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Bekenstein bounds for the entropy of a body imply a universal inequality between size, energy, angular
momentum, and charge. We prove this inequality in electromagnetism. We also prove it, for the particular
case of zero angular momentum, in general relativity. We further discuss the relation of these inequalities
with inequalities between size, angular momentum, and charge recently studied in the literature.

DOI: 10.1103/PhysRevD.92.044033 PACS numbers: 04.70.Bw, 04.20.Ex, 02.40.Ky

I. INTRODUCTION

A universal bound on the entropy of a macroscopic body
has been proposed by Bekenstein [1],

ℏc
2πkB

S ≤ ER; ð1Þ

where S is the entropy, kB is Boltzmann’s constant,R is the
radius of the smallest sphere that can enclose the body, E is
the total energy, ℏ is the reduced Planck constant, and c is
the speed of light. Using similar heuristic arguments, a
generalization of Eq. (1) including the electric charge Q
and the angular momentum J of the body has also been
proposed [2–4],

ℏc
2πkB

S ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞ2 − c2J2

q
−
Q2

2
: ð2Þ

The original physical arguments used to present these
inequalities involve black holes. However, a remarkable
feature of these inequalities is that the gravitational constant
G does not appear in them.
The bound (1) has been extensively studied; see, for

example, the review articles [5–7] and references therein.
However, the generalization (2) appears to have received
much less attention. In particular, since the entropy S is
always non-negative, the bound (2) implies the following
inequality in which the entropy S and the constant ℏ are not
involved:

Q4

4R2
þ c2J2

R2
≤ E2: ð3Þ

The equality in Eq. (3) implies, by Eq. (2), that the entropy
of the body is zero and hence the system should be in a very
particular state. Then, we expect some kind of rigidity
statement for the equality in Eq. (3).

The main purpose of this article is to study the inequality
(3). The only fundamental constant that appears in Eq. (3)
is c. Hence, the obvious theory to test Eq. (3) is electro-
magnetism. To the best of our knowledge, such a basic
study, in full generality, has not been done before. In Sec. II
we prove that Eq. (3) holds as a consequence of Maxwell’s
equations. This theorem provides an indirect but highly
nontrivial evidence in favor of the bound (2).
In Sec. III we first discuss the relation of the inequality

(3) with inequalities between size, angular momentum, and
charge recently studied in general relativity [8]. Then, we
point out that a result of Reiris [9] proves Eq. (3) in
spherical symmetry in general relativity. Finally, we gen-
eralize this result and prove Eq. (3), with J ¼ 0, for time-
symmetric initial data.

II. ELECTROMAGNETISM

To fix the notation, let us write Maxwell’s equations in
Gaussian units,

∇ ×B −
1

c
∂E
∂t ¼ 4π

c
j; ∇ ·E ¼ 4πρ; ð4Þ

∇ × Eþ 1

c
∂B
∂t ¼ 0; ∇ ·B ¼ 0; ð5Þ

where E, B are the electric and magnetic field, and ρ, j are
the charge and current density. These equations are written
in terms of inertial coordinates ðt;xÞ where t is the time
coordinate and x are spatial coordinates centered at an
arbitrary point x0.
Let U be an arbitrary region in space. The electric charge

contained in U is given by

QðUÞ ¼
Z
U
ρ; ð6Þ
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and the energy of the electromagnetic field in U is

EðUÞ ¼ 1

8π

Z
U
jEj2 þ jBj2: ð7Þ

The angular momentum in the region U in the direction
of the unit vector k with respect to the point x0 is given by

J · k ¼ 1

4πc

Z
U
ðx × ðE ×BÞÞ · k: ð8Þ

Finally, in order to study Eq. (3) we need to provide a
definition of the radius R for an arbitrary region U.
Definition 2.1. We define the radius R of the region U

as the radius of the smallest sphere that encloses U.
Given a domain U, we denote by BR the smallest ball

that encloses U and x0 denotes the center of this ball. Note
that, in general, x0 is not in U; see Fig. 1. We denote by
∂BR the boundary of BR, that is, the sphere of radius R
centered at x0.
Before dealing with the general case, it is useful to begin

with electrostatics, which in particular implies J ¼ 0. We
will see that the proof for the dynamical case is based on the
proof for the electrostatics case. Also, in electrostatics it is
simpler to discuss the scope of Eq. (3).
The equations of electrostatics are given by

∇ · E ¼ 4πρ; ∇ ×E ¼ 0: ð9Þ

The potential Φ is defined by E ¼ −∇Φ and it satisfies
the Poisson equation

ΔΦ ¼ −4πρ: ð10Þ

Using Eq. (10) and Gauss’s theorem, we obtain that the
charge can be written as a boundary integral

