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Through second order in perturbative general relativity, a small compact object in an external vacuum
spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external
background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this
single principle takes very different mathematical forms, with very different behaviors, depending on how
one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge
transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the
gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald
approximation, can be derived from a second, called the self-consistent approximation. I next present a
general treatment of smooth gauge transformations in both approximations, in which I emphasize that the
approximations’ governing equations can be formulated in an invariant manner. All of these analyses are
carried through second perturbative order, but the methods are general enough to go to any order.
Furthermore, the tools I develop, and many of the results, should have broad applicability to any description
of perturbed motion, including osculating-geodesic and two-timescale descriptions.
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I. INTRODUCTION

In general relativity, a point test mass travels on a
timelike geodesic of the spacetime geometry it resides
in, satisfying

D2zμ

dτ2
¼ 0; ð1Þ

where zμðτÞ is the particle’s coordinate position, τ is proper
time as measured in the spacetime’s metric gμν, D

dτ ≔ uμ∇μ,
uμ ≔ dzμ

dτ , and ∇μ is the covariant derivative compatible
with gμν.
Now suppose we take a step beyond the test-particle

approximation and treat the mass as a small, extended,
gravitating object surrounded by a vacuum region. The
mass creates a nonlinear perturbation hμν atop the vacuum
background metric gμν. This perturbation accelerates the
object, and it no longer moves on a geodesic of gμν.
Furthermore, it also does not move on a geodesic of
the full spacetime’s metric gμν ¼ gμν þ hμν. However, if
the object is sufficiently similar to the structureless point
mass—uncharged, slowly spinning, nearly spherical, and
compact—then it does travel on a geodesic of an effective
metric ~gμν. In this case, Eq. (1) is replaced by [1]

~D2zμ

d~τ2
¼ Oðϵ3Þ; ð2Þ

where ϵ is a small quantity proportional to the object’s

diameter d and mass m, and ~τ, ~D
d~τ ≔ ~uμ ~∇μ, and ~uμ ≔ dzμ

d~τ are
now defined with respect to ~gμν. What is the effective metric
~gμν? It is a certain smooth vacuum solution gμν þ hRμν,

where the regular field hRμν ¼ hμν − hSμν is obtained from
hμν by subtracting a certain singular field hSμν, which
encodes the local information about the object’s mass
and multipole structure and diverges on zμ.
These results are derived in gravitational self-force

theory, in which one examines the limit ϵ → 0 and
constructs an asymptotic expansion of the full metric gμν
around the background gμν. The titular self-force in this
theory is the force that accelerates the object with respect
to the background metric; I refer the reader to Refs. [2–4]
for the seminal work in this field and Refs. [1,5–9], together
with the reviews [10,11], for rigorous and comprehensive
treatments. Because Eq. (2) tells us that all objects,
regardless of internal composition, fall freely in a vacuum
gravitational field, it can be loosely thought of as a
generalized equivalence principle.
However, this simple principle masks two important

subtleties: how the form of the equation of motion and its
solutions, and even perturbation theory as a whole, depend
strongly on one’s basic treatment of perturbed motion; and
how perturbed motion depends inherently on one’s choice
of gauge.
In self-force theory, various descriptions of perturbed

motion are in use. In the Gralla-Wald formalism developed
in Refs. [5,8], one expands both hμν and zμ in powers of ϵ.
The equation ofmotion (2) then takes the form of a sequence
of equations, given by (54), (60), and (64) below; these are
evolution equations for the zeroth-order worldline zμ0 and for
deviation vectors that describe the object’s movement away
from zμ0. Because the deviations eventually grow large (due
to dissipation of energy through gravitational radiation, for
example), this formalism is restricted to spacetime domains
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of finite, ϵ-independent size. An alternative description of
perturbed motion is provided by the self-consistent formal-
ism developed in Refs. [1,6,7], which expands hμν but not zμ

in the limit ϵ → 0, such that zμ retains its dependence on ϵ.
The equation of motion then takes the form (2) given above,
or in terms of background-metric quantities, the form (42)
givenbelow.By avoiding the expansion of zμ, this formalism
constructs an approximation valid on spacetime domains of
asymptotically large size, such as ∼1=ϵ. Other treatments,
such as the osculating-geodesics approximation [11–14]
and the two-timescale expansion of the Einstein equa-
tion [15], are intermediate between Gralla-Wald and self-
consistent approximations, utilizing expansions of theworld
line to build a self-consistent approximation. In this paper I
will not discuss these intermediate treatments, as they are
easily understood on the basis of the extreme two; I refer
the reader to Ref. [11] for a description of how that
understanding arises in the case of the osculating-geodesics
approximation.
Now, supposing we have adopted one or the other

