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A future holographic screen is a hypersurface of indefinite signature, foliated by marginally trapped
surfaces with area AðrÞ. We prove that AðrÞ grows strictly monotonically. Future holographic screens
arise in gravitational collapse. Past holographic screens exist in our own Universe; they obey an
analogous area law. Both exist more broadly than event horizons or dynamical horizons. Working within
classical general relativity, we assume the null curvature condition and certain generiticity conditions.
We establish several nontrivial intermediate results. If a surface σ divides a Cauchy surface into two
disjoint regions, then a null hypersurface N that contains σ splits the entire spacetime into two disjoint
portions: the future-and-interior, Kþ; and the past-and-exterior, K−. If a family of surfaces σðrÞ foliate a
hypersurface, while flowing everywhere to the past or exterior, then the future-and-interior KþðrÞ grows
monotonically under inclusion. If the surfaces σðrÞ are marginally trapped, we prove that the evolution
must be everywhere to the past or exterior, and the area theorem follows. A thermodynamic interpretation
as a second law is suggested by the Bousso bound, which relates AðrÞ to the entropy on the null slices
NðrÞ foliating the spacetime. In a companion letter, we summarize the proof and discuss further
implications.
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I. INTRODUCTION

The celebrated laws of black hole thermodynamics [1–4]
ascribe physical properties to the event horizon of a black
hole. However, the event horizon is defined globally, as the
boundary of the past of future infinity. Thus, the location of
the thermodynamic object depends on the future history of
the spacetime. For example, an observer in a perfectly flat
spacetime region might already be inside a black hole, if a
null shell is collapsing outside their past light cone. By
causality, Hawking radiation and the first and second laws
of black hole thermodynamics should have no manifesta-
tion for such an observer. Conversely, once a black hole has
formed, its thermodynamic properties should be observable
at finite distance, regardless of whether the collapsed region
already coincides with the true event horizon, or is headed
for substantial growth in the distant future.
Here we consider the problem of finding a geometric

object that is locally defined, and which obeys a classical
law analogous to one of the laws of thermodynamics. We
will focus on the second law, whose manifestation in
classical general relativity is the statement that the area of
certain surfaces cannot decrease. For the cross sections of an

event horizon this was proven by Hawking in 1971 [5], but
as noted above the event horizon is not locally defined.
We will formulate and prove a new area theorem. It is

obeyed by what we shall call a future (or past) holo-
graphic screen, H. H is a hypersurface foliated by
marginally (anti)trapped surfaces, which are called leaves.
This definition is local, unlike that of an event horizon.
It requires knowledge only of an infinitesimal neighbor-
hood of each leaf. A future holographic screen exists
(nonuniquely) in generic spacetimes that have a future
event horizon. It is disjoint from the event horizon but it
may asymptote to it; see Fig. 1(a). Past holographic
screens exist in expanding universes such as ours, regard-
less of whether they have a past event horizon. Because H
is not defined in terms of distant regions, past and future
holographic screens can exist in spacetimes with no
distant boundary at all, such as a recollapsing closed
universe; see Fig. 1(b). Our area law applies to all future
and past holographic screens.

A. Relation to previous work

The notion of a future or past holographic screen has
roots in two distinct bodies of research, which had not been
connected until now. It can be regarded as a refinement of
the notion of “preferred holographic screen hypersurface”
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[7], which need not have monotonic area. Alternatively,
it can be viewed as a generalization of the notion of
“dynamical horizon,” which obeys a straightforward area
law but is not known to exist in many realistic solutions.
We will now discuss these two connections for context
and attribution; see also Ref. [8]. We stress, however, that
our theorem and proof are self-contained. They rely only on
classical general relativity, and not, for example, on any
conjecture about semiclassical or quantum gravity.
First, let us discuss the relation to the holographic

principle. (See Refs. [9–11] for earlier work and Ref. [12]
for a review.) To an arbitrary codimension-two spatial
surface B, one can associate a light sheet [13]: a null
hypersurface orthogonal to B with everywhere nonpositive
expansion (i.e., locally nonincreasing area), in the direction
away from B. The covariant entropy bound (Bousso bound)
[13] is the conjecture that the entropy of the matter on the
light sheet cannot exceed the area of B, in Planck units.
The conjecture has broad support; it has been proven in
certain limiting regimes [14–18].
There are four null directions orthogonal to any surface.

In each direction, the orthogonal null congruence generates
a null hypersurface with boundary B. The expansion in
opposing directions, such as future-outward and past-
inward, differs only by a sign. In typical settings, therefore,
there will be two directions with initially negative expan-
sion, each of which gives rise to a light sheet. For example,

a sphere in Minkowski space admits light sheets in the
future- and past-inward directions, but not in the outward
directions. A large enough sphere near the big bang is
antitrapped: it admits light sheets in the past-inward and -
outward directions. Spheres near the singularity of a black
hole are trapped: the light sheets point in the future-inward
and -outward directions.
However, it is possible to find surfaces that aremarginal:

they have vanishing expansion in one opposing pair of null
directions. Hence they admit a pair of light sheets whose
union forms an entire null slice of the spacetime [13].
In fact, in strongly gravitating regions one can readily
construct a continuous family of marginal surfaces, which
foliate a hypersurface called a “preferred holographic
screen hypersurface.” The opposing pairs of light sheets
attached to each leaf foliate the spacetime. The Bousso
bound is particularly powerful when applied to these light
sheets. It constrains the entropy of the entire spacetime,
slice by slice, in terms of the area of the leaves. All quantum
information in the spacetime can be stored on the leaves, at
no more than about one qubit per Planck area. In this sense
the world is a hologram.
For event horizons, a classical area theorem [5] preceded

the interpretation of area as physical entropy [1]. For
holographic screens, the present work belatedly supplies a
classical area law for an object whose relevance to geometric
entropy had long been conjectured [7]. What took so long?