QðUÞ ¼ −
1

4π

I
∂U

∂nΦ; ð11Þ

where ∂n denotes a partial derivative along the exterior unit
normal vector of the boundary ∂U. The total electrostatics
energy is given by

E ¼ 1

8π

Z
R3

jEj2: ð12Þ

Theorem 2.2. Assume that the charge density ρ has
compact support contained in the regionU. In electrostatics
[i.e., we assume Eq. (9)], the following inequality holds:

Q2 ≤ 2ER; ð13Þ
where Q is the charge contained in U, R is the radius of U
defined above, and E is the total electromagnetic energy
given by Eq. (12). The equality in Eq. (13) holds if and only
if the electric field is equal to the electric field produced by
a spherical thin shell of constant surface charge density and
radius R. In particular, this implies that the electric field
vanishes inside U.
Proof.—The system has electric field E (with potential

Φ), charge density ρ with support in U, and total charge Q.
Let R be the radius of the domain U defined in defi-
nition 2.1 and BR its corresponding ball centered at x0.
Consider the auxiliary potential defined by

Φ0 ¼
(

Q
r if r ≥ R;
Q
R if r ≤ R;

ð14Þ

where r is the radial distance to x0. The potential Φ0

corresponds to the potential of a spherical thin shell of
radius R, constant surface charge density, and total
charge Q.
We define Φ1 by the difference

Φ1 ¼ Φ − Φ0: ð15Þ
By construction Φ1 satisfies

ΔΦ1 ¼
�
0 if r > R;
−4πρ if r < R;

ð16Þ

and I
∂BR

∂rΦ1 ¼ 0: ð17Þ

Equation (17) follows since in the definition of Φ0 we have
used the total charge Q of the potential Φ.
The total energy of the system is given by

E ¼ 1

8π

Z
R3

j∇Φj2 ð18Þ

¼ 1

8π

Z
R3

j∇Φ0j2 þ j∇Φ1j2 þ 2∇Φ0 · ∇Φ1; ð19Þ
FIG. 1. The domain U is colored with gray. The radius R is
defined as the radius of the smallest sphere that encloses U. For
this particular domain U the center x0 of that sphere is not in U.
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where in Eq. (19) we have used the definition (15).
To calculate the last term in Eq. (19) we decompose the
domain of the integral in R3nBR and BR. We haveZ

BR

∇Φ0 · ∇Φ1 ¼ 0; ð20Þ

since Φ0 is constant in BR. For the other integral we haveZ
R3nBR

∇Φ0 ·∇Φ1 ¼
Z
R3nBR

∇ · ðΦ0∇Φ1Þ − Φ0ΔΦ1:

ð21Þ

Since ΔΦ1 ¼ 0 on R3nBR the second term on the right-
hand side of Eq. (21) vanishes. The first term can be
converted into a boundary integralZ

R3nBR

∇ðΦ0∇Φ1Þ ¼ lim
r→∞

I
∂Br

Φ0∂rΦ1 −
I
∂BR

Φ0∂rΦ1:

ð22Þ

The first term on the right-hand side of Eq. (22) vanishes
by the decay conditions of Φ0 and Φ1. For the second term
we have I

∂BR

Φ0∂rΦ1 ¼ Φ0

I
∂BR

∂rΦ1 ð23Þ

¼ 0; ð24Þ

where in Eq. (23) we have used that Φ0 is constant on
spheres and in Eq. (24) we have used Eq. (17). Hence, we
have proved that

E ¼ 1

8π

Z
R3

j∇Φ0j2 þ j∇Φ1j2: ð25Þ

The first term in Eq. (25) can be computed explicitly using
Eq. (14). It is the binding energy of a spherical shell of
radius R with constant charge surface density and total
charge Q. Then, we finally obtain

E ¼ Q2

2R
þ 1

8π

Z
R3

j∇Φ1j2: ð26Þ

This equality proves Eq. (13) and also the rigidity state-
ment: if the equality in Eq. (13) holds, then Eq. (26) implies
∇Φ1 ¼ 0 and hence E ¼ ∇Φ0. ▪
Note that the equality (26) implies the following estimate

for the fields inside the domain U:

E −
Q2

2R
≥

1

8π

Z
U
jEj2; ð27Þ

where we have used that in U we have ∇Φ1 ¼ ∇Φ ¼ E.

