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The inspiral and merger of supermassive black hole binary systems with high orbital eccentricity are
among the promising sources of the advanced gravitational wave observatories. In this paper we compute
gravitational waveforms in the frequency domain to the first post-Newtonian order, emitted by compact
binary systems with arbitrary eccentricity. Our results are fully analytic, ready-to-use expressions of the
waveforms in terms of a suitable generalization of Hansen coefficients known from celestial mechanics.
Secular terms induced by the eccentricity are eliminated by introducing a suitable phase shift. The obtained
waveforms have a rather simple structure, greatly facilitating their use in applications.
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I. INTRODUCTION

Compact binaries (i.e., black holes, neutron stars, and
white dwarfs) with nonvanishing eccentricity are promising
gravitational wave (GW) sources. Stellar mass compact
binaries that are driven by GW emission may be detected
within the sensitivity band of the forthcoming gravitational
wave observatories [1] advanced LIGO [2] and Virgo [3].
The source signals will be visible by these detectors for a
longer time period because of their increased sensitivity,
hence the need for an accurate description of both the
orbital evolution and the emitted GWs of these systems. In
the adiabatic inspiral regime of binary systems when the
inspiral time scale is much larger than the time scale of the
orbital evolution the perturbative post-Newtonian (PN)
description can be applied to high accuracy [4]. For isolated
binaries, radiation reaction drives the system toward the
circularization of the orbit leading to the disappearance of
any initial eccentricity [5]. The evolution of circular sources
is extensively described in the literature, and by now the
theoretical predictions of compact binaries with negligible
eccentricity have even reached the level of fourth order in
the PN approximation; see, e.g., [6].

In spite of the general circularization of binary orbits due
to GW emission, when the interaction of binaries with their
environment is relevant they can remain on orbits with non-
negligible eccentricity even towards the end of their
evolution. For example, there are indications that binaries
in dense galactic nuclei [7,8], embedded in a gaseous disk
[9,10] can remain eccentric until the end of their inspiral.
Moreover, the interaction of supermassive black hole
binaries with star populations [11,12] and the Kozai
mechanism and relativistic orbital resonances in hierarchial
triples [13—16] can also increase orbital eccentricity.

A standard reference to the description of the 1PN
corrected Kepler motion is the work of Damour and
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Deruelle in Ref. [17], where three eccentricities, (radial,
time and angular eccentricity) have been introduced. With
the help of the Damour-Deruelle parametrization the
evolution of the semi-major axis and the radial eccentricity
due to radiation reaction has been computed by Junker and
Schifer in Ref. [18]. Recently, the explicit time evolution of
the semi-major axis and the radial eccentricity has been
given in Ref. [19], while the explicit phase of eccentric
binaries can be found in Ref. [20]. These results have been
generalized for the time and phase functions in Ref. [21].

In matched filtering the measured signal output of the
detectors is cross-correlated with theoretical waveform
templates. The presence of orbital eccentricity influences
significantly the properties of the gravitational waveforms,
resulting in the decrease of their detectability when using
circular templates. Leading-order PN gravitational wave-
forms for binaries with eccentricity were presented in
Ref. [22]. A rather complete, explicit description of the
time-dependent waveform to leading PN order was given in
Ref. [23], making use of the Fourier-Bessel expansion for
the unperturbed motion. Frequency domain waveforms for
arbitrary eccentricities with the inclusion of the relativistic
pericenter precession effect were first presented in [21].
In Ref. [21] the parameter estimation accuracy for leading
PN-order waveforms with different initial eccentricities
using the Fisher matrix method has been analyzed, taking
into account the evolution of the orbital frequency and
eccentricity due to the radiation reaction. It has been shown
in [21] that the precision of source localization improves
significantly for supermassive black hole binaries when the
eccentricity is properly taken into account. Recent works
have shown that even if Fisher matrix analysis remains
quite robust for high SNR signals, sources that may be
detected by ground based detectors may require a different
approach, e.g., Bayesian analysis, [24-26].
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The first post-Newtonian eccentric waveforms with a
Newtonian type parametrization for bound orbits has been
computed quite some time ago by Wagoner and Will [27].
In the parametrization used in Ref. [27], secular terms have
appeared, however, in the gravitational waveforms, which
had to be eliminated in the 1PN-order terms. Using the
Damour-Deruelle parametrization, secular terms can be
eliminated with the help of the eccentric anomaly param-
eter as implemented in the work of Ref. [18]. Gravitational
waveforms with eccentricity in the Fourier domain have
been given up to 1PN order using the Damour-Deruelle
parametrization [28] and more recently to 2PN order in
Ref. [29]. 3PN instantaneous contributions to the spherical
harmonic modes of gravitational waveforms for binary
systems in general orbits were given in [30]. Moreover, for
sources entering the sensitivity band of the advanced
detectors with small eccentricities (¢ < 0.4) the postcircu-
lar or small-eccentricity approximation can also provide
ready-to-use Fourier-domain waveforms for data analysis
of eccentric inspirals [31,32].

In data analysis small residual eccentricities e < 0.05
have negligible effects and a circular search is satisfactory
for the detection of such binaries [33,34]. In the case of
higher eccentricities, searches that specifically target eccen-
tric sources will be necessary. For low-mass (<10M )
spinning and eccentric (e < 0.6) compact binary coales-
cences, however, seedless clustering provides a robust
and computationally efficient method for their detection
[35,36]. Another important sources of GWs are highly
eccentric binaries formed, e.g., through various n-body
interactions. Such binary systems emit a sequence of
largely isolated gravitational-wave bursts prior to merger.
As existing GW searches are not well suited to detect these
signals, searches for excess power over an ensemble of
time-frequency tiles have been developed [37,38]. This
method achieves substantially better sensitivity to eccentric
binary signals than existing localized burst searches and
allows for model-independent tests of Einsteins theory in
the high-velocity, strong-field regime.

