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We present a space-time model of the collision of two homogeneous, plane impulsive gravitational
waves (each having a delta function profile) propagating in a vacuum before collision and for which the
postcollision space-time has constant curvature. The profiles of the incoming waves are kδðuÞ and lδðvÞ
where k; l are real constants and u ¼ 0; v ¼ 0 are intersecting null hypersurfaces. The cosmological
constant Λ in the postcollision region of the space-time is given by Λ ¼ −6kl.
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I. INTRODUCTION

Finding the space-time structure after the collision of
gravitational and/or electromagnetic waves is a difficult
problem in general relativity due to the nonlinearity of the
field equations. The problem is simplified by specializing
to impulsive and/or shock waves which are plane and
homogeneous and then exact solutions can be found,
with the Khan-Penrose [1] and Bell-Szekeres [2] solutions
among the most famous. Up to now no solution where a
cosmological constant appears after the collision of two
homogeneous, plane, impulsive gravitational waves has yet
been found. This paper provides such an exact solution.
Impulsive lightlike signals, i.e. signals traveling with the

speed of light and having a delta function profile, are
idealized models of more realistic lightlike signals having a
profile with a finite width such as, for instance, a burst of
lightlike matter or of radiation. In some situations they may
provide solvable models to describe their interactions and
are sometimes used as classical models of quantum
phenomena. In black hole physics one has the examples
of mass inflation [3], the limiting curvature principle [4],
Hawking radiation and quantum fluctuations [5] and
internal structure of a Schwarzschild black hole [6,7]. In
general relativity an impulsive lightlike signal exists
whenever the Riemann curvature tensor of the space-time
manifold exhibits a delta function term with support on a
null hypersurface, with the latter representing the space-
time history of the signal and across which the first
derivatives of the metric tensor are discontinuous. This
signal can be a thin shell of lightlike matter, an impulsive
gravitational wave or a mixture of both [8]. Recently the
cosmological constant has received much attention in
connection with a possible description of dark energy.

Such exotic matter is described by a perfect fluid with an
equation of state for which the sum of the energy density
and isotropic pressure vanishes. In this paper we examine
the possibility that the collision of two impulsive gravita-
tional waves will produce such exotic matter by adopting a
mathematical point of view, i.e. by solving Einstein’s
field equations with appropriate boundary conditions. No
attempt is made to propose a physical mechanism.
For most of the known wave collision models in general

relativity the same field equations apply before and after the
collision. However the choice of field equations before
collision does not determine the choice of field equations
after collision. This freedom offers an opportunity to explore
new and potentially interesting models. The well-known
space-time model of a head-on collision of two homo-
geneous, plane impulsive gravitational waves, traveling in a
vacuum, involves the assumption that the postcollision
region of space-time is a vacuum space-time. With this
assumption the postcollision region is described by the
Khan-Penrose [1] solution of Einstein’s vacuum field
equations (for a derivation see [9]). We demonstrate here
that if the postcollision region of space-time is assumed to be
a solution of Einstein’s field equations with a cosmological
constant then an exact solution of these field equations can
be found satisfying the same conditions on the null hyper-
surface boundaries of the postcollision region as the Khan-
Penrose solution. In addition the cosmological constant can
be expressed simply in terms of two parameters which label
each of the incoming waves. The postcollision region is a
space-time of constant curvature and is thus curvature-
singularity free, in contrast to the Khan-Penrose model.
The solution derived here is not an extension of the Khan-
Penrose solution since it has the property that if the
cosmological constant vanishes then at least one of the
incoming waves vanishes. The postcollision model pre-
sented here can be explained in terms of a redistribution
of the energy in the incoming waves and this is described in
some detail.
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In Sec. II the incoming plane, impulsive gravitational
waves propagating through a vacuum are introduced, the
collision problem is specified (as a lightlike boundary value
problem) and the solution of Einstein’s field equations with
a cosmological constant in the postcollision region is given.
This is followed in Sec. III by a detailed study of the
physical properties of the products of the collision which,
in addition to a cosmological constant, include impulsive
gravitational waves (as in the Khan-Penrose collision) and
lightlike shells of matter. When reasonable physical restric-
tions are invoked the postcollision region of space-time is
anti–de Sitter space-time in this case.

