Þ0ēIāδāa ¼ ð∂br−β=2Þ0ēIāδāa ð3:15Þ

but ∂br−β=2 ¼ − 1
2
βr−1−β=2∂br. Therefore,

D̄
∘
b
0eIa ¼

�
−
1

2
βr−1−β=2∂br

�
0ēIāδ

ā
a

¼
�
−
1

2
βr−1∂br

�
0eIāδ

ā
a: ð3:16Þ

Taking into account the previous equation and the fall-off
conditions (3.8) and (3.9), Eq. (3.14) becomes (using that
∂0r ¼ 0),

LeadingωM
c ¼ β

2r
εL

KM0ēāK
0ēLc̄ δ

c̄
c; ð3:17Þ

then considering the expansion (3.11) we can see that

1ω̄M
c ¼ β

2
∂ ārεLKM0ēāK

0ēLc̄ δ
c̄
c; ð3:18Þ

which implies that
1ω̄M

c
r is the leading term of ωM

c and that
0ωM

c ¼ 0 as well as 1ωM
0 ¼ 0.

B. Well posedness of the action

As we already mentioned, beginning with a well-posed
action principle under asymptotically flat boundary con-
ditions, we want to find an expression for the energy under
various approaches. Wewant to analyze whether this results
coincide with those in the second-order formalism [5,8] and
also the relation and differences among the different paths
we take: the covariant Hamiltonian formalism (CHF), and
the canonical one, where we take two different (2þ 1)
decompositions.
But first we have to check that the action principle we are

working with is well posed, i.e., finite and differentiable
under asymptotically flat boundary conditions and varia-
tions. With the fall-off conditions of the first-order variables
found in Sec. III A we are ready to undertake this task.

1. Finiteness

Since the term (3.2) is a finite constant when evaluated
on the boundary,11 it does not spoil finiteness. Then, it is

only necessary to cheek that the action (3.1) is finite, so the
manifestly gauge-invariant action (3.5) is also finite. The
action (3.1) can be rewritten as

S½e;ω� ¼ −
1

κ

Z
M

eI ∧ FI −
1

κ

Z
∂M

eI ∧ ωI

¼ −
1

κ

Z
M

�
eI ∧ dωI þ

1

2
εI

JKeI ∧ ωJ ∧ ωK

�

−
1

κ

Z
∂M

eI ∧ ωI ð3:19Þ

since FI ¼ dωI þ 1
2
εI

JKωJ ∧ ωK and

dðeI ∧ ωIÞ ¼ deI ∧ ωI − eI ∧ dωI

⇒ eI ∧ dωI ¼ deI ∧ ωI − dðeI ∧ ωIÞ: ð3:20Þ
Then,

S½e;ω� ¼ −
1

κ

Z
M

�
deI ∧ ωI þ

1

2
εI

JKeI ∧ ωJ ∧ ωK

− dðeI ∧ ωIÞ
�
−
1

κ

Z
∂M

eI ∧ ωI

¼ −
1

κ

Z
M

�
deI ∧ ωI þ

1

2
εI

JKeI ∧ ωJ ∧ ωK

�
:

ð3:21Þ
The leading term of the previous equation is

0S½e;ω� ¼−
1

κ

Z
M

�
d0eI ∧ 1ωIþ

1

2
εI

JK0eI ∧ 1ωJ ∧ 1ωK

�
;

ð3:22Þ

but we already used the compatibility condition with the
triad to first order to obtain the fall-off conditions on ω,
(3.12), which can also be written as

d0eI − εIJK
1ωK ∧ 0eJ ¼ 0 ð3:23Þ

therefore, we can rewrite (3.22) as

0S½e;ω� ¼ −
1

κ

Z
M

�
d0eI ∧ 1ωI −

1

2
εI

JK0eI ∧ 1ωJ ∧ 1ωK

�

¼ −
1

κ

Z
M

�
d0eI ∧ 1ωI −

1

2
d0eI ∧ 1ωI

�

¼ −
1

κ

Z
M

1

2
d0eI ∧ 1ωI: ð3:24Þ

Now, using (3.16) and (3.18) the leading term is12

11See Appendix A for details.

12Where dxa∧dxb∧dxc¼ ~εabcd3x, with ~εabc the Levi-Civita
tensor density of weight þ1, that is related with the Levi-Civita
tensor, εabc, by ~εabc¼ðsÞ ffiffiffiffiffijgjp

εabc with g the determinant of the
spacetime metric and s the signature of the metric.
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1

4κ

Z
M

D̄
∘
a
0eIb

1ωK
c ~ε

abcd3x ¼ 0; ð3:25Þ

since13 1ωK
0 ¼ 0, D̄

∘
0
0eIā ¼ 0, and D̄

∘
a
0eI0 ¼ 0. On the other

hand, note that we could have chosen to write (3.21), using
De ¼ 0 to first order as well, as

0S½e;ω� ¼ −
1

4κ

Z
M

εIJK
0eI ∧ 1ωJ ∧ 1ωK

¼ −
1

4κ

Z
M

εIJK
0eIa1ωJ

b
1ωK

c ~ε
abcd3x: ð3:26Þ

In the previous equation, using (3.10) and (3.18), the only
nonvanishing term is

0S½e;ω� ¼ −
1

4κ

Z
M

εIJK
0ēI0

1ω̄J
b̄

r

1ω̄K
c̄

r
ε0b̄ c̄rdrdθdt

¼
Z
M

Oðr−1Þdr: ð3:27Þ

Our region of integration M is bounded by ∂M ¼
M1 ∪ M2 ∪ I with its corresponding orientation. In order
to check finiteness it is enough to check that the integral
over a spatial hypersurface is finite. This is true since we are
integrating over a finite time interval where the Cauchy
surfacesM1 andM2 are asymptotically time-translated with
respect to each other. Such spacetimesM are referred to as
cylindrical slabs [11] or as cylindrical temporal cutoff [17].
Note that on a Cauchy slice the only dependency on r of

the previous equation is due to 1ωK
c ¼ Oðr−1Þ, so the

integral over r goes as
R
Oðr−1Þdr that may logarithmically

diverge in the limit r → ∞, but we already proved in (3.25)
that this term is zero. Then, the next to leading terms decay
faster in r so, in the limit r → ∞, they go to zero.
Therefore, the integral is finite even off shell.

2. Differentiability

In order for an action to be differentiable the variation of
the action needs to take the form

δS½e;ω� ¼
Z
M

½Ee ∧ δeþ Eω ∧ δω�

þ
Z
∂M

~θðeI;ωI; δeI; δωIÞ; ð3:28Þ

and in order for Ee and Eω to be the Euler-Lagrange
equations of motion, the boundary term needs to be zero
when evaluated on histories compatible with the boundary
conditions. Since the term (3.2) is constant when evaluated
on those histories, its variation is zero so it does not spoil
differentiability. Therefore we only need to check whether
the action (3.1) is differentiable.
The variation of the 3-dimensional Palatini action with

boundary term (3.1) is

δS½e;ω� ¼ −
1

κ

Z
M

½δeI ∧ FI þ eI ∧ δFI�

−
1

κ

Z
∂M

½δeI ∧ ωI þ eI ∧ δωI�; ð3:29Þ

but

δFI ¼ dδωI þ
1

2
εI

JKδωJ ∧ ωK þ 1

2
εI

JKωJ ∧ δωK

¼ dδωI þ εI
JKδωJ ∧ ωK ð3:30Þ

then, the variation becomes,

δS½e;ω� ¼ −
1

κ

Z
M

δeI ∧ FI

−
1

κ

Z
M

ðdeJ þ εJIKeI ∧ ωKÞ ∧ δωJ

−
1

κ

Z
∂M

δeI ∧ ωI: ð3:31Þ

If the boundary term is zero under the boundary conditions,
the action is said to be differentiable and the equations of
motion are

FI ¼ 0 and DeJ ¼ deJ þ εJIKeI ∧ ωK ¼ 0: ð3:32Þ

That are equivalent to those given by the three-
dimensional Einstein-Hilbert action. The boundary term is

−
1

κ

Z
∂M

δeI ∧ ωI ¼ −
1

κ

�
−
Z
M1

þ
Z
M2

þ
Z
I

�
δeI ∧ ωI

ð3:33Þ

where we are considering that our integration region M is
bounded by ∂M ¼ M1 ∪ M2 ∪ I with its corresponding
orientation. We are taking, as usual, δeI ¼ δωI ¼ 0 on the
spacelike surfaces M1 and M2. We are left only with the
integral on the timelike boundary I. Recall that we are
approaching spatial infinity by a family of cylinders, Cr
with r ¼ const, in the limit when r → ∞. To check
differentiability we have to prove that

131ωK
0 ¼ 0 is zero from the fall-off conditions on ω, D̄

∘
a
0eI0 ¼ 0

because 0eI0 ¼ 0ēI0 and D0
0eIā ¼ 0 because we ask the condition

of the compatibility of the triad with the connection to be satisfied
to first order to find the fall-off conditions on ω,

D0
0eIb ¼ D̄

∘
0
0eIb þ εIJK1ω0J

0ebK ¼ 0:

since 1ωK
0 ¼ 0 then D̄

∘
0

0

eIb ¼ 0.
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lim
r→∞

Z
Cr

δeI ∧ ωI ¼ 0; ð3:34Þ

when evaluated on histories compatible with the asymp-
totically flat boundary conditions. Note that we are
allowing all the possible variations compatible with the
boundary conditions and not only those of compact

support. It is enough to check the behavior of the leading
term (the next to leading terms decay “faster” as r goes to
infinity). Considering the asymptotic conditions on eIa and

