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We consider a class of Lorentz-violating theories of gravity involving a timelike unit vector field (the
aether) coupled to ametric, two examples of which are Einstein-aether theory andHořava gravity. The action
always includes the Ricci scalar of the metric and the invariants quadratic in covariant derivatives of the
aether, but the theories differ in how the aether is constructed from other fields, and whether those fields are
varied in the action. Fields that are not varied define background structures breaking diffeomorphsim
invariance, including threadings, folations, and clocks, which generally produce novel degrees of freedom
arising from the violation of what would otherwise be initial value constraints. The principal aims of this
paper are to survey the nature of the theories that arise and to understand the consequences of breaking
diffeomorphism invariance in this setting. In a companion paper [A. J. Speranza, arXiv:1504.03305], we
address some of the phenomenology of the “ponderable aether” case in which the presence of a background
clock endows the aether with a variable internal energy density that behaves in some respects like
dark matter.
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I. INTRODUCTION AND SUMMARY

Longstanding puzzles of cosmology and quantum grav-
ity have led some to question the fundamental assumption
of general relativity—that the spacetime manifold has no
structure other than that determined by the metric. In
particular, the cosmological constant problem, dark energy,
dark matter, the trans-Planckian puzzle, the need for a UV
completion of general relativity, the problem of time and
the interpretation of quantum cosmology have motivated
exploration of modified gravity theories with vacuum
structure violating local Lorentz boost symmetry. If exact
rotational symmetry is preserved, a Lorentz violating
vacuum structure selects a preferred timelike direction at
each spacetime point. The integral curves of this field of
directions may be thought of as the flow of an “aether
fluid.” The four-velocity ua of the aether is the unit timelike
vector field tangent to this flow.
In constructing a theory with such an aether, one must

decide whether the aether is to be treated as dynamical, i.e.
varied in the action principle, or instead as background. If
the aether is dynamical, then one must further specify how
it is constructed in terms of the fields that are varied in the
action. Actually it turns out that the distinction between
varied and not varied fields is not so clear-cut: the equations
of motion for scalar fields are often a consequence of the
equations of motion of the other fields. Such scalars, and
the structures they define, can therefore be regarded as
“background” structure, even though they might also be

varied in the action. What is important for the physics,
however, is not how we refer to them, but how these choices
affect the degrees of freedom and behavior of the theories.
The purpose of this paper is to examine this question for a
variety of related aether theories.
It is natural to assume that the aether-metric dynamics is

governed by an (effective) action involving the metric, its
curvature, the aether, and covariant derivatives of the aether
and the curvature. Before beginning with the detailed
analysis, we would like to point out that the theory would
generally be dynamically overconstrained, i.e. “inconsis-
tent,” if derivatives of the aether were not included in the
action. Suppose, for example, the action S½gab;ϕ; ua� is a
scalar constructed from the metric gab, a scalar field ϕ,
and a unit vector field ua. Suppose further that the aether
enters the Lagrangian density only via the coupling
1
2

ffiffiffiffiffiffi−gp ðuaϕ;aÞ2. The variations of ua must be orthogonal
to ua to preserve the unit condition, and these impose the
equation of motion ðδS=δuaÞðδab − uaubÞ ¼ ffiffiffiffiffiffi−gp ðumϕ;mÞ×
½ϕ;b − ðunϕ;nÞub� ¼ 0. This extremely restrictive condition
requires that either ϕ is constant along the flow lines of ua,
or the flow of ua is hypersurface orthogonal and ϕ is
constant on the orthogonal hypersurfaces. This eliminates
virtually all of the solutions to the scalar equation of
motion. Moreover, even if we choose to not impose the
aether equation of motion, the scalar field is still overcon-
strained since, as shown below, the other equations
of motion imply that the Lie derivative £u½ðδS=δuaÞ ×
ðδab − uaubÞ� vanishes. Although a weaker condition, this
still eliminates almost all scalar field solutions. The
situation is quite different, however, if the action includes

*jacobson@umd.edu
†asperanz@umd.edu

PHYSICAL REVIEW D 92, 044030 (2015)

1550-7998=2015=92(4)=044030(14) 044030-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.044030
http://dx.doi.org/10.1103/PhysRevD.92.044030
http://dx.doi.org/10.1103/PhysRevD.92.044030
http://dx.doi.org/10.1103/PhysRevD.92.044030


terms quadratic in aether derivatives. Then δS=δua

includes second derivatives of the aether, so instead of
overconstraining the scalar field the extra conditions can be
propagation equations for the aether.
At lowest order in a derivative expansion, the most

general action for the metric and aether is given (up to the
integral of a total divergence) by1

S½gab; uaðζ; gabÞ� ¼
−1

16πG0

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
Rþ cθ

3
θ2 þ cσσ2 þ cωω2 þ caa2

�
;

ð1Þ

where ζ denotes collectively independently varied fields
used in the construction of the aether uaðζ; gabÞ. The terms
in the integrand are the Ricci scalar R of the metric, and the
expansion θ ¼ ∇aua, shear σab ¼ ∇ðaubÞ þ 1

3
ð∇cucÞhab −

uðaabÞ, twist ωab ¼ ∇½aub� − u½aab� and acceleration ab ¼
ua∇aub of the aether flow (here hab ¼ uaub − gab is
the spatial metric). In this paper we examine how
variations on the construction of uaðζ; gabÞ affect the
resulting theory.
An important distinction is whether or not the aether

vector is necessarily hypersurface-orthogonal, and hence
nontwisting. The minimal structure required to determine a
twist-free aether is a foliation by spacelike hypersurfaces,
whereas the minimal structure required to determine a
twisting aether is a timelike congruence of curves, i.e. a
threading [1,2]. A well-known example of a foliation
theory results if ua is constructed from a scalar field T as

uaðT; gabÞ ¼ gabT;b=jdTj; ð2Þ

where jdTj ¼ ðgabT;aT;bÞ1=2 is the norm of the gradient.
By construction, the aether (2) is orthogonal to the
constant T surfaces. This is khronometric theory [3–5],
a.k.a. the infrared limit of the nonprojectable version of
Hořava-Lifshitz gravity [6]. Among threading theories, a
well-known example results if ua is constructed from an
independent vector field Aa as

uaðAm; gmnÞ ¼ Aa=jAj; ð3Þ

where jAj ¼ ðgmnAmAnÞ1=2 is the norm of Aa. This is
Einstein-aether theory [7,8], written in the form given in
Ref. [9]. In (3) the unit constraint on ua holds by

construction, rather than being imposed via a Lagrange
multiplier term as is more commonly done.
In the constructions we study, the foliation or threading

is in most cases described covariantly using scalar fields
which enter the construction of ua through their gradients.
Since the action (1) involves first derivatives of ua, it
involves second derivatives of the scalars, raising the
concern that the resulting theory might suffer from an
Ostrogradski instability [10]. However, diffeomorphism
invariance implies that the Lagrangian is degenerate, so
that there is a possibility that the instability is absent. In
fact, as we explain in Sec. II, for all theories we consider,
the scalar field equations are redundant with the other field
equations. Therefore the scalars need not be varied in the
action principle, so we may fix their values by a choice of
coordinates at the level of the action. The gauge-fixed
action is no longer invariant under the full group of
diffeomorphisms, yet it gives a theory that is equivalent
to the one defined by the original diffeomorphism invariant
action.2 There exists a coordinate gauge choice for which
the scalars’ gradients have constant components, and in
such a gauge the action is only first order in derivatives
of the remaining dynamical variables. (For example, in the
khronometric theory with one dynamical scalar T, ua in (2)
is first order in derivatives, but with the gauge choice
x0 ¼ T its components become uα ¼ gα0=

ffiffiffiffiffiffi
g00

p
, which

contain no derivatives.) We conclude from this that there
is no Ostrogradski instability in any gauge.
In Einstein-aether theory, the threading is determined by

a line field, i.e. a vector field modulo local scaling. We call
this the dynamical aether theory, since it arises from a
dynamical field Aa that appears with only first derivatives
in the action. In subsection III A, we consider a related
theory where the threading is determined by three scalar
fields, that can be fixed as background structures as
explained above. We show that this fixed threading theory
is equivalent to Einstein-aether theory except that it admits
violation of the spatial initial value constraints. The con-
straint violation is characterized by a spatial covector
density that is preserved along the aether flow, and does
not affect the energy-momentum tensor.
Subsection III B considers a different theory, in which

the aether threading is determined by a line field as in
Einstein-aether theory, and there is an additional scalar field
which determines a preferred clock constrained to measure
proper time along the threads. This fixed clock theory is
equivalent to Einstein-aether theory except that it admits
violation of a single initial value constraint per spatial
point. The constraint violation is characterized by a scalar
density that is preserved along the aether flow, and appears
in the energy-momentum tensor like a rest mass density of

