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We analyze the redshift suffered by photons originating from an external source, traversing a collapsing
dust cloud, and finally being received by an asymptotic observer. In addition, we study the shadow that the
collapsing cloud casts on the sky of the asymptotic observer. We find that the resulting redshift and
properties of the shadow depend crucially on whether the final outcome of the complete gravitational
collapse is a black hole or a naked singularity. In the black hole case, the shadow is due to the high redshift
acquired by the photons as they approach the event horizon, implying that their energy is gradually
redshifted toward zero within a few crossing times associated with the event horizon radius. In contrast to
this, a naked singularity not only absorbs photons originating from the source, but it also emits infinitely
redshifted photons with and without angular momenta. This emission introduces an abrupt cutoff in the
frequency shift of the photons detected in directions close to the radial one, and it is responsible for the
shadow masking the source in the naked singularity case. Furthermore, even though the shadow forms and
begins to grow immediately after the observer crosses the Cauchy horizon, it takes many more crossing
times than in the black hole case for the source to be occulted from the observer’s eyes. We discuss possible
implications of our results for testing the weak cosmic censorship hypothesis. Even though at late times the
image of the source perceived by the observer looks the same in both cases, the dynamical formation of the
shadow and the redshift images has distinct features and time scales in the black hole versus the naked
singularity case. For stellar collapse, these time scales seem to be too short to be resolved with existing
technology. However, our results may be relevant for the collapse of seeds leading to supermassive black
holes.

DOI: 10.1103/PhysRevD.92.044035 PACS numbers: 04.20.-q, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

A widely studied collapse model in general relativity is
the family of Tolman-Bondi spacetimes, which describe the
collapse of a spherical dust cloud. The popularity of this
model stems from the fact that in suitable coordinates the
metric components and fluid fields can be expressed in
terms of elementary functions, and thus it provides exact
solutions of the Einstein-Euler equations in the absence of
pressure. Curiously, for a large class of initial data satisfy-
ing reasonable physical assumptions, these collapse models
predict the formation of shell-focusing singularity a portion
of which is null and visible to local observers; see for
instance Refs. [1–7]. Furthermore, for suitable initial data
in this class, part of this null singularity is visible even to
observers in the asymptotic region; that is, the singularity is
“globally naked.” While the Tolman-Bondi models, being
spherical symmetric and having zero pressure, are highly
restrictive from a physical point of view, still it should be
emphasized that the occurrence of such globally naked

singularities does not require any fine-tuning in the initial
data within these models. Although there has been a
significant amount of work regarding the properties of
such singular spacetimes including the stability of the
associated Cauchy horizon [2,8–18], relatively little atten-
tion has been placed on the manner that a globally naked
singularity resulting from the complete gravitational col-
lapse interacts with the rest of the Universe. However,
nowadays, technological advances reach to the level where
even the minutest predictions of general relativity can be
placed under observational scrutiny, the current gravita-
tional wave detectors [19–21] and the Event Horizon
Telescope project [22] being prime examples that will test
the theory in its strong field regime. These developments
suggest that it is pertinent to start analyzing observational
signatures associated with naked singularities. Even if the
cosmic censorship conjecture would be proven rigorously
some time in the future, ultimately its acceptance as a
fundamental law of Nature would be required to be checked
in the real Universe.
In this spirit, in a recent paper [23] (paper I hereafter), we

have proposed that the asymptotically measured frequency
shift suffered by photons traversing a collapsing cloud can
serve as a tool capable of differentiating between the
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formation of a globally naked singularity and the formation
of an event horizon; i.e. this frequency shift can serve
as an instrument to test the validity of the weak cosmic
censorship hypothesis in terrestrial observatories. Evidence
supporting this proposal came from the analysis of radial
photons from an external source passing through a col-
lapsing spherical dust cloud. As shown in [24], the total
frequency shift of such photons relative to asymptotic
static emitters and observers is always toward the red.
Moreover, the analysis in I revealed that the photon’s
energy measured by the asymptotic observer is gradually
redshifted toward zero in the black hole case, whereas
whenever a globally naked singularity forms, the redshift of
these radial photons remains finite and their frequency shift
exhibits an abrupt cutoff once they have been detected by
the observer who has crossed the Cauchy horizon (see
Figs. 2 and 3 in I).
The main goal of the present paper is to subject the

proposal in I to further testing by allowing the incidence
radiation to have nonvanishing angular momenta. Within
the geometric optics approximation, this radiation consists
of a collection of photons which are generated at past
infinity, propagate freely through the collapsing cloud, and
are eventually detected by an observer in the asymptotic
region. The central focus of this work is to examine the
properties of the frequency shift of these photons. As will
become clear in the course of this paper, the inclusion of
angular momenta has interesting consequences at both the
computational and the conceptual levels, and furthermore it
adds a new flavor to the proposal in I. At the computational
level, the evaluation of the redshift becomes a more difficult
task since it requires integrating nonradial null geodesics
inside the collapsing cloud. Nevertheless, as we show in
this article, the nonradial photon’s frequency shift exhibits a
qualitatively similar behavior than in the radial case,
provided the direction is close enough to the radial one:
first, the frequency shift is always toward the red. Second,
this shift gradually converges to zero in the black hole case,
whereas there is an abrupt cutoff in the naked singularity
case. At the conceptual level, and to our pleasant surprise,
we find that the nonvanishing photon angular momenta
introduces certain “dark” directions at the center of the
image of the source in the observer’s sky. These directions
shape the optical appearance of the source, and imply that
the collapsing cloud casts a growing shadow in the
observer’s sky. This shadow resembles the well-studied
black hole shadow.
Bardeen [25] describes the black hole shadow in the

following way: “As seen by the distant observer, the black
hole will appear as a ‘black hole’ in the middle of the larger
bright source.” Cunningham and Bardeen [26] and more
recent works [27–32] studied this shadow for a number of
important illuminating sources. These works show that the
black hole shadow is determined by tracing backwards
null geodesics from the observer’s frame back to the

illuminating source.1 Because the black hole region absorbs
incoming radiation, certain directions in the observer’s sky
will remain dark and the collection of all these dark
directions determines the shadow that the black hole
casts.2,3 Clearly, as long as the black hole is an equilibrium
state, then its shadow remains steady provided the external
illumination remains steady as well. For the case consid-
ered in this work, the changing background geometry adds
a transient character to the perceived shadow. Nevertheless,
the back-ray-tracing technique employed in the studies of
black hole shadows is applicable to our problem as well.
Through this technique, we compute the frequency shift
suffered by photons and also study the characteristics of the
shadow.
Although the optical appearance and shadow associated

with the formation of an event horizon have been studied a
long time ago (see for instance Refs. [38–42]), no particular
attention has been placed on the effects that the formation of
a naked singularity has on the eyes of an asymptotic
observer.4 It is a priori not clear whether the formation of
a naked singularity casts a shadow. If it does cast a shadow,
one might wonder what its characteristic properties are. We
delineate these issues by comparing the shadow that the
collapsing cloud casts when the end state is a black hole to
that alternative scenario, i.e., the case of a naked singularity.
We find that in the former case the photosphere plays a
crucial role as has been pointed out long ago by Ames and
Thorne [38]. Photons around the photosphere are responsible
for the optical appearance, while photons grazing the horizon
are received by the asymptotic observer as exponentially
redshifted. In contrast, when a Cauchy horizon forms, the
“visible” part of the singularity plays the dominant role in
shaping up the shadow. The role that the singularity plays in
the formation of the shadow is traced to a particular property
of nakedly singular Tolman-Bondi spacetime. In such a
spacetime, nonradial, future directed null geodesics escape
from the central singularity and reach an asymptotic

1Current day millimeter-wave very-long baseline interfero-
metric arrays such as the Event Horizon Telescope [22] are on the
verge of observing this shadow for Sagittarius A*, the super-
massive black hole in the center of our galaxy.

2In this work we assume that the black hole or the naked
singularity results from the collapse of a bounded system. If, for
instance, a maximally extended Schwarzschild manifold is
considered instead, the possibility that an observer in the vicinity
of future null infinity could receive light originating from the
white hole singularity ought to be taken into account and in this
event the shadow would have different characteristics. We do not
consider this possibility in this work based on the instability of
white holes as demonstrated by Eardley [33].

3We mention here that other ultracompact objects such as
gravastars also generate shadows, and in fact they may mask a
black hole shadow. For recent work concerning this challenge
consult, see, for instance, Refs. [34–37].

4A notable exception constitutes the work in Ref. [43]. We
shall discuss further their approach and results in the conclusions
section.
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observer. This property has been proven for the case of
marginally bounded Tolman-Bondi spacetime by Mena and
Nolan [6,44]. Because of the important role that these null
geodesics play in the formation of the shadow, we have
recently verified their existence for the case of a nakedly self-
similar Tolman-Bondi model [45], and in the present work
we show that Mena and Nolan’s conclusion remains valid for
the large class of bounded nakedly singular Tolman-Bondi
models. For the case of a Cauchy horizon formation, and
once the observer lies to the future of this horizon, by a
combination of analytical and numerical techniques we
separate the past directed null geodesics emanating from
the observer into those reaching the singularity and those
reaching the asymptotic source. At first, we find that photons
emanating from the central singularity and reaching the
observer are infinitely redshifted, and thus the singularity is
invisible to the eyes of the asymptotic observer. In addition,
we estimate the redshift suffered by the important class of
photons that originate from the site of the asymptotic source,
traverse the collapsing cloud and eventually reach the
observer. We compute this redshift as a function of the
viewing angles as perceived in the frame of the asymptotic
observer, and thus we extend the analysis in I where the
considerations were restricted to radial photons. However,
beyond the redshift analysis, the structure of the shadow as
perceived by the asymptotic observer adds a new important
component to the proposal put forward in I. This component,
with potentially observational consequences, is related to
the diverse time scales required by the shadow to develop in
the eyes of the asymptotic observer. By an analysis of the
snapshots of the image as perceived by the observer, we find
that while for the case of a black hole formation, a few
crossing times are sufficient for the shadow to occult the
source from the eyes of the observer, this is not the case once
a Cauchy horizon forms. It takes considerably many more
crossing times so that the source can eventually be occulted
from the observer’s eyes. Although for the case of stellar
collapse the crossing time is extremely short, the situation is
different for seeds leading to supermassive black holes.
These issues are discussed in the conclusion section of
the paper.
The structure for the remainder of this paper is the

following. In Sec. II, because of the importance of null
geodesics in this work, we begin with a brief derivation of
the relevant equations of motion describing null geodesics
(with and without angular momentum) on an arbitrary
spherically symmetric background spacetime, and we
derive the necessary formulas for the redshift of photons
as measured by a certain class of preferred observers. Next,
we specialize to the case of Tolman-Bondi spacetimes,
describing the collapse of spherical dust clouds forming a
locally or globally naked singularity. Based on methods
from the theory of dynamical systems, we show the
existence of infinitely many radial and nonradial null
geodesics emanating from the singularity and analyze their

local behavior. In particular, we prove that photons emitted
from dust particles lying arbitrarily close to the central
singularity suffer an infinite redshift. Next, in Sec. III, we
specify the initial data in our collapse model, and we
provide a sufficient condition on the initial compactness
ratio of the cloud under which the collapse leads to the
formation of a naked singularity instead of a black hole. In
Sec. IV we present a detailed discussion for our ray tracing
method which ultimately allows us to determine the red-
shift image perceived by an asymptotic static observer. One
of the key steps here consists in the determination of the
critical angle of incidence α̂, which separates the null
geodesics emanating from the naked singularity from those
originating from the asymptotic source. Finally, in Sec. V
we present the redshift images for a dust cloud forming
either a black hole or a globally visible naked singularity,
and compare the two cases. Conclusions are drawn in
Sec. VI, and the article ends with the inclusion of two
appendixes. In Appendix A the proof of a technical result
needed for establishing the existence of nonradial null
geodesics emanating from the singularity is given. In
Appendix B, we discuss the aspects of the shadow of a
naked singularity as seen by a comoving, free-falling
observer in the particular case of self-similar Tolman-
Bondi collapse, and we provide an analytic formula for
the critical angle α̂.