ωI
a, (3.8) and (3.11), and the fact that

1ω̄I
a

r is the leading term
of ωI

a (thus 0ωI
a ¼ 0) with 1ωI

0 ¼ 0; and using (3.10),
Eq. (3.34) can be written as14

lim
r→∞

Z
Cr

δeI ∧ ωI ¼ lim
r→∞

Z
Cr

δð0eIa þ 1eIa þ oðr−2ÞÞ
�1ω̄J

b̄

r
δb̄b þ

2ω̄J
b

r2
þ oðr−2Þ

�
ηJIε

abrdθdt

¼ lim
r→∞

Z
Cr

�
δ0eIa

1ω̄J
b̄

r
δb̄b þ δ0eIa

2ω̄J
b

r2
þ δ1eIa

1ω̄J
b̄

r
δb̄b þ oðr−2Þ

�
ηJIε

abrdθdt

¼ lim
r→∞

Z
Cr

�
δ0eIa

1ω̄J
b̄

r
δb̄b þOðr−2Þ

�
ηJIε

abrdθdt; ð3:35Þ

but15

δ0eIa ¼
�
−
r−β=2

2
logðrÞδβ

�
0ēIāδ

ā
a: ð3:38Þ

Using (3.38), Eq. (3.35) becomes

lim
r→∞

Z
Cr

δeI ∧ ωI ¼ lim
r→∞

Z
Cr

��
−
r−β=2

2
logðrÞδβ

�
0ēIāδ

ā
a

1ω̄J
b̄

r
δb̄b þOðr−2Þ

�
ηJIε

abrdθdt

¼ lim
r→∞

Z
Cr

�
−
r−β=2

2
logðrÞδβ0ēIā1ω̄J

b̄
δāaδ

b̄
b þOðr−1Þ

�
ηJIε

abdθdt: ð3:39Þ

We can see in two ways that this term vanishes. The first is
to note that εab is the induced Levi-Civita tensor on the
timelike boundary (hypercylinders) so the indices,
a; b ¼ 0; 1, have one temporal and one spatial component,
but in the previous equation due to δāaδb̄bε

ab ¼ 0, the leading
term vanishes identically. Also in the previous equation, we
can note that the only dependence on r is through
r−β=2 logðrÞ, and since we are not integrating over r and
demanding that β > 0,

lim
r→∞

r−β=2 logðrÞ ¼ 0: ð3:40Þ

So in the limit equation (3.39) vanishes,

lim
r→∞

Z
Cr

δeI ∧ ωI

¼ lim
r→∞

Z
Cr

�
−
r−β=2

2
logðrÞδβ0ēIā1ω̄b̄Jδ

ā
aδ

b̄
b þOðr−1Þ

�

× εabdθdt ¼ 0: ð3:41Þ

Therefore the action is also differentiable under asymp-
totically flat boundary conditions, for arbitrary compatible
variations.

IV. COVARIANT ANALYSIS

In this section we shall follow the approach of the
covariant Hamiltonian formalism (CHF), as summarized in
[12,13]. In particular, we shall identify several components
of the CHF, such as the symplectic potential, (pre-)
symplectic structure and Hamiltonian generators, starting
from the actions defined in Sec. III. This section has two
parts. In the first one we identify these quantities and prove

15From (3.10) and since 0ēIa is a fixed flat frame at the
asymptotic region, δ0ēIa ¼ 0, then,

δ0eIa ¼ δð0ēI0δ0a þ r−β=20ēIāδ
ā
aÞ ¼ δðr−β=2Þ0ēIāδāa: ð3:36Þ

In the timelike boundary δr ¼ 0 so

δðr−β=2Þ ¼ −
β

2
r−β=2−1δr −

r−β=2

2
logðrÞδβ ¼ −

r−β=2

2
logðrÞδβ

ð3:37Þ

14Where εab is the two-dimensional Levi-Civita tensor related
to the tensor density of weight þ1 by εab ¼ ðsÞffiffiffiffi

jγj
p ~εab, where γab is

the induced metric on the timelike boundary, γ its determinant
and s the signature of γab.
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their finiteness. In the second one we focus our attention on
Hamiltonian flows and their generators.

A. Symplectic geometry

From the variation of the action (3.31), we can identify
the symplectic potential,

~ΘðeI;ωI; δeI; δωIÞ ≔
Z
∂M

~θðeI;ωI; δeI; δωIÞ

¼ −
1

κ

Z
∂M

δeI ∧ ωI; ð4:1Þ

and its associated symplectic current,

Jðδ1; δ2Þ ≔ 2δ½1 ~θðδ2�Þ

¼ −
1

κ
ðδ2eI ∧ δ1ωI − δ1eI ∧ δ2ωIÞ: ð4:2Þ

Since J is closed over any region M,

0 ¼
Z
M

dJðδ1; δ2Þ ¼
I
∂M

Jðδ1; δ2Þ

¼
�
−
Z
M1

þ
Z
M2

þ
Z
I

�
Jðδ1; δ2Þ ð4:3Þ

here we are considering the region M is bounded by
∂M ¼ M1 ∪ M2 ∪ I , M1 and M2 are spacelike slices and
I an outer boundary, in particular we shall consider
configurations that are asymptotically flat. We are assum-
ing no internal boundary.
In order to have a conserved symplectic current and

therefore a conserved presymplectic form, independent of
the Cauchy surface, we have to check that

R
I J ¼ 0, that is,

that there is no current “leakage” at infinity.
Taking into account the asymptotically flat boundary

conditions previously derived, we can see that the leading
terms of

R
I J are

Z
I

0Jðδ1;δ2Þ¼−
1

κ
lim
r→∞

Z
Cr

ðδ20eI ∧ δ1
1ωI−δ1

0eI ∧ δ2
1ωIÞ:

ð4:4Þ

Following the same arguments as in (3.41), that is using
1ω̄I

0 ¼ 0 and δ0eI0 ¼ 0, and noticing that the previous
equation becomes

Z
I

0Jðδ1; δ2Þ ¼ −
1

κ
lim
r→∞

Z
Cr

ðδ20eI0δ11ωāI − δ2
0eIāδ1

1ω0I

− δ1
0eI0δ2

1ωāI þ δ1
0eIāδ2

1ω0IÞ~ε0ād2x;
ð4:5Þ

we can see that

Z
I

0Jðδ1; δ2Þ ¼ 0: ð4:6Þ

But, on the other hand note that

Z
I

0Jðδ1;δ2Þ¼−
1

κ
lim
r→∞

Z
Cr

�
δ2

0eIaδ1
1ω̄bI

r
−δ1

0eIa ∧ δ2
1ω̄bI

r

�

×εabrdθdt ð4:7Þ

is independent of r. Therefore the next-to-leading terms
go as

Z
I
Jðδ1; δ2Þ ¼ −

1

κ
lim
r→∞

Z
Cr

Oðr−1Þεabdθdt ¼ 0: ð4:8Þ

Therefore, the symplectic current is conserved.
Now we can define a conserved presymplectic form over

an arbitrary spacelike surface M,

~Ωðδ1; δ2Þ ≔
Z
M
Jðδ1; δ2Þ

¼ −
1

κ

Z
M
δ2eI ∧ δ1ωI − δ1eI ∧ δ2ωI: ð4:9Þ

Once we have ~Ωðδ1; δ2Þ, we can analyze the symmetries of
the theory and their associated conserved charges. In
particular we are interested in the conserved charge
associated with the asymptotic time translations, i.e., the
ADM energy.
Since one of our goals is to compare the resulting

expression for the energy through the covariant and
canonical formalism, we need to be sure that the con-
ventions in both schemes are in agreement. We discuss this
point in the next part.

1. Link between covariant and canonical approaches

The symplectic structure is essential in order to have a
Hamiltonian description. In a coordinate basis associated
with the configuration variables, the fields ϕA, the sym-
plectic form can also be defined by

Ω̄ ≔ dΠA ∧ dϕA; ð4:10Þ

where ΠA is the momenta canonically conjugated to ϕA.
This Ω̄ is consistent with all our derivations in the covariant
phase space. But, up to now, we have not specified “what
our variables are,” namely ϕA and ΠA.
It is well known that in the first-order formulation of

general relativity, one of our configuration variables is the
canonically conjugated variable to the other. For instance,
in the connection-dynamics approach, ω is chosen to be the
configuration variable and, as it turns out, e happens to be
its canonical momenta. The role of the variables is inverted
if we choose the geometrodynamics picture.
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To compare with the results obtained by the canonical
formalism, first we have to decide if we want to work in the
connection or geometrodynamics approach. In this con-
tribution we choose the former one, that is ϕA ¼ ωI and
ΠA ¼ eI . From (4.9) we have then,

~Ωðδ1;δ2Þ ¼ −
1

2κ

Z
M
δ2 eI|{z}

ΠA

∧ δ1 ωI|{z}
ϕA

− δ1eI ∧ δ2ωI ¼ −Ω̄:

ð4:11Þ

We conclude then that in order to compare our expressions
for the energy, we have to set Ω̄ ¼ − ~Ω. From now on, this
is the choice we shall make.

B. The Hamiltonian and the energy

Consider infinitesimal diffeomorphisms generated by a
vector field ξ, these diffeomorphisms induce an infinitesi-
mal change in the fields given by δξ ≔ ð£ξe; £ξωÞ.
We say that ξ is a Hamiltonian vector field iff Ω̄ðδ; δξÞ is

closed, dΩ ¼ 0, and the Hamiltonian Hξ is defined by

Ω̄ðδ; δξÞ ¼ δHξ ¼ dH; ð4:12Þ

where d is the exterior derivative on the covariant phase
space,16 which is different from the exterior derivative on
spacetime d.
So Hξ is a conserved quantity along the flow generated

by ξ. We consider the case when ξ generates asymptotic
time translations of the spacetime, which induces time
evolution on the covariant phase space generated by the
vector field δξ ≔ ð£ξe; £ξωÞ. In this case, Hξ is the energy.