(a) (b)

FIG. 1 (color online). Penrose diagrams showing examples of holographic screens. The green diagonal lines show a null slicing of the
spacetime; green dots mark the maximal area sphere on each slice. These surfaces combine to form a holographic screen (blue lines); we
prove that their area increases monotonically in a uniform direction on the screen (blue triangles). (a) A black hole is formed by the
collapse of a star (inner shaded region); later another massive shell collapses onto the black hole (outer shaded region). At all other times
an arbitrarily small amount of matter accretes (white regions); this suffices to satisfy our generic conditions. The black hole interior
contains a future holographic screen that begins at the singularity and asymptotes to the event horizon. It is timelike in the dense regions
and spacelike in the dilute regions. (b) In a closed universe filled with dust, marginally antitrapped spheres form a past holographic
screen in the expanding region; its area increases towards the future. Marginally trapped spheres form a future holographic screen in the
collapsing region; its area increases towards the past. The equator of the three-sphere at the turnaround time (black circle) belongs to
neither the past nor the future screen; it is extremal in the sense of Ref. [6].
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In fact, the notion of “preferred holographic screen
hypersurface” lacked a key refinement, without which our
theorem would not hold: the distinction between past and
future holographic screens. The leaves of a “preferred
holographic screen hypersurface” are marginal, that is,
one orthogonal null congruence has vanishing expansion.
However, they were not required to be either marginally
trapped, or marginally antitrapped. That is, no definite sign
was imposed on the expansion of the second, independent
orthogonal null congruence. Figure 1(b) shows a spacetime
in which a “preferred holographic screen hypersurface” fails
to obey an area law. Oncewe distinguish between marginally
trapped and antitrapped surfaces, however, we recognize that
there are in fact two disconnected objects: a past and a future
holographic screen. Each obeys an area law, as our proof
guarantees, but in different directions of evolution. This is
analogous to the distinction between past and future event
horizons. From this perspective, it is not surprising that
“preferred holographic screen hypersurfaces” fail to satisfy
an area law without the refinement we introduce here.
This brings us to the second body of research to which

the present work owes debt. Previous attempts to find a
quasilocal alternative to the event horizon culminated in the
elegant notions of a future outer trapping horizon (FOTH)
[19–21] or dynamical horizon [22–24] (see Refs. [25,26]
for reviews). In a generic, classical setting their definitions
are equivalent: a dynamical horizon is a spacelike hyper-
surface foliated by marginally trapped surfaces.
“Preferred holographic screen hypersurface” was a

weaker notion than a future holographic screen; “dynami-
cal horizon” is a stronger notion. It adds not only the
crucial refinement from marginal to marginally trapped, but
also the requirement that the hypersurface be spacelike.
This immediately implies that the area increases in the
outward direction [19,22]. (Note the brevity of the proof of
Theorem IV.3 below, which alone would imply an area law
without the need for any of the previous theorems, if a
spacelike assumption is imposed.)
However, our present work shows that the spacelike

requirement is not needed for an area theorem. This is
important, because the spacelike requirement is forbid-
dingly restrictive [27]: no dynamical horizons are known to
exist in simple, realistic systems such as a collapsing star or
an expanding universe dominated by matter, radiation, and/
or vacuum energy.
Thus, the notion of a dynamical horizon (or of a FOTH)

appears to be inapplicable in a large class of realistic regions
in which gravity dominates the dynamics. We are not aware
of a proof of nonexistence. But we show here that an area
theorem holds for the more general notion of a future
holographic screen, whose existence is obvious and whose
construction is straightforward in the same settings. Thus we
see little reason for retaining the additional restriction to
hypersurfaces of spacelike signature, at least in the context of
the second law.

In the early literature on FOTHs/dynamical horizons,
future holographic screens were already defined and dis-
cussed, under the name “marginally trapped tube” [25].1

Ultimately, two separate area laws were proven, one for the
spacelike and one for the timelike portions of the future
holographic screens. These follow readily from the defini-
tions. The first, for FOTHs/dynamical horizons, was men-
tioned above. The second states that the area decreases
toward the future along any single timelike portion
(known as “future inner trapping horizons” [19] or “timelike
membranes” [25]).
In these pioneering works, no unified area law was

proposed for “marginally trapped tubes”/future holographic
screens. Perhaps this is because it was natural to think
of their timelike portions as future directed and thus area-
decreasing. Moreover, the close relation to “preferred holo-
graphic screen hypersurfaces” [7]was not recognized, so the
area of leaves lacked a natural interpretation in terms of
entropy.2 And finally, it is not immediately obvious that an
area law can hold once timelike and spacelike portions are
considered together. Indeed, the central difficulty in theproof
we present here is our demonstration that such portions can
onlymeet inways thatupholdareamonotonicity for theentire
future holographic screen under continuous flow. A key
element of our proof builds on relatively recent work [34].
There is an intriguing shift of perspective in a brief

remark in later work by Booth et al. [27]. After explicitly
finding a “marginally trapped tube” (i.e., what we call a
future holographic screen) in a number of spherically
symmetric collapse solutions, the authors pointed out that
it could be considered as a single object, rather than a
collection of dynamical horizon/“timelike membrane”
pairs. They noted that with this viewpoint the area increases
monotonically in the examples considered. Our present
work proves that this behavior is indeed general.
Analogues of a first law of thermodynamics have been

formulated for dynamical horizons and trapping horizons.
We expect that this can be extended to future holographic
screens. However, here we shall focus on the second law
and its classical manifestation as an area theorem.

B. Outline

In Sec. II, we give a precise definition of future and
past holographic screens, and we establish notation and

1The definition of “trapping horizon” [19] excludes the
junctions between inner and outer trapping horizons and
thus precludes the consideration of such objects as a single
hypersurface.

2It is crucial that the entropy associated with the area of leaves
on a future holographic screen H is taken to reside on the light
sheets of the leaves, as we assert, and not on H itself. The latter
choice—called a “covariant bound” in Refs. [28–31] but related
to Ref. [32] and distinct from Ref. [13]—is excluded by a
counterexample [33] and would not lead to a valid generalized
second law.
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nomenclature. We also describe a crucial mathematical
structure derived from the foliation of H by marginally
(anti)trapped leaves σðrÞ: there exists a vector field ha

tangent to H and normal to its leaves, which can be written
as a linear combination of the orthogonal null vector fields
ka and la. Its integral curves are called fibers of H.
It is relatively easy to see that the area of leaves is

monotonic if hala has definite sign, i.e., if H evolves
towards the past or exterior of each leaf. The difficulty lies
in showing that it does so everywhere.
Our proof is lengthy and involves nontrivial intermediate

results. Given an arbitrary two-surface σ that splits a
Cauchy surface into complementary spatial regions, we
show in Sec. III A that a null hypersurface NðσÞ ⊃ σ
partitions the entire spacetime into two complementary
spacetime regions: KþðσÞ, the future-and-interior of σ; and
K−ðσÞ, the past-and-exterior of σ.
In Sec. III B, we consider a hypersurface foliated by

Cauchy-splitting surfaces σðrÞ. We prove that KþðrÞ grows
monotonically under inclusion, if the surfaces σðrÞ evolve
towards their own past-and-exterior. This puts on a rigorous
footing the equivalence (implicit in the constructions of
Ref. [7]) between foliations of H and null foliations of
spacetime regions. The proofs in Sec. III do not use all of the
properties of H; in particular they do not use the marginally
trapped property of its leaves. Thus our results up to this
point apply to more general classes of hypersurfaces.
In Sec. IV, we do use the assumption that the leaves of H

are marginally trapped, and we combine it with the monot-
onicity of KþðrÞ that we established for past-and-exterior
evolution. This allows us to show that the evolution of leaves
σðrÞ on a future holographic screenH must be everywhere to
the past or exterior (assuming the null energy condition
and certain generic conditions). This is the core of our proof.
We then demonstrate that such evolution implies that the
area AðrÞ of σðrÞ increases strictly monotonically with r.
We close Sec. IV with a theorem establishing the

uniqueness of the foliation of a given holographic screen.
The holographic screens themselves are highly nonunique.
For example, one can associate a past (future) holographic
screen with any observer, by finding the maximal area
surfaces on the past (future) light cones of each point on the
observer’s worldline.