II. NULL GEODESICS IN SPHERICALLY
SYMMETRIC COLLAPSING SPACETIMES

We begin this section by reviewing basic properties of
null geodesics propagating on an arbitrary spherically
symmetric spacetime. In particular, we point out the
existence of a preferred vector field X, the Kodama vector
field [46], which reduces to the asymptotically unit timelike
Killing vector field in the Schwarzschild case. We also
show that the total redshift of photons measured by
observers moving along integral curves of X assumes a
particular simple form. Next, we specialize our consider-
ations to the case of Tolman-Bondi dust collapse, and
analyze the null geodesic flow in the vicinity of the naked
singularity. Using standard results from the theory of
dynamical systems, we show the existence of infinitely
many radial and nonradial null geodesics emanating from
the central singularity, a result that will play an important
role in the considerations of Sec. IV. Finally, we prove that
photons emitted from dust particles lying arbitrarily close
to the central singularity suffer an infinite redshift when
they travel along such null geodesics and are eventually
detected by an asymptotic observer.

A. General framework

Consider an arbitrary spherically symmetric spacetime
metric of the form
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g ¼ −e2Φðt;RÞdt2 þ e2Ψðt;RÞdR2

þ rðt; RÞ2ðdϑ2 þ sin2ϑdφ2Þ; ð1Þ

where Φ, Ψ, and r are functions of the local coordinates
ðt; RÞ, and where ϑ and φ are angular coordinates on the

two-sphere. We are concerned with null geodesics propa-
gating on the spacetime described by the metric given in
Eq. (1). Because of rotational invariance, we can assume
without loss of generality that the null geodesics are
confined to the equatorial plane ϑ ¼ π=2. The
Lagrangian describing the motion is given by

L
�
t; R;φ;

dt
dλ

;
dR
dλ

;
dφ
dλ

�
¼ 1

2

�
−e2Φðt;RÞ

�
dt
dλ

�
2

þ e2Ψðt;RÞ
�
dR
dλ

�
2

þ rðt; RÞ2
�
dφ
dλ

�
2
�
; ð2Þ

where λ is an affine parameter. Since φ is cyclic, we have
conservation of total angular momentum,

l ≔
∂L
∂ðdφdλÞ

¼ r2
dφ
dλ

; ð3Þ

and the Euler-Lagrange equations yield the first-order
system

dt
dλ

¼ e−2Φπt; ð4Þ

dπt

dλ
¼ _Φe−2ΦðπtÞ2 − _Ψe−2ΨðπRÞ2 − l2

r3
_r; ð5Þ

dR
dλ

¼ e−2ΨπR; ð6Þ

dπR

dλ
¼ −Φ0e−2ΦðπtÞ2 þΨ0e−2ΨðπRÞ2 þ l2

r3
r0; ð7Þ

where we have introduced the momenta πt ≔ e2Φdt=dλ and
πR ≔ e2ΨdR=dλ and where the dot and the prime denote
partial differentiation with respect to t and R, respectively.
These equations should be supplemented with the nullity
constraint L ¼ 0.
For the following, we introduce the vector field

X ≔ e−ðΦþΨÞ
�
r0
∂
∂t − _r

∂
∂R

�
ð8Þ

and the Misner-Sharp mass function [47] m defined by

1 −
2m
r

¼ gðdr; drÞ ¼ −e−2Φ _r2 þ e−2Ψr02: ð9Þ

Up to a sign, the vector fieldX is uniquely characterized by
the properties of being orthogonal to the invariant two-
spheres, of leaving the surfaces of constant areal radius
invariant, i.e. X½r� ¼ 0, and of being normalized such that

gðX;XÞ ¼ −
�
1 −

2m
r

�
: ð10Þ

The existence of this natural vector field has been noticed
long ago by Kodama [46] in a different context. It follows
that X is timelike outside the apparent horizon r > 2m.
Associated with this vector field is the energy quantity

E ≔ −gðX;pÞ ¼ e−ðΦþΨÞðr0πt þ _rπRÞ; ð11Þ

where here

p ¼ dt
dλ

∂
∂tþ

dR
dλ

∂
∂Rþ dφ

dλ
∂
∂φ

¼ e−2Φπt
∂
∂tþ e−2ΨπR

∂
∂Rþ l

r2
∂
∂φ ð12Þ

denotes the four-momentum of the particle. An additional
useful equation is the change of areal radius r along any
null geodesics, given by

dr
dλ

¼ _re−2Φπt þ r0e−2ΨπR: ð13Þ

Combining Eqs. (9), (11), and (13) and using L ¼ 0 yields
the equation

�
dr
dλ

�
2

þ l2

r2

�
1 −

2m
r

�
¼ E2: ð14Þ

In the vacuum case, m is constant and X reduces to the
time-translation Killing vector field. In this case, the energy
quantity E is constant along the null geodesic flow and
Eq. (14) expresses the familiar effective equation describ-
ing the radial motion for null geodesics.
Finally, for later use, we compute the frequency shift of

photons with respect to observers moving along integral
curves of X. This frequency shift is given by

νobs
νe

¼ gðU;pÞobs
gðU;pÞe

; U ¼ Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðX;XÞp ;

which is valid as long asXobs andXe are timelike, such that
both the observer’s and the emitter’s four-velocity U is well
defined. Using Eqs. (10) and (11) we obtain
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νobs
νe

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r je
1 − 2m

r jobs

s
Eobs

Ee
: ð15Þ

In the Schwarzschild case, E is constant along the null rays,
and we recover the familiar expression describing the
gravitational redshift. For a photon traveling from past
to future null infinity through a collapsing spherical object
of finite radius, Eq. (15) yields the remarkably simple
formula

νþ∞
ν−∞

¼ Eþ
1

E−
1

; ð16Þ

where Eþ
1 (E−

1 ) is the energy E of the photons at the moment
they exit (enter) the collapsing object and νþ∞ and ν−∞ refer
to the frequencies at future and past null infinity, respec-
tively, as measured by asymptotic static observers. We will
use this formula in the next section.

B. Null geodesics in the Tolman-Bondi
spacetime

For the particular case of dust collapse, it is convenient to
choose ðt; RÞ as synchronous comoving coordinates [48]
adapted to the flow of the dust particles. For such
coordinates we have in Eq. (1), Φ ¼ 0, t ¼ τ is the proper
time along the trajectories of the dust particles, and
eΨðτ;RÞ ¼ 1=γðτ; RÞ ¼ r0ðτ; RÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðRÞp
. The areal

radius rðτ; RÞ of the spherical dust shell labeled by R at
proper time τ is determined by the equation

1

2
_r2 −

mðRÞ
r

¼ EðRÞ; ð17Þ

with EðRÞ the energy of the dust shell R; see Ref. [7] for
notation and further properties of the functions rðτ; RÞ, _r,
r0, and γ. Hereafter, we require the conditions (i)–(viii) in
Ref. [7] to hold. These requirements imply regularity of the
initial data and the absence of shell-crossing singularities
(among other reasonable physical properties), and they
lead to the formation of a locally naked shell-focusing
singularity.
For the following, we use the nullity constraint L ¼ 0 in

order to replace ðπτ; πRÞ with the single function

Π ≔ γ
πR

πτ
; ð18Þ

in terms of which

πτ ¼ jlj
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p ; πR ¼ 1

γ

jlj
r

Πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p ; ð19Þ

where we have taken the absolute value of l in order to
make sure that πτ > 0 such that the trajectory is future

directed.5 In terms of this new variable, the equations
describing the null geodesics are

dτ
dλ

¼ jlj
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p ; ð20Þ

dR
dλ

¼ jlj
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

r0
Πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Π2
p ; ð21Þ

dΠ
dλ

¼ jlj
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p �
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þ
�
_r
r
−
_r0

r0

�
Π
�
; ð22Þ

and the change of the areal radius r along the null geodesic
is described by

dr
dλ

¼ jlj
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p ð_rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
ΠÞ: ð23Þ

For the following analysis, we reparametrize the geodesics
in terms of the coordinate R. This change of parametriza-
tion is legitimate as long as Π ≠ 0. Under this change of
parametrization, the above equations take the form

dτ
dR

¼ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p 1

Π
; ð24Þ

dφ
dR

¼ signðlÞ
r

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

p

Π
; ð25Þ

dr
dR

¼ r0
�
1þ _rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p 1

Π

�
; ð26Þ

dΠ
dR

¼ ð1 − Π2Þr0
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
�
_r
r
−
_r0

r0

�
þ 1

r
1

Π

�
: ð27Þ

Note that these equations are also valid in the case of radial
null geodesics, for which Π ¼ �1. The last two equations
form a closed system of nonlinear ordinary differential
equations for the variables ðr;ΠÞ, since the coefficients
E; r; _r; r0; _r0 appearing on the right-hand side of Eqs. (26)
and (27) can be expressed in terms of R and r only.