1. The energy

From Eqs. (4.9) and (4.12),

Ω̄ðδ; δξÞ ¼ − ~Ωðδ; δξÞ ¼
1

κ

Z
M
δξeI ∧ δωI − δeI ∧ δξωI

ð4:13Þ

¼ 1

κ

Z
M
£ξeI ∧ δωI − δeI ∧ £ξωI ð4:14Þ

by using £ξϕA ¼ ξ · dϕA þ dðξ · ϕAÞ

Ω̄ðδ; δξÞ ¼
1

κ

Z
M
½ðξ · deIÞ ∧ δωI þ dðξ · eIÞ ∧ δωI

− δeI ∧ ðξ · dωIÞ − δeI ∧ dðξ · ωIÞ�: ð4:15Þ

Now we have to use that at infinity ξ should approach a
time-translation Killing vector field of the asymptotic flat

spacetime. In particular this means that in the asymptotic
region ξa is orthogonal to the spacelike surface. Therefore
ξ · eI ¼ eI0, ξ · ωI ¼ ω0I but for the leading term we have

seen 1ω̄0I ¼ 0, also D̄
∘
a
0eIb only has spatial components so

ξ · d0eI ¼ 0. With this at hand we can see that17

Ω̄ðδ; δξÞ ¼
1

κ

Z
M
dðξ · eIÞ ∧ δωI ð4:16Þ

¼ 1

κ

Z
M
d½ðξ · eIÞδωI� − ðξ · eIÞdδωI: ð4:17Þ

Note that the second term of the previous equation in
components becomes

−
Z
M

0ēI0D̄
∘
½b̄jδωjc̄�Iεb̄ c̄rdrdθ ð4:18Þ

but

D̄
∘
½b̄jδωM

jc̄� ¼ δβ½r−2∂ ½b̄jr∂ ārþ r−1∂ ½b̄j∂ ār�εLKM0ēK
d̄
0ēLjc̄�η

ā d̄;

ð4:19Þ

so

0ēI0D̄
∘
½b̄jδωjc̄�Iεb̄ c̄

¼ δβ½r−2∂ ½b̄jr∂ ārþ r−1∂ ½b̄j∂ ār�εLKI
0ēK

d̄
0ēLjc̄�

0ēI0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ē~εjc̄�d̄0

ηā d̄ εb̄ c̄|{z}
~ε0b̄ c̄
r

:

ð4:20Þ

Here ē ¼ ffiffiffiffiffiffi−ηp ¼ 1 where ηab is the Minkowski metric
associated with the fixed frame ēaI at the asymptotic region,
also ~εjc̄�d̄0 ~ε0b̄ c̄ ¼ −2δb̄jd̄�. Thus by antisymmetry in the

spacetime indices this term vanishes.
From (4.16) and the previous argument the presymplec-

tic form is

Ω̄ðδ; δξÞ ¼
1

κ

Z
M
d½ðξ · eIÞδωI� ¼

1

κ

Z
∂M

ðξ · eIÞδωI

¼ lim
r→∞

�
1

κ

Z
∂M

0eI0δ
1ωc̄I

r
ε0c̄rdθ þ

Z
∂M

Oðr−1Þdθ
�
;

ð4:21Þ

with

16See [12,13] for further details and definitions. 17This is the only nonvanishing term to first order.
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δ

�
1ωM

c̄

r

�
¼ 1

2r
δβ∂ ārεLKM0ēK

d̄
0ēLc̄ η

ā d̄: ð4:22Þ

Then, by (4.12), the variation of the Hamiltonian, and
therefore of its corresponding associated conserved quan-
tity, the energy, is

δHξ ¼ Ω̄ðδ; δξÞ

¼ 1

2κ
lim
r→∞

Z
∂M

0ēI0ðδβr−1∂ ārεLKI
0ēK

d̄
0ēLc̄ η

ā d̄Þε0c̄rdθ

¼ 1

2κ
lim
r→∞

Z
∂M

1

r
δβðεLKI0ēI00ēKd̄ 0ēLc̄ Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ē~εc̄ d̄ 0

ηā d̄∂ ārε0c̄rdθ:

ð4:23Þ

Here we are using the identity εLKI
0ēI0

0ēK
d̄
0ēLc̄ ¼ ē~ε0c̄ d̄

where 0ē ¼ ffiffiffiffiffiffi−ηp ¼ 1 with η the determinant of ηab, the
Minkowski metric associated with the fixed frame ēaI at
the asymptotic region. Taking into account the fall-
off conditions on eIa, its determinant, e, will decay as
e ¼ 0ēþOðr−1Þ, then ē~εc̄ d̄ 0 ¼ ½eεc̄ d̄ 0 − εc̄ d̄ 0Oðr−1Þ�.
Also ∂ ār ≕ rā can be seen as the normal to the cylinders
r ¼ const and ~εabcrc ¼ ~εab. With all this we can see that the
previous equation (4.23) is

δHξ ¼
1

2κ
lim
r→∞

Z
∂M

�
1

r
δβεc̄ d̄ 0r

d̄ε0c̄rdθ þOðr−1Þ
�

¼ 1

2κ

Z
∂M

δβε0c̄ε
0c̄|fflffl{zfflffl}

1

dθ ¼ 1

2κ
δβ

Z
∂M

dθ: ð4:24Þ

Also note that ∂M ¼ Ct, M a spacelike slice at “time” t,
and Ct a circle with radius r at time t. We can write the
expression for the energy,

δHξ ¼
δβ

2κ

Z
Ct

dθ ð4:25Þ

taking κ ¼ 8πG,

δHξ ¼
δβ

2ð8πGÞ 2π ¼ δβ

8G
: ð4:26Þ

Since the previous expression only gives the variation, the
energy will always be determined up to a constant,

E ¼ β

16G
þ const0: ð4:27Þ

Let us summarize the situation. By employing the covariant
Hamiltonian formalism, we have reached an expression for
the gradient of the Hamiltonian function on the covariant
phase space, responsible for the Hamiltonian flow that
generates asymptotic unit time translations. As is usually

the case with the Hamiltonian formalism, this function is
determined up to a constant. Here we are faced with several
choices. We could, for instance, follow [5] and declare that
Minkowski spacetime should have a vanishing energy.
Since β ∈ ½0; 2Þ, we should then choose this constant to be
zero for the energy of Minkowski spacetime to vanish,

E ∈
�
0;

1

4G

�
: ð4:28Þ

Although the CHF is elegant, it only provides us with the
variation of the energy, so we have an indeterminacy in the
election of the constant that may shift the region in which
the energy is bounded. Of course, we are in principle
allowed to make any other choice for the up to now
arbitrary constant, unless we take some input that helps us
select it. That is why we shall analyze this action through
the canonical (2þ 1) formalism, where the Hamiltonian is
completely determined by the Legendre transform. This is
the subject of the following section.

V. CANONICAL ANALYSIS

In the case of theories that can be formulated without the
need of a metric, we have two choices for a (2þ 1)
decomposition. The first one, that we shall refer to as
the Witten approach,18 does not need the existence of a
metric. We only ask the spacetime M to be topologically
Σ × R and that there exists a function t [with nowhere
vanishing gradient ðdtÞa] such that each t ¼ const surface
Mt is diffeomorphic to Σ. Also, one assumes the existence
of a flow defined by a vector field ta satisfying taðdtÞa ¼ 1,
which allows us to define “evolution,” although t does not
necessarily have the interpretation of time.19

The second approach, that we shall refer to as the
Ashtekar-Barbero-Varadarajan approach20 follows closely
the (3þ 1) decomposition of the first-order variables. In it,
besides the elements of the Witten approach, we are also
assuming the existence of a metric gab and therefore a unit
normal na to the Cauchy surfaces. This introduces addi-
tional information to that in Witten’s decomposition. In
particular, we can decompose any tensor into its normal and
tangential part, and in particular ta can be decomposed as
ta ¼ Nna þ Na, where N and Na are the lapse and shift
functions. Now we have additional information, namely the

18Following the nomenclature of [15] referring to Witten’s
paper [2]. For more details on the analysis in the case where there
is no boundary see [14].

19Since the (2þ 1) Palatini action based on an arbitrary Lie
group G (3.1) is a theory independent of a spacetime metric, we
can still define evolution from one t ¼ const surface to the next
using the Lie derivative along ta.

20In [15] the authors discuss the differences in the canonical
analysis, particularly in the constraints, following Witten’s vs
Ashtekar’s approaches. That is why we call it Ashtekar-Barbero-
Varadarajan approach.
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freedom of choosing any foliation and any vector field ta,
that is coded in the lapse and shift functions.
A comment on notation is in order. In what follows we

use ~εabc as the Levi-Civita tensor density of weight þ1

instead of ~ηabc, more commonly used in the 3-dimensional
case, this to avoid confusion with the flat metric η̄ab (2.6),
or with the Minkowki metric (either with internal or
spacetime indices). When we write ~εabc in the action we
assume it is accompanied with its respective d3x, but we do
not write it in order to simplify notation. Only when dealing
with the Levi-Civita tensor, εabc, related with the tensor

density by ~εabc ¼ ðsÞ ffiffiffiffiffijgjp
εabc (with g the determinant of

the spacetime metric and s the signature of the metric), we
write the volume element explicitly. The same convention
will be used for the ~εab and ~εa. Finally, we shall refer to a
Cauchy slice as M following the notation in [12,13].