II. HOLOGRAPHIC SCREENS

We assume throughout this paper that the spacetime is
globally hyperbolic [with an appropriate generalization for
asymptotically anti–de Sitter (AdS) geometries [34,35]].
We assume the null curvature condition: Rabkakb ≥ 0

where ka is any null vector. In a spacetime with matter
satisfying Einstein’s equations this is equivalent to the null
energy condition: Tabkakb ≥ 0.
Definition II.1. A future holographic screen [7] (or

marginally trapped tube [24,25]) H is a smooth

hypersurface admitting a foliation by marginally trapped
surfaces called leaves.
A past holographic screen is defined similarly but in

terms of marginally antitrapped surfaces. Without loss of
generality, we will consider future holographic screens in
general discussions and proofs.
By foliation we mean that every point p ∈ H lies on

exactly one leaf. A marginally trapped surface is a codi-
mension-two compact spatial surface σ whose two future-
directed orthogonal null geodesic congruences satisfy

θk ¼ 0; ð2:1Þ
θl < 0: ð2:2Þ

The opposite inequality defines “marginally antitrapped,”
and thus, past holographic screens. Here θk ¼ ∇̂aka and
θl ¼ ∇̂ala are the null expansions [36] (where ∇̂a is com-
puted with respect to the induced metric on σ), and ka and la

are the two future-directed null vector fields orthogonal to σ.
We will refer to the ka direction as outward and to the la

direction as inward. For screens in asymptotically flat or
AdS spacetimes, these notions agree with the intuitive ones.
Furthermore, in such spacetimes any marginally trapped
surface, and hence any holographic screen, lies behind an
event horizon. However, holographic screens may exist in
cosmological spacetimes where an independent notion of
outward, such as conformal infinity, need not exist (e.g., a
closed Friedmann-Robertson-Walker universe). In this case
the definition of H requires only that there exist some
continuous assignment of ka and la onH such that all leaves
are marginally trapped. See Fig. 1 for examples of holo-
graphic screens.
Definition II.2. The defining foliation ofH into leaves σ

determines a ðD − 2Þ-parameter family of leaf-orthogonal
curvesγ, suchthateverypointp ∈ H liesonexactlyonecurve
that is orthogonal toσðpÞ.Wewill refer to this set of curves as
the fibration of H, and to any element as a fiber of H.
Convention II.3. Thus it is possible to choose a (non-

unique) evolution parameter r along the screenH such that r
is constant on any leaf and increases monotonically along the
fibers γ. We will label leaves by this parameter: σðrÞ.
The tangent vectors to the fibers define a vector fieldha on

H.Foranychoiceofevolutionparameter thenormalizationof
this vector field can be fixed by requiring that the function r
increasesatunit ratealongha∶hðrÞ ¼ haðdrÞa ¼ 1. (SinceH
can change signature, unit normalization of ha would be
possible only piecewise, and hencewould not be compatible
with the desired smoothness of ha.)
Remark II.4. Since fibersareorthogonal to leaves, a tangent

vector fieldha canbewrittenasa (unique) linearcombinationof
the two null vector fields orthogonal to each leaf:

ha ¼ αla þ βka: ð2:3Þ
Moreover, the foliation structure guarantees that ha

vanishesnowhere: it is impossible tohaveα ¼ β ¼ 0anywhere
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on H. (These remarks hold independently of the requirement
that each leaf be marginally trapped.)
Convention II.5. As shown in Fig. 2, ha is spacelike

and outward directed if α < 0; β > 0; timelike and past
directed if α < 0; β < 0; spacelike and inward directed if
α > 0; β < 0; and finally, timelike and future directed if
α > 0; β > 0. We denote such regions, in this order (and
somewhat redundantly): S−þ; T−−; Sþ−; Tþþ.
Remark II.6. Our key technical result below will be to

demonstrate that α cannot change sign on H. Thus on a
given screenH, either only the first two, or only the second
two possibilities are realized. (The latter case can be
reduced to the former by taking r → −r.)
Remark II.7. Because α and β cannot simultaneously

vanish, Sþ− and S−þ cannot share a boundary or be
separated by a null region; they must be separated by a
timelike region. Similarly Tþþ and T−− regions must be
separated by a spacelike region.
Below we will consider only holographic screens that

satisfy additional technical assumptions:
Definition II.8. A holographic screen H is regular if

(a) the first generic condition is met, that Rabkakb þ
ςabς

ab > 0 everywhere onH, where ςab is the shear of
the null congruence in the ka direction;

(b) the second generic condition is met: letHþ,H−,H0 be
the set of points in H with, respectively, α > 0, α < 0,
and α ¼ 0; then H0 ¼ _H− ¼ _Hþ;

(c) every inextendible portionHi ⊂ H with definite sign of
α either contains a complete leaf, or is entirely timelike;

(d) every leaf σ splits a Cauchy surface Σ into two disjoint
portions Σ�.

Analogous assumptions have been used in the more
restricted context of dynamical horizons. The first generic
condition is identical to the regularity condition of
Ref. [24]. Together with the null curvature condition,
Rabkakb ≥ 0, it ensures that the expansion of the ka

congruence becomes negative away from each leaf. The
second generic condition excludes the degenerate case

where α vanishes along H without changing sign. Either
condition excludes the existence of an open neighborhood
in H with α ¼ 0. Both are aptly called “generic” since they
can fail only in situations of infinitely fine-tuned geometric
symmetry and matter distributions. The third assumption is
substantially weaker than the definition of a dynamical
horizon, since we do not require a global spacelike
signature of H. The fourth assumption will play a role
analogous to the assumption of achronality of the dynami-
cal horizon. It holds in typical spacetimes of interest
(including settings with nontrivial spatial topology, such
as S1 × S2, as long as the holographic screen is sufficiently
localized on the sphere). We leave the question of relaxing
some or all of these assumptions to future work.
Remark II.9. Assumption II.8.c and Remark II.7 imply

that H contains at least one complete leaf with a definite
sign of α.
Convention II.10. Let σð0Þ ⊂ H be an arbitrary leafwith a

definite sign of α. We will take the parameter r to be oriented
so that α < 0 on σð0Þ, and we take r ¼ 0 on σð0Þ. By
convention II.3 this also determines the global orientation of
thevector fieldha. Forpastholographic screens, it is convenient
to choose the opposite convention, α > 0 on σð0Þ.