C. Radial and nonradial null geodesics emanating
from the singularity

In order to analyze the behavior of the solutions in the
vicinity of the central singularity ðτ; RÞ ¼ ð0; 0Þ, it turns out
to be convenient to replace the areal radius r with the new
variable

5Note that in the radial case Π ¼ �1 and l ¼ 0. In this case,
the equations describing the null geodesics are simply given by
dτ ¼ Π−1dR=γ.
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χ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðRÞ

r

r
;

and the coordinate radius R labeling the dust shells
with s ≔ 1=R. Note that χ ¼ 1 characterizes the location
of the apparent horizon, while 0 ≤ χ < 1 defines the
region lying to the past of it which includes the central
singularity. Equations (26) and (27) can be rewritten as

the following nonautonomous dynamical system for the
variables ðχ;ΠÞ:

d
ds

�
χ

Π

�
¼ XðR; χ;ΠÞjR¼1=s ¼

�
X1ðR; χ;ΠÞ
X2ðR; χ;ΠÞ

�����
R¼1=s

;

ð28Þ

with the functions X1 and X2 given by

X1ðR; χ;ΠÞ ≔
χ

2

("
Rþ χ3

cðRÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞχ−2

q
Λ

�
R

ffiffiffiffiffiffiffiffiffiffi
cðRÞp
χ

; R

�#"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞχ−2
1þ 2EðRÞ

s
χ

Π

#
− 3R− R2

c0ðRÞ
cðRÞ

)
;

X2ðR; χ;ΠÞ ≔ ð1−Π2Þ
�

χ3

cðRÞ3=2Λ
�
R

ffiffiffiffiffiffiffiffiffiffi
cðRÞp
χ

; R

��
3þ 4EðRÞχ−2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞp χ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞχ−2

q
1

Π

�
− RK

�
R

ffiffiffiffiffiffiffiffiffiffi
cðRÞp
χ

; R

�
χ −

R
Π

	
;

where the functions cðRÞ, Λðy; RÞ, and Kðy; RÞ are defined by

cðRÞ ≔ 2mðRÞ
R3

;

qðRÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
REðRÞ
mðRÞ

s
;

Kðy; RÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − qðRÞ2y2
q Rc0ðRÞ

2cðRÞ −
qðRÞ2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qðRÞ2y2

p Rq0ðRÞ
qðRÞ

�
;

Λðy; RÞ ≔ 2
q0ðRÞ
RqðRÞ hðqðRÞ; yÞ −

c0ðRÞ
2RcðRÞ gðqðRÞ; yÞ;

hðq; yÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p −
y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q2y2
p −

3

2
gðq; yÞ;

gðq; yÞ ≔ fðqyÞ − fðqÞ
q3

;

fðxÞ ≔ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
þ arccosðxÞ;

with y ≔
ffiffiffiffiffiffiffiffi
r=R

p
; see Ref. [7] for more details and proper-

ties of these functions.
We are particularly interested in the behavior of the

solutions of Eq. (28) in the vicinity of the central singularity
ðτ; RÞ ¼ ð0; 0Þ. Notice that in terms of the above notation,

χ ¼ R
ffiffiffiffiffiffiffiffiffiffi
cðRÞ

p ffiffiffiffi
R
r

r
;

such that a finite, positive limit of χ as R → 0 implies
r=R → 0. Therefore, any solution of Eq. (28) for which χ
converges to a finite, positive value when R → 0 corre-
sponds to a null geodesics emanating or terminating at the
central singularity. In order to understand the limit R → 0
(or s → ∞) we first analyze the autonomous system which
is obtained by setting R ¼ 0 in the right-hand side of
Eq. (28), that is,

d
ds

�
χ

Π

�
¼ Xð0; χ;ΠÞ ¼ A0χ

3

0
@ χ



1 − χ

Π

�
ð1 − Π2Þ



3χ − 2

Π

�
1
A;

ð29Þ

where we have used the assumption Eð0Þ ¼ 0 which
follows from condition (i) in Ref. [7], and where
A0 ≔ Λð0; 0Þ=ð2cð0Þ3=2Þ > 0. There are two critical points
of this system with χ > 0, namely,

ðχ1;Π1Þ ¼ ð1; 1Þ; ðχ2;Π2Þ ¼
ffiffiffi
2

3

r
ð1; 1Þ:

The linearization about these points (keeping R ¼ 0
fixed) is
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DXð0; χ1;Π1Þ ¼ A0

�−1 1

0 −2
�
;

DXð0; χ2;Π2Þ ¼ A0

�
2

3

�
3=2

�−1 1

1 1

�
:

In the first case, both eigenvalues are negative, and thus the
critical point ðχ1;Π1Þ is an attractor for the system (29). In
the second case, the eigenvalues are � ffiffiffi

2
p ð2=3Þ3=2A0,

and hence the critical point ðχ2;Π2Þ is hyperbolic with
associated one-dimensional stable and unstable local mani-
folds. A phase portrait for the system (29) is shown
in Fig. 1.
After understanding the behavior of the autonomous

system, we return to the nonautonomous system defined in
Eq. (28), which we rewrite as

d
ds

�
χ

Π

�
¼ Xð0; χ;ΠÞ þ RYðR; χ;ΠÞjR¼1=s; ð30Þ

where

YðR; χ;ΠÞ ≔ 1

R
½XðR; χ;ΠÞ − Xð0; χ;ΠÞ�; R > 0:

It is not difficult to verify that for small enough ε > 0 and a
suitable open neighborhood U of ðχ;ΠÞ ¼ ð1; 1Þ in R2, the
map X∶ð0; εÞ × U → R2; ðR; χ;ΠÞ ↦ XðR; χ;ΠÞ defined
in Eq. (28) is continuous. Consequently, Y∶ð0; εÞ ×U →
R2; ðR; χ;ΠÞ ↦ YðR; χ;ΠÞ defines a continuous map, and
it is not difficult to prove that this map is bounded. Now we
resort to the following general result whose proof we give
in Appendix A for completeness.
Theorem 1: (Stability theorem; cf. Theorem 4.5 in

Ref. [49]).—LetU ⊂ Rm be an open subset and let X∶U →
Rm; x ↦ XðxÞ be a continuously differentiable map and
x� ∈ U a point such that

Xðx�Þ ¼ 0

and such that all the eigenvalues of the linearization
DXðx�Þ∶Rm → Rm at x� have a negative real part. Let
Y∶ ð0;∞Þ ×U → Rm; ðs; xÞ ↦ Yðs; xÞ be a bounded con-
tinuous map.
Then, there exists s1 > 0 and an open subset V ⊂ U

containing x� such that any (maximally extended) solution
xðsÞ of the Cauchy problem

� dx
ds ¼ XðxÞ þ 1

s Yðs; xÞ; s ≥ s0;

xðs0Þ ¼ x0;
ð31Þ

with ðs0; x0Þ ∈ ðs1;∞Þ × V exists for all s ≥ s0 and
satisfies

lim
s→∞

xðsÞ ¼ x�:

Remark: xðsÞ ¼ x� for all s ≥ 0 is not necessarily a
solution of the Cauchy problem (31) with x0 ¼ x�, since we
do not assume that Yðs; x�Þ ¼ 0.
According to Theorem 1, there exists an open neighbor-

hood V of the point ðχ;ΠÞ ¼ ð1; 1Þ and a value R0 > 0,
such that any solution ðχðsÞ;ΠðsÞÞ of the nonautonomous
system (28) with ðχðsÞ;ΠðsÞÞjs¼1=R0

∈ V converges to the
point (1,1) as s → ∞. Physically, this implies that any null
geodesic passing close enough to the point ðR; χ;ΠÞ ¼
ð0; 1; 1Þ emanates from the central singularity. In particular,
we have shown that there exists infinitely many null
geodesics emanating from the central singularity, with or
without angular momentum. As it will turn out, this
property will be of central importance to the main results
of this paper and its implications will become clear
in Sec. IV.
Clearly, the result described in the previous paragraph

does not provide a full picture for the behavior of null
geodesics in a vicinity of the naked singularity, since it
leaves open the possibility for the existence of null geo-
desics emanating from the singularity with asymptotic
values for ðχ;ΠÞ different from (1,1). A full picture in
the generic Tolman-Bondi collapse case analyzed here is
beyond the scope of the paper. For a full qualitative analysis
of the null geodesic flow in the particular case of a nakedly

FIG. 1 (color online). The phase portrait for the autonomous
dynamical system defined in Eq. (29). Note that we use the
variable 1=Π instead of Π in order to have a better view of
the phase space in the region 0 < Π ≤ 1. The arrows show the
direction of the vector field, the blue solid lines are the stable and
unstable local manifolds associated with the critical point
ðχ2;Π2Þ ¼ ð ffiffiffiffiffiffiffiffi

2=3
p

;
ffiffiffiffiffiffiffiffi
2=3

p Þ, and the red dashed line is an integral
curve corresponding to a radial light ray. As the figure suggests,
the basin of attraction for the critical point ðχ1;Π1Þ ¼ ð1; 1Þ is the
region that lies below the stable manifold.
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singular self-similar Tolman-Bondi spacetime we refer the
reader to our recent work [45]; see also Appendix B.

D. Infinite redshift

After having showed the existence of infinitely many
null geodesics, with and without angular momentum,
emanating from the central singularity, we analyze the
frequency shift the photons undergo along these geodesics
as measured by free-falling observers. In particular, we
show that photons emitted from a region very close to the
central singularity are infinitely redshifted.
The frequency shift along outgoing radial null geodesics

is given by [17]

νobs
νe

¼ exp

�Z
Robs

Re

_γ

γ2
ðτþðRÞ; RÞdR

�
; ð32Þ

where R ↦ ðτþðRÞ; RÞ parametrizes the outgoing radial
light ray, and R ¼ Re and R ¼ Robs denote the location of
the free-falling emitter and observer, respectively. It follows
from the explicit expressions for _γ=γ2 derived in Lemma 3
of [17] that _γ=γ2 ≃ −1=R2 for small R, along radial light
rays emanating from the central singularity with χ → 1 as
R → 0, and consequently, there is an infinite redshift as
Re → 0, in agreement with Ref. [2].

Regarding the frequency shift along nonradial null
geodesics emanating from the central singularity such that
ðχ;ΠÞ → ð1; 1Þ as R → 0, we have

νobs
νe

¼ gðu;pÞobs
gðu;pÞe

¼ re
robs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Π2

e

1 − Π2
obs

s
; ð33Þ

where we have used Eqs. (12) and (19). Note that for a free-
falling observer at R ¼ Robs > 0, we have robs > 0 and
Π2

obs ≠ 1, since the null ray is nonradial. However, as we
consider an emitter on a free-falling trajectory located
closer and closer to the central singularity, re → 0 and
Πe → 1, and we obtain again an infinite redshift.