1We use the metric signature ðþ − −−Þ. Abstract indices are
denoted by Latin letters, spacetime coordinate indices by Greek
letters, and comma and semicolon before an index denote partial
and covariant derivative respectively. Quantities with density
weight 1 are written in caligraphic font, E;F ; C, or carry a tilde,
unless they involve the metric determinant or are written
explicitly as a variational derivative.

2It is notoriously challenging to define what it means for a
theory itself—as opposed to its formulation—to be diffeomorph-
sim invariant [11,12].
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the aether fluid. We call this a ponderable aether, invoking
the 19th-century adjective that was used to distinguish
ordinary matter from aether. Finally in subsection III C we
consider the fixed aether theory, containing both a fixed
threading and a fixed clock. The four scalars that describe
the background structure completely determine the aether
vector, and hence this theory is equivalent to Einstein-
aether theory with the vector ua taken to be nondynamical.
In Sec. IV, we consider foliation-type theories. After

reviewing the khronometric theory, we consider in Sec. IVB
introducing an independent clock field. As before this leads
to a violated constraint as well as an additional component in
the stress tensor. Finally, we show that when the clock field is
constrained to coincide with the preferred foliation, the
resulting theory is projectable Hořava gravity, and we again
find a violated constraint. This constraint violation was
already studied in Ref. [13], which referred to it as “dark
matter as an integration constant.” Unlike before, however,
the violation in this case is not preserved under flows of ua

for a generic form of the action (1).

II. VARIATIONAL PRELIMINARIES

We begin by establishing the notation and several key
results that are used throughout this paper. We define the
following tensor densities, resulting from variations of the
Einstein-aether action (1),

Eab ≡ δS
δgab

����
uc
; F ab ≡ δS

δgab

����
uc

; ð4Þ

Ec ≡ δS
δuc

����
gab

¼ gcd
δS
δud

����
gab
: ð5Þ

The object to the right of the vertical line in these
expressions indicates which tensors are held fixed when
computing the variation, i.e. Eab and F ab differ in that
contravariant uc is held fixed in the former, while covariant
uc is fixed in the latter. They are related by

F ab ¼ Eab þ EðaubÞ: ð6Þ

As discussed in the Introduction, we are interested in
cases where ua is constructed from gab and other fields
collectively denoted ζ. The Einstein equation results from
varying the action holding ζ fixed, and hence receives a
contribution from the explicit metrics appearing in the
action, as well as from the metric dependence of ua. In all
cases considered, ua depends algebraically on the metric,
and the Einstein equation takes the form

Eab þ Ec
δuc

δgab
¼ 0: ð7Þ

For the foliation-type theories of Sec. IV, it is more
convenient to work with covariant uc, in which case the
expression for the Einstein equation is

F ab þ Ec δuc
δgab

¼ 0: ð8Þ

In some cases the Einstein-aether action is supplemented
with a Lagrange multiplier term enforcing the unit
constraint,

Sλ ¼ −
Z

d4x~λðgabuaub − 1Þ: ð9Þ

This will contribute a ~λ-dependent term to the Einstein
equation as well as the aether variations. We will write
such terms explicitly when they appear; the quantities
Eab, F ab and Ea are always defined by (4) and (5), with
the action S given by (1).
Most of the theories considered in this paper involve

scalar fields that determine the background structures on
which the theory is based. We will often make use of the
fact that the scalar equations of motion are implied by the
other field equations. The proof of this is straightforward:
consider an action S½gab; χ;Φi� that is a diffeomorphism
invariant functional of the metric, other tensor fields χ, and
scalar fields Φi. Under a diffeomorphism generated by ξa,
the action varies by

δS ¼
Z �

δS
δgab

£ξgab þ
δS
δχ

£ξχ þ
δS
δΦi £ξΦ

i

�
ð10Þ

This variation must vanish for all vectors ξa, and since
the first two terms are zero when the metric and χ field
equations hold, we find that

δS
δΦi ∇aΦi ¼ 0: ð11Þ

As long as the gradients dΦi are (nonvanishing and)
linearly independent, which can hold for up to four
scalars, this implies that the scalar field equations hold,
δS=δΦi ¼ 0. If their equations of motion are automatic in
this way, we can fix the scalars at the level of the action
without losing any dynamical information. The gauge-fixed
action is no longer invariant under the full diffeomorphism
group. In our application, where a vector field ua is
constructed using scalars, the gradients of the scalars must
be linearly independent in order for ua to be nonsingular
and nonvanishing. Thus, for the physically relevant con-
figurations, those scalar field equations are automatic.3

A scalar Lagrange multiplier, on the other hand, need
not have nonvanishing gradient, so its field equation

3It can happen that the gradients fail to be independent on a set
of measure zero, e.g. on a codimension one surface, but with ua
remaining well defined in the limit as that surface is approached.
In that case presumably continuity implies that the scalar field
equations also hold directly on that surface, at least provided the
fields are all nonsingular.
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(i.e. the corresponding constraint) should be imposed
directly.
Finally, we recall that in any diffeomorphism invariant

theory, some of the field equations are constraints on initial
data, rather than evolution equations. For Einstein-aether
theory, which contains a dynamical, contravariant vector
field ua, the quantities

CðtÞb ¼ ∇atð2Ea
b þ uaEbÞ: ð12Þ

contain no more than first partial derivatives with respect to
t, for any choice of t and the remaining three coordinates
[14,15]. When the field equations are satisfied, we have
Ea

b ¼ −~λuaub and Eb ¼ 2~λub, where ~λ terms arise from the
Lagrange multiplier term (9). The ~λ terms, thus, cancel, so

in Einstein-aether theory CðtÞb vanishes on shell. When t is a
time evolution coordinate, these constraints, thus, restrict
the allowed initial data. For a covariant aether vector ua, the
expression for the constraint has a different appearance,

CðtÞb ¼ ∇atð2F a
b − EaubÞ; ð13Þ

but is in fact the same as a consequence of (6).
More generally, in the various theories we consider here,

although the quantities (12) [or (13)] will have no higher
than first t derivatives (in appropriately adapted gauges),
some or all of them may not vanish when the field
equations hold, because the ua (or ua) field equation per
se is not imposed. For this reason, we refer to them
generally as “constraint quantities,” rather than as “con-
straints.” This failure of constraint equations to hold
corresponds to the lack of diffeomorphism invariance of
the gauge-fixed action. We shall analyze the form of the
constraint violation in each case as a means of character-
izing the extra freedom available in solutions to these
theories.