III. LEAVES INDUCE A MONOTONIC
SPACETIME SPLITTING

In this section, we will use only a subset of the defining
properties of a holographic screen. In Sec. III A, we
examine the implications of Assumption II.8.d, that each
leaf splits a Cauchy surface. We show that a null surface
orthogonal to such a leaf splits the entire spacetime into two
disconnected regions K�ðσÞ.
In Sec. III B, we use the foliation property of the

holographic screen. (However, nowhere in this section
do we use the condition that each leaf be marginally
trapped, or Assumptions II.8.a–II.8.c.) We show that in
portions ofH where α is of constant sign, the setsK�ðσðrÞÞ
satisfy inclusion relations that are monotonic in the
evolution parameter r.
Together these results imply that an α < 0 foliation of

any hypersurface H into Cauchy-splitting surfaces σ
induces a null foliation of the spacetime, such that each
null hypersurface NðσÞ splits the entire spacetime into
disconnected regions K�ðσÞ.
In the following section, we will add the marginally

trapped condition and the remaining technical assumptions,
to show that on a future holographic screen, α must have
constant sign.

A. From Cauchy splitting to spacetime splitting

By Assumption II.8.d, every leaf σ splits a Cauchy
surface Σ into two disconnected portions Σþ and Σ−:

Σ ¼ Σþ∪σ∪Σ−; σ ¼ _Σ�: ð3:1Þ

FIG. 2. The null vectors la and ka orthogonal to a leaf σ of the
foliation of H at some point. The evolution of H is characterized
by the vector ha normal to the leaves and tangent to H.
Depending on the quadrant ha points to, H evolves locally to
the future, exterior, past, or interior (clockwise from top).
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We take Σ� to be open in the induced topology on Σ, so
that Σ� ∩ σ ¼ ∅. We consider the following sets shown in
Fig. 3(a):

(i) IþðΣþÞ, the chronological future of Σþ: this is the
set of points that lie on a timelike future-directed
curve starting at Σþ. (Note that this set does not
include Σþ.)

(ii) D−ðΣþÞ, the past domain of dependence of Σþ: this
is the set of points p such that every future-directed
causal curve through p must intersect Σþ. (This set
does include Σþ.)

(iii) Similarly, we consider I−ðΣ−Þ and DþðΣ−Þ.

Definition III.1. From the Cauchy-splitting property of
σ, it follows3 that the four sets defined above have no
mutual overlap. However they share null boundaries:

NþðσÞ≡ _IþðΣþÞ − Σþ ¼ _DþðΣ−Þ − I−ðDþðΣ−ÞÞ; ð3:2Þ

N−ðσÞ≡ _I−ðΣ−Þ − Σ− ¼ _D−ðΣþÞ − IþðD−ðΣþÞÞ: ð3:3Þ

Note that NþðσÞ ∩ N−ðσÞ ¼ σ. We define

KþðσÞ≡ IþðΣþÞ∪D−ðΣþÞ − NþðσÞ; ð3:4Þ

K−ðσÞ≡DþðΣ−Þ∪I−ðΣ−Þ − N−ðσÞ; ð3:5Þ

NðσÞ≡ NþðσÞ∪N−ðσÞ: ð3:6Þ

Thus

NðσÞ ¼ _KþðσÞ ¼ _K−ðσÞ; ð3:7Þ

and the sets N, Kþ, and K− provide a partition of the
spacetime [Fig. 3(b)].
Lemma III.2. There exists an independent characteriza-

tion of Nþ, N−, and thus of N: NþðσÞ is generated by the
future-directed null geodesic congruence orthogonal to σ
in the Σ− direction up to intersections: p ∈ NþðσÞ if
and only if no conjugate point or nonlocal intersection
with any other geodesic in the congruence lies between σ
and p.
This follows from a significantly strengthened version of

Theorem 9.3.11 in Ref. [36], a proof of which will appear
elsewhere. Similarly N− is generated by the past-directed
σ-orthogonal null congruence towards Σþ. (Hence if σ is
marginally trapped then N� both are light sheets of σ [13].)
Corollary III.3. Lemma III.2. implies that N depends

only on σ, not on the Cauchy surface Σ. Moreover, the sets
Kþ and K− are then uniquely fixed by the fact that N splits
the spacetime: Kþ is the largest connected set that contains
IþðNÞ but not N.
Thus our use of σ (as opposed to Σþ and/or Σ−) as the

argument of the sets K�, N� is appropriate.

B. Monotonicity of the spacetime splitting

Until now, we have only used the Cauchy-splitting
property of σ. We will now consider a family of such
leaves, σðrÞ, that foliate a hypersurface H. (We use this
notation instead of H, in order to emphasize that H need
not satisfy the additional assumptions defining a future
holographic screen.) A tangent vector field ha can be
defined as described in Remark II.4, with decomposition
ha ¼ αla þ βka into the null vectors orthogonal to each
leaf. We take Σþ to be the side towards which the vector la

points. (This convention anticipates Sec. IV. In the current
section, ka and la need not be distinguished by conditions
on the corresponding expansions.) To simplify notation, we
denote KþðσðrÞÞ as KþðrÞ, etc.

(a) (b)

FIG. 3 (color online). (a) Each leaf σ splits a Cauchy surface. This defines a partition of the entire spacetime into four regions, given by
the past or future domains of dependence and the chronological future or past of the two partial Cauchy surfaces. (b) The pairwise unions
K� depend only on σ, not on the choice of Cauchy surface. They can be thought as past and future in a null foliation defined by the light
sheets N.