III. INITIAL CONDITIONS FOR THE
COLLAPSING CLOUD

In this section, we briefly discuss the family of initial
data used in our analysis. The initial data for the collapsing
dust cloud consist in the initial density profile ρðRÞ and the
initial profile for the radial velocity vðRÞ (for a precise
definition of this velocity see [7]). For simplicity, we
choose time-symmetric initial data for the dust collapse,
implying that vðRÞ ¼ 0 for all R ≥ 0. To be in accord with
the simulations presented in I (Ref. [23]), the density profile
is chosen in the following form:

ρðRÞ ¼ ρc ×

(
1 − 5

3
a0



R
R1

�
2 þ 7

3
a1



R
R1

�
4 þ 3a2



R
R1

�
6 þ 11

3
a3



R
R1

�
8
; 0 ≤ R ≤ R1;

0; R > R1;
ð34Þ

where R1 > 0 is the initial areal radius of the cloud, ρc > 0
is the central density, and a0 is a dimensionless parameter
restricted to the interval 0 < a0 ≤ 1 which characterizes
the flatness of the initial density ρ. The other parameters
are given in terms of a0 by a1 ¼ −3ð6 − 5a0Þ=7,
a2 ¼ ð8 − 5a0Þ=3, and a3 ¼ −ð9 − 5a0Þ=11. The initial
density profile defined in Eq. (34) is continuous and
monotonously decreasing on the interval ½0;∞Þ, and
provided 0 < a0 < 12=5, it satisfies the assumptions (i)–
(viii) listed in Sec. II of Ref. [7] such as smoothness,
boundedness, non-negative mass density, absence of shell-
crossing singularities, absence of initially trapped surfaces,
with the exception of C∞-differentiability at the surface of
the cloud.6 In particular, the profile given in Eq. (34) is
smooth at the center where indeed ρ0ð0Þ ¼ 0 and
ρ00ð0Þ < 0. As shown by Christodoulou [2], these con-
ditions lead to the formation of a shell-focusing singularity
which is visible at least to local observers.
The initial compactness ratio C ≔ 2m1=R1 of a

collapsing cloud with initial density given by Eq. (34)
turns out to be

C ¼ 8

3
πR2

1ρcð1 − a0 þ a1 þ a2 þ a3Þ: ð35Þ

In our numerical simulations we fix a0 ¼ 1; nonetheless
other values in the interval ð0; 12=5Þ lead to the same
qualitative results. Below, we make the particular choice
C ¼ 16=77 ≕ C0 which leads to the formation of a black
hole, and further consider initial data with C ≤ C0=2 which
guarantee the formation of a globally naked singularity; see
paper I.

IV. BACK-RAY TRACING THE PHOTONS
FROM THE OBSERVER

In the spacetime generated by the data described in the
previous section, we consider a particular static observer at
some distance robs ≫ 2m1 from the collapsing cloud who
registers photons that have traversed the collapsing cloud.
As in I, we assume that the received radiation is generated
by external sources distributed uniformly in the asymptotic
region. This radiation does not interact with any intervening
matter nor with the collapsing matter, and for simplicity we
ignore any radiation generated within the collapsing cloud.
However, unlike in I, here we allow this radiation to have
nonvanishing angular momentum. Thus, within the

6Nevertheless, the density profile is twice continuously differ-
entiable everywhere.
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geometric optics approximation, photons composing this
radiation are moving on null geodesics originating from the
asymptotic source, going through the collapsing cloud and
finally received by the detectors carried by our asymptotic
observer. In the spirit of the proposal in I, our focus in the
next sections is to estimate the total frequency shift νþ∞=ν−∞
of the photons perceived by the observer, where hereafter
ν−∞ and νþ∞ stand for the frequency of emission and
detection, respectively. In order to compute the frequency
shift νþ∞=ν−∞ of these photons, we trace back their path
along past-directed null geodesics intersecting the cloud.
Each null geodesic is characterized by its impact parameter
b and the proper time τobs at which the observer measures
its corresponding redshift. In Fig. 2, we illustrate a possible
nonradial photon trajectory (γ) in the case where the
collapse forms a naked singularity, and we also show
the particular radial light ray (γ0) penetrating the cloud at
the moment of time symmetry, which we use as a reference
to define τobs ¼ 0.
We divide the process of tracing back the null geodesics

in three steps. The first step consists in tracing back the null
rays from the observer to the surface of the cloud, and thus
determining the areal radius rþ1 of the surface of the cloud at
the moment the ray penetrates it and its angle of incidence
α (defined below). No numerical ray tracing is required in
this step since we are dealing with null geodesics in a
Schwarzschild spacetime, whose equations of motion are
integrable.

The second step involves tracing back the light ray
numerically from the surface of the cloud through the cloud
itself. In the case where the object collapses to a black hole,
the light ray reaches the surface of the cloud again in the
past. However, in the naked singularity case, there is an
alternative possibility that may occur, once the observer
passes the Cauchy horizon. As we have shown in the
previous section, there exist future directed null geodesics
emanating from the naked singularity. Therefore, it is
possible that the ray-traced null geodesic hits the naked
singularity instead of extending to the distant source. A
consequence of this property is that once the asymptotic
observer passes the Cauchy horizon, he or she registers a
smaller number of photons originating from the source. In
this step, we determine numerically the critical angle α̂
which distinguishes between null geodesics emanating
from the naked singularity from those that arrive from
the external source at past null infinity.
Finally, in a third step, we vary the parameters τobs

and b characterizing the null geodesic. For each value of
these parameters, we determine whether the null geodesic
originates from the source or from the naked singularity. In
the first case, we compute the total redshift the photons
undergo, while in the latter case, as we showed in Sec. II D,
the photons are infinitely redshifted.
In the following, we describe the details involved in

realizing these three steps.

FIG. 2 (color online). Conformal diagram for the spherical collapse of a dust cloud forming a naked singularity. We illustrate the world
line of the distant observer and the spacetime trajectories of two light rays γ0 and γ. The particular radial light ray γ0 is the one originating
from the distant source which penetrates the cloud at the moment of time symmetry and reaches the observer at time τobs ¼ 0. γ is an
arbitrary trajectory of a null geodesic with angular momentum.
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A. Step 1: Tracing back the null rays from
the observer to the surface of the cloud

In the exterior region the null geodesics are described by
Eq. (14) with constant energy E. Introducing the impact
parameter b ≔ l=E and rescaling the affine parameter such
that l2 ¼ 1, Eq. (14) assumes the form�

dr
dλ

�
2

þ 1

r2

�
1 −

2m1

r

�
¼ 1

b2
; ð36Þ

wherem1 is the total mass of the cloud. This is the equation
for a one-dimensional mechanical particle in the potential
ð1 − 2m1=rÞ=r2, whose maximum 1=ð27m2

1Þ is located at
r ¼ 3m1 (the photosphere). In the following, we restrict
ourselves to absolute values for the impact parameter
jbj < b̄, lying below the critical value

b̄ ¼
ffiffiffiffiffi
27

p
m1;

corresponding to the maximum of the potential. Therefore,
when jbj < b̄, 1=b2 is larger than the maximum of the
effective potential, implying that the null geodesic must
intersect the cloud in its past, since otherwise it must have
emanated from r ¼ 0 in the Schwarzschild region which is
not possible for an observer lying to the future of the
reference curve γ0; see Fig. 2.
Let r ¼ rþ1 denote the areal radius of the surface of the

cloud at the event x where the null geodesic intersects it. We
define the angle α of incidence at x in the following way:
denote by

e0 ¼
∂
∂τ ; e1 ¼ γ

∂
∂R ; e2 ¼

1

r
∂
∂ϑ ;

e3 ¼
1

r sinϑ
∂
∂φ

an orthonormal frame at x adapted to a free-falling observer
comoving with a dust particle at the surface of the cloud and
chosen so that e1 is parallel to the outward pointing radial
vector field at the event x. Then, we define the incidence
angle α by

px ¼ Aðe0 − cos αe1 þ sin αe3Þ; ð37Þ

where A > 0 is a positive constant and px denotes the four-
momentum of a photon which is restricted to move on the
equatorial plane ϑ ¼ π=2. Geometrically, α determines the
angle that the orthogonal projection of px onto the invariant
plane spanned by ðe1; e3Þ makes with the radial outgoing
direction e1. According to this parametrization, px is tangent
to the ingoing (outgoing) radial geodesics for the particular
value α ¼ 0 (α ¼ π).
Comparing Eq. (37) with Eq. (12) we find (recall that for

dust collapse Φ ¼ 0, e−Ψ ¼ γ and t ¼ τ)

πτ ¼ A; γπR ¼ −A cos α; l ¼ Ar sin α;

such that Π ¼ − cos α. Introducing these relations into
Eq. (11) and dividing by l yields

b ¼ bðα; rÞ ¼ r sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1

r þ 2E1

q
cos α

; ð38Þ

where we have used the equation γr0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
,

E1 ≔ EðR1Þ, and the free-fall equation (17) evaluated at
the surface of the cloud R ¼ R1. Note that for the particular
values α ¼ 0 or α ¼ π this formula gives b ¼ 0, i.e. the
correct impact parameter for ingoing and outgoing radial
light rays. Inverting the relation (38) we obtain the two
solutions

sin α ¼ br

r2 þ b2ð2m1

r þ 2E1Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1

r
þ 2E1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2

�
1 −

2m1

r

�s �
; ð39Þ

cos α ¼ 1

r2 þ b2ð2m1

r þ 2E1Þ

�
−b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1

r
þ 2E1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
� r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2

�
1 −

2m1

r

�s �
; ð40Þ

for α as a function of the impact parameter and the areal radius r ¼ rþ1 of the surface of the cloud at the event x. Evaluating
Eqs. (39) and (40) at b ¼ 0 yields sin α ¼ 0, cos α ¼ �1which shows that in this case it is the lower sign that determines the
correct solution α ¼ π. More generally, it follows from Eq. (13) that

dr
dλ

¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 ð1 − 2m1

r Þ
q
1þ b2

r2 ð2m1

r þ 2E1Þ

�
∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1

r
þ 2E1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2

r2

�
1 −

2m1

r

�s �
: ð41Þ

NÉSTOR ORTIZ, OLIVIER SARBACH, AND THOMAS ZANNIAS PHYSICAL REVIEW D 92, 044035 (2015)

044035-10



Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1=rþ 2E1

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
and 1 − ðb=rÞ2ð1−

2m1=rÞ ≤ 1, it follows that the lower sign leads to an
increase of r along λ, and hence the corresponding light ray
reaches the observer. Thus, the correct sign in Eqs. (39) and
(40) is the lower one, and the incidence angle α is uniquely
determined by these equations and lies in the interval7

π=2 < α < 3π=2. In particular, this implies that a segment
of the null geodesic in the immediate past of x lies inside
the cloud, as required.
Now that we havemanaged to express the incidence angle

α in terms of the impact parameter b and the radius rþ1 of the
cloud when the null ray exits it, we need to establish the
relation between rþ1 and the proper time τobs at which the ray
reaches the observer. We fix the time origin using the same
normalization as in paper I. We choose this origin such that
τobs ¼ 0 corresponds to the moment at which the observer
encounters the radial light ray γ0 that entered the cloud at the
moment of time symmetry (see Fig. 2). In order to compute
the relation between τobs and rþ1 we work in standard
Schwarzschild coordinates ðt; rÞ and first note that

τobs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m1

robs

s
ðt − t0Þ≃ t − t0;

where t0 is the Schwarzschild time at τobs ¼ 0, and where in
the last step we have used the assumption robs ≫ 2m1. Next,
we use Eqs. (11) and (36), from which

t − tþ1 ¼
Z

robs

rþ
1

dr

NðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 NðrÞ
q ;

where tþ1 is theSchwarzschild timeatwhich the light rayexits
the cloud and where for notational simplicity we have set
NðrÞ ≔ 1 − 2m1=r. Next, we use the fact that r