Let us discuss the scope of Eq. (13). The first important
observation is that in Eq. (13) the energy E is the total
energy of the system, which in electrostatics is equivalent to
the binding energy. That is, E represents the work needed to
assemble the charge configuration from infinity. Inequality
is clearly false if instead of the total energy we use the
integral of the energy density on the domain U given by
Eq. (7). For example, take the spherical shell of radius R
and constant surface charge density. Then, the domain U is
given by the ball BR, but the integral of the energy density
over BR is zero since the electric field vanishes in BR.
Equation (13) is not valid if we consider many dis-

connected regions and take Q and R to be the correspond-
ing radius and charge of only one region and E the total
energy of the system. The counterexample is the following.
Consider two spherical thin shells of constant surface
density with radii R1 and R2 and total charges Q and
−Q. The separation between the centers is L, and we
assume that they do not overlap, i.e., L ≥ R1 þ R2. The
total energy of this system is given by

E ¼ E1 þ E2 −
Q2

L
; ð28Þ

where the self-energy of each shell is given by

E1 ¼
Q2

2R1

; E2 ¼
Q2

2R2

: ð29Þ

For a simple way to compute the third term in Eq. (28)
(namely, the interaction energy) see, for example, page 75
of Ref. [10]. At the contact point L ¼ R1 þ R2 we have

E − E1 ¼
Q2ðR1 − R2Þ
2R2ðR1 þ R2Þ

: ð30Þ

Take R2 > R1; then, if the shells are close enough to the
contact point, from Eq. (30) we deduce that

E − E1 < 0: ð31Þ
But then

E < E1 ¼
Q2

2R1

; ð32Þ

and hence Eq. (13) is not valid for the shell R1 if we take E
as the total energy and Q andR as the charge and radius of
the shell in Eq. (13).
An alternative and useful way to prove Eq. (13) in

electrostatics is the following. By Thomson’s theorem the
electrostatic energy of a body of fixed shape, size, and
charge is minimized when its charge Q distributes itself to
make the electrostatic potential constant throughout the
body (see, for example, page 128 of Ref. [10]). That is, the
original configuration is replaced by a conductor with
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the same total charge and size which has less or equal
energy. For conductors, Eq. (13) is related with the capacity
of the conductor, defined as follows. Consider a conductor
U and define the potential Φ1 by

ΔΦ1 ¼ 0 in R3nU; ð33Þ

Φ1 ¼ 1 at ∂U; ð34Þ

lim
r→∞

Φ1 ¼ 0: ð35Þ

The capacity of U is given by

C ¼ −
1

4π

I
∂U

∂nΦ1: ð36Þ

The capacity C satisfies the well-known relation

E ¼ Q2

2C
; ð37Þ

where E is the total electrostatic energy of the conductor.
Then, for a conductor, Eq. (13) is equivalent to

C ≤ R: ð38Þ

Since (by Thomson’s theorem) conductors minimize the
energy, we have proved that Eq. (13) for general configu-
rations reduces to the inequality (38) for conductors.
To prove Eq. (38) we use the variational characterization

of C,

C ¼ 1

4π
inf
Φ∈K

Z
R3nU

j∇Φj2; ð39Þ

where K is the set of all functions Φ that decay at infinity
and are equal to 1 at ∂U. Consider the following test
function:

ΦR ¼
�

R
r if r ≥ R;
1 if r ≤ R:

ð40Þ

We have that ΦR ∈ K and hence we can use Eq. (22) to
obtain

C ≤
1

4π

Z
R3nBR

j∇ΦRj2 ¼ R: ð41Þ

This characterization in terms of the capacity is useful to
find interesting examples and estimates. In particular, it
allows one to prove the following relevant statement:
Eq. (13) is not valid if we replace the definition of R
by the area radius, namely

RA ¼
ffiffiffiffiffiffi
A
4π

r
; ð42Þ

where A is the area of the boundary ∂U. Note that the area
radius RA represents perhaps the simplest definition of
radius that can be directly translated into curved spaces.
The following counterexample shows that even in flat space
RA is not an appropriate measure of size in our context.
Consider a prolate conducting ellipsoid with radii a and

b with a > b. The capacity of this conductor is given by
(see page 22 of Ref. [11])