III. TWISTING AETHER: THREADING THEORIES

A twisting aether flow does not determine a preferred
foliation of spacetime by spacelike hypersurfaces, but it
does define a preferred threading of spacetime. In Einstein-
aether theory, this threading is specified by an independ-
ently varied vector field modulo local scale, from which the
aether four-velocity ua (3) is constructed with the use of the
metric (alternatively, one can use a Lagrange multiplier
term to enforce the unit constraint on ua). In this section we
consider three other ways of constructing ua. In the first
subsection, the threading is determined by three scalar
fields which are Lagrangian (comoving) coordinates for the
aether. In the following two subsections, an additional
scalar field ψ is introduced into both the line field and the
Lagrangian coordinate constructions of ua. The field ψ is
an independent “clock” that marks time along the threads,
and is constrained to agree with proper time by a Lagrange

multiplier term. These constructions are all very closely
related to each other, but they yield theories that differ
insofar as different integration constants are required to
determine a solution, corresponding to different initial
value constraints that are violated.

A. Fixed threading theory

A threading can be specified as the curves along which
three scalar fields φI , I ¼ 1; 2; 3 are all constant. If the
theory is to depend only on these curves as one dimensional
submanifolds, and not on any parametrization, the action
must be invariant under all smooth invertible field redefi-
nitions of the scalars,

φI ↦ φ̄IðφJÞ: ð14Þ
This can be achieved by restricting the action to depend on
φI only via the unit aether four-velocity

uaðφI; gabÞ ¼ ~Ja=j ~Jj; ð15Þ

with ~Ja the metric-independent vector density

~Ja ¼ ~ϵabcdφ1
;bφ

2
;cφ

3
;d; ð16Þ

where ~ϵabcd is the alternating symbol, i.e. the Levi-Civita
tensor density of weight 1. The vector field defined in (15)
is invariant under the “φ-diffeos” (14), since both the
numerator and denominator are rescaled by the Jacobian
determinant det ð∂φ̄I=∂φJÞ. The corresponding action (1) is
then a functional of the metric and the three scalar fields.
Note that the action is quadratic in second derivatives of

the scalars φI. This implies that the field equations will be
fourth order in derivatives of the scalars, and third order in
derivatives of the metric (arising from the Christoffel
connection terms). However, as explained in Sec. II, we
may treat the scalars as fixed, not varied in the action,
without changing the dynamical content of the theory.
Since the φI define a threading, we call this the fixed
threading theory. In the co-moving gauge, where φI are
equal to the spatial coordinates, uα contains no derivatives,
and the field equations arising from metric variations are of
second order.

1. Relation to zero temperature perfect fluid

The dynamics of perfect fluids was formulated long
ago in terms of three Euler potentials φI [16,17], a
formulation that has recently been fruitfully exploited
with the application of ideas from effective field theory
(see e.g. [18]). In that setting, the vector density ~Ja

represents the conserved entropy current and j ~Jj is the
entropy density in the fluid rest frame. The entropy current
is invariant under φ-diffeomorphisms with unit Jacobian
determinant. Unlike for our aethereal application, full
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φ-diffeo invariance is not imposed, because the entropy
density is physically meaningful. The presence of con-
served particle number necessitates an additional scalar
field with a shift symmetry in the action. Our “clock field”
ψ introduced below [see e.g. (46)] is directly analogous to
this, although the corresponding chemical potential
ua∇aψ is required by the unit norm constraint to be
everywhere equal to unity.
For fluids without conserved particle number, the action

at first order in derivatives is the integral of minus the
energy density expressed as a function ρðbÞ of the entropy
density scalar b ¼ j ~Jj= ffiffiffiffiffiffi−gp

. The function ρðbÞ determines
the equation of state of the fluid. The aether fluid has the
property that at first derivative order its energy density is
independent of the entropy density, as required by the full
φ-diffeo symmetry. This happens for a thermal fluid only at
zero temperature, hence the aether can be considered a
“zero temperature fluid.” The action for such a fluid is just
proportional to the spacetime volume, so the stress-energy
tensor at this derivative order is nothing but a (possibly
vanishing) cosmological constant, motivating the name
vacuum fluid for the aether. The dynamics of the vacuum
fluid is governed at lowest derivative order by the action (1)
involving the “strain” of the fluid.

2. Comparison with Einstein-aether theory

Under variations of the fields, in uaðAm; gmnÞ (3) and
uaðφI; gmnÞ (15), the variation of ua has both a parallel and
a perpendicular part,

δua ¼ δua∥ þ δua⊥: ð17Þ

The metric variation generates only δua∥, while the A
m and

φI variations generate only δua⊥. The metric-induced
variation in both cases is just what is needed to keep ua

a unit vector: 0¼δðgmnumunÞ¼ðδgmnÞumunþ2gmaumδua

implies that δua∥ ¼ − 1
2
uaumunδgmn; hence,

δua∥ ¼
1

2
uaumunδgmn: ð18Þ

The perpendicular part of the variation is given in Einstein-
aether theory by

δua⊥ ¼ ðδam − uaumÞδAm; ð19Þ

and in the fixed threading theory by

δua⊥ ¼ 1

2j ~Jj ðδ
a
m − uaumÞ~ϵmbcdϵIJKφ

I
;bφ

J
;cδφ

K
;d: ð20Þ

Thus, the metric equation of motion (7) is the same in terms
of gmn and um in the background threading theory as it is in
Einstein-aether theory,

Eab þ
1

2
ucEcuaub ¼ 0: ð21Þ

The remaining equations of motion arise in both theories
from the variation δua⊥, and here a discrepancy arises.
In Einstein-aether theory the equation of motion arising

from perpendicular aether variation (19) is

E⊥
m ≡ ðδam − uaumÞEa ¼ 0; ð22Þ

while in background threading theory it is

EK ≡ δS
δφK ¼ 0: ð23Þ

Diffeomorphism invariance of the action implies that the
scalar equations (23) hold as a consequence of the Einstein
equation [cf. discussion around Eq. (11)], so they add no
new information. On the other hand, the perpendicular
aether equation (22) adds restrictions in Einstein-aether
theory.
To discover the precise relation between the equations

of motion (22) and (23), note that since uaðφI; gmnÞ is
constructed covariantly, diffeo variations of its arguments
induce its diffeo variation δua ¼ £ξua as a vector field. In
particular, the perpendicular component of £ξua is equal to
the variation induced via £ξφK, so the corresponding con-
tributions to the variation of the action S½gab; uaðφI; gmnÞ�
are also equal,

Z
E⊥
m£ξum ¼

Z
EK£ξφK: ð24Þ

Now using £ξua ¼ −£uξa and integrating by parts, we
obtain

Z
ð£uE⊥

m − EKφ
K
;mÞξm ¼ 0 ð25Þ

for all vector fields ξm, which yields the identity

£uE⊥
m ¼ EKφ

K
;m: ð26Þ

Thus, (22) implies (23) (provided again that the gradients
φK
;m are linearly independent), but (23) implies only that the

Lie derivative of (22) holds.
We, thus, see that in the fixed threading theory, the

Einstein equation implies

£uE⊥
m ¼ 0: ð27Þ

Put differently, instead of the aether equation (22), one has

E⊥
m ¼ − ~μ⊥m; ð28Þ

where the “source term” ~μ⊥m is a covector density that
satisfies um ~μ⊥m ¼ 0 and is conserved along the aether flow,

VARIATIONS ON AN AETHEREAL THEME PHYSICAL REVIEW D 92, 044030 (2015)

044030-5



£u ~μ⊥m ¼ 0: ð29Þ
A transparent way to express the conservation law (29) is to
use adapted coordinates, xI ¼ φI and to choose x0 ¼ τwith
uaτ;a ¼ 1, so that the components of the aether four-
velocity are all constant, uα ¼ δατ . Then the components
of the Lie derivative are just the partial derivatives with
respect to τ, and (29) takes the simple form