þ
1 and tþ1 are

related to each other via the free-fall equations

NðrÞ_t ¼ E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
;

1

2
_r2 −

m1

r
¼ E1;

where we recall that the dot denotes differentiation with
respect to theproper timeof a free-fallingobserver comoving
with the dust particles. From these two equations we find,
upon integration from the moment of time symmetry, where
t ¼ 0 and r1 ¼ R1, to the pointwhere the cloudhas collapsed
to radius rþ1 , that

tþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p Z
R1

rþ
1

dr

NðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1 þ 2m1

r

q :

Combining the above equations, we obtain the following
expression:

tðE1; jbj; rþ1 Þ ¼
Z

robs

rþ
1

dr

NðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 NðrÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p Z
R1

rþ
1

dr

NðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1 þ 2m1

r

q
ð42Þ

for the Schwarzschild time t at the moment the null geodesic
intersects the observer’s world line, assuming that the
geodesic has impact parameter b and exited the cloud at
radius rþ1 . By definition,

t0 ¼ tðE1; 0; r0Þ;

with r0 the radius of the cloud at the moment the particular
light ray γ0 exits it. Hence, introducing the function

FbðrÞ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 NðrÞ
q − 1;

we obtain

tðE1; jbj; rþ1 Þ − t0 ¼
Z

robs

rþ
1

FbðrÞ
dr
NðrÞ −

Z
rþ
1

r0

dr
NðrÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p Z
rþ
1

r0

dr

NðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1 þ 2m1

r

q :

ð43Þ

The last two integrals on the right-hand side canbe computed
analytically; see Appendix C in [7]. The first integral
converges as robs → ∞, since FbðrÞ decays as 1=r2.
Finally, we note that we can rewrite

FbðrÞ ¼
b2

r2
NðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 NðrÞ
q

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 NðrÞ
q

Þ
;

so that the first integral converges as rþ1 → 2m1.
Gathering the results and taking robs → ∞ we finally

obtain

7Notice that by restricting our considerations to the open
interval π=2 < α < 3π=2 rather to π=2 ≤ α ≤ 3π=2 we have
eliminated radiation that is incoming from infinity, grazes the
surface of the collapsing cloud, and returns back to infinity. For a
discussion and an alternative description of this “backward
emitted radiation” see Ref. [39].
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τðE1; jbj; rþ1 Þ ¼
Z

∞

rþ
1

b2

r2
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 NðrÞ
q

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 NðrÞ
q

Þ
þ 4m1 log

�
Uðy0Þ
Uðyþ1 Þ

�
; ð44Þ

where

UðyÞ ¼ 1

a1
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − b21y

2

q
− y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b21

q
Þ exp

�
y2

2a21
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b21

p
2b21

�
1þ 2b21

b1
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − b21y

2
p

b1y

�
þ y
a21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − b21y

2

q �	
;

with a1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1=R1

p
, b1 ≔

ffiffiffiffiffiffiffiffiffiffiffi
−2E1

p
, and y ≔

ffiffiffiffiffiffiffiffiffiffi
r=R1

p
. In order to compute the remaining integral, it is convenient to

introduce the new variable s ≔ jbj=r in terms of which

Z
∞

rþ
1

b2

r2
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2

r2 NðrÞ
q

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

r2 NðrÞ
q

Þ
¼ jbj

Z jbj=rþ
1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2 þ 2m1

jbj s
3

q
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2 þ 2m1

jbj s
3

q
Þ
:

The results of this subsection can be summarized as
follows: if γ is a null geodesic having an impact parameter b
restricted to jbj < b̄, intersecting the observer’s world line
at time τobs ≥ τ0, then this geodesic γ must intersect the
cloud. The areal radius rþ1 and the angle of incidence α
[defined in Eq. (37)] at the event x at which the null
geodesic exits the cloud can be determined from τobs and b
by first inverting the equation τðE1; jbj; rþ1 Þ ¼ τobs to find
rþ1 and then using Eqs. (39) and (40) with r ¼ rþ1 to
determine α. Given rþ1 and α we can continue tracing back
the null geodesic into the cloud, and this procedure is
described next.

B. Step 2: Tracing back the null rays inside the cloud
and determining the critical angle α̂

Starting from the surface of the cloud at the event x with
r ¼ rþ1 , at first we introduce the special angle ᾱ ≔ αðb̄; rþ1 Þ
obtained from Eqs. (39) and (40) and subject to the
constraint ᾱ∈ðπ=2;π�. As explained in the previous sub-
section, the light rays with incidence angle α ∈ ðᾱ; 2π − ᾱÞ
are those that have large enough energy to make it over the
potential barrier; see Eq. (36). Subsequently, for any
α ∈ ðᾱ; 2π − ᾱÞ, we solve numerically the dynamical sys-
tem in Eq. (28) in order to trace the nonradial null geodesic
backwards into the dust cloud and determine whether it
exits the cloud in the past or hits the singularity. If the
collapse results into a black hole, only the former pos-
sibility can occur, whereas in the case of a naked singularity
formation, the latter possibility may occur as soon as the
event x lies to the future of the Cauchy horizon and the
impact parameter b is sufficiently small in magnitude. As
we have already discussed in the Introduction and have
shown in detail in Sec. II C, there exist future directed null
geodesics emanating from the naked singularity, so it is
possible that one of these geodesics intersects the surface of
the cloud at the event x with incidence angle α within the
admissible range ðᾱ; 2π − ᾱÞ of the observer’s field of view.

To deal with this new possibility, we introduce a critical
angle α̂ defined in such a way that null geodesics traced
back from x hit the singularity in their past if α∈ðα̂;2π−α̂Þ
and exit the cloud in their past otherwise. If x lies to the past
of the Cauchy horizon (in particular, this is always true in
the black hole case), then α̂ ¼ π and the light ray always
exits the cloud in its past. However, as we will show below,
as soon as the event x at the cloud’s surface crosses the
Cauchy horizon, α̂ decreases from π to a value smaller than
ᾱ as the radius of the cloud decreases to 2m1, implying that
there are more and more light rays in the observer’s field of
view that emanate from the singularity instead of the distant
source. Geometrically, the angle α̂ determines the optical
size of the naked singularity as seen by a free-falling
observer which is comoving with the surface of the cloud.
An analytic expression for α̂ in the particular case of a self-
similar Tolman-Bondi cloud is derived in Appendix B.
In the generic, bounded Tolman-Bondi collapse, an

analytic determination of the critical angle α̂ is probably
not feasible. Therefore, we determine α̂ numerically by
bisection in α for every event x at the surface of the star
such that τobs ≥ 0 and rþ1 > 2m1. Figure 3 shows α̂ and ᾱ as
functions of 2m1=r

þ
1 for three different initial compactness

ratios C (see the discussion at the end of Sec. III for the
precise definition of C). In the left panel, C ¼ C0, and thus a
black hole appears, whereas the central and right panels
correspond to the cases of naked singularities arising from
collapsing clouds with C ¼ C0=2 and C ¼ C0=4, respec-
tively. For every given τ ¼ τobs and a discrete set of equally
spaced values of the impact parameter b ∈ ½0; b̄Þ, we
numerically invert Eq. (44) to find rþ1 and then, from
Eqs. (39) and (40) with r ¼ rþ1 , we obtain discrete sets of
α ∈ ðᾱ; α̂Þ producing the thin solid lines in each panel of
Fig. 3. Notice that the dependency of ᾱ on 2m1=r

þ
1 shows a

kink at 2m1=r
þ
1 ¼ 2=3, corresponding to the moment the

cloud’s surface coincides with the photosphere. The origin
of this kink is related to the fact that the function
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1 − b̄2ð1 − 2m1=rÞ=r2 ≥ 0, appearing on the right-hand
side of Eqs. (39) and (40), has a second-order root at
r ¼ 3m1, implying a change of sign in the derivative of its
square root.
In order to demonstrate the accuracy of our numerical

method, in Fig. 4 we present a self-convergence test for the
numerical solution of the dynamical system in Eq. (28)
computed by a fourth-order Runge-Kutta method with step
size Δs ¼ 0.002, for a null geodesic traced back from the
event x until it intersects again the cloud’s surface in the
past. In Fig. 4 we show results for an incidence angle α
lying very close to the critical value α̂ such that the
corresponding null geodesic grazes the singularity. The
plot shows that the relative numerical error decreases (left
panel) by a factor ∼16 (right panel) when the step size
decreases by a factor 2.

C. Step 3: Measuring the redshift of the photons
originating from the source

Once we have a light ray that exits the collapsing star in
the past, we know that it must extend all the way to the past
asymptotic region, where the corresponding photon is

emitted with frequency ν−∞. In this step, we evaluate the
total gravitational frequency shift νþ∞=ν−∞ measured by the
distant observer in the future asymptotic region, where νþ∞
denotes the detected frequency. This frequency shift is
given by the simple formula (16) which only requires the
computation of the quantity E along the portion of the light
ray inside the star.
We numerically evaluate the frequency shift perceived

by the observer at different proper times τobs > 0 and for
different impact parameters b ∈ ð0; b̄Þ of the light ray.8 To
this purpose, we first determine the angle of incidence α ∈
ðᾱ; πÞ for each chosen value of τobs and impact parameter b.
In the naked singularity case we check whether α < α̂ or
α > α̂. In the black hole case or in the naked singularity
case with α < α̂, the light ray extends all the way to past
null infinity according to the definition of α̂, and the total
redshift is computed using Eq. (16). In the naked singu-
larity case with α > α̂, the light ray originates from the
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FIG. 3 (color online). The critical angle α̂ (thick solid lines) as well as ᾱ (thick dashed lines) as functions of 2m1=r
þ
1 . The thin solid

lines correspond to slices of constant proper time of the observer. Left panel: Black hole case with initial compactness ratio C ¼ C0.
Central panel: Naked singularity with C ¼ C0=2. Right panel: Naked singularity with C ¼ C0=4. rCh denotes the areal radius of the
surface of the star at the moment it crosses the Cauchy horizon. Note that in the black hole case α̂ ¼ π since the asymptotic observer
always lies to the past of the Cauchy horizon in this case.
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relative numerical error decreases (left panel) by a factor of ∼16 (right panel) when the step size decreases by a factor of 2.