The present work builds on our previous results in [21];
in this paper we compute ready-to-use eccentric 1PN
waveforms in time and frequency domain using the sta-
tionary phase approximation (thereafter, SPA). We use the
generalized true anomaly parametrization, which has the
advantage that the solution of the equations of motion can
be expressed with two eccentricities, instead of three.
Secular terms appearing in the waveforms are eliminated
by the use of the Poincaré-Lindstedt method in [39] and the
introduction of the drift true anomaly parameter, similar
to that in Ref. [40]. This new type of parametrization can
also be useful in higher orders of the PN expansion. The
resulting waveforms have a remarkably simple, compact
analytic structure, making them quite suitable for the
application in gravitational-wave parameter estimation
studies. It is clearly important to extend the leading-order

PHYSICAL REVIEW D 92, 044038 (2015)

Fisher-type parameter estimation of the binary system to
the full 1PN order, where it is essential to maximally
simplify the gravitational waveforms. Our results can be
used as a starting point for such a full 1PN-order Fisher-
type analysis.

We present fully analytical expressions for the evolution
of the orbital frequency and of the radial eccentricity up to
1PN accuracy. More specifically, we derive explicit 1PN
formulas for arbitrary orbital eccentricities, including the
radiation reaction terms. The solution up to 1PN order is
given in terms of Appell functions, generalizing slightly
some results in Ref. [21]. The time and phase functions
appear explicitly in the 1PN-order frequency domain
gravitational waveforms.

In order to express the gravitational waveforms with
arbitrary eccentricity as simply as possible, we have made
extensive use of the Hansen expansion applied in celestial
mechanics. In the present work we have also given a
(slight) generalization of the venerable Hansen coefficients
up to 1PN order. The use of a Hansen-type expansion was
natural because of the appearance of different eccentricities
in the radial parametrization and the time-evolution equa-
tion (i.e., the Kepler equation). In the course of the present
work we also had to extend the standard Hansen expansion
to allow for cases, when the phase is not an integer multiple
of the drift true anomaly. Our work focuses on the explicit,
nonsecular, ready-to-use, 1PN-accuracy eccentric wave-
forms, which can be applied in Fisher method for gravi-
tational waves data analysis.

The paper is organized as follows. We introduce the
generalized true anomaly parametrization and the original
1PN waveform in Sec. II. Section III contains the extension
of the Hansen coefficients to 1PN order and the Fourier
domain SPA waveforms. The radiation reaction problem
and the evolution of the time and phase functions to 1PN
order are given in Sec. IV. Some of the technical details are
presented in Appendixes A-E, i.e., tensor spherical har-
monics (A), Damour-Deruelle parametrization (B), Hansen
coefficients (C), and parametrization of the waveforms
(D-E).

II. PARAMETRIZATION OF THE 1PN DYNAMICS

In this section we describe the 1PN orbital dynamics of
compact binaries. Moreover, we compute the full eccentric
1PN waveform with the use of the generalized true anomaly
parametrization ¢» without the appearance of secular terms
in the expressions. The time-domain waveforms are given
with the application of the generalized Hansen expansion.
Our aim is to express the full analytic eccentric frequency-
domain waveform up to 1PN order.

The equations of motion of the Newtonian and 1PN
dynamics is given by [17]. The radial and angular motion
can be separated in the leading order, so the Euler-Lagrange
equations are
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d 2D, D; D
(é) =D+ 2+ S+ 7 (1)

a2 @)
where r is the relative distance, 0 is the azimuthal polar
angle in the orbital plane and the constants D|_g depend on
the conserved quantities of the perturbed motion such as the
energy and the magnitude of the orbital angular momen-
tum, see Appendix B. The constants D;_3, Ds contain
Newtonian and 1PN terms while D, and Dg are purely 1PN
corrections.

In the following we consider the Euler-Lagrange equa-
tions and give their solution with the generalized true
anomaly similarly to the Damour-Deruelle parametrization.
We introduce the generalized true anomaly parametrization
¢ (denoted by y in [41]) as

ar(l - e%) 3
1 +ecosgp’ (3)
where a, is the semi-major axis and e, is the radial
eccentricity. This parametrization has the same form as
the standard, Keplerian one, with the orbital parameters
a,, e,, containing only the leading-order (Newtonian)
terms. The radial motion can be computed using the true
anomaly parametrization, so we obtain a Keplerian equa-
tion for the 1PN dynamics [17]:

n(t—ty) = u—e,sinu= M, (4)

where n, u and M are, respectively, the mean motion,
eccentric and mean anomaly parameters. We introduce yet
another parametrization, where only two eccentricities
appear, and the evolution of the azimuthal angle € is still
governed by a simple equation. The relations between u
and ¢ is given by

¢ l+e, u
tan — = tan—. 5
My =16, 2 )

The angular evolution of this Keplerian motion can also be
expressed with the help of the generalized true anomaly
parameter. From Egs. (3) and (4) the time evolution of the
true anomaly up to 1PN order is found to be given as

naz(l —e)*?

(1 —ee, + (e, —e,)cos )’

The integration of Eq. (6) with the help of (3) leads to the
relation

b=

(6)

0—6y=(1+4+k;)p+Kysing, (7)
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where we have introduced the 1PN-order quantities,

3GM Gue,

o= a,(1—e?)’ © = 2¢%a,(1—e?)’

(8)

In our formulas G and ¢ denote, respectively, the gravi-
tational constant and the speed of light, m, m, are masses
of the compact binary, M = m; + mj, is the total mass, and
1= m;my/M is the reduced one. In this parametrization
only radial and time eccentricities (e,, e¢,) appear while
angle eccentricity does not. In Egs. (4) and (7) t, and 6, are
integration constants, and in our calculations we set
t() — 90 — O

Based on Ref. [42] the gravitational radiation field up to
1PN order can be written as

l/ AD, [Z I 2mT“EJ‘Z’zm
L
B2.2m : @) E2.3m
Z S2mT'j + > LanTi

m=—2 m=-—3

4@
(Z S3mT§2-3m+ > I4mT52'4’">} (9)

m=-3 m=—a4

TE2,kn1

In Eq. (9) D; denotes the luminosity distance, and

TE2km are the tensorial electric and magnetic scalar

harmonics which are given by Eq. (2.30d) in [42]; see

(k) (k)
Appendix A. The quantities [ ,,, S, are the kth time

derivatives of the mass and current multipole moments.
The explicit form of these multipoles was given by Junker
and Schifer in 1PN order with eccentric anomaly u in
Refs. [18] and [28]. Later, in [29] the authors have
(k)
computed the explicit time-dependent multipoles 1,