treatment, consider the effect of a gauge transformation.
The test-particle equation (1) is manifestly invariant under a
diffeomorphism φ: zμ and gμν transform to z0μ ¼ φðzμÞ and
g0μνðz0Þ ¼ φ�gμνðzÞ (where φ� is the push forward), and the
equation of motion is the same in terms of these new
quantities as it was in terms of the old ones. Of course, the
field equation is also invariant: if gμν is a solution to the
Einstein equation, then so is g0μν. Can we say the same about
the perturbed equation of motion (2) and the field equation
for the effective metric ~gμν that appears in that equation?
Several issues arise when answering this question. A gauge
transformation is induced by a near-identity diffeomor-
phism φ, and so the transformations z0μ ¼ φðzμÞ and
g0μν ¼ φ�gμν should still apply when expanded in the limit
ϵ → 0. In coordinates, a gauge transformation reads
xμ → xμ − ϵξμ þOðϵ2Þ, and hence one expects zμ →
zμ − ϵξμ þOðϵ2Þ; however, the form of zμ, and therefore
the effect of φ on it, depends entirely on which represen-
tation of perturbed motion one uses, and this plays out in
nonobvious ways in the metric. Furthermore, a trans-
formation law for gμν does not imply a transformation
law for the effective metric ~gμν. How does this particular
piece of the total metric transform? That is, if hμν is split
into hSμν and hRμν in a particular gauge, how does that split
behave under a gauge transformation?
In this paper, I present a unified framework to tackle

these questions. I first clarify the relationship between the
self-consistent and Gralla-Wald formalisms. In particular,
I show explicitly how the latter can be derived from the
former. I then describe how, in both formalisms, with
appropriate transformation laws for hSμν and hRμν, the
governing field equations and equation of motion can be
made manifestly gauge-invariant, just as they are for a test
particle in a background.

This work extends previous results in several ways.
Primarily, it carries explicit calculations to second order
in perturbation theory, the order at which significant
complexity arises. More broadly, it provides very general
descriptions of the self-consistent formalism, which has
previously been formulated almost exclusively in the Lorenz
gauge.More narrowly, in clarifying the relationship between
the two formalisms, it makes concrete many ideas that had
previously only been suggested [6] or roughly sketched [16],
and in the case of the Gralla-Wald formalism, it obtains a
covariant and reparametrization-invariant second-order
equation of motion, which had previously been obtained
only in locally inertial coordinates [8] or in parametrization-
dependent form [11]. On gauge transformations, it goes
beyond earlier work [5,8,11,16–21] by providing the first
clear and complete explication of the gauge freedom in the
self-consistent formalism, for which only sketches [18] or
incomplete descriptions [11] are available in the literature;
because this formalism is a nontrivial alteration of standard
perturbation theory, determining the action of gauge
transformations within it requires care. The analysis also
yields, for the first time, a second-order transformation law
for the self-force, generalizing the standard Barack-Ori
result [17] from first order.
One advantage of clearly formulating gauge freedom in

the self-consistent formalism is that it illuminates what is and
is not invariant in long-term evolutions. The central practical
utility of self-force theory is in modeling binary systems of
compact objects, particularly extreme-mass-ratio inspirals
(EMRIs) [22,23]. These binaries evolve on a long time scale
of size ∼1=ϵ, inversely proportional to the rate of energy
emission in gravitational waves, and accurate models must
track the waveform on that time scale. However, in formal-
isms designed for long-term evolution, thewaveform, which
one expects to be invariant, is a functional of a gauge-
dependent world line. In this paper I perform a preliminary
analysis of this issue. Based on informal error estimates, I
argue that while the self-force (andmore generally, any small
perturbations of motion) are pure gauge on domains of size
∼ϵ0, they contain invariant content in any well-behaved
gauge on the large domains of size∼1=ϵ, and that the gauge-
dependent aspect of the waveform represents a small,
negligible correction to its gauge-invariant content.
I organize these analyses as follows. Section II summa-

rizes the self-consistent and Gralla-Wald formalisms.
Section III shows how the latter can be derived from the
former; the methods I use can also be applied in any other
formalism in which the accelerated motion is (implicitly or
explicitly) expanded around a nearby world line, particu-
larly osculating-geodesics and two-timescale approxima-
tions. Section IV describes the gauge freedom in each
formalism, deriving transformation laws for the various
representations of the world line, the physical perturbations
hμν, the singular and regular fields hSμν and hRμν, and the
self-force. For simplicity, I restrict my attention to smooth
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transformations. The paper concludes in Sec. V with a
discussion of practical issues, particularly the issue of
long-term dynamics.
Before proceeding to that material, I note one subtlety I

gloss over: the specific choice of regular field hRμν. The split
of hμν into hSμν and hRμν is far from unique, and any number
of choices can be made which preserve the core properties
that (i) zμ is a geodesic of ~gμν ¼ gμν þ hRμν, and (ii), ~gμν is a
smooth vacuum metric [11,24]. Furthermore, one can also
choose practical splits into hSμν and hRμν for which one or the
other of those core properties is not satisfied. For example,
with the split defined in Ref. [8], property (i) is not
satisfied, and with the one defined in Ref. [9], property
(ii) is not. Here I assume the effective metric is chosen such
that both (i) and (ii) are satisfied, but I place no further
constraints upon it. The obvious choice is thus the one
presented in Refs. [1,7,24] (a generalization of the
Detweiler-Whiting regular field [4] from first order), but
other choices could also be made.
I work in geometrized units with G ¼ c ¼ 1 and the