8Because of spherical symmetry it is sufficient to consider
positive values of b, corresponding to the interval α ∈ ðπ=2; π� for
the incidence angle.
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naked singularity and there is an infinite redshift, making it
practically invisible.
For the same cases as the ones presented in Fig. 3, in

Fig. 5 we show the total redshift νþ∞=ν−∞ as a function of the
viewing angle ζ (see definition below) as seen by the
asymptotic observer for certain fixed values of τobs > 0. We
denote by τCh (τ3m1

) the proper time at which the observer
starts detecting light rays that exit the cloud inside the
Cauchy horizon (photosphere). The viewing angle ζ is
defined9 in a similar way as the angle of incidence α; see
Eq. (37). To define ζ, we choose the orthonormal tetrad

e0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðrobsÞ
p ∂

∂t ; e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðrobsÞ

p ∂
∂r ;

e2 ¼
1

r
∂
∂ϑ ; e3 ¼

1

r sinϑ
∂
∂φ

adapted to the static observer, and we parametrize the
photon’s four-momentum as

p ¼ Bðe0 þ cos ζe1 þ sin ζe3Þ; ð45Þ

with B > 0 a positive constant. Using Eqs. (11) and (14)
we find

sin ζ ¼ b
robs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m1

robs

s
;

the angle ζ ¼ 0 corresponding to photons with zero impact
parameter (radial light rays). Since robs ≫ 2m1; b, this
relation simplifies to

ζ ¼ b
robs

: ð46Þ

In particular, the largest viewing angle allowed by our
assumption (jbj ≤ b̄) is ζ̄ ≔ b̄=robs.
A comparison between the different panels in Fig. 5

reveals that the redshift perceived by the asymptotic
observer depends crucially upon the collapse outcome.
In particular, regarding the total redshift suffered by radial
photons (corresponding to ζ ¼ 0) as a function of proper
time, it can be seen from Fig. 5 that our previous results in
paper I are recovered. Namely, for the case of an event
horizon formation, the left panel in Fig. 5 shows that in an
amount of proper time of the order 10m1 crossing times, the
observer finds that the ratio νþ∞=ν−∞ smoothly approaches
zero. In contrast to this, for the naked singularity case, the
central and right panels in Fig. 5 show a sharp cutoff of the
signal from the radial direction, which can occur even at
crossing times of the order 100m1, depending on the initial
compactness ratio of the collapsing object. For a clearer
picture of this behavior see also Figs. 2 and 3 in paper I.
Furthermore, Fig. 5 also shows that the behavior of the

total redshift of radial photons persists for nonradial ones.
That is, for every fixed viewing angle ζ ≠ 0, the redshift
function decays smoothly to zero in the case of an event
horizon formation, whereas in the naked singularity case
the decay is slower initially but then shows a sharp cutoff to
zero after the observer crosses the Cauchy horizon.
Nevertheless, we see that as ζ approaches ζ̄, the redshift
seems to be independent of the collapse time. This can be
understood by noting that ζ ¼ ζ̄ implies that we are dealing
with null geodesics originating at the photosphere, and thus
the associated redshift is independent of the collapse (for a
related discussion of this point see Ref. [38] and in
particular Fig. 2 of that paper).
In addition, Fig. 5 shows that in the naked singularity

case the redshift behavior of nonradial photons as a
function of ζ for late τobs is also remarkable in the following
sense: once the observer crosses the Cauchy horizon
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FIG. 5. Total redshift measured by the asymptotic observer at certain proper times as a function of the normalized viewing angle ζ=ζ̄ of
the collapsing object. Left panel: Black hole case with initial compactness ratio C ¼ C0, for which τ3m1

=2m1 ≈ 10.8. Central panel:
Naked singularity with C ¼ C0=2. In this case τCh=2m1 ≈ 18.4 and τ3m1

=2m1 ≈ 41.1. Right panel: Naked singularity with C ¼ C0=4, for
which τCh=2m1 ≈ 47.5 and τ3m1

=2m1 ≈ 121.9.

9Here, a viewing direction is a spatial direction in the
observer’s rest frame that describes the spatial direction of a
photon originating from the source that has traversed the cloud
and has been detected by the observer. It is related but not
identical to the celestial coordinates of the observer’s sky.
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(τobs > τCh), every light ray suddenly experiences an
infinite redshift at some viewing angle ζ > 0, giving rise
to a dark disk which will be discussed in detail in the next
section.

V. THE SHADOW OF THE NAKED
SINGULARITY COMPARED TO THE SHADOW

OF THE BLACK HOLE

In this section, we provide a description of the “optical”
appearance of the collapsing cloud as perceived in the eyes
of an asymptotic observer, based on the implications of the
graphs in Figs. 3 and 5. We first examine the behavior of the
angles ᾱ and α̂ as a function of 2m1=r

þ
1 . First, the panels in

Fig. 3 show that the angle ᾱ exhibits a qualitative behavior
which is independent of whether an event horizon or a
Cauchy horizon forms. This property can be understood by
noting that as long as the surface of the cloud is in free fall,
its behavior is entirely determined by the exterior
Schwarzschild geometry.
Next, we emphasize that in the case of an event horizon

formation (see left panel of Fig. 3), any α ∈ ðᾱ; π� [see
Eq. (37) for the definition of α] defines a future directed
null geodesic exiting the cloud and reaching the asymptotic

observer, while in the past direction it traverses the cloud
and reaches the source. Even though the observer is always
allowed to receive photons from every direction such that
α ∈ ðᾱ; π�, after the surface of the cloud crosses inward the
photosphere at r ¼ 3m1, the bright directions in the
observer’s sky progressively reduce due to the high redshift
experienced by radial and nearly radial photons (see left
panel of Fig. 5). In contrast to this, when a Cauchy horizon
forms (see the central and right panels of Figs. 3 and 5), the
bright directions in the observer’s sky are determined by
those values of α lying in the interval ðᾱ; α̂Þ. Clearly, there
is a dramatic reduction in the bright directions in the
observer’s sky, and the interval ðᾱ; α̂Þ shrinks to a point as
the cloud’s surface reaches the photosphere.10

In order to provide the reader with an image of the
observer’s view as he or she moves to the future, in Figs. 6,
7, and 8 we show color maps of evenly selected curves from

FIG. 6 (color online). Redshift snapshots at different proper times of the asymptotic observer as the dust star of initial compactness
ratio C0 collapses to a black hole. Here, τ3m1

=2m1 ≈ 10.8.

FIG. 7 (color online). Redshift snapshots at different proper times of the asymptotic observer as the dust star of initial compactness
ratio C0=2 collapses to a naked singularity. In this case, τCh=2m1 ≈ 18.4, and τ3m1

=2m1 ≈ 41.1. The shadow of the naked singularity
appears at τobs ¼ τCh, and then it covers the whole region at τobs ¼ τ3m1

.

FIG. 8 (color online). Redshift snapshots at different proper times of the asymptotic observer as the dust star of initial compactness
ratio C0=4 collapses to a naked singularity. Here, τCh=2m1 ≈ 47.5, and τ3m1

=2m1 ≈ 121.9. The same qualitative features as in Fig. 7 are
present.

10It may be noticed that the central and right panels of Fig. 3
show that after the cloud’s surface crosses the photosphere,
α̂ < ᾱ. This reversal in magnitude is irrelevant from the point of
view of the asymptotic observer since the trajectories of null
geodesics with impact parameter b larger than b̄ lie entirely in the
Schwarzschild region a soon as rþ1 < 3m1.
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Fig. 5, where the colors indicate the redshift’s magnitude,
the darker regions corresponding to higher redshifts.
Figure 6 corresponds to the case of black hole formation.
In this case, we see that the inner zone of the object
progressively becomes darker, indicating a high redshift for
nearly radial light rays. When the observer starts detecting
light rays that exit the cloud inside the photosphere (that is,
for τobs > τ3m1

and rþ1 < 3m1), there is already a high
redshift zone at the center, and this zone becomes fainter
and grows continuously until it covers nearly the whole
region under consideration ζ < ζ̄ as τobs becomes large and
rþ1 → 2m1. These features show the dynamical formation
of the shadow of the black hole, the final image consisting
of a black region surrounded by a bright light ring due to
the strong lensing effect at the photosphere.
When a naked singularity results from the dust collapse

instead of a black hole, we observe a completely different
behavior of the shadow. This is mainly due to the nontrivial
dependency of the critical angle α̂ on the compactness ratio
2m1=r

þ
1 ; see Fig. 3. As expected, α̂ becomes strictly smaller

than π from the moment the observer starts detecting light
rays that exit the cloud inside the Cauchy horizon (which
corresponds to τobs > τCh and rþ1 < rCh). Moreover, the
region α > α̂ increases monotonously as the cloud collap-
ses, and as a consequence, for τobs > τCh, the observer sees
a dark disk concentric with the image of the cloud which
occults the light rays coming from the source; see Figs. 7
and 8. This disk grows continuously until it covers the
whole region under consideration at finite time τobs ¼ τ3m1

(corresponding to rþ1 ¼ 3m1) which remarkably coincides

with the intersection of α̂ and ᾱ; see the central and right
panels of Fig. 3. This effect is also evident in the central and
right panels of Fig. 5, since there is a cutoff in the redshift
function at some ζ > 0 for each τobs > τCh, similar to the
effect reported before in the case of radial light rays in
paper I. Indeed, the increasing opaque disk arising in the
naked cases corresponds to null rays coming precisely from
the naked singularity, which are infinitely redshifted as
discussed in Sec. II D. In this sense, we call this disk the
shadow of the naked singularity.
In order to compare the dynamical formation of the

different shadows discussed so far, in Fig. 9 we plot their
angular extension as a function of the proper time of the
asymptotic observer. The dotted line corresponds to the
shadow of the black hole, while the dashed lines corre-
spond to the shadows of the naked singularities. An evident
difference is the time scale in which the shadows grow. It
turns out that 97% of the shadow of the black hole develops
in an interval of ∼16.2m1 crossing times, whereas the same
growth of the shadow of the naked singularity with initial
compactness ratio C ¼ C0=2 takes ∼45.4m1 crossing times,
and ∼148.8m1 crossing times for the naked singularity with
the smallest initial compactness ratio C ¼ C0=4. This means
that the shadow of these naked singularities takes around
2.8 and 9.1 times longer to reach the same angular
extension of the shadow of the black hole.
Regarding the final state of the collapsing object and its

appearance with respect to asymptotic observers, we note
that a bright ring remains at late times in the black hole
case, whereas the shadow of the naked singularity covers
the whole region in finite time τ3m1

. Although the nature of
the shadow in the naked singularity case is essentially
different from the black hole case, since it is due to
infinitely redshifted photons emanating from the singular-
ity instead of highly redshifted photons originating from
the illuminating source, it is important to stress that there is
no difference in the image of the source for light rays with
impact parameters larger than b̄ at late times. This is due to
the fact that at late times, light rays with b > b̄ are scattered
at the potential barrier, and thus they propagate entirely in
the Schwarzschild exterior region. This suggests that
observing the final state of the source’s image is insufficient
to distinguish a naked singularity from a black hole. In this
sense, the singularity remains censored by its own shadow,
and moreover, it could mimic a black hole shadow.
However, as we have discussed, the dynamical behavior
of the redshift during the formation of the shadow repre-
sents a possibility to distinguish between the two cases.