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p

cosh−1a=b
; ð43Þ

and the surface area is given by

A ¼ 2πb2
�
1þ a

b
sin−1e

e

�
; e2 ¼ 1 −

b2

a2
: ð44Þ

We calculate the dimensionless quotient

C
RA

¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2 − 1

q
ðcosh−1 a

bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

b
sin−1e

e

q : ð45Þ

Note that C=RA depends only on the dimensionless
parameter a=b. We take the limit a=b → ∞,

lim
a=b→∞

C
RA

≈
2ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
a=b

p
logða=bÞ → ∞; ð46Þ

and hence Eq. (38) is not satisfied for RA.
With this example we conclude the study of Eq. (13) in

electrostatics. From now on, we will deal with the full
Maxwell’s equations (4)–(5). As a preliminary step, we
prove Eq. (3) with Q ¼ 0 and J ≠ 0. This particular case
will also be used in the general proof of Eq. (3).
Theorem 2.3. Consider a solution of Maxwell’s

equations (4)–(5) in the domain U. Let R be the radius
of U defined in definition 2.1 and let x0 be the center of the
corresponding sphere. Then the following inequality holds:

cjJðUÞj ≤ REðUÞ; ð47Þ

where JðUÞ is the angular momentum of the electromag-
netic field given by Eq. (8) with respect to the point x0.
Moreover, the equality in Eq. (47) holds if and only if the
electromagnetic field vanishes in U.
Note that Eq. (47) is purely quasilocal, in contrast

with the previous inequality (13): in Eq. (47) there appear
only quantities defined on the domain U and not global
quantities like the total energy E. Of course, since
E ≥ EðUÞ, Eq. (47) implies the global inequality
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cjJðUÞj ≤ RE: ð48Þ

Moreover, theorem 2.3 also implies a rigidity statement for
the inequality (48): equality holds if and only if the
electromagnetic field vanishes everywhere.
Proof.—We estimate the difference

EðUÞ− c
R
jJðUÞj ¼ 1

8π

Z
U
jEj2þjBj2

−
1

4πR

����
Z
U
ðx× ðE×BÞÞ ·k

���� ð49Þ

≥
1

8π

Z
U
jEj2 þ jBj2 − 2

R
jðx × ðE ×BÞÞ · kj: ð50Þ

The integrand of the angular momentum (i.e., the angular
momentum density) satisfies the elementary inequality

jðx × ðE × BÞÞ · kj ≤ jðx × ðE × BÞÞjjkj ð51Þ

¼ jðx × ðE × BÞÞj ð52Þ

≤ jxjjEjjBj; ð53Þ

where in Eq. (51) we used the inequality ja · bj ≤ jajjbj, in
Eq. (52) we used that k is a unit vector, and in Eq. (53) we
used the inequality ja × bj ≤ jajjbj. Using this inequality,
we obtain

jEj2 þ jBj2 − 2

R
jðx × ðE × BÞÞ · kj

≥ jEj2 þ jBj2 − 2
jxj
R

jEjjBj: ð54Þ

We write the right-hand side of the inequality as follows:

jEj2 þ jBj2 − 2
jxj
R

jEjjBj ð55Þ

¼ jEj2 þ jBj2 − jxj
R

ðjEj2 þ jBj2Þ

þ jxj
R

ðjEj2 þ jBj2Þ − 2
jxj
R

jEjjBj ð56Þ

¼
�
1 −

jxj
R

�
ðjEj2 þ jBj2Þ þ jxj

R
ðjEj − jBjÞ2 ð57Þ

≥
�
1 −

jxj
R

�
ðjEj2 þ jBj2Þ: ð58Þ

Collecting these inequalities, we arrive to our final result,

EðUÞ− c
R
jJðUÞj≥ 1

8π

Z
U

�
1−

jxj
R

�
ðjEj2þjBj2Þ: ð59Þ

By the definition of R we have jxj ≤ R on U, and hence
the integrand on the right-hand side of Eq. (59) is non-
negative. This proves Eq. (47). Moreover, Eq. (59) also
proves the rigidity statement: if equality holds, then the
integrand on the right-hand side of Eq. (59) should vanish.
Then, for every x ∈ U that is not on the sphere ∂BR we
have that both E and B are zero. By continuity, the fields
are also zero on the points on the sphere ∂BR. ▪
The proof of Eq. (47) (but not the rigidity statement) can

be directly generalized to any classical field theory. It is a
direct consequence of the dominant energy condition.1 Let
Tμν be the electromagnetic energy-momentum tensor of the
theory. The indices μ; ν;… are four-dimensional and we are
using the signature ð−þþþÞ. For example, for electro-
magnetism we have

Tμν ¼
1

4π

�
FμλFν

λ −
1

4
gμνFλγFλγ

�
; ð60Þ

where Fμν is the (antisymmetric) electromagnetic field
tensor that satisfies Maxwell’s equations. Consider a
spacelike surface U with normal tμ. The energy is given by