metric signature ð−;þ;þ;þÞ. Indices are raised and low-
ered with the background metric gμν, and a semicolon
denotes the covariant derivative compatiblewith that metric.
FunctionalsP of a function f (or tensor field f) arewritten as
either Pðx; fÞ or P½f�ðxÞ, as convenient, where xμ is the
coordinate label of a point. Quantities with a breve over
them, such as z̆μn and h̆nμν, refer to a Gralla-Wald expansion;
corresponding quantities without breves refer to a self-
consistent expansion. The expansion parameter ϵ is treated
as a purely formal one, to be set equal to 1 at the end of a
calculation. Throughout the paper, I specialize to objects
which, through order ϵ3, are nonspinning and spherical.

II. SELF-CONSISTENT AND
GRALLA-WALD APPROXIMATIONS

In this section, I briefly describe the two treatments of
perturbed motion. This sets the stage for subsequent
sections. It also serves to generalize past descriptions of
the self-consistent approximation, making the formalism
more amenable to gauge transformations.

A. Self-consistent

The self-consistent approximation treats the metric
perturbation as a functional of the object’s self-accelerated,
center-of-mass world line. It is encapsulated in an asymp-
totic series of the form1

hμνðx; ϵÞ ¼
X
n>0

ϵnhnμνðx; zÞ; ð3Þ

together with an equation of motion of the form

D2zμ

dτ2
¼ Fμðτ; ϵÞ ¼

X
n≥0

ϵnFμ
n½h1;…; hn�; ð4Þ

where zμ are the coordinates on the world line γ represent-
ing the object’s center of mass [6,11]. The perturbations hnμν
are functionals of zμ, and zμ in turn depends on hμν through
Eq. (4). The world line γ is accelerated with respect to the
background spacetime, and according to Eq. (4), its
acceleration is ϵ dependent. Hence, through its dependence
on zμ, each term hnμνðx; zÞ likewise depends on ϵ. This ϵ
dependence distinguishes the approximation from an
ordinary Taylor expansion.
The idea of a self-consistent approximation has been

around since the inception of gravitational self-force
theory [2,3], and it is by now fairly well developed
[1,6,7,11,18,24]. However, aside from a generalization in
Ref. [7], the approximation has always been formulated in a
specific gauge, the Lorenz gauge. In that formulation,
inspired by post-Minkowski theory [25,26], one imposes
the Lorenz gauge condition to split the exact, fully
nonlinear Einstein equation into a weakly nonlinear wave
equation plus an elliptic constraint equation. The wave
equation is solved perturbatively for the functionals
hnμνðx; zÞ while leaving γ unspecified, reducing the
constraint equation to evolution equations for the object’s
matter degrees of freedom, principal among them
the equation of motion governing γ. This formulation
makes each functional hnμνðx; zÞ a solution to a wave
equation, with the wave operator being exactly the same
at each order. The more general formulation in Ref. [7]
allows one to choose a different wave operator, but even in
this more general formulation, the wave operator is always
the same at each order; there is no flexibility to adopt a
gauge in which the operator takes different forms at
different orders.
This limitation runs counter to the usual usage of gauge

freedom, in which one can impose a different gauge
condition at each order and thence work with different
field equations at each order. So we require a more general
formulation, one which allows more flexibility in one’s
choice of gauge. I present such a formulation here.

1. General formulation

To begin, first consider the exact Einstein equation
Rμν½g� ¼ 0 in a vacuum region outside the object. After
substituting the expansion (3), this equation becomes

X
n>0

ϵnδRμν½hn� ¼
X
n>1

ϵnSnμν½h1;…; hn−1�; ð5Þ

1All series in this paper are to be thought of as asymptotic
rather than convergent, meaning I actually assume that for each
integer N > 0, the perturbation can be written as hμνðx; ϵÞ ¼P

N
n¼0 ϵ

nhnμνðx; zÞ þ oðϵNÞ, where “oðfðϵÞÞ” means “goes to zero
faster than fðϵÞ in the limit ϵ → 0”. Generically, ln ϵ terms also
appear in the series, but these terms do not disrupt the series’
well-orderedness [7]. Here I absorb them into the coefficients
hnμνðx; zÞ.
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where δRμν½j� ≔ d
dλRμν½gþ λj�jλ¼0 is the linearized Ricci

tensor constructed from a perturbation jμν, and the quan-
tities on the right-hand side,

Snμν½j1;…; jn−1� ≔ −
1

n!
dn

dλn
Rμν

�
gþ

X
p

λpjp
�����

λ¼0

; ð6Þ

are made up of strictly nonlinear combinations of their
arguments. Explicitly, S1μν ¼ 0 and S2μν ¼ −δ2Rμν½h1; h1�,
where δ2Rμν is the second-order Ricci tensor; the δ notation
is defined in Appendix C.
We wish to solve Eq. (5) subject to
(i) some desired (e.g., retarded) boundary conditions
(ii) a “matching condition” which states that at small

distances r from γ, the solution takes the generic
form of a metric outside a compact object, scaling
as hnμν ∼ 1=rn.2

(iii) a center-of-mass condition that makes the metric
effectively mass-centered on γ, as discussed in
Refs. [1,6,7,11].