II. COLLIDING WAVES

A plane, homogeneous gravitational impulse wave
propagating in a vacuum is described in general relativity
by a space-time with line element

ds2 ¼ −ð1þ kuþÞ2dx2 − ð1 − kuþÞ2dy2 þ 2dudv; ð2:1Þ

where k is a constant (introduced for convenience) and
uþ ¼ uϑðuÞ where ϑðuÞ ¼ 1 for u > 0 and ϑðuÞ ¼ 0 for
u < 0 is the Heaviside step function. The metric given
via this line element satisfies Einstein’s vacuum field
equations everywhere (in particular on u ¼ 0). The
only nonvanishing Newman-Penrose component of
the Riemann curvature tensor on the tetrad given via the
1-forms ϑ1 ¼ ð1þ kuþÞdx, ϑ2 ¼ ð1 − kuþÞdy, ϑ3 ¼ dv,
ϑ4 ¼ du is

Ψ4 ¼ −kδðuÞ: ð2:2Þ

Thus the curvature tensor is type N (the radiative type) in
the Petrov classification with the vector field ∂=∂v the
degenerate principal null direction and therefore the propa-
gation direction of the history of the wave (the null
hypersurface u ¼ 0) in space-time. The wave profile is
the delta function, singular on u ¼ 0, and thus the wave is
an impulsive wave. There are two families of intersecting
null hypersurfaces u ¼ constant and v ¼ constant in the
space-time with line element (2.1). A homogeneous, plane
impulsive gravitational wave propagating in a vacuum in
the opposite direction to that with history u ¼ 0 has history
v ¼ 0 and this is described by a space-time with line
element

ds2 ¼ −ð1þ lvþÞ2dx2 − ð1 − lvþÞ2dy2 þ 2dudv; ð2:3Þ

where l is a convenient constant and vþ ¼ vϑðvÞ. The Ricci
tensor vanishes everywhere when calculated with the
metric tensor given by this line element. The only non-
vanishing Newman-Penrose component of the Riemann
curvature tensor on the tetrad given via the 1-forms
ϑ1 ¼ ð1þ lvþÞdx, ϑ2 ¼ ð1 − lvþÞdy, ϑ3 ¼ dv, ϑ4 ¼ du is

Ψ0 ¼ −lδðvÞ; ð2:4Þ

indicating a Petrov type N curvature tensor with degenerate
principal null direction ∂=∂u.
For the collision problem we envisage a precollision

vacuum region of space-time v < 0 with line element (2.1)
and a precollision vacuum region of space-time u < 0 with
line element (2.3) (with both line elements coinciding when
v < 0 and u < 0). The waves collide at u ¼ v ¼ 0 and the
postcollision region of the space-time corresponds to u > 0
and v > 0. In this region the line element has the form
[1,10,11]

ds2 ¼ −e−UðeVdx2 þ e−Vdy2Þ þ 2e−Mdudv; ð2:5Þ

where U;V;M are each functions of u; v. These functions
must satisfy the following conditions on the null hyper-
surface boundaries of the region u > 0; v > 0:

v ¼ 0; u ≥ 0 ⇒ e−U ¼ 1 − k2u2;

eV ¼ 1þ ku
1 − ku

; M ¼ 0; ð2:6Þ

and

u ¼ 0; v ≥ 0 ⇒ e−U ¼ 1 − l2v2;

eV ¼ 1þ lv
1 − lv

; M ¼ 0: ð2:7Þ

Einstein’s field equations with a cosmological constantΛ in
the region u > 0; v > 0 calculated with the metric tensor
given by the line element (2.5) read