∂τ ~μ
⊥
α ¼ 0: ð30Þ

The three components ~μ⊥I are then just constants of
integration on each thread, while ~μ⊥τ vanishes identically.
The freedom to choose these integration constants different
from zero is what distinguishes the fixed threading theory
from Einstein-aether theory. For lack of a better name, we
shall call ~μ⊥m the vector source density (VSD).
The identity (26) shows that the φK equation of motion

is “weaker” than the perpendicular um equation of motion,
but this discrepancy remains a bit mysterious, since it
would seem that variations of φK produce all possible
perpendicular variations of um. Of course the difference
must arise because φK occurs in the action with an extra
derivative, but why exactly is that important? The answer
lies in the boundary conditions. When we drop boundary
terms we are holding φK fixed at the boundaries, in
particular the initial and final boundary. This entails an
integral constraint on the um variations (the endpoints of
each thread are fixed), which translates into the fact that the
φK variations imply only the time derivative of the um

equation of motion.
A simple example serves to illustrate this point. Suppose

we have a mechanical system in one dimension with
Lagrangian Lðx; _xÞ, and we make the replacement x ¼ _y,
and treat yðtÞ as the basic dynamical variable. Then the
action variation is δS¼R ðδS=δxÞδ_y¼−

R ðd=dtÞðδS=δxÞδy,
so the y equation of motion is the time derivative of the x
equation of motion. It is weaker than the x equation of
motion because not all x variations are included in the y
version of Hamilton’s principle. Since the initial and final
values y1;2 are fixed in the y variations, there is an implicit
constraint on the integral of x due to the fact that

R
xdt ¼R

_ydt ¼ y2 − y1. We could include this constraint directly
in the x version of Hamilton’s principle with the addition of
a Lagrange multiplier term λðR xdt − ΔyÞ. The result
would be the equation of motion δS=δx ¼ λ, where the
Lagrange multiplier λ is an undetermined constant corre-
sponding to a constant external force. In the y equation, λ
corresponds to the extra integration constant needed to
specify a solution.
How does a nonzero VSD for the aether field equation

change the aether theory? In another paper, we find that it
does not alter the Newtonian limit or static, spherical stars
(assuming no radial aether component) [19], and by
symmetry homogeneous, isotropic cosmology is unaltered.

However, it acts as an external force for wave modes,
shifting the equilibrium amplitude away from zero. In the
next subsection we show that, more generally, the source
density integration constants characterize a violation of the
initial value constraints of Einstein-aether theory. In the
following subsection we show that magnitude of the source
density is diluted as the aether expands with the universe,
which suppresses its observable consequences.

3. Initial value constraint violation

The VSD ~μ⊥m in (28) suggests that the fixed threading
theory requires more initial data than Einstein aether theory,
since ~μ⊥m is a freely specifiable initial source for the aether
equation. This new freedom can be characterized in terms
of violated Einstein-aether initial value constraints.
For an arbitrary fourth coordinate x0, the constraint

quantities (12) take the form

Cð0Þα ¼ 2E0
α þ u0Eα. ð31Þ

When the metric field equation (21) holds, (28) implies that
these quantities are nonvanishing and instead satisfy

Cð0Þα ¼ −u0 ~μ⊥α : ð32Þ

The ua component constraint uα ~Cð0Þα ¼ 0 holds, since
uα ~μ⊥α ¼ 0, but the three “perpendicular constraints” are
violated.
In adapted coordinates, xI ¼ φI , the constraint violation

is preserved in time. This is easiest to see with the choice
x0 ¼ τ, with τ the proper time along the threads. Then we
have u0 ¼ 1, and (30) shows that the components of the
constraint ~CðτÞα are preserved in τ. In fact the same result
holds for any choice of the fourth coordinate x0: the
condition uα ~μ⊥α ¼ 0 implies that under a change from τ
to x0, the components of the covector density ~μ⊥α
change only by the Jacobian factor ∂τ=∂x0, while
u0 ¼ ð∂x0=∂τÞuτ. Therefore the components of the x0-
constraint (32) in ðx0; xIÞ coordinates are the same as those
of the τ-constraint in ðτ; xIÞ coordinates. Since u0∂0 ¼ ∂τ,
the previous result implies that also4

∂0C
ð0Þ
α ¼ 0: ð33Þ

This equation shows that the new freedom takes the form of
an infinite collection of conserved quantities. The con-
straint violation may be freely specified at an initial time,
but remains constant at all subsequent times.

4A covariant version of this argument uses (29) and the identity
£u=ðu·dx0Þ½ðu · dx0Þ ~μ⊥m� ¼ £u ~μ⊥m, which holds in view of the unit
density weight and um ~μ⊥m ¼ 0.

TED JACOBSON AND ANTONY J. SPERANZA PHYSICAL REVIEW D 92, 044030 (2015)

044030-6



The vanishing of the constraint quantities in Einstein-
aether theory is a consequence of full spacetime
diffeomorphism symmetry. The fixed threading theory
respects only the thread preserving diffeomorphisms,
which in adapted coordinates take the form t ↦ t̄ðt; xIÞ,
xI ↦ x̄IðxJÞ. Intuitively, since we cannot perform arbitrary
gauge transformations of the spatial coordinates as we
evolve in time, there should be no constraints associated
with those diffeomorphisms imposed on the dynamics. This

is why we find that Cð0ÞI , the spatial constraint quantities for
evolution along the threads, are nonvanishing.
By contrast, for evolution with respect to a parameter

that is constant on the threads, say x3, all constraint
quantities vanish, since ua∇ax3 ¼ 0, so the number of
initial value constraints remains equal to four. This might
be expected since as we evolve in x3, we can perform both
time and spatial diffeomorphisms. (That these are required
to preserve the fibers evidently does not cause the con-
straints to be lost.) This gauge symmetry means the
dynamics cannot be fully deterministic, so that some field
equations must be constraints.

4. Cosmological evolution of source density

In homogeneous isotropic symmetry, the VSD neces-
sarily vanishes, and the background threading theory is
identical to Einstein-aether theory. It is natural to imagine
some kind of fluctuations around the symmetric configu-
ration however. Since the VSD arises as integration con-
stants, its power spectrum cannot be derived from the
properties of quantum vacuum fluctuations. At this point
we have identified no principle to select a primordial
spectrum of VSD. What we can say however is that the
amplitude will decrease as the universe expands.
To characterize the amplitude of the VSD, we use the

scalar quantity

κ ≡ ½gab ~μ⊥a ~μ⊥b =ð−gÞ�1=2: ð34Þ

An approximate redshift law for κ can be easily obtained
by using for gab the homogeneous isotropic metric
ds2 ¼ dt2 − aðtÞ2dxidxi, and neglecting the anisotropic
corrections to the conservation law (29). Then the coor-
dinates ðxi; tÞ are adapted to ua, and the conservation law
takes the form ∂t ~μ

⊥
i ¼ 0, so (34) yields κ ∝ a−4. The

physical effects of the VSD therefore decrease like those of
radiation as the universe expands.