A. Witten’s approach

In order to make the canonical analysis (a la Witten) of
the 3-dimensional Palatini action, we write the action (3.5)
it in components,

SPB½e;ω� ¼ −
1

2κ

Z
M

~εabceaIFI
bc −

1

κ

Z
∂M

eaIωI
b ~ε

ab −
α

κ

Z
∂M

1

n · n
εIKLeaInKD̄

∘
bnL ~εab ð5:1Þ

¼ −
1

2κ

Z
M

~εabceaIFI
bc −

1

κ

Z
∂M

eaIωI
b ~ε

ab þ α

κ

Z
∂M

1ffiffiffiffiffiffiffiffiffi
n · n

p εILeaID̄
∘
bnL ~εab: ð5:2Þ

For this decomposition we shall follow the analysis in [14], taking enough care of the boundary term, the one coming from
the Palatini action and the boundary terms in (5.1). Using that ~εabc ¼ 3t½a ~εbc�dt and ~εab ¼ 2t½a ~εb�dt

SPB½e;ω� ¼ −
1

2κ

Z
dt
Z
M
ðta ~εbc þ tb ~εca þ tc ~εabÞeaIFI

bc −
1

κ

Z
dt
Z
Ct

ðta ~εb − tb ~εaÞeaIωI
b

þ α

κ

Z
dt
Z
Ct

ðta ~εb − tb ~εaÞ 1ffiffiffiffiffiffiffiffiffi
n · n

p εILeaID̄
∘
bnL ð5:3Þ

¼ −
1

κ

Z
dt
Z
M

�
1

2
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

FI
bc ~ε

bc þ tb ~εcaeaIFI
bc

�

−
1

κ

Z
dt
Z
Ct

�
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

ωI
b ~ε

b − ðtbωI
bÞ|fflffl{zfflffl}

ðt·ωÞI
eaI ~εa

�
ð5:4Þ

þ α

κ

Z
dt
Z
Ct

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðtaeaIÞD̄
∘
bnL ~εb − ðtbD̄

∘
bnLÞeaI ~εa�: ð5:5Þ

Taking into account the following standard relations,

FI
bc ¼ 2∂ ½bωI

c� þ ½ωb;ωc�I ¼ ∂bωc − ∂cωb þ ½ωb;ωc�I ð5:6Þ

Dbω
I
c ¼ ∂bω

I
c þ ½ωb;ωc�I ð5:7Þ

tbFI
bc ¼ £~tω

I
c −Dcðt · ωÞI ð5:8Þ

the second term of the bulk part can be written as

~εcaeaItbFI
bc ¼ ð£~tωI

cÞ~εcaeaI −Dcðω · tÞI ~εcaeaI ð5:9Þ

¼ ð£~tωI
cÞ~εcaeaI −Dc½ðω · tÞI ~εcaeIaI� þ ðω · tÞIDcð~εcaeaIÞ: ð5:10Þ

Then the action takes the form
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SPB½e;ω� ¼ −
1

κ

Z
dt
Z
M

�
1

2
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

FI
bc ~ε

bc þ ð£~tωI
cÞ~εcaeaI −Dc½ðω · tÞI ~εcaeaI� þ ðω · tÞIDcð~εcaeaIÞ

�

−
1

κ

Z
dt
Z
Ct

h
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

ωI
b ~ε

b − ðtbωI
bÞ|fflffl{zfflffl}

ðt·ωÞI
eaI ~εa

i
ð5:11Þ

þ α

κ

Z
dt
Z
Ct

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðtaeaIÞD̄
∘
bnL ~εb − ðtbD̄

∘
bnLÞeaI ~εa� ð5:12Þ

¼ −
1

κ

Z
dt
Z
M

�
1

2
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

FI
bc ~ε

bc þ ð£~tωI
cÞ~εcaeaI þ ðω · tÞIDcð~εcaeaIÞ

�
þ 1

κ

Z
dt
Z
M
Dc½ðω · tÞI ~εcaeaI�

−
1

κ

Z
dt
Z
Ct

h
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

ωI
b ~ε

b − ðtbωI
bÞ|fflffl{zfflffl}

ðt·ωÞI
eaI ~εa

i
ð5:13Þ

þ α

κ

Z
dt
Z
Ct

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðtaeaIÞD̄
∘
bnL ~εb − ðtbD̄

∘
bnLÞeaI ~εa�: ð5:14Þ

Strictly speaking we begin with an action valid for any
Lie group [e is not related to the metric unless we identify
the group with SOð2; 1Þ so this action can be defined
without the need of a metric], since in Witten’s decom-
position we are not assuming the existence of a metric.
In order to proceed with the Legendre transformation we

need to calculate the momenta,

Πc
I ¼

δL
δð£~tωI

cÞ
¼ 1

κ
~εcaeaI; ð5:15Þ

then the canonical Hamiltonian is21

H½e;ω� ¼
Z
M
½ð£~tωI

cÞΠc
I − L�

¼ þ 1

κ

Z
M

�
1

2
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

FI
bc ~ε

bc þ ðω · tÞIDcð~εcaeaIÞ
�

−
1

κ

Z
M
Dc½ðω · tÞI ~εcaeaI�

þ 1

κ

Z
Ct

h
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

ωI
b ~ε

b − ðtbωI
bÞ|fflffl{zfflffl}

ðt·ωÞI
eaI ~εa

i

−
α

κ

Z
Ct

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðtaeaIÞD̄
∘
bnL ~εb

− ðtbD̄
∘
bnLÞeaI ~εa�: ð5:16Þ

We can see that the following constraints

FI
bc ~ε

bc ≈ 0 and Dcð~εcaeaIÞ ≈ 0 ð5:17Þ

are first class, and also they are the pull-back toM with ~εab

of the equations of motion (3.32).
On the constraint surface,

H½e;ω� ¼ −
1

κ

Z
M
Dc½ðω · tÞI ~εcaeaI�

þ 1

κ

Z
Ct

h
ðtaeaIÞ|fflfflffl{zfflfflffl}
ðt·eÞI

ωI
b ~ε

b − ðtbωI
bÞ|fflffl{zfflffl}

ðt·ωÞI
eaI ~εa

i

−
α

κ

Z
Ct

εIL
�
ðtaeaIÞD̄

∘
b

nLffiffiffiffiffiffiffiffiffi
n · n

p ~εb

−
�
tbD̄

∘
b

nLffiffiffiffiffiffiffiffiffi
n · n

p
�
eaI ~εa

�
; ð5:18Þ

that is, the boundary terms are the only nonvanishing terms.
Now if we take into account the asymptotically flat

boundary conditions, the leading term of ðω · tÞI is zero and
also tbD̄

∘
bðrc0ecLÞ ¼ 0. In the timelike boundary as well as

in the boundary ofM (circles for each time t,Ct) the normal
to the surface is ra, then nL=

ffiffiffiffiffiffiffiffiffi
n · n

p ¼ rcecL. So the only
nonvanishing leading term comes from

H½e;ω� ¼ 1

κ

Z
Ct

ðt · eÞIωI
b ~ε

b

−
α

κ

Z
Ct

εILðtaeaIÞ D̄
∘
bðrcecLÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

rcD̄
∘
becLþecLD̄

∘
brc

~εb: ð5:19Þ

As in the covariant case, if we want this Hamiltonian to
generate asymptotic time translations and therefore its
conserved quantity to be the energy, ta has to approach
a unit time-translation Killing vector field of the asymptotic

21Note that the bulk part of this Hamiltonian coincides with
that given in [14].
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flat spacetime, which also translates into t being orthogonal toM. Using this and the fall-off conditions (3.8) and (3.18), the
Hamiltonian is given by22

H½e;ω� ¼ lim
r→∞

2
664
Z
Ct

1

κ
0e0I

1ωI
b̄

r
~εb̄

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H1

−
α

κ

Z
Ct

εIL0e0Ið0ecLD̄
∘
brcÞ~εb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H2

þOðr−β=2Þ

3
775: ð5:21Þ

For the first term of the right-hand side of the previous
equation, since the volume element associated to Ct goes as
rdθ, the leading term of the previous equation does not
depend on r, and the next to leading terms go as Oðr−1Þ so
in the limit they vanish leaving us with just the leading
term,

H1 ¼
1

κ
lim
r→∞

Z
Ct

0e0I
1ω̄I

b̄

r
~εb̄

¼ 1

2κ
lim
r→∞

Z
Ct

0e0I
1

r
β∂ ārεKIL

0ēāK
0ēL

b̄
~ε0b̄: ð5:22Þ

Note that, apart from δβ↔β, this expression is the same as
(4.23). Using the same steps we can see that (taking
κ ¼ 8πG),

H1 ¼
β

2κ

Z
Ct

dθ ¼ β

2ð8πGÞ 2π ¼ β

8G
: ð5:23Þ

For the second term of the right-hand side,

H2 ¼ lim
r→∞

�
−
α

κ

Z
Ct

εIL0e0Ið0ecLD̄
∘
brcÞ~ε0b

�

¼ −
α

κ
lim
r→∞

Z
Ct

εIL0e0I0ecL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ē~ε0c

D̄
∘
brc|ffl{zffl}

∂brc
~ε0b

¼ −
α

κ
lim
r→∞

Z
Ct

~ε0b ~ε0c|fflffl{zfflffl}
δbc

ð∂brcÞrdθ

¼ −
α

κ
lim
r→∞

Z
Ct

ð∂crcÞ|fflffl{zfflffl}
1=r

rdθ

¼ −
α

2κ

Z
Ct

2dθ: ð5:24Þ

Using (5.22) and (5.24), we can see that the Hamiltonian
(5.21) is given by

H ¼ H1 þH2 ¼
β

2κ

Z
Ct

dθ −
α

2κ

Z
Ct

2dθ

¼ −
1

2κ

Z
Ct

ð2α − βÞdθ: ð5:25Þ

Let us summarize the situation. We have performed the
(2þ 1) decomposition, a la Witten, of the two actions we
considered in Sec. III. After performing the Legendre
transform, the Hamiltonian is given by the boundary term
of Eq. (5.25). Recall that we have introduced a “switch” α,
that selects between the totally Lorentz invariant action
(α ¼ 1) and the generalized Palatini action (α ¼ 0). The
first obvious observation is that the Hamiltonian (and
energy), depends on α and therefore, on the action we
started with. Let us now analyze both cases.
Let us first consider the case when α ¼ 1, and note that

we recover the results of [8],

H ¼ −
1

2κ

Z
Ct

ð2 − βÞdθ: ð5:26Þ

Following [5,8], the parameter β lies in the interval
β ∈ ½0; 2Þ. From here we can conclude that the energy