(k)
and S, up to 2PN.
The polarization states up to 1PN order are expressed as

h+,><(¢) - hﬁfx (¢) + hljx((p) + hiNx (¢)’ (10)
with the Newtonian A% , (¢), the half PN order h¥ (),
and 1PN hfN () contributions (see Appendixes D and E).
Thereafter in this section, we omit the +/x notation of the
polarization states. We parametrize the 1PN gravitational
waveforms using the generalized true anomaly, ¢, and the
drift anomaly, ¢’, as

hPN Z Z

0/=0,24

L cos mep + s&! sin mep) cos I

+ (c$t cos mep + s3! sin mep) sin I¢'], (11)
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where the coefficients c¢!, s¢!, ¢3!, 53l ¢, = ¢ and s, =

539 depend on the radial eccentricity e,, the mass param-
eters M, u, nn and the two polar angles ® and ® of the line of
sight (see Appendix E). The drift anomaly parameter [40],
¢, is defined as

¢ = (1+x1)0. (12)

The reason to introduce the drift anomaly parameter is to
avoid the known secular terms appearing in the eccentric
waveforms [27], when simply expanding up to 1PN order
the functions of the angle @ in terms of ¢, and instead we
use the following expansion:

cos@ = cos¢d’ —k,singsing’, (13)
sinf = sin¢’ + k, singcos ¢'. (14)

The above relations will be used to eliminate secular terms
in the waveforms. The dependence on the drift anomaly, ¢,
of the waveforms h™(¢) can be easily eliminated by
Eq. (12); however, this leads to the appearance of non-
integer harmonics in the arguments.

To obtain the time dependent waveform we express the
trigonometric functions of the generalized true anomaly as

cos A = ZCﬁ cos kM, sin g = ZSQ sin kM,
k=0 k=0

(15)

where 1 € R and C}, S} stand for the (generalized) Fourier-
Bessel coefficients. We note that in the unperturbed
Keplerian case, e = ¢, = ¢, = ¢y, cos A¢p and sinA¢ can
be expressed in terms of cos ¢ and sin ¢. Let us recall the
classical result for Keplerian motion; see, e.g., [43]:

2(1 —€?

cos¢p=—e+ )iJk(ke) coskM, (16)
=1

singg =2V'1 —ezzL:e)sinkM, (17)
k=1

where the prime denotes the derivative with respect to the
eccentricity e. This classical expansion gets more and more
complicated for increasing values of A.

In the following, we introduce Hansen coefficients and
their extension to 1PN order in the next chapter.

III. GENERALIZATION OF HANSEN
COEFFICIENTS

In celestial mechanics Hansen expansion has been well
known since the 19th century (see Appendix C). In our
description of time-dependent waveforms there appear
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Hansen coefficients and it is important to extend the
Hansen expansion up to 1PN order. Hansen coefficients
X" are introduced in the expansion

(2) ooty

In this section n and k denote indices, not to be confused
with the mean motion and pericenter drift in Sec. II and
Appendix B. The definition of Hansen coefficients is

= Z X3 exp(ikM). (18)

k=—o0

X 1 <£>nexp(im¢—ik/\/l)d/\/t. (19)

i

In the waveforms there appear trigonometric functions
of m¢, where m is not an integer parameter. So we have
to generalize the formula of the Keplerian Hansen
coefficients [44],

X0 = (11 ) "lii<n m+1)
s=0

—0 =0
<n+m—|—l)
X

where p=k—m—s+1t, f=(1—V1—e?)/e, and the
function 7,(z) is given by the contour integral

1 |
i ]{ i exp = ) gy )
2wl

—p)* 1 ,(ke), (20)

Ip(z) =

For an integer p (i.e., m is integer) I,(z) = J,(z), where
J,(z) is the Bessel function (e.g., for the Newtonian
waveform see [21]). When p is noninteger, /,(z) =
J,(2) + g,(z), where g,(z) is the correction integral [45]

_sinprm

g,(z) = /exp —pu —zsinhu)du,  (22)
0

for R(z) > 0.

Due to the appearance of different eccentricities, we have
to generalize Hansen coefficients in a different way for the
IPN order. The expressions for r/a and the evolution of the
mean anomaly, Eq. (C3), contain PN corrections,

- = (1+ﬁ%)_1(1_/)7ry)(1_/}ry_l)’ (23)
e ] (24)

where we have introduced the complex quantity y = exp iu
and 3, = fp(e,); see Appendix C. Then the integrand is
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1 2\—n ’
(X7 )ex :( +2ir—) /ym_k(l —py
—1
x (1= By)=™ <1 —Ly;y ))
wexpre0 =y 4 (25)

2

which can be extended in the form of an infinite sum. The
generalized Hansen coefficients up to 1PN order are

S

s=0 =0

(Xe")en =

t

n-+m L~
x( ). 2o
with the notation
jp(ke,) =

1y (ke)) =2 [Ty (key) + Ty (ke (27)

We note that when m is an integer, 1, (ke,) can be written as

I,(ke,) = <1 _ %) 7, (ke,) + Si“]gr’ 7). (28)

In the waveform expressions, we introduce the coefficients
(omitting the +/x notations for the polarizations):

c4 + s4

Cit =IO (29)
c2 52 c2 + 52

C$2 _ Cm :'Z:Sm , Srinz — Cm 5 S ) (30)

The explicit time-dependent waveforms, Eq. (11), become

4
RPN (1 ZZ (Ccos kM + St sinkM),  (31)

m=0 k=0

where

Czl — C;14 CZ’:P + C;&n-4 Ckm4+ + C;f ka'lzf + C,Tf Cz12+ + Com CZ"7
(32)
St = S48

+ SEAST 4 S2S + SIS + s, S

(33)

Moreover, CA=Xy", CﬁzX%AJrX(i‘,i and Sing"l—X%,
where X}Z”1 are the generalized Hansen coefficients. These
waveforms have a simple compact structure compared to
the corresponding expressions in [28].
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The waveform in Fourier space can be described in the
stationary phase approximation of the time-dependent
waveform (see Egs. (B2) and (B3) in the Appendix B of
[21]). Taking an arbitrary harmonic function A(7) cos ®(z),
where the conditions A/ A < ® and & < &* hold for the
amplitude A(7) and phase ®(t), the Fourier transform of the
function is written as