B. Fixed clock theory: A ponderable aether

In Sec. III A, we introduced three scalar fields that
defined a threading. In the comoving gauge, these scalars
have the effect of breaking spatial diffeomorphism sym-
metry when fixed at the level of the action. In this section
we consider a different theory, in which temporal rather
than spatial diffeomorphism symmetry is broken. This

involves introducing a “clock” field ψ that defines a
preferred notion of time along the aether flow.
Since the clock field ψ is a scalar, we may again fix ψ to

a background value at the level of the action. In analogy to
the fixed threading we expect this fixed clock to lead to a
violation of an initial value constraint and therefore to
produce, in effect, an additional degree of freedom. The
constraint violation in this case is quite analogous to the
dark matter as an integration constant [13] in projectable
Hořava gravity. The latter is due to the absence of the local
Hamiltonian constraint in that theory. That constraint
normally arises from the variation of the lapse function
N ¼ ðgttÞ−1=2, but in projectable Hořava gravity N ¼ NðtÞ
depends only on t. It is therefore not varied independently
at each point on a constant t surface, so the associated local
constraint is not imposed. The covariant construction of an
aether with a fixed clock given here yields a similar effect.
Unlike in the projectable Hořava case, however, the “dark
matter mass current” is conserved in the fixed clock aether
theory.
We start as in Einstein-aether theory with a dynamical

vector field Aa but, rather than defining the aether four-
velocity dividing by jAj, we define it by

uaðAm;ψÞ ¼ Aa

Amψ ;m
; ð35Þ

where ψ is the clock field. By construction we have
uaψ ;a ¼ 1, so ψ is a parameter on the aether flow
compatible with ua. Note that (35) is unchanged under a
thread-dependent shift ψ ↦ ψ þ υ, with υ constant along
each thread, Aa∇aυ ¼ 0 (note this symmetry was called a
“chemical shift” in the works on effective field theory for
fluids [18]). The requirement of this symmetry precludes
standard kinetic or potential terms for ψ and, since
uaψ ;a ¼ 1, a term like ðuaψ ;aÞ2 only adds a constant to
the action.
Unlike its Einstein-aether cousin uaðAm; gmnÞ (3),

uaðAm;ψÞ is not a unit vector by construction, so we
impose the unit constraint by adding a Lagrange multiplier
term (9) to the action, enforcing the relation

ðAmψ ;mÞ2 ¼ gmnAmAn: ð36Þ

It seems at first that this could be satisfied either by solving
a first order ODE for ψ on each thread, or by restricting gmn
(the condition is independent of the scale of Am so it can not
be satisfied by restricting that scale). However, solving (36)
for ψ by integrating along each thread would be incon-
sistent with fixing ψ at both endpoints in Hamilton’s
principle unless further constraints on variations of Aa

and gab are imposed. Instead, it is simplest to view the unit
constraint as fixing a component of the metric in terms of
Am and ψ ;m. Since ψ is a scalar field, its equation of motion
is satisfied by virtue of the other equations of motion
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(provided ψ ;m ≠ 0). It can therefore be considered fixed.
We call this the fixed clock theory since, when the unit
constraint is satisfied, ψ marks proper time on each thread.
The variation of (35) is given by

δua ¼ −uaumδψ ;m þ 1

A · dψ
ðδam − uaψ ;mÞδAm: ð37Þ

The ψ equation of motion, thus, takes the form of a current
conservation law,

ð ~μumÞ;m ¼ 0; ~μ≡ μ
ffiffiffiffiffiffi
−g

p ≡ uað2~λua − EaÞ. ð38Þ

The Aa equation of motion is

1

A · dψ
ðδam − uaψ ;mÞðEa − 2~λuaÞ ¼ 0; ð39Þ

which is equivalent to

Ea − 2~λua ¼ − ~μψ ;a: ð40Þ

In this theory, ua has no metric dependence, so the Einstein
equation is

Eab þ ~λuaub ¼ 0; ð41Þ
which in light of (38) becomes

Eab þ
1

2
ucEcuaub þ

1

2
~μuaub ¼ 0: ð42Þ

The aether stress tensor, thus, picks up the extra dustlike
contribution, μuaub, which is not present in Einstein-aether
theory. Together with the conservation equation (38) this
suggests the interpretation of ~μ as the internal energy
density of the aether, and motivates the descriptive term
“ponderable aether.” Notice that even in the absence of the
aether terms in the action (1), the Lagrange multiplier term
(9) alone suffices to introduce the aethereal dust stress
tensor μuaub.
The sign of μ is not fixed, so the aethereal dust can

contribute negative energy density to the source in the
metric field equation. Normally the presence of negative
energy could produce an instability, since the system could
evolve to a highly excited state of compensating positive
and negative energy components. However, as a conse-
quence of the conservation equation (38), the spatial
integral of μ is conserved along any bundle of aether
worldlines, precluding instabilities of that sort.
The initial value formulation of the fixed clock theory

differs from that of Einstein-aether theory by a violated
constraint equation. As explained previously for the fixed
threading theory, the quantity CðtÞα defined in (12) has only
first t-derivatives of the metric and the aether four-velocity.
For the background clock theory it has second derivatives,

since the aether four-velocity (35) involves the derivative
of ψ . In the adapted coordinate “clock gauge” x0 ¼ ψ ,
however, uα is algebraic,

uαðAμ;ψÞ ¼ Aα=A0; ð43Þ

so ~CðtÞα has only first t-derivatives for any choice of t. When
the Aa and metric equations (40) and (41) hold, we have

CðtÞb ¼ −ðuat;aÞ~μψ ;b: ð44Þ

The right hand side vanishes when contracted with any
vector tangent to the constant ψ surface, so the presence of
nonzero ~μ in the aether equation (40) leads to a single
constraint violation. The additional freedom in the theory is
parametrized by ~μ. If we choose t ¼ ψ as the evolution
parameter and use the clock gauge, (44) takes the form

CðψÞα ¼ −~μδ0α: ð45Þ

If we further choose spatially adapted coordinates, so that
uα ¼ δα0 , the right hand side of equation (45) is constant in
x0 as a consequence of (38). As in the fixed threading
theory, the new degrees of freedom are, in this sense,
“totally integrable.”
We have found that for evolution with respect to any

coordinate t such that u · dt ≠ 0, the ψ-component of the
constraint quantities does not vanish. This is because
the fixed clock breaks time diffeomorphism symmetry.
The clock shift symmetry remains, but it allows for only a
single, time independent shift, so the ψ surfaces cannot be
deformed as we evolve along the threads. The components
of the constraints in the directions tangent to the ψ surfaces
are preserved, since the threads are determined by a
dynamical vector field, rather than by a background
structure.
The contribution μuaub has the form of a pressureless

fluid source in the Einstein equation, but its divergence is
not zero when the aether is not geodesic. In homogeneous
isotropic cosmology, however, it does behave exactly as
pressureless dust, with μ ∝ a−3. During an inflationary
period μ would be exponentially suppressed, so in the
standard inflationary cosmological model it would pre-
sumably be too small today to have any observable effect. If
there were someway to transcend the classical conservation
law for μ and generate a nonzero value around the time of
matter radiation equality, it could play the role of the
homogeneous dark matter in a ΛCDM model.5 This leads

5If it were generated earlier, e.g. at reheating, it would quickly
dominate unless fine-tuned to an extremely small value relative to
the radiation energy density. Mechanisms for generating dark
matter after inflation have been proposed for the related project-
able Hořava gravity [13] and mimetic dark matter [20,21]
theories.
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to the question of how it would behave as structure forms.
Its nongeodesic character suggests that it would not form
structure in the manner of geodesic dark matter. In another
paper [19] we have examined the growth of linearized
perturbations, and found that if μ were to comprise the
homogeneous dark matter density at early times it would
lead to an unacceptably high growth rate on superhorizon
scales and no growth on subhorizon scales.