E ¼
Z
U
Tμνtμtν: ð61Þ

Let ημ be a Killing vector field that corresponds to space
rotations. The angular momentum corresponding to the
rotation ημ is given by

JðUÞ ¼ 1

c

Z
U
Tμνtμην: ð62Þ

Choosing coordinates such that xi are spacelike Cartesian
coordinates on the surface U and tμ ¼ ð1; 0; 0; 0Þ, then the
space rotations are characterized by

ηi ¼ ϵijkkjxk; ð63Þ

where k is an arbitrary constant spacelike unit vector that
represents the axis of rotation and the indices i; j; k… are
three-dimensional. For the case of electromagnetism, it is
easy to check [using Eq. (60)] that the definition (62)
coincides with Eq. (8).
Assume that Tμν satisfies the dominant energy condition,

namely

Tμνξ
μkν ≥ 0; ð64Þ

for all future-directed timelike or null vectors kμ and ξμ.
We denote by η the square norm of ηi, that is

η ¼ ηiηi ¼ ημημ, and define the unit vector η̂μ ¼ ημη−1=2.
Then, the vector

1I thank G. Dotti for providing me with this argument.
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kμ ¼ tμ − η̂μ ð65Þ

is null future directed (since tμημ ¼ 0). Choosing ξμ ¼ tμ

and kμ given by Eq. (65), from Eq. (4) we obtain

Tμνtμtν ≥ Tμνtμη̂ν: ð66Þ

Since η is the square of the distance to the axis, we have that

η ≤ R2; ð67Þ

where R is the radius of a the ball that encloses U. Hence
we deduce

JðUÞ ¼ 1

c

Z
U
Tμνtμην ¼

1

c

Z
U
Tμνtμη1=2η̂ν ð68Þ

≤
R
c

Z
U
Tμνtμη̂ν ð69Þ

≤
R
c

Z
U
Tμνtμtν ð70Þ

¼ REðUÞ
c

: ð71Þ

Hence, we have proved Eq. (47) for a general energy-
momentum tensor that satisfies the dominant energy con-
dition (64). Note, however, that we have not proved the
rigidity statement as in theorem 2.3.
Finally, we prove Eq. (3) for electromagnetism in full

generality.
Theorem 2.4. Assume that ρðx; t0Þ, for some t0, has

compact support contained in U. Consider a solution of
Maxwell’s equations (4)–(5) that decay at infinity. Then the
following inequality holds at t0:

cjJðUÞj
R

þ Q2

2R
≤ E: ð72Þ

In particular, Eq. (72) implies

Q4

4R2
þ c2jJðUÞj2

R2
≤ E2: ð73Þ

Moreover, if the equality in Eq. (72) holds, then the
electromagnetic field is that produced by an electrostatic
spherical thin shell of radiusR and chargeQ. For that case,
the magnetic field vanishes everywhere and hence J ¼ 0.
Proof.—Consider the Coulomb gauge2

B ¼ ∇ ×A; E ¼ −∇Φ −
∂A
∂t ; ð74Þ

where the potential A satisfies the Coulomb gauge
condition

∇ ·A ¼ 0: ð75Þ

In this gauge, the total energy can be written in the
following form:

E ¼ 1

8π

Z
R3

jEj2 þ jBj2 ð76Þ

¼ 1

8π

Z
R3

j∇Φj2 þ 2∇Φ ·
∂A
∂t þ

���� ∂A∂t
����2 þ jBj2; ð77Þ

where in Eq. (77) we have used the expression (74) for the
electric field in terms of the potential A. For the second
term in the integrand of Eq. (77) we use the identity

∇Φ ·
∂A
∂t ¼ ∇ ·

�
Φ
∂A
∂t

�
− Φ

∂∇ ·A
∂t ð78Þ

¼ ∇ ·

�
Φ
∂A
∂t

�
; ð79Þ

where in Eq. (79) we have used the Coulomb gauge
condition (75). Using the asymptotic falloff conditions
for Φ and A and Gauss’s theorem, from Eq. (79) we obtainZ

R3

∇Φ ·
∂A
∂t ¼ 0: ð80Þ

Then, we have the following expression for the total
energy:

E ¼ 1

8π

Z
R3

j∇Φj2 þ
���� ∂A∂t

����2 þ jBj2: ð81Þ

The potential Φðx; tÞ satisfies the Poisson equation

ΔΦðx; tÞ ¼ −4πρðx; tÞ ð82Þ

for all t. At a fixed t, we can perform the same decom-
position (15) for the potential Φðx; tÞ used in theorem 2.2.
Then, using Eq. (26), we obtain