FLA®) sin (7)]
= A[f(T)] WCXP [((V[f(T)] + =/4)],
(34)
F[A(1) cos (1)]
= A[f(T)] WCXP [((Y[f(T)] —=/4)].
(35)

Here V[f(7T)] = 2zf(T)tlv(T)] — ®[v(7T)] is the phase
function, v = n/(2x) is the orbital frequency, 7 is the
saddle point, and the functions #[v(7)] and ®[v(7)]
appearing in the above expressions can be derived from
the leading-order equations for gravitational radiation by
Appell functions (see the Appendix in [21]). It is necessary
to add that here the phase and frequency do not split into a
triplet due to pericenter precession, as happened when the
precession was separately treated as in Ref. [21]), because
it is taken into account in the full 1PN equations of motion.
Therefore, the 1PN waveform depends on the single
frequency f and phase U, =2zf(7)t[T;] — [T,
The saddle points 7 are computed by the SPA condition
|W[f(7)]| = 0. The eccentric waveform is a trigonometric
function of kM [see Eq. (15)], and the condition f = kv
holds. Accordingly, the waveform, Eq. (31), in the Fourier
space becomes

HEN(f)

= (4ki)~!/?

Mp
gk

[Co™exp(iW_) + ST exp(iV,)],

i
(=}
i
(=]

(36)

2N (f)

M»
[]s

= (4ki)~/? [Ci™exp(iV_) + S exp(iV, )],

i
[=]
1
S

(37)

where the phase functions are W, = W, + /4. As a next
step we shall compute the phase ®(7) and time #(7)
functions appearing in the 1PN waveform.
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IV. RADIATION REACTION TO 1PN ORDER

To leading order, the averaged radiative change of the
Newtonian semimajor axis a and eccentricity e is governed
by the quadrupole formula; see Peters [5]. Using Kepler’s
third law, the semimajor axis a can be replaced by the
orbital frequency v to have the following relations:

_ 48(GM )33 (2m)! /3 ( L

37
— 2 -4 , 38
N TS5 — &) e +966) (38)

_ 304(GM,)3 (283 L L
“\" T304

et 2
ey = 15c5(1 _ 62)5/2 + e > (39)

Here M, = Mn?/> is the chirp mass of the binary system
and # =pu/M, is the symmetric mass ratio. Peters’s
equations, (38) and (39), can be integrated and the solution
for the phase and time functions can be expressed in terms
of Appell functions [21].

The averaged losses of the radial orbital parameters due
to gravitational radiation reaction up to 1PN order is given
by Junker and Schifer [18]. The relation between the
orbital frequency, v, and the semi-major axis, a,, to 1PN
order can be written as

B (GM)1/3

(2zGMv)*3
ar=-——"—"773 — |
(27v)?/3

32 (40)

1+ (n-9)

The contributions to a, can be found from D, D, defined
by Egs. (B7) in Appendix B. The time evolution of v and e,
up to 1PN order can be written as

v=1Uy+Upy, (41)
é:éN+épN, (42)
with
G /3 (20)13/3
iy = M) (2m1) [16(1273 — 9241)

560c" a3 (1 — €)%
— 24(2561 + 22545)e> — 42(3885 + 158n)e*
— (13147 — 1036n)e°], (43)
1
— 223(/)\;;)27//53((12iv22(;/7 3/2 ¢[8(26493 — 225401)
—60(11598 + 100177)e? — (168303 — 16940n)e*],
(44)

where Egs. (35) and (36) of Ref. [18] and Eq. (40) have
been used. From now on the subscript r of from e, and a,
will be omitted. Thereafter, we determine the perturbative
solution to the above equations up to 1PN order.
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The relation between v and e from Egs. (41) and (42) up
to 1PN order is

dv_ iy, Dex_Dnérs, (45)
de ey ey ey
The general solution in the Newtonian order, [i.e., without
the two last terms in the right-hand side of Eq. (45)], is
given as

Ce=18/19(1 — ¢2)3/2
by = ° 121 (2 130?5 2299’ (46)
(1 +m€ ) /

where C is an integration constant. For later use we rewrite
Uy as

vy = vgo(e)/o(ey), where
121 .\ —1305/2299
a(e) — e—18/19(] _ 62)3/2 <1 +62>

304 (47)

where v, and e are the initial values for vy (ey) = vy. The
general solution of Eq. (45) can be written as

v=(by + bpy)~/2, (48)
where by and bpy are given as

12/19 121 ,2870/2299
_ Ce (1+4355¢€%)
N = .
1—¢e?

(49)

_ (2zGM,)*3 1+£e2 870/2299
PN 251 = ) 304
|:Bl + 3262 + B3€4
(14—%62)3169/2299
870 13 32 121 ,
—’_’_;__ B 2 9 50
2 '<2299 19°19 304e> 46] (50)

together with the coefficients

1153 89
1 = ﬁ - m’?,
2293125927 60619
27 77558758080 | 6984476
86928802699 129501097
3= T 93871357440 670509696
703785517 49913

= - . 51

47 4014235680 735208 (1)
Here ,F,(a,f.y;z) is the hypergeometric function [47].
These general solutions for v(e) and a(e) are consistent
with the 1PN Kepler equation (40). The evolution equa-
tions due to radiation reaction for ¢ and ¢ up to 1PN order
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imply that the solution for the semimajor axis, a(e), is
proportional to by + bpy.