C. Fixed aether theory

In the previous two sections, we considered a theory
with broken spatial diffeomorphisms, the fixed threading,
and one with broken temporal diffeomorphisms, the fixed
clock. In this section we combine these features and
consider an aether theory with broken spatial and temporal
diffeomorphisms.
We now define the aether four-velocity by

uaðφI;ψÞ ¼
~Ja

~Jmψ ;m

; ð46Þ

where ~Ja is the vector density constructed from φI defined
in equation (16), and ψ is a scalar clock field. Like the
aether four-velocity of the background threading theory
(15), uaðφI;ψÞ is unchanged under all φ-diffeos (14) and,
as in the fixed clock theory, it has the clock shift symmetry,
ψ ↦ ψ þ υðφIÞ (again, this corresponds to the “chemical
shift” in the effective theory of fluid dynamics [18]). Also,
as in the latter theory, it is not normalized by construction,
so the Lagrange multiplier term (9) is again used to impose
the unit constraint.
Since uaðφI;ψÞ is constructed entirely from four scalar

fields, its variations arise solely from variations of the four
scalars. As explained above, provided the four gradients
φI
;a, and ψ ;a are linearly independent, which is required for

them to define a threading with parameter ψ, the equations
of motion for the four scalars will follow from the Einstein
equation. They can therefore be held fixed in the action.
This fixed aether theory is, thus, equivalent to Einstein-
aether theory with an aether vector ua that is not varied in
the action; that is, the aether field equation Ea of Einstein-
aether theory is not imposed.
When the gab and ~λ equations of motion hold, however,

the (vanishing) variation of the action S½gab; ua; ~λ� with
respect to a diffeomorphism generated by ξa is given byR ðEa − 2~λuaÞ£ξua ¼

R
ξa£uðEa − 2~λuaÞ. Since this van-

ishes for all ξa we infer that

£uðEa − 2~λuaÞ ¼ 0: ð47Þ

This is similar to (27) in the fixed threading theory, but
includes the component of Ea along ua. Thus, although the
aether field equation is not imposed, it holds with the
addition of an undetermined, “constant” source term,

Ea − 2~λua ¼ −~μa; £u ~μa ¼ 0: ð48Þ

Equation (48) implies

~λ ¼ 1

2
ð~μþ uaEaÞ; ð49Þ

with

~μ≡ μ
ffiffiffiffiffiffi
−g

p ≡ ua ~μa: ð50Þ

Therefore, as in the fixed clock theory, the aether stress
tensor contribution ð~λ= ffiffiffiffiffiffi−gp Þuaub picks up the extra term
μuaub not present in Einstein-aether theory. Also, (48)
and £uua ¼ 0 imply £u ~μ ¼ ð ~μuaÞ;a ¼ 0, so that μ acts
like a “dark matter” source of gravity that can be
interpreted as the internal energy density of a ponderable
aether.
When we work in co-moving, clock gauge (xI ¼ φI;

x0 ¼ ψ), the diffeomorphism symmetry is broken down
to time independent transformations xI → fIðxJÞ and
x0 → x0 þ fðxJÞ, so we should expect all four constraints
to be violated. When the metric and ~λ equations are
satisfied, the x0-constraint quantity (12) for the fixed aether
theory in these coordinates takes the form

Cð0Þα ¼ 2E0
α þ u0Eα ¼ − ~μα: ð51Þ

This indeed confirms that all four initial value constraints
of Einstein-aether theory are violated. This is as expected,
since for evolution with respect to any parameter that
advances along the threads, there remains no diffeo-
morphism freedom that would make the dynamics under-
determined. For evolution with respect to a parameter s
that is constant along the threads, we again find that all
constraints vanish. In addition to the s-dependent thread
preserving diffeomorphisms, the clock field’s shift sym-
metry allows for s-dependent changes in ψ . Thus, we
find four additional initial value freedoms per spatial
point, which again by (48) are “totally integrable.”

IV. FOLIATION THEORIES

We now turn to theories involving a foliation of
spacetime by spacelike hypersurfaces. These theories
are distinct from threading theories because the aether
vector, constructed as the unit normal to the foliation, is
necessarily twist-free. The simplest foliation-type theory
is khronometric theory, the low energy limit of non-
projectable Hořava gravity. After reviewing its construc-
tion in Sec. IVA, we proceed in Sec. IV B to add a fixed
clock to the theory as was done for the threading theories
in Sec. III B. As in that case, the resulting theory exhibits
constraint violation, and similarly contains a “dark
matter” component in the Einstein equation. Finally, in
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Sec. IV C we consider the case where the foliation and
the clock field coincide. This results in the projectable
version of Hořava gravity, and we discuss the relation
between the constraint violation and the dark matter as an
integration constant of that theory [13].

A. Khronometric theory

A twist-free aether can be described by a scalar field T,
dubbed the “khronon,” whose level sets define the
hypersurfaces orthogonal to the aether four-velocity
[3–5]. In order that the theory depend only on the foliation
by hypersurfaces, and not the values of T, the action must
be invariant under monotonic reparametrizations

T → T̄ðTÞ: ð52Þ

The gradient of T transforms as T̄;a ¼ ðdT̄=dTÞT;a, so the
numerator and denominator of the aether four-velocity (2)
both acquire a factor dT̄=dT, and these factors cancel.
Therefore the action S½gab; uaðT; gmnÞ� (1) is invariant
under T reparametrizations.
Just as in the threading theory, this action is quadratic in

second derivatives of T, so when T is varied it yields
equations of motion that are fourth order in derivatives of T
and third order in derivatives of the metric. Again, as
explained in Sec. II, we may fix T at the level of the action
without changing the dynamics. In the adapted gauge
where T is identified with one of the spacetime coordinates,
we have from (2)

uαðT; gabÞ ¼ gαT=
ffiffiffiffiffiffiffi
gTT

p
: ð53Þ

Since the aether four-velocity is an algebraic function of the
metric components in this gauge, and the action (1)
produces a second order field equation for the metric
(terms with more than two spatial derivatives occur in
the full Hořava-Lifshitz theory). In this formulation, which
is equivalent to Hořava ’s original one [6], the action is
invariant only under T-foliation preserving diffeomor-
phisms, together with T-reparametrizations (52).
We can now examine the constraints for this theory.

The metric dependence of uc induces a variation δuc ¼
− 1

2
ucuaubδgab, so the metric field equation (8) reads

F ab −
1

2
Ecucuaub ¼ 0: ð54Þ

When this equation is satisfied, the constraint (13) is
equal to

CðtÞb ¼ −ð∇atÞEa⊥ub: ð55Þ

If we choose t ¼ T then, since dT ∝ u, the right hand

side vanishes, so all the constraints CðTÞb vanish in the
adapted gauge.

This is complementary to the situation described in
Sec. III A 3 for the threading theory. There we found that
for evolution with respect to a parameter constant on the
threads, the constraint quantities vanish. He we find a
similar result: for evolution with respect to a parameter s
that is constant on the foliation, the constraint quantities
vanish. We can still make s-dependent time reparamet-
rizations and spatial diffeomorphisms under this evolu-
tion, so we expect constraints associated with these gauge
transformations. If instead we were to consider evolution
with respect to a different parameter s0 that is not
constant on the foliation, we would find the T-component
of the constraint violated. This is because the foliation
cannot be deformed in an s0-dependent fashion, so the
theory loses that gauge symmetry and the associated
constraint.