E ¼ Q2

2R
þ 1

8π

Z
R3

j∇Φ1j2 þ
���� ∂A∂t

����2 þ jBj2; ð83Þ

where Φ1 is defined by Eqs. (15) and (14). By the same
integration by parts argument used to deduce Eq. (80), we
obtain that Z

R3

∇Φ1 ·
∂A
∂t ¼ 0: ð84Þ2I thank O. Reula for suggesting the idea of using the Coulomb

gauge.
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Hence, we can write the energy (83) in the following way:

E ¼ Q2

2R
þ 1

8π

Z
R3

����∇Φ1 þ
∂A
∂t

����2 þ jBj2: ð85Þ

We decompose the integral in Eq. (85) over the domains
R3nU andU and we use the following simple but important
identity:

Z
R3

����∇Φ1 þ
∂A
∂t

����2 ¼
Z
R3nU

����∇Φ1 þ
∂A
∂t

����2

þ
Z
U

����∇Φ1 þ
∂A
∂t

����2 ð86Þ

¼
Z
R3nU

����∇Φ1 þ
∂A
∂t

����2 þ
Z
U

����∇Φþ ∂A
∂t

����2 ð87Þ

¼
Z
R3nU

����∇Φ1 þ
∂A
∂t

����2 þ
Z
U
jEj2; ð88Þ

where in Eq. (87) we have used that ∇Φ1 ¼ ∇Φ in U since
Φ0 is constant in U, and in Eq. (88) we have used the
expression for the electric field in the Coulomb gauge (74).
Then we obtain the following expression for the energy E:

E¼ Q2

2R
þEðUÞþ 1

8π

Z
R3nU

����∇Φ1þ
∂A
∂t

����2þjBj2; ð89Þ

where EðUÞ is the electromagnetic energy density inte-
grated over the domain U, namely

EðUÞ ¼ 1

8π

Z
U
jEj2 þ jBj2: ð90Þ

We use theorem 2.3 to bound EðUÞ [i.e., the estimate (59)]
and we finally have

E −
Q2

2R
−
cjJðUÞj

R
≥

1

8π

�Z
R3nU

����∇Φ1 þ
∂A
∂t

����2

þjBj2 þ
Z
U

�
1 −

jxj
R

�
ðjEj2 þ jBj2Þ

�
: ð91Þ

Since the left-hand side of Eq. (91) is non-negative we have
proved the inequality (72). Equation (91) also implies the
rigidity statement. We assume the equality in Eq. (72); then,
the integrand on the right-hand side of Eq. (91) should
vanish. This implies that B ¼ 0 everywhere, and hence the
potential A is a gradient. Using Eq. (75) and the falloff
condition for A we deduce that A ¼ 0. Then, using
Eq. (91) again, we obtain that ∇Φ1 ¼ 0 and hence the
statement is proved.

Taking the square of Eq. (72), we obtain

cjJjQ2

R
þ Q4

4R2
þ c2J2

R2
≤ E2; ð92Þ

which, in particular, implies Eq. (73). ▪

III. GENERAL RELATIVITY

In this section we study Eq. (3) in general relativity. In
Sec. III A we discuss a remarkable relation between this
inequality and inequalities between size, charge, and
angular momentum. In Sec. III B we present a proof of
Eq. (3), with J ¼ 0, for time-symmetric initial conditions.

A. Inequalities between size, charge,
and angular momentum

For a black hole the entropy is given by the horizon
area A,

Sbh ¼
kBc3

4Gℏ
A: ð93Þ

Equation (2) is constructed in such a way that for a Kerr-
Newman black hole, using the formula (93), we get an
equality. Moreover, Szabados [12] observed that for
dynamical black holes this inequality is also expected to
hold. It is the generalization of the Penrose inequality
including charge and angular momentum (see the review
article [13] and Refs. [14,15] and the discussion therein).
For ordinary bodies, Eq. (3) is closely related to inequal-

ities between size, angular momentum, and charge, which
was recently studied in Ref. [8]. To show this relation we
argue as follows. The hoop conjecture essentially says that
if matter is enclosed in a sufficiently small region, then the
system should collapse to a black hole [16]. Then, if the
body is not a black hole we expect an inequality of the form

G
c4

E ≤ kR; ð94Þ

where k is a universal dimensionless constant of order one.
The exact value of k will depend on the precise formulation
of the hoop conjecture and this is not important in what
follows.
Using Eq. (94) to bound E in Eq. (3), we obtain