Let us identify the Newtonian expression b;f/ ’=
vy = Cyo(e), where Cy = vy/06(ep). The integration con-
stant C has leading-order corrections at 1PN order; there-
fore, we have to require the equation v(eg) = v to hold, in
order to get the correct perturbative solution to 1PN
accuracy for the orbital frequency v, Eq. (48), which can
be written as

=gy 1434 (oevten = (Fe5) oevte)) |

(52)

Then our aim is to compute the time and phase functions,

e de
l—lcz/o m, (53)
oo [HE)
d—d, =2 A é(e/)d, (54)

up to 1PN order. The integrals in the Newtonian case are
given in Appendix A of [21]. Such type of integrals can be
given by extended hypergeometric functions, i.e., Appell
functions [47] and similar integrands appear in 1PN order.
Then we can compute the integrand of time function to 1PN
order as

2)=3/2

( ) 5C3A(2) /e 6/17/19(1 —e
t—1t)py = —
o T6GM > Jo (1 + 125 ¢2)=1181/2299

Bl + Bzelz —|— B3el2
(1 + 121 ¢72)3169/2299
870 13 32 121 ,\-
F T T sy T A 12 B 2 d/
T2 l<2299 19°19° " 304°¢ > 46] ¢
— 405 bpy(eo) (t = to)y, (55)

where we have introduced the notation Ay = o(eg)/(27vy)
which depends on the initial eccentricity and orbital
frequency and (7 — 7..)y is the integrated Newtonian-order
time function, and the parameters B; are given as

B o _2M7 93,
1216 304"
i 4092801021 202947069
2= T7955653280 223503232
i 2398183171 1154703
3= 77822613120 T 3492238 "
. 703785517 149739

4~ 1338078560 735208 (56)
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The numerical values of the parameters, B, for equal-mass
binaries (7 = 1/4) are: B, = —1.95, B, = —1.87,B; =
—0.22 and 1§4 = (0.48. Note that in Eq. (55), the last term
is originating from the solution of the orbital frequency
in Eq. (52). As one can easily see (e.g., from a suitable
integral representation [47]), the hypergeometric func-
tion, ,F,(a,b,c;—z), is monotonously decreasing for

a€R,{b,c—b,z}>0. Therefore ZFI(%,%,%;—%eZ)
decreases monotonously from 1 to ~0.9474 as e

varies between [0, 1], and the trivial approximation
,F, (%,}—g,%;—%&) =1 to evaluate the integral in
Eq. (55) is sufficient for our purposes. For example, the
contribution coming from the integral proportional to , F, is
approximated to better than 2% accuracy for e € [0, 0.6].
For n =1/4 and e = 0.6 the integral of the first three
terms in the square bracket of Eq. (55) is —0.6014,
while the integral of the last term containing ,F, is
much smaller, 0.02653. Then the time function will be
approximated by:

(t—t)pn
_ 503/\(2)
76GM i*/3
y |:/e 6/17/19(1 _ 612)—3/2(31 +Eze/2 +E3€/4)d ,
e
o (1 + 128 ¢2) 198872299
- e 1] —?)32
+ B / de'
* o (1 + 21 2)=T181/229
2/3
_ 41/0/ bpn(eg)(t—1.)y- (57)

The phase function ® — ®, can be computed similarly.
The integrand of the phase function ® — ®, up to linear
order is

5C3A0 e
PP )y =——
( c)PN 76GM67’]2/5A

e/—1/19 |:B1 +Bzel2+B3e/4
X
121 ,2\124/2299 121 ,72\3169/2299

870 13 32 121 A
+2F1< — ——e’2>B4e’2]de’

2299°19°19° 304

15
- STo(@ = By, (55)

where (® — @), is the integrated Newtonian-order time
function and we have introduced the quantities B; =
B; — 9B, /8.

In summary, the integrated time and phase functions up
to 1PN are expressed as t —f, =ty + tpy and & — P, =
Py + Ppy where
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TABLE I. Constants of the time and phase functions.
§=—42 N PN
r—1. r=3 r=3
pe p=
a:_% 0‘0—}—7,051*%,0527%
-, =0 y=0
B =255 p=55
&:l& &073—9,&1:?—;,&2:%
15¢5A)° .,
Iyn=—————"—=5xF(e,a,p,7,9),
N 304(GM ,)5/3 ( ﬂ 4 )
5¢3A3 3
"N T T 26G Mot [ZF e-i.p.1-9)B,
+F<€,02,B,7,5>E4:| —4F0tN,
1565773 .
by =-—9_F(e,ap,0,9),
N 304(GM, )3 (e.2.£.0.9)
5630, 3
Dpy = =G [ZF e, a;,,0,8)B;
15
+ F(e.&.p,0.6)B, —Troq’zv, (59)
where Ty = 1 *bpy(eg), Fle.a.f.y.0) = Fi(§. 7.5

se?, e?)e*/a with Fi(a,B,B,y;x,y) denoting an Appell
function; see, e.g., [47]. The numerical values of the

€o
0.6

0.5
0.4
0.3
0.2

0.1

0.0 1 ! _ 7
0. 05 1 15 2 25 3 35 !TlXI0%)

FIG. 1 (color online). Comparison of the analytic and numerical
results for the evolution of the eccentricity. The initial eccentricity
is ¢g = 0.6 and the masses of binary are m; = 10°(1 + )M,
with redshift z = 1. The initial frequency is v, = 8.09 yHz. The
dotted black line denotes the analytic, while the gray line the
numerical solution in the Newtonian case. The analytic and
numerical solutions for the 1PN orbital evolution are depicted by
the dot-dashed and solid (red) lines, respectively. It can be seen
that the analytic solution is in perfect agreement with the
numerical one.
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i—t. (x1075)
4

€0

0.2 0.4 0.6 0.8 1.0

FIG. 2 (color online). The time function for supermassive black
hole binaries with various initial eccentricities. The Newtonian
and 1PN expressions are denoted by solid (black) and dashed
(red) lines, respectively. The masses of the components are m; =
105(1 + z)M, with redshift z = 1.

constants appearing in Eq. (59) are summarized in
Table I. We note that F(e,a,f,0,5) = ,F,(e,a.p,d).

The qualitative behavior of the orbital evolution is
depicted on Figs. 1-5. On Figs. 1-3 the initial conditions
have been chosen so that the inspiral time takes one year
to reach the last stable orbit (LSO), as defined in Ref. [48]
for the eccentric case. From this the frequency vygqg =
[(1—e?g0)/(6+ 2e150)]/?>(22M)~! where the e g is the
final eccentricity at LSO. We note that the frequency, v; g0
is used in the present case for illustrative purposes only. The
orbital evolutions are plotted in Figs. 2—5 until the circular
limit is reached. Near the LSO, the PN expansion is not
expected to be convergent; therefore, the part of the curves
on Figs. 1-5 near the LSO can be taken at best as
illustrative.