E ¼ 1

8G
ðβ − 2Þ ð5:27Þ

22The term [that comes from Eq. (5.19)],

Leading lim
r→∞

−
α

κ

Z
Ct

εILðtaeaIÞrcD̄
∘
becL ~εb

¼ lim
r→∞

�
−
α

κ

Z
Ct

εIL0e0Irc
�
−
β

2r
r−β=2∂br0ēc̄Lδc̄c

�
~ε0bþOðr−1Þ

�

¼ lim
r→∞

�
αβ

2κ

Z
Ct

εIL0e0I0ēc̄L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ē~ε0c̄

1

r
r−β=2rc̄∂br~ε0bþOðr−1Þ

�

¼ lim
r→∞

�
αβ

2κ

Z
Ct

1

r
r−β=2rc̄∂br~ε0c̄ ~ε0b|fflffl{zfflffl}

δbc̄

rdθþOðr−1Þ
�

¼ lim
r→∞

�
αβ

2κ

Z
Ct

r−β=2ðþ1ÞdθþOðr−1Þ
�

¼ lim
r→∞

�
αβ

2κ
r−β=22πþOðr−1Þ

�

¼ lim
r→∞

½Oðr−β=2ÞþOðr−1Þ� ¼ 0 iff β> 0 ð5:20Þ
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is bounded from below and above and lies within the
interval, E ∈ ½− 1

4G ; 0�. That is, all gravitational configura-
tions have a negative energy, and in particular, Minkowski
spacetime has an energy equal to EMink ¼ −1=ð4GÞ.
The other case, namely when α ¼ 0, yields an energy

Eα¼0 ¼ β=ð8GÞ, that is always positive, with a zero value
for the lower bound corresponding to Minkowski space-
time. In this sense one can observe that the energy found in
the canonical description realizes the choice made by the
authors of [5]. This is the main result of this article. Let us
now end this section with a few remarks.

(i) Note that in both our analysis and in the one given in
[8], the starting point is a well-posed action; the
Palatini action with boundary term and the Einstein-
Hilbert action with Gibbons-Hawking, term respec-
tively. Also, note that the addition of the boundary
term (3.2) is essential, within the first-order action,
to be equivalent to the Einstein-Hilbert action with
Gibbons-Hawking term. It is then not surprising that
the LIP action leads to the same expression for the
energy as in [8].

(ii) Even though both actions, SPB and LIP, lead to the
same classical equations of motion, the Einstein
equations of motion, they do not completely agree
at theHamiltonian level, since theydiffer by a constant.

(iii) It is important to emphasize the difference between
our result, where the Hamiltonian and therefore the
energy is completely determined by the Legendre
transform, in contrast with the covariant formalism
where one only gets the variation of the Hamiltonian
function, so the energy is only determined up to an
additive constant (4.27).

In the next part we shall perform a different (2þ 1)
splitting that follows the standard decomposition and
resembles the (3þ 1) case.

B. Barbero-Varadarajan’s approach

As was the case in Witten’s decomposition, we shall
begin with the well-posed manifestly Lorentz invariant
Palatini action,

SLIP½e;ω� ¼ −
1

2κ

Z
M

~εabceaIFI
bc −

1

κ

Z
∂M

eaIωI
b ~ε

ab

−
α

κ

Z
∂M

1

n · n
εIKLeaInKD̄

∘
bnL ~εab: ð5:28Þ

Using ~εabcεIJKeKc ¼2ee½aI e
b�
J , which implies eεLKMeaLe

b
K¼

~εabceMc . The well-posed Palatini action can be written

SLIP½e;ω� ¼ −
1

2κ

Z
M

eεLKIebLe
c
KFbcI −

1

κ

Z
∂M

eaIωI
b ~ε

ab

−
α

κ

Z
∂M

1

n · n
εIKLeaInKD̄

∘
bnL ~εab: ð5:29Þ

As we already mentioned, to make a standard (2þ 1)
decomposition, we assume the existence of a metric and
thus we can introduce a projector qba ¼ δba þ nanb which
projects down all the fields in their spacelike and normal
components, respectively. In particular we can decompose
ta ¼ naN þ Na.
To begin with, we have to use qba to project all the

dynamical variables appearing in the action. First we shall
decompose the integrand of the bulk term of the previous
equation,

eεLKIebLe
c
KFbcI ¼ eεLKIeaLe

d
Kδ

b
aδ

c
dFbcI

¼ eεLKIeaLe
d
Kðqba − nanbÞðqcd − ndncÞFbcI

ð5:30Þ

with qab the induced metric and na the normal to the 2-
dimensional Cauchy slices. Now using na ¼ ðta − NaÞ=N,
also EI

a ¼ qbaeIb andF
I
ab ¼ qcaqdbF

I
cd are the projections of e

and F to the Cauchy slice, and nK ≔ naeaK, then the
integrand of the bulk term becomes

eεLKIebLe
c
KFbcI ¼ eεLKI

�
Eb
LE

c
KF bcI −

2

N
Eb
LnKt

cFbcI

þ 2

N
Eb
LnKN

cF bcI

�
; ð5:31Þ

which implies that the decomposed bulk term is

−
1

2κ

Z
M

eεLKIebLe
c
KFbcI

¼ −
1

2κ

Z
M

eεLKI

�
Eb
LE

c
KF bcI −

2

N
Eb
LnKt

cFbcI

þ 2

N
Eb
LnKN

cF bcI

�
: ð5:32Þ

Now we shall decompose the boundary term

−
1

κ

Z
∂M

eaIωI
b ~ε

ab−
α

κ

Z
∂M

1

n ·n
εIKLeaInKD̄

∘
bnL ~εab: ð5:33Þ

We begin with the integrand of the standard boundary term,
eaIωI

b ~ε
ab,

eaIωI
b ~ε

ab ¼ δcaδ
d
b ~ε

abecIωI
d

¼ ðqca − nancÞðqdb − nbndÞecIωI
d ~ε

ab ð5:34Þ

but ~εab ¼ 2Nn½a ~εb�dt, then

eaIωI
b ~ε

ab ¼ N½qcaqdbecIωI
dðna ~εb − nb ~εaÞ

− qcanbndecIωI
dðna ~εb − nb ~εaÞ

− qdbnan
cecIωI

dðna ~εb − nb ~εaÞ
þ nancnbndecIωI

dðna ~εb − nb ~εaÞ�dt: ð5:35Þ
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Note that most of the terms vanish due to qcana ¼ 0 or by antisymmetry of the indices, the nonvanishing terms are

eaIωI
b ~ε

ab ¼ −N½qcanbndnb ~εa − qdbnan
cna ~εb�ecIωI

ddt: ð5:36Þ

Since na is the normal to the spacelike surfacesM (and the splitting in the boundary is compatible with the spacetime one),
nana ¼ −1. Also we use na ¼ ðta − NaÞ=N, EI

a ¼ qbaeIb and WI
a ¼ qbaωI

b, the integrand of the boundary term becomes

eaIωI
b ~ε

ab ¼ −N
�
EaI

1

N
ðtd − NdÞðnbnbÞωI

d ~ε
a −

1

N
ðtc − NcÞωI

decIðnanaÞ~εb
�
dt

¼ −ðnbnbÞ½tdωI
dEaI ~ε

a − NdωI
dEaI ~ε

a þ tcecIWI
d ~ε

d − NcecIWI
d ~ε

d�dt ð5:37Þ

which implies that the decomposed standard boundary term is

−
1

κ

Z
∂M

eaIωI
b ~ε

ab ¼ −
1

κ

Z
∂M

½tdωI
dEaI ~ε

a − NdωI
dEaI ~ε

a þ tcecIWI
d ~ε

d − NcecIWI
d ~ε

d�dt: ð5:38Þ

Now we decompose the integrand of the additional boundary term (3.2), 1
n·n ε

IKLeaInKD̄
∘
bnL ~εab,

1

n · n
εIKLeaInKD̄

∘
bnL ~εab ¼

1

n · n
εIKLecIδcanKδdbD̄

∘
dnL ~εab

¼ 1

n · n
εIKLecInKD̄

∘
dnLðqca − nancÞðqdb − nbndÞ~εab

¼ −
1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðEaItdD̄
∘
dnL − EaINdD̄

∘
dnLÞ~εaþðtcecID̄

∘
bnL − NcEcID̄

∘
bnLÞ~εb�dt ð5:39Þ

for the previous equation we used nc ¼ 1
N ðtc − NcÞ, na is normal to a spacelike surface so nana ¼ −1, D̄

∘
d is spatial so

qdbD̄
∘
d ¼ D̄

∘
d, and EI

a ¼ qbaeIb. Thus the decomposed boundary term [Eq. (3.2)] is

−
α

κ

Z
∂M

1

n · n
εIKLeaInKD̄

∘
bnL ~εab ¼

α

κ

Z
∂M

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL½ðEaItdD̄
∘
dnL − EaINdD̄

∘
dnLÞ~εa þ ðtcecID̄

∘
bnL − NcEcID̄

∘
bnLÞ~εb�dt:

ð5:40Þ

Using (5.32), (5.38), (5.40) and e ¼ ffiffiffiffiffiffi−gp ¼ N
ffiffiffiffiffiffijqjp ¼ NE with q the determinant of the induced metric qab onM and E the

determinant of Ea
I , we can rewrite the action (5.1) as

SPB½e;ω� ¼ −
1

2κ

Z
dt
Z
M
NEεLKI

�
Eb
LE

c
KF bcI −

2

N
Eb
LnKt

cFbcI þ
2

N
Eb
LnKN

cF bcI

�

−
1

κ

Z
dt
Z
∂M

½tdωI
dEaIε

a − NdωI
dEaIε

a þ tcecIWI
dε

d − NcecIWI
dε

d�

þ α

κ

Z
dt
Z
∂M

1

n · n
εIL½ðEaItdD̄

∘
dnL − EaINdD̄

∘
dnLÞ~εaþðtcecID̄

∘
bnL − NcEcID̄

∘
bnLÞ~εb�: ð5:41Þ

As in the Witten decomposition, we use (5.8) to rewrite the second term of the bulk part of the action,

NEεLKI

�
2

N
Eb
LnKt

cFI
cb

�
¼ EεLKI2Eb

LnK£~tω
I
b − EεLKI2Eb

LnKDbðt · ωÞI

¼ 2EεLKI½Eb
LnK£~tω

I
b þDbðEb

LnKÞðt · ωÞI� −Db½EεLKI2Eb
LnKðt · ωÞI�: ð5:42Þ

Then the action can be written
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SPB½e;ω� ¼ −
1

2κ

Z
dt
Z
M
½NEεLKIEb

LE
c
KF bcI þ 2EεLKIðEb

LnK£~tω
I
b þDbðEb

LnKÞðt · ωÞIþEb
LnKN

cF bcIÞ�

þ 1

2κ

Z
dt
Z
M
Db½EεLKI2Eb

LnKðt · ωÞI� −
1

κ

Z
dt
Z
∂M

½tdωI
dEaIε

a − NdωI
dEaIε

a þ tcecIWI
dε

d − NcecIWI
dε

d�

þ α

κ

Z
dt
Z
∂M

1

n · n
εIL½ðEaItdD̄

∘
dnL − EaINdD̄

∘
dnLÞ~εaþðtcecID̄

∘
bnL − NcEcID̄

∘
bnLÞ~εb�: ð5:43Þ

To find the Hamiltonian we need to calculate the momenta to perform the Legendre transformation,

Πb
I ¼

δL
δð£~tωI

bÞ
¼ 1

κ
EεLKIEb

LnK: ð5:44Þ

Then,

H½e;ω� ¼
Z
M
½ð£~tωI

cÞΠc
I − L�

¼ þ 1

2κ

Z
M
½NEεLKIEb

LE
c
KF bcI þ 2EεLKI½DbðEb

LnKÞðt · ωÞI þ Eb
LnKN

cF bcI�� −
1

2κ

Z
M
Db½EεLKI2Eb

LnKðt · ωÞI�

þ 1

κ

Z
∂M

½tdωI
dEaIε

a − NdωI
dEaIε

a þ tcecIWI
dε

d − NcecIWI
dε

d� − α

κ

Z
∂M

1

n · n
εIL½ðEaItdD̄

∘
dnL − EaINdD̄

∘
dnLÞ~εa

þ ðtcecID̄
∘
bnL − NcEcID̄

∘
bnLÞ~εb�: ð5:45Þ

Note that within this decomposition we have “more structure,” now we have three constraints

εLKIEb
LE

c
KF bcI ≈ 0; εLKIDbðEb

LnKÞ ≈ 0 and Eb
LnKF bcI ≈ 0; ð5:46Þ

instead of the two found by the Witten approach (5.17).
On the constraint surface we are left only with the boundary term,

H ¼ −
1

2κ

Z
M
Db½EεLKI2Eb

LnKðt · ωÞI� þ
1

κ

Z
∂M

½tdωI
dEaIε

a − NdωI
dEaIε

a þ tcecIWI
dε

d − NcecIWI
dε

d�

−
α

κ

Z
∂M

1

n · n
εIL½ðEaItdD̄

∘
dnL − EaINdD̄

∘
dnLÞ~εaþðtcecID̄

∘
bnL − NcEcID̄

∘
bnLÞ~εb�: ð5:47Þ

Let us now consider the asymptotically flat boundary conditions. The leading term of ðt · ωÞI ¼ 0 and also since D̄
∘
d is

spatial tdD̄
∘
dnL ¼ 0. So we are left with

H ¼ lim
r→∞

�
−
1

κ

Z
∂M

½Nd̄1WI
d̄
0EāIε

ā − tc0ecI1WI
d̄
εd̄ þ Nc̄0E c̄I

1WI
d̄
εd̄�

−
α

κ

Z
∂M

1

n · n
εIL½−0EaINdD̄

∘
dnL ~εa þ ðtc0ecID̄

∘
bnL − Nc0EcID̄

∘
bnLÞ~εb�þOðr−1Þ

	
: ð5:48Þ

In addition to the fall-off conditions on e and ω, now we have to take into account the behavior of the lapse N and shift Na

functions on the asymptotic region for time-translations (following [5,8]),

N ¼ 1þOðr−1Þ ð5:49Þ

Na ¼ Oðr−1−βÞ: ð5:50Þ

Note that in the asymptotic region the projections EI
a ¼ qbaeIb and WI

a ¼ qbaωI
b coincide with eIā and ωI

ā. With conditions
(5.49), (5.50) and considering the order of leading terms of e and ω: 1ωI

d̄
¼ Oðr−1Þ ¼ 1WI

d̄
, 0ec̄I ¼ Oðr−β=2Þ ¼ 0EāI, and

that εd̄ ¼ OðrÞ. Note that to first order the first and third terms in (5.48) decay as
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lim
r→∞

1

2κ

Z
∂M

Nd̄1ωI
d̄
0EāIε

ā

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−βÞOðr−1ÞOðr−β=2ÞOðrÞ ð5:51Þ

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−3β=2Þ ¼ 0 ð5:52Þ

and

lim
r→∞

1

2κ

Z
∂M

Nc̄0E c̄I
1WI

d̄
εd̄

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−βÞOðr−β=2ÞOðr−1ÞOðrÞ ð5:53Þ

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−3β=2Þ ¼ 0; ð5:54Þ

respectively. And the fourth and sixth terms decay as

lim
r→∞

α

κ

Z
∂M

1

n · n
εIL½0EaINdD̄

∘
dnL ~εa�

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−β=2ÞOðr−1−βÞOðr−1−β=2ÞOðrÞ

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−2βÞ ¼ 0 ð5:55Þ

and

lim
r→∞

α

κ

Z
∂M

1

n · n
εIL½Nc0EcID̄

∘
bnL ~εb�

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−βÞOðr−β=2ÞOðr−1−β=2ÞOðrÞ

¼ lim
r→∞

1

2κ

Z
∂M

Oðr−1−2βÞ ¼ 0: ð5:56Þ

Therefore, H can be written as

H ¼ lim
r→∞

�
−
1

κ

Z
∂M

½−tc0ecI1WI
d̄
εd̄�

−
α

κ

Z
∂M

1

n · n
εIL½tc0ecID̄

∘
bnL ~εb� þOðr−1Þ

	
:

As in the previous sections, if we want this Hamiltonian
to generate asymptotic time translations and therefore its
conserved quantity to be the energy, ta has to approach a
time-translation Killing vector field of the asymptotic flat
spacetime, which also translates in t being orthogonal toM
(corresponding to N → 1; Na → 0). In that case the pre-
vious expression coincides with (5.19) from.

Therefore, H can be written as

H ¼ lim
r→∞

�
−
1

κ

Z
∂M

½−tc0ecI1WI
d̄
εd̄�

−
α

κ

Z
∂M

1

n · n
εIL½tc0ecID̄

∘
bnL ~εb� þOðr−1Þ

	

¼ lim
r→∞

�
1

κ

Z
∂M

0e0I
1ω̄I

d̄

r
εd̄

−
α

κ

Z
Ct

1ffiffiffiffiffiffiffiffiffi
n · n

p εIL0e0Ið0ecLD̄
∘
brcÞ~εb

	
; ð5:57Þ

which is exactly the same term as (5.21), the one found by
the Witten’s decomposition. Therefore the Hamiltonian is
the same as (5.25) of the previous part,

H ¼ −
1

2κ

Z
Ct

ð2α − βÞdθ ¼ 1

8G
ðβ − 2Þ; ð5:58Þ

which is the same result we obtained for the Witten’s
decomposition. Note that at the end of the day, the result for
the energy is the same in both decompositions as expected,
this is due to the fact that at the asymptotic region the
direction of ta coincides with na, and also the lapse y shift
functions decay in such a way. This may not be true for
other conserved quantities such as the angular momentum,
but we shall leave the discussion to forthcoming works.