VI. CONCLUSIONS

This work has focused on an analysis of the redshift of a
collection of photons illuminating a collapsing cloud and
received by an asymptotic observer. The incident radiation
is generated with arbitrary angular momenta by sources far
away from the collapsing cloud, which for convenience are
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FIG. 9 (color online). Normalized angular extension of the
shadow of the black hole (dotted line) compared to the shadow of
two naked singularities (dashed lines), as functions of the
observer’s proper time. In the black hole case, the shadow
becomes apparent around τobs ¼ τ3m1

(rþ1 ¼ 3m1), and then it
grows continuously and takes an infinite time to cover the object,
leaving a thin bright ring around it. In the naked singularity
cases, the shadow appears in τobs ¼ τCh, and then it grows
continuously and covers the whole region under consideration
in finite time τobs ¼ τ3m1

.
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taken to be uniformly distributed. Moreover, this radiation
does not interact with matter, but propagates freely, and
eventually, part of it is detected by an asymptotic observer.
Our results confirm the hypothesis put forward in paper I
(Ref. [23]), namely that the redshift can be considered as a
tool capable of differentiating whether the outcome of
a complete gravitational collapse is a naked singularity or a
black hole. This confirmation consists in recovering the
results in I for the case of radial photons, but fortifies the
proposal by demonstrating that the redshift of certain
classes of nonradial photons exhibits similar behavior as
the radial ones. Our results show that photons in the
incident radiation whose directions (as specified relative
to the asymptotic observer’s frame) are close to the radial
direction exhibit the same behavior as the radial ones.
Specifically, there is a smooth decay to zero of the
frequency shift for the case of event horizon formation,
whereas in the naked singularity case the decay of the
frequency shift is slower initially but shows an abrupt cutoff
to zero after the observer crosses the Cauchy horizon.
Beyond these new insights offered by the redshift of

nonradial photons, the inclusion of angular momenta added
a new element in the proposal in I. This new element consists
in the structure and the properties of the shadow that the
collapsing cloud casts into the sky of an asymptotic observer.
Although the final state of the shadow turns out to be the
same in both cases, we have found that the time scale
required for the shadow to occult the source from the eyes of
the asymptotic observer depends sensitively on whether the
outcome of the collapse is a black hole or a naked singularity.
Summing up, in this work we have presented new

evidence to support the view in I that the structure of
the redshifted radiation combined with properties of the
shadow can be a tool in checking the validity of the weak
cosmic censorship conjecture.
The proposal put forward in I and tested further in this

work is not the only proposal that has been considered in
the literature. An alternative proposal is based on strong
gravitational lensing effects. For instance, in Refs. [50–52]
the gravitational lensing of sources due to a static, spheri-
cally symmetric solution of the Einstein-massless scalar
field equations are compared to those of a Schwarzschild
black hole. However, the choice of the nakedly singular
spacetimes made in these works may be questioned on the
grounds that no physical mechanism is known for the
formation of these singular spacetimes starting from a
regular set of initial data. In Refs. [31,32], the effects of a
naked Kerr or Kerr-Newman ring singularity are compared
to those of a Kerr or Kerr-Newman black hole. Although
one might think that such singularities could be created by
throwing highly spinning particles into a nearly extremal
Kerr black hole, all the results so far suggest that this
scenario does not work due to spin coupling effects [53–56]
or backreaction effects (see Ref. [57] and references
therein). In that sense, the above mentioned alternative

applications to test the weak cosmic censorship lack
physical relevance.
One of the positive aspects of the proposal in I is that the

choice of the Tolman-Bondi model as a background space-
time avoids the above mentioned difficulties. Whenever the
collapsing cloud is considered to be of finite spatial extent,
an exterior Schwarzschild region joins smoothly across the
cloud’s surface. Such spacetimes can be generated by a
regular set of initial data (for a discussion and properties of
such data, see [7,58]), and the maximal future analytic
extension of the initial data surface can be determined.
Moreover, by choosing the initial data appropriately, we
obtain spacetimes with prescribed causal structure. This
property combined with the fact that the metric in the
maximal future analytic extension of the initial data surface
is known allows one to perform an analysis of the behavior
of causal geodesics through the collapsing cloud. Two recent
works [59] and [43] also employ a Tolman-Bondi back-
ground to test the validity of the weak cosmic censorship or
to study the shadow of the singularity. In the first work, the
consideration of the authors were restricted to marginally
bound collapse. Unlike our scenario, they considered a
situation in which the photons are emitted from dust particles
inside the cloud. In contrast to our results, they did not find
any specific signature in the emitted radiation that can
differentiate between the formation of a naked singularity
and the formation of a black hole. The work in [43] treats
only the globally naked self-similar Tolman-Bondi collapse
and considers the impact of nonradial null geodesics escap-
ing from the central singularity on the shadow as the central
question. Although their approach has some resemblance to
the present work, they have assumed that the photons
originating from the central singularity have unbound
frequencies so that they are received with nonzero frequency
by the asymptotic observer. Their choice of infinite frequen-
cies invokes plausibility arguments based on the unknown
theory of quantum gravity, and their conclusions differ from
those obtained in the present work.
It is interesting to mention briefly that a few conclusions

reported in this work may extend beyond the family of the
Tolman-Bondi spacetimes. For instance, it is well known
since the work of Ames and Thorne [38] that the shadow
arising during the formation of a black hole depends
crucially upon the existence of the photosphere of the
Schwarzschild exterior and has a weak dependence upon
the details of the collapse. However, as far as the shadow of
a naked singularity is concerned, many issues need to be
considered in detail. For instance, it is not clear whether the
existence of future directed null geodesics emanating from
the central singularity is a generic property of null
singularities or if it is associated with a particular feature
of the Tolman-Bondi metric. If the first possibility occurs,
then maybe some of the detail characteristics of the shadow
can be extended to more general collapse models provided
we have regular initial data whose evolution leads to a
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globally nakedly singular development. It is needless to say
that these issues need to be checked much more thoroughly.
What are the prospects that the proposal in I in

combination with the results of this work can be called
to decide between the two competing alternatives in a
realistic collapse event?
As it has become clear from the present work, the

crossing time tc ≔ GM=c3 ¼ 10−5ðM=M⊙Þ s with M⊙ ¼
2 × 1033g the solar mass is the relevant time scale. Since
typical stellar masses vary in the range ð1 − 100ÞM⊙, the
corresponding crossing time tc is of the order of a few
ð10−3–10−5Þ s which seems to be too short to be resolved
with existing technology. However, cosmological scenarios
offer better testing grounds. It seems by now that there is a
consensus that supermassive black holes with masses in the
range between 105M⊙ and 109M⊙ are the objects that
energize quasars and active galactic nuclei. Even though
this hypothesis resolves one problem, the same hypothesis
raises the delicate question of the mechanism (or mecha-
nisms) generating their enormous masses (for an overview
of this delicate problem and further references see [60]). A
currently popular scenario regarding their formation is
based on the old idea of supermassive stars proposed long
ago by Hoyle and Fowler [61,62] (for an introduction of
these configurations see Ref. [63]). In this scenario, at the
early Universe, i.e. at times corresponding to cosmological
redshifts 5 ≤ z ≤ 20, the dark halos led to the formation of
supermassive stars with masses between 105M⊙ and
106M⊙, and these supermassive stars collapse gravitation-
ally to form a black hole. These seed black holes sub-
sequently grew via the accretion process to reach the range
ð105–109ÞM⊙. Although many assumptions enter in this
scenario, it is important to realized that the validity of the
cosmic censor conjecture plays a central role. Suppose, for
example, that the outcome of the gravitational collapse of a
supermassive dark star is a naked singularity instead of a
black hole. In this event, the resulting shadow offers the
best case scenario to be resolved by terrestrial instruments.
However, the fact that the event takes place at a high
cosmological redshift adds technicalities regarding the
observability of such a collapsing event at least within
the current technological capabilities. On the other hand,
the analysis presented in this work stands on a firm basis
and at the theoretical level differentiates between the two
possibilities.
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APPENDIX A: PROOF OF THEOREM 1

The proof is based on standard arguments from the
theory of ordinary differential equations; see for instance
Refs. [49,64]. Without loss of generality we assume that
x� ¼ 0. Since U is open, there exists δ > 0 such that the
ball Bδð0Þ of radius δ centered at the origin is entirely
contained in U: Bδð0Þ ⊂ U. Let ε ∈ ð0; δÞ, and let s0 > 0
and x0 ∈ Bεð0Þ. Let xðsÞ denote the maximally extended
solution of Eq. (31), and define

s�0 ≔ supfs ≥ s0∶xðs0Þ ∈ Bδð0Þ for all s0 ≤ s0 < sg:
We claim that s�0 ¼ þ∞ provided that δ > ε > 0 are
chosen small enough and s0 > 0 is large enough, and that
in this case lims→∞xðsÞ ¼ 0. The statement of the theorem
then follows by choosing s1 large enough and V ≔ Bεð0Þ
with ε > 0 small enough.
To prove the claim, we decompose

XðxÞ ¼ Axþ gðxÞ;
with A ≔ DXð0Þ and gðxÞ ≔ XðxÞ − Ax. According to
Duhamel’s principle, xðsÞ satisfies
xðsÞ ¼ eAðs−s0Þx0

þ
Z

s

s0

eAðs−s0Þ
�
gðxðs0ÞÞ þ 1

s0
Yðs0; xðs0ÞÞ

�
ds0; ðA1Þ

for all s0 ≤ s ≤ s�0. Since all the eigenvalues of A have a
negative real part, there exist positive constants C > 0 and
β > 0 such that

jeAtj ≤ Ce−βt

for all t ≥ 0. Furthermore, by the differentiability of XðxÞ
we can choose δ > 0 small enough such that

jgðyÞj
jyj ≤

β

2C

for all y ∈ Bδð0Þnf0g. Further, since Y is bounded, there is
a constant K > 0 such that

jYðs; yÞj ≤ βK
2C

for all s ≥ s0 and all y ∈ Bδð0Þ. It then follows from
Eq. (A1) that
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jxðsÞj ≤ Ce−βðs−s0Þjx0j

þ
Z

s

s0

Ce−βðs−s0Þ
�

β

2C
jxðs0Þj þ βK

2Cs0

�
ds0

for all s0 ≤ s ≤ s�0. Hence, the function ϕðsÞ ≔
eβðs−s0ÞjxðsÞj satisfies

ϕðsÞ ≤ Cεþ β

2

Z
s

s0

�
ϕðs0Þ þ K

s0
eβðs0−s0Þ

�
ds0 ≕ ψðsÞ;

s0 ≤ s ≤ s�0:

Since

d
ds

ψðsÞ ¼ β

2

�
ϕðsÞ þ K

s
eβðs−s0Þ

�

≤
β

2

�
ψðsÞ þ K

s
eβðs−s0Þ

�
;

we obtain

d
ds

½e−β
2
ðs−s0ÞψðsÞ� ≤ β

2

K
s
e
β
2
ðs−s0Þ:

Integrating and using ψðs0Þ ¼ Cε and jxðsÞj ¼
e−βðs−s0ÞϕðsÞ ≤ e−βðs−s0ÞψðsÞ finally yields

jxðsÞj ≤ Cεe−
β
2
ðs−s0Þ þ βK

2

Z
s

s0

1

s0
e−

β
2
ðs−s0Þds0 ðA2Þ

for all s0 ≤ s ≤ s�0. The right-hand side is bounded from
above by the constant Cεþ K=s0. Therefore, if we choose
ε ∈ ð0; δÞ small enough and s0 > 0 large enough such that
Cεþ K=s0 < δ, it follows that the solution xðsÞ ∈ Bδð0Þ
stays forever inside the ball Bδð0Þ and thus exists for
arbitrarily large times s ≥ s0.
In order to conclude the proof, we need to show that

jxðsÞj converges to zero when s → ∞. For this, we first note
that the first term on the right-hand side of Eq. (A2)
vanishes for s → ∞ since it is exponentially damped. As
for the second term, using L’Hôpital’s rule we find

lim
s→∞

β

2

Z
s

s0

1

s0
e−

β
2
ðs−s0Þds0 ¼ lim

s→∞

R
s
s0

1
s0 e

β
2
s0ds0

2
β e

β
2
s

¼ lim
s→∞

1
s e

β
2
s

e
β
2
s
¼ 0:

This concludes the proof of the theorem.