O —-d. (x1000rad)

0.2 0.4 0.6 0.8 1.0

FIG. 3 (color online). The phase function for supermassive
black hole binaries with various initial eccentricities. The New-
tonian and 1PN expressions are denoted by solid (black) and
dashed (red) lines, respectively. The masses of the components
are m; = 10°(1 + z)M, with redshift z = 1.
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€o

0.2 0.4 0.6 0.8 1.0

FIG. 4 (color online). The time function for neutron star
binaries with various initial eccentricities. The Newtonian and
1PN expressions are denoted by solid (black) and dashed (blue)
lines, respectively. The masses of the neutron stars are m; =
1.4(1 4+ z)M o, with redshift z = 1. The initial conditions are such
that the starting time is set to 15 s before reaching the LSO. The
initial orbital frequencies for e = 0.1, ¢q = 0.5, and ¢q = 0.8 are
vy = 15.46,10.67, and 4.15 Hz.

@-@, (x100rad)

FIG. 5 (color online). The phase function for neutron star
binaries with various initial eccentricities. The Newtonian and
1PN expressions are denoted by solid (black) and dashed (blue)
lines, respectively. The masses of the neutron stars are m; =
1.4(1 + z)M o, with redshift z = 1. The initial conditions are such
that the starting time is set to 15 s before reaching the LSO.

V. SUMMARY

In our work we have investigated the orbital evolution
and the emitted radiation of eccentric binary systems up to
1PN order. Extending our previous results in [21] we have
presented fully analytical expressions for the orbital evo-
lution of eccentric binaries and the resulting ready-to-use
1PN waveforms.

For the description of the orbital dynamics, the gener-
alized true anomaly parametrization was introduced result-
ing in the appearance of only two eccentricities in the
solution of the equations of motion. It is usual to expand
the azimuthal angle of the separation vector in terms of the
generalized true anomaly parameter; however, secular

PHYSICAL REVIEW D 92, 044038 (2015)

terms appear during this process. These secular terms were
eliminated by the introduction of the drift true anomaly
parameter, which may also be useful in higher-order PN
expansion. The evolution of the orbital frequency and the
radial eccentricity is derived up to 1PN order including
radiation reaction contributions. The solution is expressed
in terms of Appell functions. One important result is the
explicit 1PN expressions for the time and phase functions
appearing explicitly in the 1PN order frequency domain
waveforms.

We have presented both time and frequency domain
waveforms in a simple analytic form. The simplicity of the
waveforms relies on the application of the Hansen expan-
sion. This important method of celestial mechanics proved
to be useful in expressing time-domain gravitational wave-
forms. According to the required accuracy the Hansen
coefficients were generalized to 1PN order. With the
introduction of the drift true anomaly parameter the orbital
phase becomes a noninteger multiple of the drift true
anomaly parameter after expansion. To cover these cases
the Hansen coefficients were extended to noninteger values
in their parameters. As a result, we have presented explicit
ready-to-use 1PN eccentric waveforms with no secular
dependence in their expressions. The compact analytic
structure makes these waveforms a good candidate for
parameter estimation studies up to 1PN order based on the
Fisher analysis.
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APPENDIX A: TENSOR SPHERICAL
HARMONICS

Following the notation of [49] the traceless, symmetric
and unit basis tensors can be written as

1 i
tﬁzi(ex®ex—ey ®ey):|:§(ex®ey+ey®€x),
Fl=Fl(e,®e,+e,Qe)—i(e,@e,+e, ®e).
1
0 =—(—e® e;—e,®e,+2e, Qe,). (A1)

V6

The scalar harmonic tensors on this basis are given by

14 2
T2l Im Z Z (llzmlm/l’ lm)Yl/m/tm”, (AZ)
m'=—'m"=-2

044038-9



MIKOCZI, FORGACS, AND VASUTH

where (I'2m'm”,Im) denotes the Clebsch-Gordan coeffi-
cients and Y is the conventional spherical harmonic. Then
the electric and magnetic tensor harmonics can be
expressed as

TEZ.Zm — l(l + 1) T21+2,]m
2020+ 1) (20 + 3)

3(1-1)(1+2) T2Lim
Q20+ 1)(20+3)

(I+D+2) o om
+¢2(2z—1>(2z+1)w "
[—1

211 1T21+1,1m — /211121 T2-Lim_ (A4)

As an example we consider the tensor harmonics 752?% and
T5222 appearing in the Newtonian waveform. Using the
relationship between the Descartes and spherical polar
coordinates,

(A3)

TBZ,lm - —

e, = e,sinfcosp + eycosfcos g — e, sin g,

e, = e,sinfsing + egcosdsing + e, cos @,

e, =e,cosf — eysin0, (AS)

the tensor harmonics have the form

1 /5 i
T2 = 2311 + cos? O)h, +2icos OhJe”,  (A6)
/3

1 /5
75222 = T 2ﬂ[(3 + 08 20)h, — 4icosOh ]e*?,
(A7)
where h+:eg®eg—eq,®e¢ and hy, = ¢) ® e, +e,®
ey are the two independent polarizations. The tensor

spherical harmonics up to 2PN are given in [29].

APPENDIX B: DAMOUR-DERUELLE
PARAMETRIZATION

In the following, we summarize the first post-Newtonian
parametrization of the orbital motion introduced by
Damour and Deruelle [17] for the description of compact
binaries. The equations of motion, Egs. (1) and (2), can be
solved by the eccentric anomaly quasiparametrization u,
that is,

r=a,(l—e.,cosu), (B1)
where the orbital parameters are the semi-major axis a, and
the radial eccentricity e,. These orbital parameters are

PHYSICAL REVIEW D 92, 044038 (2015)

characterized by the turning points (7, and r;, in [50]) of
the radial motion. The Kepler equation and angular
evolution can be given as

n(t—ty) = u—e;sinu, (B2)
0 — 0y = (1 + k)vy, (B3)
0 u
vg = 2 arctan ns, (B4)
— €

in terms of the orbital elements of the 1PN orbital dynamics
such as the mean motion n, the time eccentricity e;, the
angle eccentricity ey, and the pericenter drift & (which is in
relationship with the pericenter precession (y) averaged
over one radial period; see [21]).