3The proofs of the following statements are straightforward
and use only well-known properties of I� and D�.
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Theorem III.4. Consider a foliated hypersurface H with
tangent vector field ha defined as above. Suppose that
α < 0 on all leaves σðrÞ in some open interval, r ∈ I. Then

K̄þðr1Þ ⊂ Kþðr2Þ; ð3:8Þ

or equivalently K−ðr1Þ ⊃ K̄−ðr2Þ, for all r1; r2 ∈ I with
r1 < r2. That is, the sets K�ðrÞ are monotonic in r under
inclusion; and the monotonicity is strict in the strong sense
that the entire boundary Nðr1Þ of the open set Kþðr1Þ is
contained in the open set Kþðr2Þ.4
Proof. We will first prove the inclusion monotonicity of

K� under an infinitesimal evolution step r → rþ δr. The
assumption that α < 0 implies that H locally evolves
towards the past or exterior of its leaves: for sufficiently
small δr < 0,

σðrþ δrÞ ⊂ K−ðrÞ: ð3:9Þ

Since K−ðrÞ ∩ KþðrÞ ¼ ∅, it follows thatH cannot locally
evolve into the future or interior of any of its leaves:

σðrþ δrÞ ∩ KþðrÞ ¼ ∅: ð3:10Þ

Let δH be the small portion ofH between r and rþ δr; the
above results imply that

δH ⊂ K−ðrÞ; δH ∩ KþðrÞ ¼ ∅: ð3:11Þ

By Corollary III.3, we may choose the sets ΣþðrÞ to suit
our convenience. It is instructive to consider first the special
case where we can find a Cauchy surface such that
Σþðrþ δrÞ ¼ X, where

X ≡ Σ̄þðrÞ∪δH; ð3:12Þ

and we recall that an overbar denotes the closure of a set.
This is the case when β > 0 between σðrÞ and σðrþ δrÞ,
i.e., if δH is spacelike. Both the future of a set, and the past
domain of dependence of a set cannot become smaller
when the set is enlarged; hence,

IþðXÞ ⊃ IþðΣþðrÞÞ;
D−ðXÞ ⊃ D−ðΣþðrÞÞ; ð3:13Þ

and so the infinitesimal version of Eq. (3.8) follows trivially
from the definition of Kþ.
Now consider the general case, with no restriction on the

sign of β. Thus, δH may be spacelike, timelike (β < 0), or
null (β ¼ 0); indeed, it may be spacelike at some portion

of σðrÞ and timelike at another. One can still define the
submanifold X as the extension of ΣþðrÞ by δH, as in
Eq. (3.12); see Fig. 4. Again, this extension cannot decrease
the future of the set, or its past domain of dependence,5 as
described in Eq. (3.13).
However, X need not be achronal and hence, it need not

lie on any Cauchy surface. In this case, we consider a new
Cauchy surface that contains σðrþ δrÞ. Because α < 0,
this surface can be chosen so that Σþðrþ δrÞ is nowhere to
the future of X; see Fig. 4. Since X and Σþðrþ δrÞ share
the same boundary σðrþ δrÞ, α > 0 then implies that X is
entirely in the future of Σþðrþ δrÞ:

X ⊂ IþðΣþðrþ δrÞÞ: ð3:14Þ

Moreover, the set X together with Σ̄þðrþ δrÞ forms a
“box” that bounds an open spacetime region Y, such that

Y ⊂ IþðΣþðrþ δrÞÞ: ð3:15Þ

All future-directed timelike curves that pass through
Σþðrþ δrÞ enter Y and then can exit Y only through X.
Hence D−ðXÞ ⊂ Y∪D−ðΣþðrþ δrÞÞ. Since α < 0, for all
points outside of Y∪D−ðΣþðrþ δrÞÞ there exist future-
directed timelike curves that evade X. Hence equality
holds:

FIG. 4 (color online). Proof that KþðrÞ grows monotonically
under inclusion, for any foliation σðrÞ of a hypersurface H with
α < 0. See the main text for details and definitions.

4It is not difficult to strengthen this theorem by proving the
converse. However this requires using Assumption II.8.b which is
used nowhere else in this section. Moreover, the converse is not
needed in this paper.

5The future of a set is defined for arbitrary sets. The domain of
dependence is usually defined only for certain sets, for example
for closed achronal sets in Ref. [36]. Here we extend the usual
definition to the more general set X: p ∈ D−ðXÞ if and only if
every future-inextendible causal curve through p intersects X.
This is useful for our purposes; however, we caution that
certain theorems involving D� need not hold with this broader
definition.
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D−ðXÞ ¼ Y∪D−ðΣþðrþ δrÞÞ: ð3:16Þ

To obtain the infinitesimal inclusion relation,

Kþðrþ δrÞ ⊃ KþðrÞ; ð3:17Þ

by Eq. (3.13) it suffices to show that Kþðrþ δrÞ ⊃
IþðXÞ∪D−ðXÞ. Indeed if p ∈ IþðXÞ by Eq. (3.14)
p ∈ IþðΣþðrþ δrÞÞ ⊂ Kþðrþ δrÞ. And if p ∈ D−ðXÞ
then by Eqs. (3.16) and (3.15) we again have p ∈
Kþðrþ δrÞ.
To obtain the stricter relation

Kþðrþ δrÞ ⊃ K̄þðrÞ; ð3:18Þ

we note that σðrÞ ⊂ X; hence by Eq. (3.14), for every point
p ∈ σðrÞ there exists a timelike curve from Σþðrþ δrÞ to
p. This curve can be continued along the null generator
of NþðrÞ starting at p to a point q ∈ NþðrÞ, and then
slightly deformed into a timelike curve connecting p to q.
By Lemma III.2, every point in NþðrÞ lies on a generator
starting at σðrÞ. Hence, NþðrÞ ⊂ Kþðrþ δrÞ. A similar
argument yields N−ðrÞ ⊂ Kþðrþ δrÞ. Since NðrÞ ¼
NþðrÞ∪N−ðrÞ and K̄þðrÞ¼KþðrÞ∪NðrÞ, Eq. (3.18)
follows.
To extend Eq. (3.18) to Eq. (3.8), one may iterate the

above infinitesimal construction. The only way this could
fail is if the iteration gets stuck because the steps δr have to
be taken ever smaller to keep Eq. (3.9) satisfied. Suppose
therefore that the iteration can only reach an open set ðr; r�Þ
but no leaves in the set ðr�; r2Þ. But this contradicts the
assumption that α < 0 at r�. ▪

IV. AREA LAW

In this section, we prove our main result: that the area of
the holographic screen is monotonic. The most difficult part
of this task is proving that α cannot change sign on H
(Theorem IV.2). We then prove our area Theorem IV.3. We
begin by stating a useful Lemma.
Lemma IV.1. Let N be a null hypersurface and let χ be a

spacelike surface tangent to N at a point p. That is, we
assume that one of the two future-directed null vectors
orthogonal to χ, κa, is also orthogonal to N at p. We may
normalize the (null) normal vector field to N so that it
coincides with κa at p. Let θðχÞ be the null expansion of the
congruence orthogonal to χ in the κa direction, and let θðNÞ
be the null expansion of the generators of N. Then

(i) if there exists an open neighborhood OðpÞ ∩ χ that
lies entirely outside the past of N,6 then θðχÞ ≥ θðNÞ
at p;

(ii) if there exists an open neighborhood OðpÞ ∩ χ that
lies entirely outside the future of N, then θðχÞ ≤ θðNÞ
at p.