Uuv ¼ UuUv − Λe−M; ð2:8Þ

2Vuv ¼ UuVv þUvVu; ð2:9Þ

2Uuu ¼ U2
u þ V2

u − 2MuUu; ð2:10Þ

2Uvv ¼ U2
v þ V2

v − 2MvUv; ð2:11Þ

2Muv ¼ VuVv −UuUv; ð2:12Þ

where the subscripts denote partial derivatives. To imple-
ment our strategy below for solving (2.8)–(2.12) subject to
the boundary conditions (2.6) and (2.7) we will need to
know Vv at v ¼ 0, which we denote by ðVvÞv¼0, and Vu at
u ¼ 0, which we denote by ðVuÞu¼0. We already have from
(2.6) and (2.7)

ðVuÞv¼0 ¼
2k

1 − k2u2
and ðVvÞu¼0 ¼

2l
1 − l2v2

; ð2:13Þ

and also
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ðUuÞv¼0 ¼
2k2u

1−k2u2
and ðUvÞu¼0¼

2l2v
1− l2v2

: ð2:14Þ

In order to compute ðVvÞv¼0 and ðVuÞu¼0 we must first
calculate ðUvÞv¼0 and ðUuÞu¼0. We obtain these latter
quantities by evaluating (2.8) at u ¼ 0 and at v ¼ 0 and
solving the resulting first order ordinary differential equa-
tions. The constants of integration which arise are deter-
mined from the fact that Uv and Uu both vanish when
u ¼ 0 and v ¼ 0, which follows from (2.14). We then
find that

ðUvÞv¼0 ¼ −
Λuð1 − 1

3
k2u2Þ

1 − k2u2
and

ðUuÞu¼0 ¼ −
Λvð1 − 1

3
l2v2Þ

1 − l2v2
: ð2:15Þ

Now evaluating (2.9) at v ¼ 0 and at u ¼ 0 provides us
with a pair of first order ordinary differential equations for
ðVvÞv¼0 and ðVuÞu¼0. These equations are straightforward
to solve and the resulting constants of integration are
determined from the fact that Vu ¼ 2k and Vv ¼ 2l when
u ¼ 0 and v ¼ 0, which follows from (2.13). The final
results are

ðVvÞv¼0 ¼
�
2lþ Λ

3k

�
ð1 − k2u2Þ−1=2 − Λ

3k

�
1þ k2u2

1 − k2u2

�
;

ð2:16Þ

ðVuÞu¼0 ¼
�
2kþ Λ

3l

�
ð1 − l2v2Þ−1=2 − Λ

3l

�
1þ l2v2

1 − l2v2

�
:

ð2:17Þ

Dividing (2.9) successively by Vu and by Vv and then
differentiating the resulting equations and combining them
we obtain

2
∂2

∂u∂v log
Vu

Vv
¼

�
Uu

Vv

Vu

�
u
−
�
Uv

Vu

Vv

�
v
: ð2:18Þ

This suggests that we examine the possibility of a
separation of variables,

Vu

Vv
¼ AðuÞ

BðvÞ ; ð2:19Þ

for some functions AðuÞ and BðvÞ. The resulting math-
ematical simplification is that (2.19) becomes a first order
wave equation for V (see below) and that (2.18) becomes a
second order wave equation forU. From a physical point of
view we have shown [8] that if, as is the case in general, two
systems of backscattered gravitational waves exist in the
postcollision region (one with propagation direction ∂=∂u
in space-time and one with propagation direction ∂=∂v)

then (2.19) implies that there exists a frame of reference in
which the energy densities of the two systems of waves are
equal. Using (2.13), (2.16) and (2.17) determines the right-
hand side of (2.19) and the result is

Vu

Vv
¼ k½ð1þ Λ

6klÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2v2

p
− Λ

6kl ð1þ l2v2Þ�
l½ð1þ Λ

6klÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2u2

p
− Λ

6kl ð1þ k2u2Þ�
: ð2:20Þ

Hence this equation can be written as a first order wave
equation

Vū ¼ Vv̄; ð2:21Þ

with ūðuÞ and v̄ðvÞ given by the differential equations

dū
du

¼ k

��
1þ Λ

6kl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2u2

p
−

Λ
6kl

ð1þ k2u2Þ
�
−1
;