The relationship between ¢ and vy is given by Eqs. (B3)
and (7) up to 1PN order as

Gue,

¢ =vo- 2a,(1 — €2)c?

sin vy. (B3)

The orbital parameters up to 1PN order are given by [17]

(=Dy)*? Dz Dy
n:4’ ar:
D, 2D5’
D D>D 1/2 DD
e, = |1— 1D3—24 e —=(1- 1361’
D3 Ds 2D, D5
DD, DD 3G
o= (1Pt )en k=i (B9
D2D3 D2D5 Clr(l - €R)C
with the quantities D_g
2FE 3 E
Di=—|(14+=0Bn—-1)—),
1 ( +2( n )M6‘2
E
GM(1+(711 6)—2)
uc
2 E G*M?
GML?
D4_(_3'I+8) 2.2
D:=—|(1 3n—1)—|,
5 < +( n ),uC2>
GML
De= (27 —4)—— (B7)
uc

Here E and L are the conserved energy and the magnitude
of the orbital angular momentum of the perturbed binary
system, respectively.
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APPENDIX C: HANSEN COEFFICIENTS

The Hansen coefficients are important functions of
celestial mechanics which are known for more than
100 years. Using the standard notation the Hansen expan-
sion is written as [51]

(2) ! exp(ime) = i X" exp(ikM),

k=—o0

(C1)

where 7 is the relative distance, a is the semimajor axis, ¢ is
the true anomaly and M is the mean anomaly. The
coefficients X" are called the Hansen coefficients. Here
the constants n and m are integers. The Fourier series
representation of the Hansen coefficients is

Xom ——/( ) exp(img — ikM)AM.  (C2)

The integration variable can be changed to the eccentric or
true anomalies with the use of the leading-order Kepler
equation,

dM
E—l—ecosu, <C3)
_ ,2)\3/2
dM  (1—e¢%) ()

dp — (1+ecos¢)®’

Introducing the complex variables x = expi¢p and y =
expiu (z = exp iM for the contour integral) the relation-
ship between the eccentric and true anomalies [52] with x
and y is expressed as

x—1
x+1

L +py—1
1—-pBy+1°

(C5)

where = (1 — V1 — ¢?)/e and one gets the relations for
the variable x

expigp = y(1 —py~") (1= By)~". (Co)
and the mean anomaly M,
dM
==+ (=1 =py). (€T)
. € —
ewiM =yep| -5y (€
The integrand with eccentric anomaly u is given as
1 2\—n—1 4
Xz,m _ ( +ﬁ ) /ymk(l _ﬁyfl)nirmirl
2r
n—m-+1 ke
x (1—py) exp |5 (y—y™")|du.  (C9)
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The integral can be extended to infinity as a series of the
Bessel functions:

Xz.m: +ﬂ2 anEka

p=—00

(C10)

The coefficients E}" for [Zm and E™;™ for [ < m can be
expressed by the hypergeometnc functlon »Fi(a,b,c;z) as

nm __ (_ m\l—m n—m-+1
A

X, Fi(l=n—=1,-m—n—1,1—m+ 1;4%).
(C11)

The first description of this formula was given by Hill [53].
Another representation of the Hansen coefficients can
be found in the 1889 work of Tisserand on celestial
mechanics [54],

Ik m|
X = (( fﬁz il ZP QB (C12)
where
>
Ps _ {Ps+k—m kzm }, (C13)
P k<m
o, kzm
QS B { Qs+m—k k <m }, (C14)
and
S o/mn—m+1\ 1 (kr\"
P ()G e
‘S /n+m+1\ 1 kr\"
0.3 ("1 )alg) e

APPENDIX D: LEADING- AND HALF-ORDER
WAVEFORMS

The leading-order waveform in terms of the true
anomaly ¢ is given by the quadrupole formula (the notation
of Ref. [21] for the azimuthal angle ® = y),

3
hY(p) = e ”agzﬁze D, mz (cN* cosmep + st sinmep),
(D1)

3
Y (¢) = A 1= D, na l—e Z X cos mep + s sinmep),
(D2)
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where
ey = —22[1 — c0s20 + Ng cos 29|,
VT = —e(2—2c0s20 + 5Ng cos 2®),
YT = —4Ngcos2®,
iy = —eNgcos2®,
sYT = —5eNgsin 29,
and sy, = cQ’ * and s = —c); after the interchange of

cos2® and sin2®. Here Ng = 3 + cos20 and we have
introduced the shorthand notations a = a, and e = e¢,. We
note that the first step in the derivation of the frequency
domain waveforms is the replacement of the semimajor
axis a with the orbital frequency v; see Eq. (40).

The half-order waveforms (denoted by the superscript
H) are

5mG1/2,u3/2
hil(qﬁ) = 5 2\13/2
64c>[na(1 — e*)]*/*Dy,
5
X Z (¢ cosmep + s, sinmep),  (D4)
m=0
5mG1/2,u3/2
hi’((ﬁ) = 3 2Y13/2
32¢’[na(1 — e*)]”/*Dy,
5
X Z (¢ cosmep + sy sinmep),  (DS)
m=0
where
et =8e{[11 —2¢ + (1 — 6€?) cos 20)
X sin @ sin ® + e2pg sin 3P},
e =[(84 + 77¢%)sin © + (4 — 39¢2) sin 30)
x sin ® + 35¢2pg sin 3,
At = 4e(gg sin ® + 15p¢ sin 3®),
At = €% sin @ + 2(18 + 7e?)pg sin 39,
cf+ = 20epg sin 39,
= 3e’pg sin 3P,
{“ = —[(84 +31¢?)sin® + (4 —29¢?)
x sin 30] cos ® — 35¢?pg cos 3P,
and s = = —cl ‘s after the interchange of sinm® and

cosm®. Here ém = m; — m,, pg = 5sin® + sin 30 and
0p = 23sin® — 5sin30. The coefficients for the cross-
polarization are

PHYSICAL REVIEW D 92, 044038 (2015)

el =2e? cos Osin 29,
eV = 5e cos O sin 2,
Y =4cos®sin 29,

V¥ = ecos O sin 2P,

si* = —5cos O cos 2P, (D3)
|
cl* = 8esin20[(3 — €?) cos ® + 2¢? cos 3P,
cH* =25in20[(12 — 5¢2) cos ® + 35¢% cos 39],
ci* = 8esin20(cos ® + 15 cos 3P),
cf* = 25in20[e? cos P + 2(18 + 7e?) cos 3P,
ci* = 40e sin 20 cos 39,
c* = 6e? sin 20 cos 3P,
st = 25in20[(12 — 7¢?) sin ® + 35¢2 sin 3P), (D6)
and si = 4% after the interchange of cosm®
and sin m®.