Q4

4
þ c2J2 ≤ k2

c8

G2
R4: ð95Þ

Note that the constant G appears in Eq. (95). That is,
Eq. (95) involves two fundamental constants (c and G), in
contrast to Eq. (3) which involves only one (c). On the
other hand, Eq. (95) involves fewer physical quantities
(charge, angular momentum, and size) than Eq. (3) (charge,
angular momentum, size, and energy).
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The bound (95) implies

G
c3

jJj ≤ kR2: ð96Þ

Equation (96) was conjectured in Ref. [8] using different
kinds of arguments as those leading to Eq. (3). With an
appropriate definition of size, a version of this inequality
was proved for constant-density bodies in Ref. [8].
Recently, Khuri [17] has proved it in the general case,
using the same measure of size as in Ref. [8]. However,
these inequalities are not expected to be sharp. We will
came back to this point below.
Also, from Eq. (95) we get the inequality

jQj ≤ ð2kÞ1=2 c2

G1=2 R: ð97Þ

This inequality can also be deduced using similar argu-
ments as in Ref. [8] and it was studied for some particular
examples in Ref. [18]. Recently, Khuri [19] has proved a
general version of Eq. (97) using a similar (but not
identical) measure of size as the one used in Eq. (96).
As in the case of angular momentum, this result is not
expected to be sharp.
The relation between the Bekenstein bounds and

inequalities (96) and (97) provides two important new
insights. The first one is the following. We pointed out that
Eq. (96) was conjectured in ref. [8] using heuristic physical
arguments and also that Eq. (97) can be deduced using
similar kinds of arguments. However, with these arguments
Eqs. (96) and (97) are deduced individually. These kinds of
arguments do not seem to provide a way of deducing
the complete inequality (95), which is obtained here for the
first time using the Bekenstein bounds. Moreover, the
arguments presented above suggest that there is only one
universal constant k to be fixed. This constant can be fixed
by analyzing a simple limit case, for example spherical
symmetry, with J ¼ 0. We are currently working on this
problem [20].
The second, and perhaps most important point concerns

the rigidity of the inequality (95). The arguments presented
in Ref. [8] do not give any insight about what happens
when equality is reached in Eq. (95). The Bekenstein
bounds provide such a statement. Let us assume that the
equality is reached in Eq. (95). Since we have assumed that
it is not a black hole we can use the hoop conjecture
inequality (94) to obtain

Q4

4
þ c2J2 ¼ k2

c8

G2
R4 ≥ E2: ð98Þ

But then we can use Eq. (3) to conclude that if the equality
is reached in Eq. (95) then the equality should also hold in
Eq. (3). By the Bekenstein bound (2), this implies that the
entropy of the body is zero. Hence we have the following

rigidity statement for Eq. (95): the equality is achieved if
and only the entropy of the body is zero. In general
relativity, this statement appears to imply that in fact the
equality is achieved if and only if the spacetime is flat. We
will further discuss this point in the next section.

B. Proof of the inequality between charge, energy,
and size for time-symmetric initial data

In general relativity, the inequality (95) was proved in
spherical symmetry (in a different context) by Reiris [9]. In
the following we generalize this result to time-symmetric
initial data.
The most important difficulty in studying these kind of

inequalities in curved spaces is how to define the measure
of size R. We propose a new measure of size which is
tailored to the proof of theorem 3.2. This measure of size
represents a natural generalization to curved spaces of
definition 2.1 used in Sec. II.
The definition of size and the proof of the theorem is

based on the inverse mean curvature flow (IMCF). A
family of 2-surfaces on a Riemannian manifold evolves
under the IMCF if the outward normal speed at which a
point on the surface moves is given by the reciprocal of the
mean curvature of the surface. For the precise definition
and properties of the IMCF we refer to Ref. [21]. The IMCF
has played a key role in the proof of the Riemannian
Penrose inequality [21].
Using the IMCF we define the following radius R of a

region U in a Riemannian manifold.
Definition 3.1. Consider a region U on a complete,

asymptotically flat, Riemannian manifold. Take a point x0
on the manifold and consider the inverse mean curvature
flow starting at this point. Consider the area of the first 2-
surface on the flow that encloses the region U, and define
Rx0 to be the area radius of this surface. The radiusR of the
region U is defined as the infimum ofRx0 over all points x0
on the manifold.
In Fig. 2 we draw a schematic picture of the flow starting

at a typical point x0. In flat space, the IMCF starting at a
point develop spheres, and hence definition 3.1 coincides
with definition 2.1 presented in the previous section.
However, we emphasize that this definition is very different
than the one used in Refs. [8,17,19].