VI. DISCUSSION

In this work we have addressed the issue of defining
well-posed variational principles for first-order asymptoti-
cally flat (2þ 1) gravity, and their corresponding
Hamiltonian descriptions, in both the covariant and canoni-
cal formalisms. Of particular relevance was the issue of
recovering the Hamiltonian and therefore the energy as a
boundary term after performing the Legendre transform,
without the need to postulate extra boundary terms to
render the formalism consistent (as is the case in the Regge-
Teitelboim formalism [5,6]). As we have shown, this
question can be answered in the affirmative not for one,
but for two different actions, each of which yields a
different value for the energy of the spacetime. In turn,
this clarifies a tension that existed in the literature regard-
ing, say, the energy of Minkowski spacetime. One should
also note that this program has only been recently com-
pleted in first-order (3þ 1) gravity as well [19].
Let us now summarize our results. First, we proposed a

three-dimensional manifestly Lorentz invariant Palatini
action SLIP that is well posed under asymptotically flat
boundary conditions. As we have noted, the analogue of the
well-posed Palatini action in 4D [11], that we called SSPB,
is not manifestly Lorentz invariant, although it has a well-
posed action principle under the asymptotically flat boun-
dary conditions. This is so given that one has to make a
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partial gauge fixing in the boundary to make it invariant
under the residual gauge transformations. As we showed in
detail, by introducing an additional appropriate boundary
term (3.2), we can indeed define an action that is manifestly
Lorentz invariant and moreover, this action coincides with
the three-dimensional Einstein-Hilbert action with a
Gibbons-Hawking term. We derived the asymptotically
flat boundary conditions for the first-order variables, and
with these conditions we showed that the proposed action
SLIP has a well-posed variational principle, i.e., it is finite
and differentiable. Then, using the covariant and canonical
approaches we obtained an expression for the energy. In the
first case, the covariant formalism can at best yield an
expression for the variation of the energy. Thus, our results
are analogous to those in [5] where the Regge-Teitelboim
method was used for the second-order metric variables. In
the second case, using a canonical formalism, we could
directly compare our results with those in [8], where the
starting point is the Einstein-Hilbert action with Gibbons-
Hawking term, that is well posed under asymptotically flat
boundary conditions.
To summarize, we have two results: When we start with

the action SSPB, the corresponding boundary contribution
yields a positive energy in the interval ½0; 1=4G�. Thus,
Minkowski spacetime is assigned zero energy. When we
consider the manifestly gauge invariant action SLIP
obtained by the addition of the term (3.2), we recover
the results of [8]. Namely, in this case the gravitational
energy is always negative and contained within the interval
½−1=4G; 0�. Thus, Minkowski spacetime has a negative
energy equal to −1=4G.
Let us now end with some remarks regarding these

results.
(i) As is also standard practice in asymptotically flat

(3þ 1) gravity, we have focused our attention on the
gravitational action, without considering any par-
ticular matter content. This does not mean that our
considerations are restricted to the vacuum case. The
assumption that we have made, as is done in the
(3þ 1) case, is that the decay rates of matter fields
are stronger in such a way that there is no contri-
bution to the boundary terms of the action coming
from the matter fields. Thus, the Hamiltonian does
not depend explicitly on the matter fields.23 Thus,
the expressions for energy we have found are valid
for generic matter content (satisfying reasonable
energy conditions).

(ii) Let us compare our results here regarding the
different actions with the situation in (3þ 1) gravity.
In (3þ 1), the standard second-order action for

asymptotically flat spacetimes is given by the Ein-
stein-Hilbert bulk term of the form

R
M R plus a

boundary term of the form
R
∂MðK − K0Þ, where one

subtracts a nondynamical (infinite) term to make the
action finite (See, however [17] for a discussion of
the viability of this action). In the first-order for-
malism, the Palatini action plus a simple boundary
term [11], the analogue to our SSPB action, is already
finite and has been shown to be related, under certain
conditions to the finite second-order action [11]. In
(2þ 1) gravity, the action of the form

R
M Rþ R

∂M K
is already finite and does not need to be “renormal-
ized,” as shown in [8]. Here we have shown that the
totally gauge-invariant action SLIP is equal to the
Marolf-Patiño action

R
M Rþ R

∂M K. Moreover, just
as in the (3þ 1) case, the action SSPB that we
considered here is a “shifted” version of the Mar-
olf-Patio action. The difference with the (3þ 1) case
is that, in (2þ 1) dimensions, this nondynamical
“shift” is finite rendering both actions well defined,
while in the (3þ 1) case only one of them is viable.

(iii) In (3þ 1) gravity, several arguments strongly sug-
gest that the ADM four momentum of Minkowski
spacetime should vanish. On the one hand, there is
no combination of the fundamental constants of the
theory (for simple matter content) that has dimen-
sions of mass, so it would be unnatural to have a
nonzero value for energy of the vacuum configura-
tion. Even more, symmetry considerations suggest
that a Poincaré invariant configuration (in terms
of asymptotic symmetries) should have zero ADM
four-momentum. Otherwise, a nonzero ADM four-
vector would select a preferred (asymptotic) frame,
violating Poincaré invariance. In three dimensions,
none of these features exist. To begin with, the
gravitational constant G has dimensions of inverse
mass. Second, since the asymptotic metric is not that
of Minkowski spacetime but that of a cone (flat with
a deficit angle), translations are not a symmetry of
the asymptotic spacetime [9,10]. Thus, a preferred
frame is not, in principle, excluded. Given all this, it
is not surprising or completely unexpected that
Minkowski spacetime might have a nonzero value
for energy.

(iv) As we have mentioned, the asymptotic symmetry
group of AF (2þ 1) gravity is qualitatively different
from the (3þ 1) case. Two distinct lines of research
have been pursued to study the structure of this
group. In [10], conformal techniques were employed
to describe such symmetries. In [20] a different
strategy, motivated by work on AdS was put for-
ward. It would be interesting to take our Hamiltonian
description as a staring point, and systematically
study the structure of the asymptotic symmetries.
This will be left for a future publication.

23Recall that the situation is similar in (3þ 1) gravity. Even
when the expression for energy depends explicitly only on
geometrical fields, these depend through Einstein’s equations
on the matter content. Even more, the vacuum (2þ 1) case would
be trivial.
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(v) As was earlier noted [2], at the level of actions for a
compact spatial slice, the Einstein-Palatini action is
equivalent to a Chern-Simons theory for the group
ISOð2; 1Þ. They differ, precisely, by a boundary
term. The natural question is whether one can define
a consistent action by adding appropriate boundary
terms to the bulk Chern-Simons form. Furthermore,
one would like to study the same issues we have
considered here, and obtain the energy as defined by
that action. This shall be reported elsewhere [21].

(vi) In recent years asymptotically AdS spacetimes have
gained attention, in part because of the AdS=CFT
correspondence, which has been useful to relate
seemingly disconnected areas of physics. For in-
stance, in the quark-gluon plasma, some problems in
condensed matter and turbulence have been ad-
dressed using the tools developed in the gravitational
context [22,23]. One may consider possible exten-
sions of our work to the case of asymptotically AdS
spacetimes. In [24] the authors studied the well
posedness of the Palatini action with boundary term
under AdS conditions. However, in their analysis
they only consider the action, SSPB, that is not
manifestly Lorentz invariant and also they fix some
internal directions on the connection. A natural
extension of our paper is to analyze the manifestly
Lorentz invariant action, SLIP and the AdS asymp-
totic conditions with and without fixing any internal
direction, and check whether it is well posed or not.
Another interesting question that arises is whether
we can make a similar analysis for the asymptotic
symmetries of an AdS spacetimewith a deficit angle,
like those found in [25,26] where anti-de Sitter point
particles, which possess a deficit angle, are studied.
Finally, one would like to investigate any possible
relation between asymptotically flat and asymptoti-
cally AdS spacetimes, like the ones found in [20,27],
but for spacetimes with deficit angle. This discussion
is left for forthcoming works.
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APPENDIX A: ON THE NEW BOUNDARY TERM

As we commented on in previous sections, particularly
in Sec. III, the addition of the term (3.2),

Z
∂M

1

n · n
εIKLeI ∧ nKdnL ðA1Þ

has many advantages. It is necessary for the action to be
manifestly Lorentz invariant and it has a constant value
when evaluated on histories compatible with the asymp-
totically flat boundary conditions so it does not spoil
finiteness nor differentiability. The resulting well-posed
manifestly Lorentz invariant action is equivalent to the
Einstein-Hilbert action so we can fully recover previous
results obtained by means of the metric formulation. In the
appendices we shall prove these assertions.
As we already mentioned in Sec. III, nK is a spacetime

scalar that is an internal vector. We can define it by
nK=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ RaeaK where Ra is the spacetime unit normal

to the boundary24 that can either be na for the unit normal to
the spacelike surfaces or ra for the unit normal to the
timelike boundary, we have introduced a normalization
factor 1

n·n to allow freedom in rescaling nK , so we can use
any multiple of nK and the results will remain the same.
Since nK is a spacetime scalar, dnL is a one-form as well as
eI then the previous boundary term is the integral of a two-
form over a two-dimensional boundary.
For the more general case, when the boundary might

become null one needs to use densitized internal normals as
discussed in [18], such that the expressions do not diverge.
In the case treated here it is enough and more intuitive to
use just the nK .

1. New boundary term evaluated on asymptotically
flat boundary conditions

In this subsection we shall prove that the term (3.2) is
constant when evaluated on the boundary conditions. On
the boundary, the term (3.2) can be written as

Z
∂M

1

n · n
εIKLeI ∧ nKdnL ¼

Z
∂M

1

n · n
εIKLeaInKD̄

∘
bnL ~εab

ðA2Þ

¼
�
−
Z
M1

þ
Z
M2

þ
Z
I

�
1

n · n
εIKLeaInKD̄

∘
bnL ~εab; ðA3Þ

where we are considering the region M bounded by
∂M ¼ M1 ∪ M2 ∪ I , M1 and M2 are spacelike slices
and I is an outer boundary. Recall that we choose the

torsion-free flat connection D̄
∘
b, such that D ¼ D̄

∘
þ ω and

D̄
∘
b
0ēIa ¼ 0 and also that nk=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ RaeaK where Ra is

the spacetime unit normal to the boundary, which can either
be na for the unit normal to the spacelike surfaces or ra for
the unit normal to the timelike boundary. For the timelike
part,

24Note that we have extended the usual definition of nK ¼
naeaK for the Cauchy surfaces in the first-order formalism to
nk=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ RaeaK that allows, in principle, nK to be rescaled,

and now is extended also to include the timelike boundary.
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Z
I

1

n · n
εIKLnKeI ∧ dnL

¼
Z
I

�
εIKL

nKffiffiffiffiffiffiffiffiffi
n · n

p
�

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
−εIL

eaID̄
∘
b

�
nLffiffiffiffiffiffiffiffiffi
n · n

p
�

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
raeaK

~εab ðA4Þ

¼ −
Z
I
εILeaIðrcD̄

∘
becL þ ecLD̄

∘
brcÞ~εab ðA5Þ

¼ −
Z
I
εILeaIrcD̄

∘
becL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B1

−
Z
I
εILeaIecLD̄

∘
brc ~εab|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B2

: ðA6Þ

From the previous equation we have two terms, B1 and
B2. We shall analyze first B1, when evaluated on the
boundary the term becomes