APPENDIX E: 1PN WAVEFORM

The 1PN waveforms are given by Eq. (11) which can be
written in the following form:

B G3/l3
W) = 768¢”[na(1 — e*)]>°D,,
4
XDl (@) + Il (@) + hs (). (B1)
m=0
G3/,l3
(@) = 384c’[na(1 — €?))?D,,
X Z m>< (¢) + hux (@), (E2)
with
Bl () = (5 cos mp + 55 sin map) cos 4
+ (et cos mep + s sin mep) sin 4gp,
(E3)
i;/; () = 4[(c5FT cos mep + 5527 sin mep) cos 2
+ (377 cos mep + 5577 sin mep) sin 2¢'],
(E4)

B (@) = 3(ca™ cosmep + 557 sinmgp).  (E5)
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Here ¢’ = (1 + k)¢ is the drift true anomaly, x; =
3GM/[a(1 — e*)c?] and the coefficients ci ™, so ™,
P sG> and s,y are explicitly given in the
next subsections.

1. The coefficients proportional to cos 4¢’
and sin 4¢’

There are coefficients proportional to cos 4¢’ and sin 4¢’
in the 1PN waveform, Eq. (E3). The coefficients propor-
tional to cos m¢ are

et = 24¢,5Gol, et
L4+ 165c4¢,G®/1 e
S = 500c4¢)G@/1”e ,
;4+ = c40Gol, (764 + 135¢%)e,
= 4cs0Gok, (64 4 T1e?), (E6)
where we have introduced the shorthand notations ¢, =
cosm®, s,p =sinm®P, c,g =cosm®, s, =sinmo,

Go = —5+4cr9 + 49 and 1, =3n—1. The equality

M, = c&¥h holds after the replacement of ¢4 With s4q.

The coefficients proportional to sin m¢ are

sit = —245,5Gelye’,
s§ = —100544Gelye?,
54 = —360s45Golye?,
54 = —6Ges40hy (52 + 9e2)e, (E7)

T =3c29[291 — 815 + 4(19 + )20 — Aycs0)e’.
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and s*, = —s{*] after the replacement of s4q With cyq.

The coefficients for cross-polarization are

gt = 48s40Hol, et
5™ = 336540 Hel, e
o5 = 100054(1,1{@,1 e
™ = 2549 Ho, (764 + 13562)6,
6™ = 6549 Hely (64 + T1e?), (ES8)

and c§¥y = —c§*; after the replacement of 544 with ¢4 and

we have introduced the notation Hg = cg — C3p.

57 = 48cypHolye,

5§ = 300c4 Holye?,

5§9 = 720c4gHelye?,

59 = 12¢49Holy (52 + 9¢2)e, (E9)

and s34 = %% after the replacement of c4q With s44.

2. The coefficients proportional to cos 2¢p’ and sin 2¢’

The coefficients proportional to cos m¢ are

§2+ = 4¢20{983 — 3750 — 6(19 + 3n7)e? + 2[116 + 81 — 6¢*(3 + n)]c2e — (1 + 6€%)4,c40 } €2,
¢§*T = €9{5948 — 301217 + (99 — 1089y)e? + 4[4(76 + 815) — 33e2(1 — n)]ce — (4 + 81€?) A, cup te,

et = 4cy {508 — 2281 + (353 — 465n)e? + 2[52 + 605 + €2(14 + 57n)]cae + (4 — 19€2), c40 ), E10
0 "
and c82+3 = sf)ng after the replacement of c,4 with s,4. The coefficients proportional to sinmg¢ are
s = 3529877 — 293 — 4(23 — 3n) 20 — AyCa0) €,
7T = 128555 {81n — 259 + 2(19 + 3n)e® — 4[2(10 — ) — (3 + n)e?|cao — (3 — 2€2)A,ca0 } 2,
52T = 35,5 {2047 — 900 + 11e>(1 + 21n) — 4[4(17 + 1) — (1 + 197)e?]crg — 5(4 — 3e?),ca0 e, (E11)
and s{2§ = —sfzt after the replacement of s,4 with c,5. The coefficients for the cross-polarization are
C§2>< = 3S2q>[—11(17 — 371)C@ —31 C3@] 3,
57 = 4s,0{[159n — 625 + 6€%(13 + n)]ce — (17 — 6€*)2,c30 } €2,
cfzx = 520{[3(7 + 155n)e* — 4(931 — 321n)]ce + 5(—28 + 9¢*)4,c30 te.
¥ = 45:0{[(2017 — 199)e* — 32(10 — 3n)|ce — (16 — €*)4,c30} (E12)
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and c(s)zf3 = —cfﬁé after the replacement of s,q with ¢,5. The coefficients proportional to cos2¢’ and sin2¢’ are

5§27 = 6¢20[(271 — 97)co — Ayc30)€,
5§52 = 24c¢20{[(26n — 86 + (13 + 1)e?)]ce — (2 — ez)incw}ez’

$§2 = 6¢20{[68n — 300 4 (7 + 67n)e?]ce — (12 — Te?) A, c30 Je.

and 5325 = {25 after the replacement of ¢, with $2¢.

(E13)

3. The coefficients without ¢’ dependence

The coefficients without ¢’ dependence are

e =[11(11 —n) — 4(29 + n)cae + Syca0)e’,
¢ =20[37 — Ty — 4(9 — n)cap + Aycao)e?,

cf = {4(299 — 49n) + 5(135 — 53n7)e? — 4[300 — 52 + (159 — 37n)e?|cap — (4 — 39¢?) 4, ch0 te.

cg =4{363 =737 —10(5 + n)e* — 491 — 197 — 2¢*(7 — n)]c20 — (1 — 6€*)A,c40}

and the coefficients sT_3 are zero. For the cross-polarization,

(E14)

55 = 4Hgl,e’,
s5 = 16Hgk,e?,

sy =4Hegl, (4 + €*)e,

and the coefficients c_5 are zero.

(E15)
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