ð2:22Þ

dv̄
dv

¼ l

��
1þ Λ

6kl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2v2

p
−

Λ
6kl

ð1þ l2v2Þ
�
−1
:

ð2:23Þ

These two equations are interesting in general but we shall
concentrate in this paper on two standout special cases:
Λ ¼ 0 and Λ ¼ −6kl. The case Λ ¼ 0 is shown in the
Appendix to correspond to the Khan-Penrose [1]
space-time.
With Λ ¼ −6klwe can solve (2.22) and (2.23), requiring

ū ¼ 0 when u ¼ 0 and v̄ ¼ 0 when v ¼ 0, with

ū ¼ tan−1ku; v̄ ¼ tan−1lv: ð2:24Þ

By (2.21) we have V ¼ Vðūþ v̄Þ and the boundary
condition (2.6) written in terms of ū; v̄ reads as follows:
when v̄ ¼ 0; V ¼ logð1þtan ū

1−tan ūÞ. Hence

Vðūþ v̄Þ ¼ log

�
1þ tanðūþ v̄Þ
1 − tanðūþ v̄Þ

�
; ð2:25Þ

and restoring the coordinates u; v we have

Vðu; vÞ ¼ log

�
1 − kluvþ kuþ lv
1 − kluv − ku − lv

�
; ð2:26Þ

for u ≥ 0; v ≥ 0 provided Λ ¼ −6kl. Next writing (2.9) in
terms of the variables ū; v̄ and using (2.21) and (2.25) we
have

Uū þ Uv̄ ¼
8 tanðūþ v̄Þ

1 − tan2ðūþ v̄Þ ; ð2:27Þ

which is easily integrated to yield
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e−U ¼ Cðū − v̄Þ
�
1 − tan2ðūþ v̄Þ
1þ tan2ðūþ v̄Þ

�
; ð2:28Þ

where Cðū − v̄Þ is a function of integration. When v̄ ¼ 0

the boundary condition (2.6) requires e−U ¼ 1 − tan2 ū and
so CðūÞ ¼ 1þ tan2 ū. Hence restoring the coordinates u; v
we have Uðu; vÞ given by

e−U ¼ ð1 − kluvÞ2 − ðkuþ lvÞ2
ð1þ kluvÞ2 ; ð2:29Þ

for u ≥ 0; v ≥ 0. In light of (2.28) we see that U is a linear
combination of a function of ū − v̄ and a function of ūþ v̄
and thus satisfies the second order wave equation

Uū ū ¼ Uv̄ v̄. This wave equation is the equation that
(2.18) reduces to when (2.21) holds and the barred
coordinates are used.
With Vðu; vÞ and Uðu; vÞ given by (2.26) and (2.29) we

use the field equation (2.8) with Λ ¼ −6kl to calculate
Mðu; vÞ. The result is

Mðu; vÞ ¼ 2 logð1þ kluvÞ; ð2:30Þ

and this clearly satisfies the boundary conditions (2.6) and
(2.7). Now with V;U and M determined a lengthy
calculation verifies that the remaining field equa-
tions (2.10)–(2.12) are automatically satisfied. Thus the
line element (2.5) of the postcollision region reads

ds2 ¼ −ð1 − kluvþ kuþ lvÞ2dx2 − ð1 − kluv − ku − lvÞ2dy2 þ 2dudv
ð1þ kluvÞ2 : ð2:31Þ

If in the metric tensor components here we replace u; v by
uþ ¼ uϑðuÞ; vþ ¼ vϑðvÞwe obtain in a single line element
the expressions (2.1) and (2.3) for the precollision regions
and (2.31) for the postcollision region. In particular this will
enable us to calculate the physical properties of the
boundaries v ¼ 0; u ≥ 0 and u ¼ 0; v ≥ 0 of the postcolli-
sion region.