FIG. 2. Schematic drawing of the inverse mean curvature flow
from a typical point. The last surface is defined as the first one
that enclosed the domain U.
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The radius R defined above certainly involves sophis-
ticated mathematics; however, it is important to recall that it
can be explicitly estimated numerically for arbitrary curved
backgrounds.
It is important to recall that, in general, the flow will

develop singularities. This singular behavior can be treated
using the weak formulation discovered in Ref. [21]. In what
follows, for simplicity of the presentation, we will assume
that the flow is smooth; however, all the arguments are also
valid in the weak formulation.
We have the following result.
Theorem 3.2. Consider an asymptotically flat, com-

plete, time-symmetric initial data for Einstein’s equations
that satisfy the dominant energy condition and with no
minimal surfaces. Assume that there is a region U outside
of which the initial data are electrovacuum. Then we have

Q2 ≤ 2ER; ð99Þ

where E is the Arnowitt-Deser-Misner mass, Q is the
charge contained in U, and R is the radius of U defined
above. Moreover, if the equality in Eq. (99) holds, then the
data is flat inside the region U.
Proof.—The proof is inspired by Reiris’s proof [9] and it

is a simple consequence of the results presented in
Refs. [22] and [21].
The crucial property of the IMCF is the Geroch monot-

onicity of the Hawking energy. The Hawking energy of a
closed 2-surface S is given by

EHðSÞ ¼
ffiffiffiffiffiffiffiffi
A
16π

r �
1 −

1

16π

Z
S
H2

�
; ð100Þ

where H is the mean curvature of the surface and A is its
area. The Geroch monotonicity can be written in the
following form. Assume that the flow runs between a
surface Sr and a surface Ss, with r < s; then, we have

EHðSsÞ≥ EHðSrÞþ
1

ð16πÞ3=2
Z

s

r
ðAtÞ1=2

Z
St

Rdt; ð101Þ

where R is the scalar curvature. Note that the dominant
energy condition for time-symmetric data implies that
R ≥ 0. We will use Eq. (101) in two steps.
First, consider an arbitrary point x0 and run the IMCF

from x0. Since the data satisfy the dominant energy
condition, a small sphere around x0 has non-negative
Hawking mass. Moreover, the assumption that there are
no minimal surfaces on the data guarantees that the flow
runs up to infinity (even in the presence of singularities; see
Ref. [21]). Then, using Eq. (101), we conclude that any
level set of the flow has non-negative Hawking energy, in
particular the surface Sx0 that encloses the region U used in
definition 3.1; that is,

EHðSx0Þ ≥ 0: ð102Þ
We denote by Ax0 the area of Sx0 and the area radius is
given by Rx0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ax0=4π

p
.

In the second step, we continue the flow from the surface
Sx0 to infinity. Following Ref. [22], we bound the integral
of the scalar curvature in terms of the charge

1

ð16πÞ3=2
Z

∞

x0

ðAtÞ1=2
Z
St

Rdt ≥
Q2

2Rx0

; ð103Þ

where we have used the fact that the charge is conserved
outside Sx0 , since by construction Sx0 encloses the regionU
and by assumption the support of the charge density is
contained in U. Using Eqs. (103) and (101), we obtain

E −
Q2

2Rx0

≥ EHðSx0Þ: ð104Þ

Using Eq. (102), we finally get

E −
Q2

2Rx0

≥ 0: ð105Þ

In particular, this inequality applies to the radius R and
hence Eq. (99) follows.
If the equality holds in Eq. (104), then we have

EHðSx0Þ ¼ 0 and hence we can use the same rigidity
argument as in Ref. [21] to conclude that inside Sx0 the
data are flat. ▪
We have obtained a similar kind of estimate as in the

electromagnetic case (27) in which EHðS0Þ is interpreted as
the quasilocal energy inside S0.
Comparing theorem 3.2 with theorem 2.4 in electro-

magnetism, we see that there is no rigidity statement
outside the region U in theorem 3.2. The natural question
is whether a similar statement as that in theorem 2.4 holds,
namely, that the equality implies that the field is produced
by a charged thin shell. However, it is likely that the
charged thin shell in general relativity never saturates the
inequality (in contrast with electromagnetism). The reason
is that the rest energy of the shell is now taken into account.
Hence, a stronger rigidity statement is expected for theo-
rem 3.2: the equality holds if and only if the complete data
are flat. We are currently working on this problem [20].
It would be interesting to include angular momentum in

theorem 3.2. However, this appears to be a difficult
problem. In particular, it is not clear how to include angular
momentum in the inequality using the IMCF.
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