B1 ¼ lim
r→∞

�
−
α

κ

Z
I
εIL0eaIrc

�
−

β

2r
r−β=2∂br0ēc̄Lδc̄c

�

× ~εab þOðr−1Þ
�

ðA7Þ

¼ lim
r→∞

�
αβ

2κ

Z
I
εIL0ēaI0ēc̄L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ē~εac̄

1

r
r−β=2rc̄∂br~εab þOðr−1Þ

�

¼ lim
r→∞

�
αβ

2κ

Z
I

1

r
r−β=2rc̄∂br~εac̄ ~εab|fflffl{zfflffl}

δbc̄

rdθdtþOðr−1Þ
�

¼ lim
r→∞

�
αβ

2κ

Z
I
r−β=2ðþ1ÞdθdtþOðr−1Þ

�

¼ lim
r→∞

�
αβ

2κ
r−β=22π þOðr−1Þ

�

¼ lim
r→∞

½Oðr−β=2Þ þOðr−1Þ� ¼ 0 iff β > 0 ðA8Þ

and B2 becomes

B2 ¼ lim
r→∞

�
−
α

κ

Z
I
εIL0e0Ið0ecLD̄

∘
brcÞ~εb

�
ðA9Þ

¼ −
α

κ
lim
r→∞

Z
I
εIL0e0I0ecL|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ē~ε0c

D̄
∘
brc|ffl{zffl}

∂brc
~ε0b

¼ −
α

κ
lim
r→∞

Z
I
~ε0b ~ε0c|fflffl{zfflffl}

δbc

ð∂brcÞrdθdt

¼ −
α

κ
lim
r→∞

Z
I
ð∂crcÞ|fflffl{zfflffl}

1=r

rdθdt ¼ −
α

2κ

Z
I
2dθdt: ðA10Þ

Therefore the value of the boundary term (3.2) when
evaluated in the timelike boundary and on the boundary
conditions becomes

Z
I

1

n · n
εIKLnKeI ∧ dnL ¼ B1 þ B2 ðA11Þ

¼ lim
r→∞

½Oðr−β=2Þ þOðr−1Þ� − α

2κ

Z
I
2dθ ðA12Þ

¼ −
α

2κ

Z
I
2dθdt: ðA13Þ

Since we are integrating over a finite time interval withM1

andM2 asymptotically time-translated with respect to each
other, the previous integral take a finite constant value.
Analogously, we can follow the same steps but for Ra ¼

na and check that the boundary term corresponding to the
spacelike surfaces is also constant. Thus, the whole
boundary term is constant when evaluated on the boundary
conditions.

APPENDIX B: ON THE EQUIVALENCE
BETWEEN SECOND-ORDER AND

FIRST-ORDER ACTIONS

It has been shown for the three-dimensional Einstein-
Hilbert action that the Gibbons-Hawking term is the only
term needed to make the variational principle well posed
[8]. Taking κ ¼ 8πG, the Einstein-Hilbert action with
Gibbons-Hawking term is

SEH-GH½g� ¼
1

2κ

Z
M

ffiffiffiffiffiffi
−g

p
Rþ 2

Z
∂M

ffiffiffiffiffiffi
−h

p
K ðB1Þ

with R the Ricci scalar, g the determinant of the spacetime
metric gab, h the determinant of the induced metric on the
boundary ∂M, and K the extrinsic curvature of the
boundary.
We shall prove, on the other hand, that the Lorentz

invariant well-posed Palatini action with boundary term,

SLIP½e;ω� ¼ −
1

κ

Z
M

eI ∧ FI

−
1

κ

Z
∂M

1

n · n
εIKLeI ∧ nKDnL; ðB2Þ

is in fact equivalent to the Einstein-Hilbert action with
Gibbons-Hawking term.
We study first the Einstein-Hilbert term, 1

2κ

R
M

ffiffiffiffiffiffi−gp
R,

considering that gab¼ηIJeaI e
b
J ,

ffiffiffiffiffiffi−gp ¼e, 2ee½ajI ejc�J ¼
~ηacfεIJKeKf , FIJ

ab ¼ ecIedJRacbd and FJK
ab ¼ FL

abε
KJ
L . The

bulk term,
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1

2κ

Z
M

ffiffiffiffiffiffi
−g

p
R ¼ 1

2κ

Z
M

ffiffiffiffiffiffi
−g

p
|ffl{zffl}

e

gab|{z}
ηIJeaI e

b
J

Rab|{z}
Racbdgcd

¼ 1

2κ

Z
M

ee½ajI ebIRacbde
jc�
J edJ

¼ 1

2κ

Z
M

1

2
2ee½ajI ejc�J|fflfflfflfflffl{zfflfflfflfflffl}
~ηacfεIJKeKf

ebIedJRacbd

¼ 1

2κ

Z
M

1

2
~εacfεIJKeKf e

bIedJRacbd|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
FIJ
ac

¼ 1

2κ

Z
M

1

2
~εacfεIJKeIf F

JK
ac|{z}

FL
acε

KJ
L

¼ 1

2κ

Z
M

1

2
~εacfεIJKε

KJ
L|fflfflffl{zfflfflffl}

−2δLI

eIfF
L
ac

¼ −
1

2κ

Z
M

~εacfeIfFacI ðB3Þ

¼ −
1

κ

Z
M

eI ∧ FI: ðB4Þ

Note the change in sign when we write down the Palatini
action defined over an arbitrary Lie group (see,
e.g., [14]).
Now we shall see the relation between the Lorentz

invariant boundary term (3.4) introduced in Sec. III and the
Gibbons-Hawking term. We begin with the Lorentz invari-
ant boundary term,

Z
∂M

1

n · n
εIKLeI ∧ nKDnL

¼
�
−
Z
M1

þ
Z
M2

þ
Z
I

�
1

n · n
εIKLeI ∧ nKDnL ðB5Þ

where our integration region M is bounded by
∂M ¼ M1 ∪ M2 ∪ I , M1 and M2 are spacelike slices
and I is a family of timelike cylinders we used to approach
spatial infinity.
For the timelike boundary consider nL=

ffiffiffiffiffiffiffiffiffi
n · n

p
≔ raeaL,

ra the normal to the cylinder, Dcra ¼ ∇cra where ∇ is the
Levy-Civita connection, γab is the induced metric on
the timelike boundary and that εIKLebIedKeaL ¼ e~εbda.
The term on the timelike boundary is

Z
I

1

n · n
εIKLeI ∧ nKDnL

¼
Z
I
εIKLebI

nKffiffiffiffiffiffiffiffiffi
n · n

p Dc

�
nLffiffiffiffiffiffiffiffiffi
n · n

p
�
~εbc

¼
Z
I
εIKLebI

nKffiffiffiffiffiffiffiffiffi
n · n

p DcðraeaLÞ~εbc

¼
Z
I
εIKLebI

nKffiffiffiffiffiffiffiffiffi
n · n

p
h
ra DceaL|fflffl{zfflffl}

¼0 byEOM

þ eaLDcra
i
~εbc

¼
Z
I
εIKLebIðrdedKÞeaLDcra ~εbc

¼
Z
I
εIKLebIedKeaLrd∇cra ~εbc

¼ −
Z
I
eð~εbdardÞ|fflfflfflffl{zfflfflfflffl}

−εab

∇craεbc
ffiffiffiffiffiffi
−γ

p

¼ −
Z
I

ffiffiffiffiffiffi
−γ

p ∇crað−~εab ~εbcÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
δca

¼ −
Z
I

ffiffiffiffiffiffi
−γ

p ∇ara: ðB6Þ

Now we can recall that we define the extrinsic curvature,K,
of a surface (in this case the timelike cylinder) as the trace
of Kb

a ¼ ∇arb where rb is the normal to the surface, then
K ¼ γabKab ¼ Ka

a ¼ ∇ara. With this at hand we can see
that, in fact,

Z
I

1

n · n
εIKLeI ∧ nKDnL

¼ −
Z
I

ffiffiffiffiffiffi
−γ

p ∇ara ¼ −
Z
I

ffiffiffiffiffiffi
−γ

p
K; ðB7Þ

whereK is the extrinsic curvature of the timelike boundary.
Following an analogous derivation for the spacelike sur-
faces M1 and M2, we can easily see that

Z
M1;2

1

n · n
εIKLeI ∧ nKDnL ¼ −

Z
M1;2

ffiffiffi
q

p ∇ana

¼ −
Z
M1;2

ffiffiffi
q

p
k; ðB8Þ

again, with q the determinant of the induced metric on
M1;2, na and k its normal vector and extrinsic curvature,
respectively. With this at hand we can see that
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Z
∂M

1

n · n
εIKLeI ∧ nKDnL

¼ −
�
−
Z
M1

þ
Z
M2

� ffiffiffi
q

p
k −

Z
I

ffiffiffiffiffiffi
−γ

p
K

¼ −
Z
∂M

ffiffiffiffiffiffi
−h

p
K: ðB9Þ

From (3.4) in Sec. III, we can see that

1

κ

Z
∂M

ffiffiffiffiffiffi
−h

p
K ¼ −

1

κ

Z
∂M

1

n · n
εIKLeI ∧ nKDnL ðB10Þ

¼ −
1

κ

Z
∂M

eI ∧ ωI −
1

κ

Z
∂M

1

n · n
εIKLeI ∧ nKdnL: ðB11Þ

This result coincides, apart from the second term of the
right-hand side of the last equation, with that given in [24]
when the cosmological constant is zero. In [24] they use the
Gaussian (normal) coordinates and also they consider
particular internal directions for the spin connection.
This “fixing” of the internal directions is reflected in the
fact that the second term of the right-hand side in (B11) is
not present in their action.
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