After obtaining a vacuum solution outside the object, we
can analytically extend it down to all points x ∉ γ, in a
manner described in Refs. [6,7]; because of its 1=rn

behavior, the extended field will not be of uniform accuracy
very near γ, and it will diverge precisely on γ, but it will
agree with the physical solution everywhere else.
Since the functions hnμνðx; zÞ depend on zμ, we cannot

solve Eq. (5) by equating explicit coefficients of ϵ without
forcing the functional argument zμ to be independent of ϵ;
intuitively, this is the case because the Einstein equation is
overdetermined, constrained by the linearized Bianchi
identity ∇νðδRμν − 1

2
gμνgαβδRαβÞ ¼ 0, which prevents us

from freely specifying the center-of-mass world line γ. So
instead of solving Eq. (5) directly, we construct the
asymptotic series (3) by dividing the Einstein equation
into two parts: field equations that (speaking roughly)
determine the functionals hnμνðx; zÞ, and constraint
equations that determine the functionals’ argument zμ.

To accomplish this, we first write Eq. (5) with a gauge
condition already imposed. Choose a set fEn

μνgn of second-
order, linear differential operators that can be obtained from
the linearized Ricci tensor via a linear gauge transformation;
that is, for each tensor fμν there must exist a vector field ξμ

satisfying En
μν½f þ Lξg� ¼ δRμν½f�, where L is a Lie deriva-

tive. Define the functionals hnμνðx; zÞ to be solutions to

En
μν½hn� ¼ Sn½h1;…; hn−1� ðx ∉ γÞ ð7Þ

for arbitrary γ, subject to the desired boundary andmatching
conditions. For some choices of En

μν, there may be no
solution to Eq. (7) for arbitrary γ. However, if we choose
eachEn

μν to be symmetric hyperbolic, the solutions should be
guaranteed to exist. So henceforth, assume we have made
such a choice.
The sequence of equations (7) form our field equations.

They are equivalent to the Einstein equation (5) in a
particular gauge, and hence they take care of a large
portion of that equation. What is left is a gauge condition,
or constraint equation, which reads

X
n≥1

ϵnCn
μν½hn� ¼ 0 ðx ∉ γÞ; ð8Þ

where

Cn
μν½hn� ≔ δRμν½hn� − En

μν½hn�: ð9Þ

Equations (7) and (8) are the desired division of the
Einstein equation. By solving Eqs. (7), one obtains the
series (3) as a sum of functionals of two types of free
functions: the world line γ, which characterizes the object’s
mean motion, and a set of multipole moments, which
characterize the object itself and can be defined as tensors
on γ. By enforcing the condition (8), one determines the
equation of motion (4) as well as evolution equations for
the multipole moments.3 These facts about the solutions
follow from the algorithmic solution method presented
most thoroughly in Refs. [7,11], which I will not recapitu-
late but will draw conclusions from here and below.
Because each hnμν depends on ϵ (through γ), Eq. (8)

cannot be solved by setting Cn
μν½hn� ¼ 0. Instead, it is to be

solved by substituting the expansion (4) and only then
solving order by order in ϵ while holding zμ (and dzμ

dτ ) fixed.
This leads to a sequence of equations for Fα

nðτ; zÞ, in which
zμ is still held fixed. By holding zμ and dzμ

dτ fixed during this
procedure, rather than expanding their ϵ dependence, I
preserve the particular accelerated world line that satisfies
the chosen center-of-mass condition. Solving the sequence

2Note that γ lives in the smooth manifold of the background
spacetime, not that of the perturbed spacetime, making this
condition sensible even if the small object is a black hole. See
Refs. [5,6,11] for precise formulations in the language of matched
asymptotic expansions. One works outside the object and
imposes the matching condition, in lieu of involving the object’s
interior, to overcome two problems: First, an expansion in the
limit of small mass and size fails to be sensible at distances ∼ϵ
from the object (and in the object’s interior); there, the object’s
own gravity is strong, and the field hμν it contributes to gμν is
comparable to, and has stronger curvature than, the external
metric gμν. So one should assume an expansion of the form (3)
only in a region sufficiently far (i.e., at distances ≫ ϵ) from the
object. Second, if we work in the object’s interior, we must
specify its internal structure and composition, and we must design
different approximations for black holes than for material bodies.