III. POSTCOLLISION PHYSICAL PROPERTIES

With our sign conventions, choice of units for which
c ¼ G ¼ 1, and energy-momentum-stress tensor Tab,
Einstein’s field equations with a cosmological constant
Λ read

Rab ¼ Λgab − 8π

�
Tab −

1

2
Tc

cgab

�
: ð3:1Þ

Also for a perfect fluid with proper density ρ and isotropic
pressure p we have

Tab ¼ ðρþ pÞuaub − pgab; ð3:2Þ

where ua, satisfying uaua ¼ 1, is the 4-velocity of a fluid
particle. We note that for the exotic matter mentioned in
Sec. I, ρþ p ¼ 0 and thus Tab ¼ ρgab and, with our sign
conventions, Einstein’s field equations with this energy-
momentum-stress tensor are equivalent to the field equa-
tions with a cosmological constant Λ ¼ 8πρ.
On the half null tetrad ϑ1 ¼ e−

1
2
ðU−VÞdx, ϑ2 ¼

e−
1
2
ðUþVÞdy, ϑ3 ¼ e−

1
2
Mdv, ϑ4 ¼ e−

1
2
Mdu with V;U;M

given by (2.26), (2.29) and (2.30) with u; v replaced by
uþ; vþ the Ricci tensor components of the space-time are
given by

Rab ¼ −6klϑðuÞϑðvÞgab þ
2kluþðk2u2þ − 3Þ

1 − k2u2þ
δðvÞδ3aδ3b

þ 2klvþðl2v2þ − 3Þ
1 − l2v2þ

δðuÞδ4aδ4b: ð3:3Þ

This confirms that the space-time region u > 0; v > 0 is a
solution of the field equations with a cosmological con-
stant, Rab ¼ Λgab, with Λ ¼ −6kl, and that there are
lightlike shells with the boundaries v ¼ 0; u ≥ 0 and
u ¼ 0; v ≥ 0 as histories, corresponding to the delta
function terms in (3.3). Here gab are the (constant) metric
tensor components on the half null tetrad given via the basis
1-forms fϑag. The lightlike shells have no isotropic surface
pressure [12] and the surface energy densities are μð1Þ and
μð2Þ given by

8πμð1Þ ¼
Λu
3

�
k2u2 − 3

1 − k2u2

�
on v ¼ 0; u ≥ 0; ð3:4Þ

and

8πμð2Þ ¼
Λv
3

�
l2v2 − 3

1 − l2v2

�
on u ¼ 0; v ≥ 0: ð3:5Þ

The lightlike shells must have positive surface energy
densities. The only way to realize this on v ¼ 0; u ≥ 0
(respectively on u ¼ 0; v ≥ 0) is to have kl > 0 and
k2u2 < 1 (respectively kl > 0 and l2v2 < 1). Thus the
cosmological constant Λ ¼ −6kl must be negative.
These restrictions on the coordinates are less restrictive
than the condition k2u2 þ l2v2 < 1 for u ≥ 0 and v ≥ 0
required in the Khan-Penrose postcollision space-time on
account of the presence of the curvature singularity. These
restrictions on the coordinates also avoid infinite surface
energy densities in the shells which are arguably as serious
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as a curvature singularity. Lightlike shells did not appear in
the Khan-Penrose model and their presence here is due to
the nonzero cosmological constant.
This result implies that the energy density of the exotic

matter is negative and that consequently only the so-called
strong energy condition [13], namely, ρþ p ≥ 0 and
ρþ 3p ≥ 0, can be satisfied.
The Newman-Penrose components of the Weyl con-

formal curvature tensor are given by

Ψ0 ¼ −
lð1þ k2u2þÞ
1 − k2u2þ

δðvÞ; Ψ4 ¼ −
kð1þ l2v2þÞ
1 − l2v2þ

δðuÞ;

Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0: ð3:6Þ

Thus the boundaries v ¼ 0, 0 ≤ k2u2 < 1 and u ¼ 0; 0 ≤
l2v2 < 1 are the histories of impulsive gravitational waves
corresponding to the delta function terms here. The post-
collision region u > 0; v > 0 is conformally flat and is a
space-time of constant curvature with Riemann curvature
tensor components given by

Rabcd ¼ −2klðgadgbc − gacgbdÞ: ð3:7Þ

Hence this region of space-time does not possess a
curvature singularity, in striking contrast to the postcolli-
sion region of the Khan-Penrose space-time.