Proof. See Lemma A in Ref. [34]. Our Lemma is
stronger but the proof is the same; so instead of reproducing
it here, we offer Fig. 5 to illustrate the result geometrically.
It generalizes to null hypersurfaces an obvious relation in
Riemannian space, between the extrinsic curvature scalars
of two codimension-one surfaces that are tangent at a
point in a Riemannian space but do not cross near that
point. ▪
Theorem IV.2. Let H be a regular future holographic

screen with leaf-orthogonal tangent vector field ha ¼
αla þ βka, whose orientation is chosen so that α < 0 at
the leaf σð0Þ. Then α ≤ 0 everywhere on H.
Proof. By contradiction: suppose that the setHþ ⊂ H of

points with α > 0 is nonempty. Let σð0Þ be the complete
leaf that exists by Remark II.9 and has r ¼ 0, α < 0, by
Convention II.10. By continuity of α, there exists an open
neighborhood of σð0Þ where α < 0.
We first consider the case where Hþ has a component in

the r > 0 part ofH (cases 1 and 2 in Fig. 6). Let σð1Þ be the
“last slice” on which α ≤ 0, i.e., we use our freedom to
rescale r to set

1 ¼ inffr∶ r > 0; σðrÞ ∩ Hþ ≠ ∅g: ð4:1Þ
By the second generic condition II.8.b, α < 0 for all leaves
σðrÞ with 0 < r < 1; hence by Theorem III.4 we have
K−ð0Þ ⊃ K̄−ð1Þ. Since the former set is open and the latter
is closed, there exists an open neighborhood of K̄−ð1Þ that
is contained inK−ð0Þ. Thus for sufficiently small ϵwe have

K−ð0Þ ⊃ K−ð1þ ϵÞ: ð4:2Þ
By continuity of α, σð1Þ must contain at least one point

with α ¼ 0. Let p denote this point; or, if there is more than

FIG. 5 (color online). An example illustrating Lemma IV.1: in
Minkowski space, the spatial sphere χ is tangent to the null plane
N at p and lies outside the past of N near p. It is easy to see that
this implies that χ is a cross section of a future light cone that
shares one null generator with N. In this example it is obvious
that χ expands faster than N at p, as claimed in Lemma IV.1.

6I.e., there exists no past-directed causal curve from any point
on N to any point in OðpÞ ∩ χ.
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one such point, let p denote a connected component of the
set of points with α ¼ 0 on σð1Þ. Since there is no point
with α ¼ β ¼ 0, there exists an open neighborhoodOðpÞ ⊂
H in which β has a definite sign. (Note that we do not
assume that β has a fixed sign for 0 < r < 1.)
Case 1: We now specialize further to the case where

β > 0 inOðpÞ, so that the assumed sign change from α < 0
to α > 0 corresponds to a transition of ha from spacelike-
outward (S−þ) to timelike-future-directed (Tþþ). The
following construction is illustrated in Fig. 7.
Let σþð1þ ϵÞ be the set of points with α > 0 on the leaf

σð1þ ϵÞ. If there is more than one connected component,
we choose σþð1þ ϵÞ to be the component such that at least
one of the fibers through it intersects p. By choosing ϵ

sufficiently small, we can ensure that σþð1þ ϵÞ ⊂ OðpÞ.
Let Γ be the set of fibers that pass through σþð1þ ϵÞ.
Because α > 0, all fibers in Γ enter K−ð1þ ϵÞ as we

trace them back to smaller values of r. But σð0Þ is entirely
outside of this set: by definition, σð0Þ ∩ K−ð0Þ ¼ ∅, so
Eq. (4.2) implies σð0Þ ∩ K−ð1þ ϵÞ ¼ ∅. Hence, all fibers
in Γ also intersect Nð1þ ϵÞ, at some positive value of
r < 1þ ϵ. Because β > 0 in OðpÞ, this intersection will be
with N−ð1þ ϵÞ. By smoothness and the second generic
assumption, the intersection will consist of one point per
fiber. [Otherwise a fiber would coincide with a null
generator of N−ð1þ ϵÞ in a closed interval.] The set of
all such intersection points, one for each fiber in Γ, defines
a surface ϕ, and the fibers define a continuous, one-to-one
map σþð1þ ϵÞ to ϕ. Similarly, the closures of both sets,
σ̄þð1þ ϵÞ and ϕ̄ are related by such a map. Note that these
two sets share the same boundary at r ¼ 1þ ϵ.
Let R be the minimum value of r on the intersection:

R≡ inffrðqÞ∶q ∈ ϕ̄g. Since σ̄þð1þ ϵÞ is a closed subset of
a compact set, it is compact; and by the fiber map, ϕ̄ is also
compact. Therefore R is attained on one or more points in ϕ̄.
LetQ be such a point. Since R< 1 but _ϕ ⊂ σð1þ ϵÞ,Q ∉ _ϕ,
and henceQ represents a local minimum of r. Hence the leaf
σðRÞ is tangent to the null hypersurface N−ð1þ ϵÞ at Q.
Since Q achieves a global minimum of r on ϕ̄, σðRÞ lies

nowhere in the past of N−ð1þ ϵÞ in a sufficiently small
open neighborhood ofQ. For suppose there existed no such
neighborhood. Then fibers arbitrarily close to the one
containing Q [and hence connected to σþð1þ ϵÞ] would
still be inside K−ð1þ ϵÞ at R. Hence we could find a value
r < R on ϕ by following such a fiber to smaller values of r
until it leaves K−ð1þ ϵÞ. But this would contradict our
construction of Q as a point that attains the minimum value
of r on ϕ.

Thus, Lemma IV.1 implies that θσðRÞk ≥ θN
−ð1þϵÞ

k at Q.
By the first generic assumption, the latter expansion is

FIG. 6 (color online). The four types of spacelike-timelike
transitions on a future holographic screen that would violate the
monotonicity of the area, and which our proof in Sec. IV will
exclude. Near σð0Þ, the area increases in the direction of the
arrow. On the far side of the “bend” the area would decrease, in
the same direction. There are other types of spacelike-timelike
transitions which preserve area monotonicity under uniform flow;
these do arise generically [see Fig. 1(a)].