3For moments of quadrupole order and higher, the Einstein
equation alone does not fully determine the moments’ evolution.
The evolution of these moments is freely specified, either directly
or via a specification of the object’s composition.
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of constraint equations for Fα
nðτ; zÞ yields a better and better

approximation to the equation of motion of that particular
world line, without ever expanding the world line itself.
In practice, of course, we have access to only a finite

number of terms Fμ
n in the expansion of the force. If we

truncate the expansion (4) at order n, then we work with an
approximation zμn to zμ; this approximant satisfies

D2zμn
dτ2

¼
Xn
p¼0

ϵpFμ
pðτ; znÞ; ð10Þ

and the nth-order self-consistent approximation to the field
is a functional of this world line, given by hμνðx; ϵÞ ¼P

n
p¼0 ϵ

phpμνðx; znÞ. However, to reduce the burden of
notation, I will typically write expressions in terms of zμ

instead of its approximant zμn.
Thus far I have not referred to the decomposition hμν ¼

hSμν þ hRμν with which the paper began. This is a decom-
position of the extended field, and its singular piece hSμν
diverges on γ. A convenient, precise way of choosing the
split is described in Refs. [1,6,7,11]. With a straightforward
extension of the analyses in Refs. [7,11], one can show that
no matter what the forces Fμ

pðτ; znÞ in Eq. (10) turn out to
be, one can always choose the decomposition of hμν such
that the regular field possesses the two core properties that
(i) Eq. (10) is equivalent to the geodesic equation in
~gμν ¼ gμν þ hRμν, and (ii) ~gμν is a smooth vacuum metric
on γ.

2. Field and motion through second order

Let me make this more concrete at first and second order.
At these orders, the regular fields hRnμν satisfy the vacuum
version of Eq. (7):

E1
μν½hR1� ¼ 0; ð11aÞ

E2
μν½hR2� ¼ −δ2Rμν½hR1; hR1�; ð11bÞ

note that these equations, unlike Eq. (7), are not restricted
to points off γ. The singular fields satisfy the nonvacuum
equations

E1
μν½hS1� ¼ 8πT̄1

μν½z�; ð12aÞ

E2
μν½hs2� ¼ 8πT̄2

μν½z; δm�; ð12bÞ

E2
μν½hSn1� ¼ −δ2Rμν½hS1; hS1�

− 2δ2Rμν½hS1; hR1� ðx ∉ γÞ; ð12cÞ

where I have written hS2μν as the sum of two parts,
hs2μν þ hSn1μν , the first of which is sourced by a “stress-
energy” and the latter of which is sourced by nonlinearities.

The stress-energy source terms I have introduced in
Eq. (12) are derived quantities defined from the extended
fields hnμν according to

T̄n
μν ≔

1

8π
En
μν½hn� − Snμν½h1;…; hn−1�: ð13Þ

One can loosely, though not precisely [7,11], think of these
quantities as the sources of everything in hnμν that is not
generated by nonlinearities. They are supported only on γ,
and they are uniquely specified by the multipole moments
that characterize the object. For a nonspinning object,
at the first two orders they (or their trace-reversals
Tn
μν ≔ T̄n

μν − 1
2
gμνgαβT̄n

αβ) are given by

T1
μν ¼

Z
γ
muμuνδðx; zÞdτ; ð14aÞ

T2
μν ¼

Z
γ

1

4
δmμνδðx; zÞdτ; ð14bÞ

where δðx; zÞ ≔ δ4ðx−zÞffiffiffiffi−gp is a covariant delta function,m is the

object’s leading-order mass, δmμν is a correction to the
object’s monopole moment, and the bar denotes trace-
reversal. In addition to the equation of motion for γ, the
constraint equation (8) dictates the specific forms of Tn

μν,
determining a (gauge-dependent) expression for δmμν and
determining that m is constant. Note that T1

μν is simply the
stress-energy of a point particle of mass m moving on γ;
in this sense, the small object can be thought of as a
point mass.
Unlike Eq. (7), the Eqs. (11) and (12) include γ in their

domain, with the exception of Eq. (12c). Equation (12c) is
restricted to points off γ because the nonlinear source term
in it is generically ill defined as a distribution on any region
including γ. In the same way, the total first-order field
h1μν ¼ hS1μν þ hR1μν satisfies a field equation with a distribu-
tional source,

E1
μν½h1� ¼ 8πT̄1

μν½z�; ð15Þ
but the total second-order physical field h2μν ¼ hs2μνþ
hSn1 þ hR2μν does not, instead satisfying an equation with
a pointwise source,

E2
μν½h2� ¼ −δ2Rμν½h1; h1� ðx ∉ γÞ: ð16Þ

However, by moving all curvature terms to the left-hand
side, we can write the field equation in the distributional
form

E2
μν½h2� þ δ2Rμν½h1; h1� ¼ 8πT̄2

μν: ð17Þ

The left-hand side is well defined as a distribution because
the nondistributional singularities in δRμν½h2� cancel those
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in δ2Rμν½h1; h1�. We can also combine the first- and second-
order equations to form4

δRμν½ϵh1 þ ϵ2h2� þ ϵ2δ2Rμν½h1; h1�
¼ 8πϵT̄1

μν þ 8πϵ2T̄2
μν þOðϵ3Þ: ð20Þ

All of the above equations involve functionals of γ. The
final ingredient in the second-order-accurate approximation
is the equation of motion (10). It can be written in terms of
the regular field as Eq. (42). As shown in Sec. III A 1, this is
equivalent to the geodesic equation (2) in the smooth
vacuum metric ~gμν.