IV. SUMMARY

We can briefly summarize our results as follows: for this
model collision the energy in the incoming impulsive
gravitational waves is redistributed after the collision into
two lightlike shells of matter and two impulsive gravita-
tional waves moving away from each other followed by a
space-time of constant curvature. When the surface energy
densities of the postcollision lightlike shells of matter are
required to be positive the space-time of constant curvature
must be anti–de Sitter space-time.

APPENDIX: THE CASE Λ ¼ 0

With Λ ¼ 0 we can solve (2.22) and (2.23), requiring
ū ¼ 0 when u ¼ 0 and v̄ ¼ 0 when v ¼ 0, with

ū ¼ sin−1ku; v̄ ¼ sin−1lv: ðA1Þ

By (2.21) we have V ¼ Vðūþ v̄Þ and the boundary
condition (2.6) written in terms of ū; v̄ reads as follows:
when v̄ ¼ 0; V ¼ logð1þsin ū

1−sin ūÞ. Hence

Vðūþ v̄Þ ¼ log

�
1þ sinðūþ v̄Þ
1 − sinðūþ v̄Þ

�

¼ log

��
cos ūþ sin v̄
cos ū − sin v̄

��
cos v̄þ sin ū
cos v̄ − sin ū

��
:

ðA2Þ

Restoring the coordinates u; v we have

Vðu; vÞ ¼ log

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2u2

p
þ lvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2u2
p

− lv

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2v2

p
þ kuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2v2
p

− ku

��
;

ðA3Þ
for u ≥ 0; v ≥ 0 provided Λ ¼ 0. Writing (2.9) in terms of
the variables ū; v̄ and using (2.21) and (A2) we have

Uū þUv̄ ¼ 2 tanðūþ v̄Þ: ðA4Þ
Integrating this results in

e−U ¼ Dðū − v̄Þ cosðūþ v̄Þ; ðA5Þ
whereDðū − v̄Þ is a function of integration. With v̄ ¼ 0 the
boundary condition (2.6) requires e−U ¼ cos2 ū and so
DðūÞ ¼ cos ū. Restoring the coordinates u; v we have
Uðu; vÞ given by

e−U ¼ cosðū − v̄Þ cosðūþ v̄Þ ¼ 1 − k2u2 − l2v2: ðA6Þ
Now (2.8) with Λ ¼ 0 is automatically satisfied.
Combining (2.8) with Λ ¼ 0 and (2.12) we have

ð2M þUÞuv ¼ VuVv: ðA7Þ
Changing the independent variables u; v to ū; v̄ using (A1),
and using (A2), this reads

ð2M þ UÞū v̄ ¼ 4sec2ðūþ v̄Þ: ðA8Þ

Integrating and using (A6) we arrive at

e−2M ¼ cos3ðūþ v̄Þ
cosðū − v̄Þ fðūÞgðv̄Þ; ðA9Þ

where fðūÞ and gðv̄Þ are functions of integration. From the
boundary conditions (2.6) and (2.7) we see that M ¼ 0
when v̄ ¼ 0 and M ¼ 0 when ū ¼ 0 and so it follows that
fðūÞgðv̄Þ ¼ sec2 ū sec2 v̄. Hence

e−M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos3ðūþ v̄Þ
cosðū − v̄Þ

s
sec ū sec v̄: ðA10Þ

Restoring the coordinates u; v and simplifying this becomes

e−M ¼ ð1−k2u2− l2v2Þ3=2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− l2v2

p
þkluvÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− l2v2

p ;

ðA11Þ
for u ≥ 0; u ≥ 0 when Λ ¼ 0. Substituting (A3), (A6) and
(A11) into the field equations (2.10) and (2.11) verifies that
these latter equations are automatically satisfied. The line
element (2.5) with V;U and M given by (A3), (A6)
and (A11) is the Khan-Penrose postcollision line element.
No derivation is given in [1].
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