(a) (b)

FIG. 7 (color online). A case 1 transition (S−þ → Tþþ) is impossible. The proof crucially involves the intersection ϕ of a light sheet N
originating just behind the assumed transition, with the region prior to the transition. For further details see the main text. (a) Spacetime
diagram with two spatial directions suppressed. (b) Diagram of the holographic screen H only, with only one spatial direction
suppressed. Vertical lines correspond to leaves; the top and bottom edges should be identified. Portions of different signature are
indicated by shading and labels. In general, the transition boundary (thick red line) will not coincide with a leaf (thin black vertical lines).
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strictly positive, so we learn that θσðRÞk > 0 at Q. But this
contradicts the defining property of holographic screens,

that all leaves are marginally trapped (θσðrÞk ¼ 0 for all r).
Case 2: Next we consider the case where β < 0 in the

neighborhood of the assumed transition from α < 0 to
α > 0 that begins at r ¼ 1 (see Fig. 6). This corresponds
to the appearance of a spacelike-inward-directed region
within a timelike-past-directed region: T−− → Sþ−.
We note that the direct analogue of the above proof

by contradiction fails: tracing back the generators from
σþð1þ ϵÞ to σð0Þ, one finds that they pass through
Nþð1þ ϵÞ, rather than N−ð1þ ϵÞ. But Nþ has negative
expansion by the first generic condition, whereas N− had
positive expansion. There is no compensating sign change
elsewhere in the argument; in particular, the tangent leaf
σðRÞ with vanishing expansion again lies nowhere in the
past of Nþ in a neighborhood of the tangent point Q.
Thus no contradiction arises with Lemma IV.1.
Instead, we show that every case 2 transition implies the

existence of a case 1 transition at a different point on H,
under the reverse flow r → c − r. Since we have already
shown that case 1 transitions are impossible, this implies
that case 2 transitions also cannot occur.
Let us first illustrate this argument in the simple case

where the transition occurs entirely on a single leaf: α < 0
for 0 ≤ r < 1, α ¼ 0 at r ¼ 1, and α > 0 for 1 < r ≤ 2.
Under a reversal of the flow, r → 2 − r, α and β both
change sign. With this flow direction, the latter region now
contains a leaf σð0Þ on which α < 0, and thus the starting
point of our case 1 proof. The putative sign change of α
corresponds to a case 1 transition S−þ → Tþþ. The case 1
proof by contradiction rules out this transition.
In general, the case 2 transition need not occur on a

single leaf, so we shall assume for contradiction only that α
first becomes positive at some point on or subset of σð1Þ, as
in the case 1 proof, and that β < 0 in a neighborhood of this
set. Let ~Hþ denote the connected region with α > 0 that
begins at this transition. Since the transition is T−− → Sþ−,

~Hþ contains some spacelike points; and hence by
Definition II.8.c, ~Hþ contains a complete leaf with
α > 0. We use our freedom to rescale r to set

2 ¼ inffr∶ r > 0; σðrÞ ⊂ ~Hþg: ð4:3Þ

By the second generic assumption, Definition II.8.b, this
choice implies the existence of an open interval ð2; 2þ ϵÞ
such that every leaf in this interval is a complete leaf with
α > 0. Let us call this intermediate result (*); see Fig. 8
which also illustrates the remaining arguments.
We now consider the boundary B that separates the

α < 0 from the α > 0 region, i.e., the connected set of
points with α ¼ 0 that begins at r ¼ 1. Because α and β
cannot simultaneously vanish, we have β < 0 in an open
neighborhood of all of B. Thus, B separates a T−− region at
smaller r from a Sþ− region at larger r. We note that Bmust
intersect every fiber, or else Hþ would not contain a
complete leaf. Moreover, B must end at some r� ≤ 2, or
else there would be points with α < 0 in the interval
ð2; 2þ ϵÞ, in contradiction with (*).
If r� ¼ 2 then under the reverse flow starting from the

complete leaf at r ¼ 2þ ϵ there is a case 1 transition at
r ¼ 2 from S−þ to Tþþ, and we are done. This is shown in
Fig. 8(a).
The only remaining possibility is that B ends at some

r� ∈ ð1; 2Þ; this is shown in Fig. 8(b). Then every leaf with
r ∈ ðr�; 2Þ must contain points with α < 0, or else there
would be a complete leaf with α > 0 at some r < 2, in
contradiction with Eq. (4.3). Therefore each leaf with r ∈
ðr�; 2Þ must intersect one or more α < 0 regions ~HðiÞ

− that
are disconnected from the T−− region bounded by B. None
of these regions ~HðiÞ

− can contain a complete α < 0 leaf,
because this would imply that ~Hþ does not contain a
complete α > 0 leaf. From Definition II.8.c it follows that
each region ~HðiÞ

− is everywhere timelike, i.e., of type T−−.
But this implies that a T−− region ends at r ¼ 2 where α
becomes positive. Moreover, the Sþ− region in which the

(a) (b)

FIG. 8 (color online). A case 2 transition (T−− → Sþ−) is impossible. By assumption, the α > 0 region contains a complete leaf
σð2þ ϵÞ. In the text we show that the complete-leaf region begins at some leaf σð2Þ where a T−− → Sþ− boundary comes to an end:
either the original one (a), or a different one containing a T−− region with no complete leaf (b). The end point (green dot) becomes the
starting point of a case 1 transition (S−þ → Tþþ) under reversal of the flow direction; but this case has already been ruled out.
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T−− region ends has complete leaves in some open interval
ð2; 2þ ϵÞ by our result (*). Thus we find again that under
the reverse flow starting from the complete leaf at r ¼
2þ ϵ there is a case 1 transition at r ¼ 2 from S−þ to Tþþ.
We have thus established that a case 2 transition at r ¼ 1

implies a case 1 transition at the same or a larger value of r,
after reversal of the direction of flow. Since case 1
transitions are impossible, we conclude that case 2 tran-
sitions are also impossible.
Cases 3 and 4: Our consideration of cases 1 and 2 has

ruled out the possibility of points with α > 0 at any r > 0.
(Recall that r ¼ 0 corresponds to a complete leaf with
α < 0.) We must now also rule out the possibility that α
might be positive in the region r < 0; this corresponds to
cases 3 and 4 in Fig. 6. Again, assume for contradiction that
such a transition occurs, and focus on the transition nearest
to r ¼ 0. We may rescale r so that this transition ends at
r ¼ −1. That is, α < 0 for all r ∈ ð−1; 0Þ, but all leaves in
some interval ð−ð1þ ϵÞ;−1Þ contain points with α > 0.
Again, a further case distinction arises depending on the
sign of β at this transition.
The proof of case 3 [Fig. 9(a)], where β > 0 at the