3. Gauge choices and practical implementations

The structure of the approximation becomes more trans-
parent in a particular gauge. In the Lorenz-gauge formu-
lation, we have En

μν½hn� ¼ − 1
2
ð□hnμν þ 2Rμ

α
ν
βhnαβÞ and

Cn
μν ¼ ∇ðμ∇αh̄nνÞα for all n, and Eq. (8) can be replaced

with
P

n ϵ
n∇αh̄nνα ¼ 0. Near γ, the first-order singular field

(and hence h1μν) behaves as

hS1μν ¼
2m
r

ðgμν þ 2uμuνÞ þOðr0Þ; ð21Þ

where r is a geodesic spatial distance (proper in gμν) from γ.
The second-order field behaves as

hs2μν ¼
δmμν

r
þOðr0Þ; ð22aÞ

hSn1μν ∼
m2

r2
þOðr−1Þ; ð22bÞ

where δmμν is given explicitly by Eq. (133) of Ref. [24].
Later sections will refer to these local forms to elucidate
several key ideas. For now, note their essential character-
istic: they diverge on the object’s self-accelerated center-of-
mass world line γ, rather than on a background geodesic.
This distinguishes them from the singular field of the
Gralla-Wald approximation described below.
Let me summarize. The self-consistent approximation

described in this section is based on splitting the Einstein

equation into a sequence of hyperbolic equations together
with a constraint. The constraint determines the equation of
motion of the object’s center-of-mass world line γ, and it
constrains the evolution of the object’s multipole moments,
which are tensors on γ. From the analysis in Sec. II of
Ref. [7], one can expect that at a formal level, this is the
only required input from the constraint: if the Cauchy data
satisfies the constraint, then the constraint should be
preserved by the coupled system comprising the hyperbolic
equations, the equation of motion, and the evolution
equations for the multipole moments. In practice, the set
of coupled equations can be solved numerically with a
puncture scheme [1,7,27,28], in which one uses residual
field variables hRn

μν ≔ hnμν − hPnμν in place of hRnμν . Here hPnμν
is a puncture field that mimics hSnμν near γ, such that
hRn
μν ¼ hRnμν and ∂αhRn

μν ¼ ∂αhRnμν on γ, allowing one to
use hRn

μν in the equation of motion (42).
No serious study has been made of constraint violation

or numerical stability in these puncture schemes, particu-
larly in the wide class of gauges considered here, but such
issues are not of essential interest in this paper. The
question of interest here is “Suppose two researchers obtain
asymptotic solutions of the form (3), in whatever manner,
in two different gauges. How are their two solutions
related?” This is the question addressed in the later sections
of this paper.

B. Gralla-Wald

I next consider the Gralla-Wald approximation, named
after the authors of Refs. [5,8]. This approximation consists
of a strict Taylor expansion,

hμνðx; ϵÞ ¼
X
n>0

ϵnh̆nμνðxÞ; ð23Þ

here, unlike Eq. (3), the coefficients h̆nμν do not depend on ϵ.
Since the metric depends on the object’s motion, this
expansion of hμν requires an expansion of the world line
itself,

zμðs; ϵÞ ¼
X
n≥0

ϵnz̆μnðsÞ; ð24Þ

where s is a parameter on the world line. The leading-order
term, zμ0ðsÞ ≔ z̆μ0 ¼ zμðs; 0Þ, is the coordinate description
of a world line γ0, and the subleading terms z̆μn>0 are vectors
living on γ0 that describe the deviation of the perturbed
world line γ from γ0. Hence, in this approximation, one
treats the effect of the self-force as a small perturbation of
the world line itself, rather than as a small perturbation of
the equation of motion for zμ. Hence, instead of seeking an
equation of motion à la (4) for zμ, one seeks evolution
equations for each quantity z̆μn:

4More generally, we may write the complete Einstein equation
as the distributional equation

X
n

ϵnðEn
μν½hn� − SnμνÞ ¼ 8π

X
n

ϵnT̄n
μν; ð18Þ

or simply

Rμν

�
gþ

X
n

ϵnhn
�
¼ 8π

X
n

ϵnT̄n
μν; ð19Þ

where all tensors are understood to live on the background.
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D2z̆μn
dτ20

¼ � � � ; ð25Þ

where τ0 is proper time (as measured in gμν) on γ0.
It is easy to intuit that one can derive expansions of the

form (23) and (25) from the self-consistent approximation
simply by substituting the expansion (24) into the field (3)
and equation of motion (4). This intuition is borne out by
the explicit expansion procedure of Sec. III. On the other
hand, one cannot go the other way and obtain the self-
consistent from the Gralla-Wald approximation (although
Ref. [5] contained a heuristic argument for how to make
that leap at first order).
However, one can certainly work entirely in the Gralla-

Wald expansion without ever relating it to the self-
consistent one. The general procedure is very similar to
that described in Sec. II A 1; because of the similarity, I
shall forgo a general description and simply emphasize key
points and concrete equations through second order.
Starting from the expansion (23), one obtains results very
similar to those of the self-consistent expansion, but with a
significant modification due to the different treatment of the
world line. In the self-consistent expansion, the fields hnμν
are functionals of γ and of a set of multipole moments on γ;
in the Gralla-Wald expansion, the fields h̆nμν are functionals
of γ0, not of γ, and of a different set of multipole moments
on γ0. The multipole moments are modified by the
deviation vectors z̆μn>0, which themselves correspond
to mass dipole moments and which alter the other
moments.
This is most easily understood by starting at the end.