APPENDIX B: APPEARANCE OF THE NAKED
SINGULARITY IN THE SELF-SIMILAR CASE

In this appendix, we compute the critical angle of
incidence α̂ for the particular case of a free-falling
comoving observer in a nakedly singular, self-similar
Tolman-Bondi spacetime. In this case, the presence of

the homothetic Killing vector field ξ associated with the
self-similarity allows one to analytically integrate the null
geodesic flow. For a complete analysis for the behavior of
the null geodesics in these spacetimes, we refer the reader
to our recent work in [45]. The analysis and notation used
in this appendix are based on that work. For related
numerical work we refer the reader to Ref. [43].
For a self-similar collapsing spacetime, the metric

coefficients in Eq. (1) are given by

eΦ ¼ 1; eΨ ¼ FðxÞ; r ¼ RSðxÞ; x ≔
t
R
<

1

λ

ðB1Þ
with the functions

FðxÞ ≔ 1− λx
3

ð1− λxÞ1=3 ; SðxÞ ≔ ð1− λxÞ2=3; x < 1=λ:

Here, λ > 0 is a positive parameter determining the
compactness ratio

2mðRÞ
R

¼ 4

9
λ2

at time t ¼ 0. Note that in this model, this ratio is
independent of R. Since r0 ¼ F > 0, there are no shell-
crossing singularities in this model; however, there is a
shell-focusing singularity at x¼1=λ. When λ< λ�≃0.638,
this shell-focusing singularity is naked. The causal struc-
ture of the resulting spacetime has been studied a long time
ago; see for instance Refs. [44,65–70]. Recently [45], we
provided a full qualitative picture for the null geodesic flow
(with and without angular momentum). Our analysis makes
use of the homothetic Killing vector field ξ, and the main
features of this flow depend on the effective potential

WðxÞ ≔ x2 − F2ðxÞ
S2ðxÞ ; x <

1

λ
;

see Fig. 10 for a plot of this function for the parameter value
λ ¼ 0.6. As can be seen from this plot (cf. Lemma 2 in
[45]), W has three simple zeros located at x ¼ Ja,
a ¼ 0; 1; 2, the values Ja satisfying J0 < 0 < J1 <
J2 < 1=λ. Geometrically, these zeros correspond to the
set of points where the homothetic Killing vector field is
null.W is positive for x < J0 and J1 < x < J2 and negative
for J0 < x < J1 and J2 < x < 1=λ, and it has a local
maximum at some point x ¼ xc ∈ ðJ1; J2Þ.
As a consequence of the conservation of angular

momentum l and the presence of the conserved quantity
C associated with the homothetic Killing vector field, the
motion in the x direction is restricted to the set
WðxÞ ≤ 1=β2, with β ≔ l=C an “impact parameter.” For
the following, the critical impact parameter βc ≔
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
WðxcÞ

p
corresponding to the local maximum of W
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plays an important role. The main qualitative features of the
null geodesic flow which will be used here can be
summarized as follows (cf. Figs. 2 and 4 in [45]):

(i) The surface x ¼ J0 is generated by ingoing radial
null geodesics terminating at the central singularity
ðτ; RÞ ¼ ð0; 0Þ, while the surfaces x ¼ J1 and x ¼
J2 are spanned by outgoing radial null geodesics
emanating from the central singularity. The surface
x ¼ J1 describes the Cauchy horizon, and it is
generated by the earliest radial outgoing null geo-
desics emanating from the singularity.

(ii) For small impact parameters, jβj < βc, all theoutgoing
null geodesics registered by a free-falling observer
at constant R originate from the far past when x < J1
and from the central singularity when x > J1.

(iii) For large impact parameters, jβj > βc, a free-falling
observer at constant R “sees” the following: all the
outgoing null geodesics registered by the observer
emanate from the far past when x < x1ðβÞ, no null
geodesics are registered when x1ðβÞ < x < x2ðβÞ,
and all the outgoing null geodesics registered by the
observer emanate from the central singularity when
x > x2ðβÞ. Here, x1ðβÞ < x2ðβÞ refer to the positive
roots of WðxÞ ¼ 1=β2.

The impact parameter β is related to the angle of
incidence α defined in Eq. (37) in the following way:

cos α ¼ −
FðxÞ � xQβðxÞ
x� FðxÞQβðxÞ

;

sin α ¼ −
β

SðxÞ
x2 − F2ðxÞ

x� FðxÞQβðxÞ
; ðB2Þ

where QβðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2WðxÞ

p
. In the radial case, β ¼ 0

and thus cos α ¼ ∓1 and sin α ¼ 0, showing that in this
case the upper sign corresponds to outgoing null geodesics,
such that α ¼ π. In order to determine the appearance of the
naked singularity as seen by a free-falling observer at
constant R, we have to find the critical angle α̂ such that all
the outgoing null geodesics registered by the observer with
α ∈ ðα̂; 2π − α̂Þ emanate from the central singularity and all
the other outgoing geodesics originate from the far past (see
Sec. IV B). Based on the properties (i)–(iii) listed above we
find the following result for α̂.
First, when x < J1 there are no null geodesics emanating

from the singularity, since x ¼ J1 describes the Cauchy
horizon. Consequently, α̂ ¼ π for x < J1. Next, consider a
fixed value of x in the interval J1 ≤ x < xc. In this case, the
impact parameter β is restricted by the inequality
β2 ≤ 1=WðxÞ. However, only those null geodesics which
have β2 < β2c and correspond to the upper sign in Eq. (B2)
emanate from the central singularity (see Fig. 4 in [45]).
Hence, the angles of incidence α registered by the observer
corresponding to null geodesics originating from the
singularity are those for which

−1 ≤ cos α < −
FðxÞ þ xQβcðxÞ
xþ FðxÞQβcðxÞ

; J1 ≤ x < xc:

Next, assume x lies in the interval xc ≤ x ≤ J2. As in the
previous case, the null geodesics with impact parameter
β2 < β2c corresponding to the upper sign in Eq. (B2)
emanate from the singularity. However, when β2 > β2c,
the null geodesics corresponding to both signs in Eq. (B2)
are also registered by the observer as outgoing, and they
both emanate from the central singularity (see the right
panel of Fig. 4 in [45]). Therefore, cos α varies over all
those values on the right-hand side of Eq. (B2) correspond-
ing to the upper sign for which β2 ≤ 1=WðxÞ [1 ≥
QβðxÞ ≥ 0] and all those values corresponding to the lower
sign for which β2c < β2 ≤ 1=WðxÞ [QβcðxÞ > QβðxÞ ≥ 0].
Therefore, the angles α corresponding to null geodesics
originating from the singularity are those for which

−1 ≤ cos α < −
FðxÞ − xQβcðxÞ
x − FðxÞQβcðxÞ

; xc ≤ x < J2:

Finally, when x lies in the interval J2 < x < 1=λ, WðxÞ
is negative, and hence β can take any real value. However,
as in the previous case, only those null geodesics corre-
sponding to the upper sign in Eq. (B2) or those with the
lower sign and β2 > β2c emanate from the singularity.
Summarizing, we thus have

FIG. 10 (color online). A plot of the effective potentialWðxÞ for
the parameter value λ ¼ 0.6.

NÉSTOR ORTIZ, OLIVIER SARBACH, AND THOMAS ZANNIAS PHYSICAL REVIEW D 92, 044035 (2015)

044035-20



α̂ðxÞ ¼

8>>>>><
>>>>>:

π; x < J1;

arccos

�
− FðxÞþxQβc ðxÞ

xþFðxÞQβc ðxÞ

�
; J1 ≤ x < xc;

arccos

�
− FðxÞ−xQβc ðxÞ

x−FðxÞQβc ðxÞ

�
; xc ≤ x < 1

λ :

ðB3Þ

Notice that α̂ is continuous at x ¼ J1 and xc. Moreover, it
has a well-defined limit as x → J2, since

lim
x→J2
x<J2

−
FðxÞ − xQβcðxÞ
x − FðxÞQβcðxÞ

¼
1 − β2c

J2
2

S2ðJ2Þ

1þ β2c
J2
2

S2ðJ2Þ
:

The critical angle α̂ as a function of the compactness ratio
along the trajectory of a free-falling observer at constant R
is shown in Fig. 11 for the parameter value λ ¼ 0.6.
Although in the parametrization given in Eq. (B1) the

singularity already appears in the t ¼ 0 slice, one can show
that the spacetime has a regular center at R ¼ 0 for negative
values of t. Furthermore, it is possible to match the self-
similar spacetime described by Eq. (B1) to a Schwarzschild
vacuum exterior spacetime. This can be accomplished at a
constant R hypersurface by satisfying the standard junction
conditions; see Ref. [71] and references therein. The
apparent horizon in the resulting spacetime is determined
by the equation 2m ¼ r, and it coincides with the event
horizon in the Schwarzschild exterior, while in the interior
it is described by the constant x ¼ JAH surface given by
SðxÞ ¼ 4λ2=9, that is,

JAH ¼ 1

λ

�
1 −

�
2λ

3

�
3
�
:

Since FðJAHÞ − JAH ¼ 4λ2=9 > 0, it follows that JAH >
J2 and that x ¼ JAH is a spacelike surface. For λ ¼ 0.6 we
obtain the numerical values

J0 ≃ −1.027; J1 ≃ 1.129;

J2 ≃ 1.495; JAH ≃ 1.560:
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