B. Fixed clock foliation theory

We can add a fixed clock to the foliation theory by
following the method introduced above for the twisting
aether. We introduce the clock field ψ and define the aether
four-velocity covector as

uaðT; gmn;ψÞ ¼
T;a

gmnT;mψ ;n
; ð56Þ

which is constrained by a Lagrange multiplier term to have
unit norm. The unit constraint requires that the lapse N ¼
ðgabT;aT;bÞ−1=2 be equal to ðgabT;aψ ;bÞ−1, which freezes
one metric degree of freedom (in the adapted gauge, it
fixes ðgTψÞ2 ¼ gTT). The field equations for both of the
scalars T and ψ again follow from the Einstein equation,
provided T;a and ψ ;a are linearly independent. Although
the gradients dT and dψ are both timelike, they will
generically be independent whenever the aether is accel-
erated, since

£uðu½aψ ;b�Þ ¼ a½aψ ;b�: ð57Þ

Thus, the gauge in which both T and ψ are set equal to
coordinates will generically be nonsingular.
The ψ field equation gives a conservation law, corre-

sponding to its shift symmetry ψ → ψ þ const,

½ðEa − 2~λuaÞuaum�;m ¼ 0: ð58Þ

Defining, as usual, the scalar density ~μ ¼ ð2~λua − EaÞua,
we now have

~λ ¼ 1

2
ð~μþ uaEaÞ; ð59Þ

as in the fixed aether case (49). The metric equation of
motion receives a contribution from the metric variation in
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ua, namely δuc ¼ −ucuðaψ ;bÞδgab. The metric field equa-
tion is then

F ab − ~λuaub − ðEc − 2~λucÞucuðaψ ;bÞ ¼ 0: ð60Þ

Rearranging to compare with (54), this becomes

F ab −
1

2
Ecucuaub þ

1

2
~μðuaub þ 2uðaψ⊥

;bÞÞ ¼ 0; ð61Þ

where ψ⊥
;b ¼ ψ ;b − ub is the projection of ψ ;b

perpendicular to ub. The ~μ term gives the difference
between this theory and the khronometric theory, and it
takes the form of nongeodesic “dark matter” with
momentum density.
Unlike the previous fixed clock theories, here the clock

field itself has an effect on the dynamics via the
perpendicular component of ψ ;b in the stress tensor
(61). Since umψ ;m ¼ 1, ψ is determined on each thread
by its value at one point. Hence the value of ψ on one
spacelike hypersurface must be chosen as initial data in
order to integrate the equations of motion.
We now examine the constraints. Using T as the time

coordinate, enforcing the Einstein equation (61), and
using the fact that u ∝ dT, we find for the constraint
quantities

CðTÞb ¼ −N−1 ~μψ ;b: ð62Þ

Thus, the T-surface constraint is violated in the ψ
component for essentially the same reasons given in
Sec. III B for the fixed clock theory. The conservation
law (58) implies £u ~μ ¼ 0, and we have £udψ ¼ 0, so the
constraint violation satisfies

£uðNCðTÞb Þ ¼ 0: ð63Þ

This conservation law is more complicated than the
analogous one for the threading theory (33). In the
adapted gauge where T and ψ are coordinates (and in
which the field equations are second order in derivatives),
the vector ua cannot be chosen to be proportional to ∂T ,
since u · dψ ¼ 1. Instead, we can choose a gauge where
u ¼ N−1∂T þ ∂ψ , in which case (63) becomes

∂TCβ þ ∂ψðNCβÞ ¼ 0: ð64Þ

Hence, we see that the constraint violation evolves
according to a first order differential equation that also
involves ψ-derivatives of the metric component N.

C. Projectable Hořava gravity

Our final example of a foliation theory is projectable
Hořava gravity, which can be obtained from khronometric
gravity (Sec. IVA) by imposing in the action the

restriction that the lapse function be constant on each
foliation surface, N ¼ NðTÞ. The aether then takes the
form ua ¼ NðTÞT;a. An aether of this form satisfying
the unit constraint is geodesic (ua∇aub ¼ ua∇bua ¼
1
2
∇bðuauaÞ ¼ 0), so the acceleration term caa2 in the

action (1) becomes superfluous.
The projectability restriction can be implemented by

adding to the Lagrangian density a Lagrange multiplier
term ~λabN;aT;b. Here ~λab is an antisymmetric tensor
density, and Nðg; TÞ ¼ ðgmnT;mT;nÞ−1=2 is the lapse
function. In the adapted gauge x0 ¼ T, the new constraint
term becomes ~λi0N;i, with N ¼ ðg00Þ−1=2. The
Hamiltonian constraint, which arises from variations
of the lapse, now contains an additional piece −∂i

~λi0

from the Lagrange multiplier term. This term represents
a local violation of the Hamiltonian constraint. Since the
violation is a spatial divergence, the integral of the
Hamiltonian constraint will still be imposed on a
compact space without boundary. This integrated con-
straint is the generator of global time reparametrizations,
and follows from the global variations of the lapse
function NðTÞ in the original 3þ 1 formulation of
projectable Hořava gravity. With asymptotically flat
boundary conditions, the integrated Hamiltonian con-
straint will not vanish, but equal the flux of ~λi0 through
the sphere at spatial infinity. This is consistent with the
fact that the metric is fixed at infinity, so, in particular,
the variational principle does not include global varia-
tions of the lapse.
An alternative version of the projectable theory lacks

the global time reparametrization gauge symmetry, and
correspondingly the global Hamiltonian constraint is not
imposed [22–24]. This version arises from a fixed clock
foliation theory (Sec. IV B) when the clock is required in
the action to be constant on the foliation slices. To
implement this we may add to the Lagrangian a Lagrange
multiplier term ~λabψ ;aT;b, with ~λab an antisymmetric
tensor density. The corresponding constraint implies that
dψ ∝ dT, so that ua (56) takes the form ua ¼ ψ ;a=jdψ j2.
Having imposed this form for ua, the ~λab constraint can
be omitted. At this point T has disappeared from the
action, its role being taken over by ψ.6 The unit
constraint then implies that jdψ j ¼ 1, so that ua ¼ ψ ;a,
and the lapse in the adapted gauge x0 ¼ ψ is fixed equal
to 1. There is no global lapse variation, and no global
Hamiltonian constraint. This covariant formulation of
projectable Hořava gravity has been described before
in [3,25].7

6We could have kept the role of T explicit, using dψ ∝ dT to
express (56) as ua ¼ T;a=ðψ 0jdTj2Þ. The unit constraint then
implies ψ 0jdTj ¼ 1, so that we have ua ¼ ψ 0ðTÞT;a. The lapse
function is, thus, given by N ¼ NðTÞ ¼ ψ 0ðTÞ.

7For some closely related theories, see [20,21,26–28].

VARIATIONS ON AN AETHEREAL THEME PHYSICAL REVIEW D 92, 044030 (2015)

044030-11



The Einstein equation in this formulation of projectable
Hořava gravity results from explicit metric variations alone,
since ua is metric-independent, and it reads

F ab − ~λuaub ¼ 0: ð65Þ

Using the definition of ~μ in (59) we can rewrite this as

F ab −
1

2
Ecucuaub −

1

2
~μuaub ¼ 0; ð66Þ

which looks like the khronometric theory equation (54)
with an additional “dark matter” component.8 We note a
peculiar difference from the foliationþ clock theory: ~μ
appears in (66) with the opposite sign as in (61). Thus, in
projectable Hořava theory, positive ~μ represents negative
energy density, whereas it gives positive energy density in
the foliationþ clock theory.
The on-shell value of the constraint quantity (13)

associated with the clock field ψ is

CðψÞb ¼ ~μub; ð67Þ

so again we find a single constraint violated, due to the
presence of the “dark matter energy density” ~μ.
Unlike previous cases considered in this paper, ~μ is

generically not conserved along the aether flow in project-
able Hořava gravity. The conservation equation comes from
the clock field equation of motion, which reads

∇a½Ea − 2~λua� ¼ 0: ð68Þ

Decomposing this equation into parallel and perpendicular
components, we find evolution equation for ~μ,

£u ~μ ¼ ∇aEa⊥: ð69Þ

Since the aether equation of motion is not imposed, this
means the “dark matter” may be generated or destroyed
along the flow of ua. Nonconservation of the dark matter as
an integration constant was pointed out in [13], where it
was suggested that this could provide a mechanism for the
generation of dark matter during the early universe. In that
paper, it was assumed that the theory agrees with general
relativity in the IR, so that the coupling parameters ci are
zero. (Recall that the Lagrange multiplier term results in
nonzero ~μ even when the aether couplings are zero.) In this
limit, Ea ¼ 0, so we would recover the conservation
equation £u ~μ ¼ 0 were it not for the higher-derivative
terms included in the full Hořava-Lifshitz theory [13].
We note that the nonconservation of ~μ is potentially

problematic. Apparently nothing enforces that − ~μ remain
positive, so instabilities might arise.9