Consider Eq. (21), which shows that h1μν behaves like a
Coulomb field; in flat space it would read ∝ ϵm

jxi−zij. If we
treat the world line as in Eq. (24), then ϵm

jxi−zij becomes

ϵm
jxi−zi

0
j þ

ϵ2mz̆1jðxj−zj0Þ
jxi−zi

0
j3 þOðϵ3Þ. In words, the field in the

self-consistent expansion, ϵm
jxi−zij, diverges at the object’s

perturbed center-of-mass position zi; the field in the Gralla-

Wald expansion, ϵm
jxi−zi

0
j þ

ϵ2mz̆1jðxj−zj0Þ
jxi−zi

0
j3 þOðϵ3Þ, diverges at

the object’s zeroth-order position zi0, and the deviation
of the object away from that position alters the functional
form of the metric, introducing a mass dipole moment
Mj ¼ mz̆1j. Or as 4-vectors,

Mμ ¼ mz̆μ1⊥; ð26Þ

where z̆μ1⊥ ¼ ðgμν þ uμ0u0νÞz̆ν1 is the projection of z̆ν1
orthogonal to γ0; here u

μ
0 ≔

dzμ
0

dτ0
, with τ0 being proper time

(as measured in gμν) on γ0. Equation (26) is in fact how we
define the object’s deviation from γ0: z̆

μ
1⊥ ≔ Mμ=m.

Concretely, the local behavior of the fields in the Lorenz
gauge is no longer given by Eqs. (21) and (22) but by

h̆S1μν ¼
2m
r

ðgμν þ 2u0μu0νÞ þOðr0Þ; ð27aÞ

h̆s2μν ¼
2mz̆1ixi

r3
ðgμν þ 2u0μu0νÞ þ

˘δmμν

r
þOðr0Þ; ð27bÞ

h̆Sn1μν ∼
m2

r2
þOðr−1Þ; ð27cÞ

where xi are local spatial coordinates centered at γ0 and r is
a geodesic spatial distance from γ0. The monopole moment
˘δmμν is modified by the presence of z̆1i, and it is now given
explicitly by Eq. (145) of Ref. [24].
In any gauge, the field satisfies equations analogous to

Eqs. (15), (16), (11), and (12):

δRμν½h̆1� ¼ 8π ˘̄T1
μν½z0�; ð28aÞ

δRμν½h̆2� ¼ −δ2Rμν½h̆1; h̆1� ðx ∉ γ0Þ ð28bÞ
for the full field,

δRμν½h̆R1� ¼ 0; ð29aÞ

δRμν½h̆R2� ¼ −δ2Rμν½h̆R1; h̆R1� ð29bÞ

for the regular field, and

δRμν½h̆S1� ¼ 8π ˘̄T1
μν½z0�; ð30aÞ

δRμν½h̆s2� ¼ 8π ˘̄T2
μν½z0; ˘δm; z̆1�; ð30bÞ

δRμν½h̆Sn1� ¼ −δ2Rμν½h̆S1; h̆S1�
− 2δ2Rμν½h̆S1; h̆R1� ðx ∉ γ0Þ ð30cÞ

for the singular field. The stress-energy terms are defined
in analogy with Eq. (13), and they (in their trace-reversed
form) are given by distributions on γ0,

T̆1
μν ¼

Z
γ0

mu0μu0νδðx; z0Þdτ0; ð31aÞ

T̆2
μν ¼

Z
γ0

�
1

4
˘̄δmμν þmu0μu0νz̆

γ0
1⊥∇γ0

�
δðx; z0Þdτ0: ð31bÞ

Just as in the self-consistent approximation, we can also
write the Einstein equation in distributional form,

δRμν½ϵh̆1 þ ϵ2h̆2� þ ϵ2δ2Rμν½h̆1; h̆1�
¼ 8πϵ ˘̄T1

μν þ 8πϵ2 ˘̄T2
μν þOðϵ3Þ: ð32Þ

The second-order approximation is completed by the
evolution equations (25) for z̆μn. As in the self-consistent
case, for a nonspinning object with vanishing quadrupole
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moment, the evolution equations can be written purely in
terms of the regular field: in place of Eq. (42), we here have
the evolution equations (54), (60), and (64), with Eqs. (59b)
and (65b). The Riemann terms in these equations of motion
are geodesic-deviation terms; they correspond to the fact
that even in the absence of a force, two neighboring curves
zμ and zμ0 will deviate from one another due to the
background curvature.