transition, proceeds exactly analogous to that of case 1.
Fibers that connect the offending region to r ¼ 0 must
cross the null hypersurface Nþð−ð1þ ϵÞÞ, implying the
existence of a leaf σðRÞ, −1 < R < 0 that is tangent to
Nþð−ð1þ ϵÞÞ and nowhere to the future of Nþð−ð1þ ϵÞÞ.
But Nþ contracts at this tangent point whereas σðRÞ has
vanishing expansion, in contradiction with the second part
of Lemma IV.1.
The proof of case 4 [Fig. 9(b)] proceeds analogous to that

of case 2, by showing that a case 4 transition at r ¼ −1
implies the existence of a transition at some r ≤ −1 that is

recognized as a case 3 transition after reversal of the flow
direction, and hence ruled out. ▪
We now state and prove the area law.
Theorem IV.3. The area of the leaves of any regular

future holographic screenH increases strictly monotonically:

dA
dr

> 0: ð4:4Þ

Proof. By Theorem IV.2, α < 0 everywhere on H. In
regions where β is of definite sign, the result would then
follow from the analysis of Hayward [19] (using a 2þ 2
lightlike formalism) or that of Ashtekar and Krishnan [22]
who used a standard 3þ 1 decomposition. It should be
straightforward to generalize their proofs to the case where
β may not have a definite sign on some or all leaves.
However, since this would necessitate the introduction of
additional formalism, we will give here a simple, geomet-
rically intuitive proof. Our construction is shown in
Fig. 10.
Consider two infinitesimally nearby leaves at r and

rþ dr, dr > 0. Construct the null hypersurface NðrÞ in a
neighborhood of σðrÞ. Also, construct the null hypersurface
Lþðrþ drÞ generated by the future-directed null geodesics
with tangent vector la, in a neighborhood of σðrþ drÞ.
By Theorem IV.2, for sufficiently small dr these null
hypersurfaces intersect on a two-dimensional surface
σ̂ðr; rþ drÞ, such that every generator of each congruence
lies on a unique point in σ̂ðr; rþ drÞ.
Note that in regions where H is spacelike, β > 0, the

intersection will lie in NþðrÞ; if H is timelike, β < 0, the
intersection will lie in N−ðrÞ; but this makes no difference
to the remainder of the argument. Crucially, Theorem IV.2

(a) (b)

FIG. 9 (color online). (a) Case 3 is ruled out analogously to case 1, by contradiction. (b) Case 4 is analogous to case 2: the transition is
impossible because it would imply a case 3 transition elsewhere on H, under reversal of the flow direction.
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guarantees that the intersection always lies in Lþðrþ drÞ,
and never on L−ðrþ drÞ, the null hypersurface generated
by the past-directed null geodesics with tangent vector −la.
We now exploit the defining property of H, that each leaf
is marginally trapped (θσðrÞk ¼ 0). This implies

A½σ̂� − A½σðrÞ� ¼ Oðdr2Þ; ð4:5Þ

A½σðrþ drÞ� − A½σ̂� ¼ OðdrÞ > 0: ð4:6Þ

Hence, the area increases linearly in dr between any two
nearby leaves σðrÞ, σðrþ drÞ. This implies that the area
increases strictly monotonically with r. ▪
Corollary IV.4. The above construction implies, more

specifically, that the area of leaves increases at the rate

dA
dr

¼
Z
σðrÞ

ffiffiffiffiffiffiffiffiffi
hσðrÞ

p
αθσðrÞl ð4:7Þ

where hσðrÞab is the induced metric on the leaf σðrÞ and hσðrÞ
is its determinant. Note that the integrand is positive
definite since α < 0 and all leaves are marginally trapped;
in this sense the area theorem is local. However, the
theorem applies to complete leaves only, not to arbitrary
deformations of leaves.
Corollary IV.5. For past holographic screens, we recall

the contrasting convention that α > 0 on σð0Þ. The above
arguments then establish that α > 0 everywhere on H.
Equations (4.4) and (4.7) hold as an area theorem.
Remark IV.6. We note that the area increases in the

outside or future direction along a past holographic screen.
With an interpretation of area as entropy, the holographic

screens of an expanding universe thus have a standard
arrow of time.
Remark IV.7. By contrast, the area increases in the

outside or past direction along a future holographic screen.
Thus, the arrow of time runs backwards on the holographic
screens inside black holes, and near a big crunch. Perhaps
this intriguing result is related to the difficulty of reconcil-
ing unitary quantum mechanics with the equivalence
principle [37–44].
We close with a final theorem that establishes the

uniqueness of the foliation of H:
Theorem IV.8. Let H be a regular future holographic

screen with foliation fσðrÞg. Every marginally trapped
surface s ⊂ H is one of the leaves σðrÞ.
Proof. By contradiction: suppose that s is marginally

trapped and distinct from any σðrÞ. Thus s intersects the
original foliation in a nontrivial closed interval ½r1; r2� and
is tangent to σðr1Þ and σðr2Þ. The θ ¼ 0 null vector field
orthogonal to s must coincide with ka at the tangent point
with σðr2Þ. Since r1 < r2, Theorems IV.2 and III.4 imply
that Nðr2Þ does not everywhere coincide with the null
hypersurface orthogonal to swith tangent vector ka at σð2Þ.
Lemma B in Ref. [34] then implies that θðsÞ

kðsÞ
≠ 0 some-

where on s, in contradiction with the assumption that s is
marginally trapped. ▪
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(a) (b)

FIG. 10 (color online). Proof that α < 0 implies an area law, by a zigzag construction. For any pair of infinitesimally nearby leaves,
consider the intersection σ̂ of the light-sheet pair NðrÞ tangent to the marginal direction ka, with the light sheet Lþðrþ δrÞ generated by
la. To first order in δr, the area is constant as we leaveH from σðrÞ along NðrÞ to σ̂, and the area increases as we follow Lþ from σ̂ back
onto H. This construction assumes only that α < 0, so that evolution is in the −la direction; it does not require H to have uniform
signature near σðrÞ. (a) Timelike case, with one spatial dimension suppressed and relevant two-surfaces labeled. (b) Spacelike case, with
all spatial dimensions suppressed. In this plot, we choose to label the relevant null surfaces; the two-surfaces are labeled by their area and
not by their name.
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