V. DISCUSSION

In this paper we studied a variety of aether theories
including and modifying Einstein-aether theory and the IR
limit of Hořava-Lifshitz gravity (khronometric gravity),
which differ only in how the aether is constructed from the
independently varied fields in the action. When those fields
are scalars, their equations of motion are implied by the
other equations of motion, so they may be regarded as
defining fixed background structures. We found that it can
be consistent to include such background structures, and
that they often induce extra degrees of freedom owing to the
loss of diffeomorphism constraints.
The specific structures we considered were the fixed

threading and fixed foliation, as well as a fixed clock field
that could be included in either the threading or foliation
theories. We also considered a nonfixed threading, described
by a vector field rather than a triple of scalar fields. For the
fixed threading theory, the Einstein equation was unaltered
relative to Einstein-aether theory, but the perpendicular
aether equation of motion and the corresponding constraint
equations were modified by a constant source term. The
foliation theory without additional structure is equivalent to
nonprojectable Hořava gravity. For this theory, the initial
value constraints hold in the adapted gauge, but the Einstein
equation differs from the threading-type theories since the
aether appears naturally as a covector ua.
The addition of the (fixed) clock field ψ modifies the

Einstein equation by an additional term that has the form
of a pressureless dust stress tensor, which can be thought of
as due to an internal energy density of the aether. We
therefore called such aethers “ponderable.” The fixed clock
also leads to a violation of the ψ component of the initial
value constraint. When a fixed clock is added to the fixed
threading theory, we obtain a fixed aether theory, which is
equivalent to describing the aether by a vector field that
is not varied in the action. When a fixed clock is added
to the foliation theory and constrained to be constant on
the preferred foliation, the projectable version of Hořava
gravity results.
The appearance of a dark-matter-like component in the

Einstein equation is also a feature of the recently proposed
mimetic dark matter theory [20]. In this theory, the physical
metric gab is constructed from another metric ḡab and a
scalar ϕ such that the gradient ∇aϕ is unit by construction,
gab ¼ ðḡcd∇cϕ∇dϕÞḡab. It was shown in [30] that this
theory is equivalent to ordinary Einstein gravity, supple-
mented with a scalar field ϕ that appears in the action only
via the constraint term imposing that ∇cϕ is unit. The

8In the formulation with the integrated constraint, we would
find the same Einstein equation, with the identification of ~μ ¼
uc∇d

~λdc

9Only when ~μ is conserved due to the aether parameters being
zero has it been shown that fluctuations around positive energy
backgrounds have positive energy [3,29].
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discussion of Sec. IV C, therefore, demonstrates that this
theory is equivalent to projectable Hořava gravity with
vanishing aether action, that is, with the parameters ci
set to zero.10 Thus, the mimetic dark matter theory can be
viewed as a special case of the aethereal theories
described here.
The threading theory formalism discussed here resem-

bles the Lagrangian description of perfect fluids. The
aether, constructed from the comoving potentials φI, acts
as a zero temperature vacuum fluid, according to the
thermodynamic relations developed in [18]. The vanishing
of the temperature is closely tied with the enhanced
symmetry of the aether fluid, which includes all φI-
diffeomorphisms rather than only the volume preserving
ones. It was mentioned in [31] that such an enhanced
symmetry is not possible without adding more fields, but
this is true only for an action that is first order in derivatives.11

The lowest order terms in the aether action involve second
derivatives of φI . A derivative expansion for a fluid action
was discussed in [18,32], and the aethereal terms invariant
under all φI-diffeomorphisms appear in the latter reference.
The clock field ψ in the aether theories is analogous to

the phase field introduced in [18] for fluids carrying a
conserved particle number. In particular, it possesses the
same chemical shift symmetry, ψ ↦ ψ þ υðφIÞ, which, in
the aethereal case, corresponds to a freedom to shift the

initial value of the clock along each thread. The scalar y ¼
ua∇aψ has a thermodynamic interpretation as the chemical
potential for particles charged under the shift symmetry. In
our aethereal setting, however, y is fixed everywhere equal
to unity by construction of ua [see, e.g. Eq. (46)], and ψ
measures proper time along the flow.
Having elucidated the basic structure of these theories, it

is interesting to consider the phenomenological conse-
quences of the presence of the background structures. In
a companion paper [19], we considered some of the
astrophysical and cosmological implications of the source
densities for the threading-type theories. In particular, we
examined whether the new component in the Einstein
equation for ponderable aethers with fixed clocks could
play the role of dark matter. The two main results of that
analysis are that (i) the “aethereal dark matter fluid” has
pressure, hence does not seed structure formation on
subhorizon scales, so another dark matter component must
be present, and (ii) during matter domination, the presence
of a homogeneous ponderable aether energy density causes
problematic growth of the isocurvature modes on super-
horizon scales. In particular, for isocurvature amplitudes of
order 10−5 at radiation-matter equality (which would be the
value expected from inflation [33]), the growth at large
scales becomes inconsistent with CMB and large scale
structure observations when the ponderable aether contrib-
utes more than 1% of the homogeneous energy density. On
the other hand, these results do not apply to the dark
matter as an integration constant [13] in projectable Hořava
gravity. That theory results from taking the limit
ca → ∞; cω → ∞ of Einstein-aether theory [4,9]. In that
limit the dark matter fluid is pressureless, and the large-
scale isocurvature modes are decaying.
Finally, it should perhaps be emphasized that, in a theory

with conserved “aethereal dark matter” current, the pri-
mordial value of the internal energy density of the aether
would be driven very nearly to zero if there is an early
period of inflation. This leads to the curious conclusion that
the nondynamical and dynamical aether theories could
appear to be essentially equivalent in their phenomeno-
logical predictions.
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10More generally, all the background clock theories discussed
here can be formulated using the ḡab metric construction of [20]
(see also [29] for the case of a vector field), instead of imposing
the unit constraint with a Lagrange multiplier term. If we define
the physical metric as gab ¼ ðḡcducudÞḡab for a covariant aether,
or as gab ¼ ðḡcducudÞ−1ḡab for a contravariant aether, the aether
vector automatically has unit norm with respect to the physical
metric. The action depends only on the conformal class of ḡab,
so the ḡab variation gives a trace free equation, ðGab − TabÞ −
ðG − TÞuaub ¼ 0, where Gab and Tab are the variational deriv-
atives of the action with respect to gab, and the traces G and T are
their contractions with gab. For the fixed aether theory, there is no
ua variation equation, and instead of the usual Einstein equation
we have only this Einstein equation with an additional source
with pressureless dust energy-momentum tensor and energy
density G − T. Thus, we have recovered the ponderable aether
discussed in the text. The equivalence to a mimetic dark matter
theory arises in the case when there is no aether action. Then Tab

is just the matter stress tensor and is conserved when the matter
satisfies its equation of motion, so the Bianchi identity implies the
conservation law ∇a½ðG − TÞûaûb� ¼ 0. The extra term, thus,
behaves in this case as geodesic dark matter dust.

11With the addition of another scalar field it is possible. An
example is provided by a Lagrangian FðyÞ that is a function only
of the chemical potential y ¼ ua∇aψ , where ua is the fluid
velocity (15). This would not contain higher-derivative terms, and
it is invariant under full φI diffeomorphisms (not just volume
preserving ones). It also has the chemical shift symmetry, so its
symmetries are the same as those of the fixed aether theory. It can
be shown that an FðyÞ Lagrangian possesses the same dynamics
as an uncharged perfect fluid. It cannot produce an equation of
state p ¼ 0, whereas the formulation using only φI cannot
produce ρ ¼ 0.
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