III. FROM SELF-CONSISTENT
TO GRALLA-WALD

I now show how to obtain the Gralla-Wald approxima-
tion from the self-consistent one. This means two things:
how to obtain equations of motion for z̆μn given an equation
of motion for zμ, and how to substitute the expansion of zμ

into functionals such as hnμν½z�.
Two main tools are required in these derivations: the

ordinary Lie derivative, L, and a variant of it, £, to be
described below.

A. Expanded forms of the equation of motion

The difference between the self-consistent and Gralla-
Wald approximations is most conspicuous in their
equations of motion. In this section, I delineate that
difference. I start from the geodesic equation in a smooth
metric ~gμν, and in Sec. III A 1 I derive its self-consistent
expansion, given by Eq. (42) below. In Sec. III A 2,
I start from the self-consistent result and by expanding
the world line, I derive the Gralla-Wald expansion of the
geodesic equation, given by Eqs. (54), (60), and (64), with
Eqs. (59b) and (65b).

1. Self-consistent expansion

Generically, the geodesic equation (2) reads

d_zμ

ds
þ ~Γμ

νρ _zν _zρ ¼ ~κ_zμ; ð33Þ

where s is a potentially nonaffine parameter on zμ, _zμ ≔ dzμ
ds

is its tangent vector field, ~Γμ
νρ is the Christoffel symbol

corresponding to ~gμν, and ~κðsÞ ≔ d
ds ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−~gμν _zμ _zν

p
. Here for

simplicity I have dropped the unknown Oðϵ3Þ error term in
Eq. (2); this also serves to emphasize that the derivation
applies to the more general problem of expanding the exact
geodesic equation in any smooth metric.
Now, if we write the metric as the sum of two pieces,

~gμν ¼ gμν þ hRμν, and if we take s ¼ τ, the proper time on zμ

as measured in gμν, and if we rewrite the geodesic equation
in terms of covariant derivatives compatible with gμν, we
find

D2zμ

dτ2
¼ −Cμ

νρuνuρ þ ~κuμ≕Fμðτ; ϵÞ; ð34Þ

where

Cα
βγ ≔ ~Γα

βγ − Γα
βγ ¼

1

2
~gαδð2hRδðβ;γÞ − hRβγ;δÞ ð35aÞ

is the difference between the Christoffel symbol associated
with ~gμν and the one associated with gμν. With τ as a
parameter, ~κ becomes

~κðτÞ ¼
d
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hRμνuμuν

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hRμνuμuν

q : ð36Þ

While zμ is a geodesic of ~gμν, Eq. (34) tells us it is
accelerated in gμν.
So far no approximation has been made; Eq. (34) is

exact. If we now expand Cμ
ν ρ and ~κ in powers of hRμν, we

find

D2zα

dτ2
¼ −

1

2
ðgαδ − hRαδÞð2hRδðβ;γÞ − hRβγ;δÞuβuγ

− hRβγu
α D

2zβ

dτ2
uγ −

1

2
hRβγ;δu

αuβuγuδ

−
1

2
hRμνhRβγ;δu

αuβuγuδuμuν þO½ðhRÞ3�: ð37Þ

Here already is the spirit of the self-consistent expansion:
by expanding in powers of hRμν rather than powers of ϵ, I
avoid expanding zμðτ; ϵÞ itself. However, Eq. (37) is
complicated by the fact that the acceleration D2zα

dτ2 appears
in a nontrivial way on the right-hand side. To disentangle it,
I now explicitly substitute the self-consistent expansion
(4).5 After simple rearrangements, one finds

Fα
0 ¼ 0; ð38Þ

Fα
1 ¼ −

1

2
Pαδð2hR1δðβ;γÞ − hR1βγ;δÞuβuγ; ð39Þ

Fα
2 ¼ −

1

2
Pαδð2hR2δðβ;γÞ − hR2βγ;δÞuβuγ

þ 1

2
PαμhR1 δ

μ ð2hR1δðβ;γÞ þ hR1βγ;δÞuβuγ; ð40Þ

and hence,

D2zμ

dτ2
¼ ϵFμ

1ðτ; zÞ þ ϵ2Fμ
2ðτ; zÞ þOðϵ3Þ; ð41Þ

where Pαμ ≔ gαμ þ uαuμ projects orthogonally to uμ. This
result may also be written in the more compact form

5One could instead assume that D
2zα

dτ2 possesses an expansion in
powers of hRμν.
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D2zα

dτ2
¼ −

1

2
Pαμðgμδ − hR δ

μ Þð2hRδβ;γ − hRβγ;δÞuβuγ

þOðϵ3Þ: ð42Þ

Equation (41) is the self-consistent approximation to the
geodesic equation. It is defined by expanding Eq. (34) in
powers of ϵ while holding the solution zμðτ; ϵÞ to that
equation fixed.

2. Gralla-Wald expansion

In the previous section, I expanded the geodesic equation
while holding zμðτ; ϵÞ fixed. I now expand zμðτ; ϵÞ as well.
This procedure yields a sequence of equations for the
vectors z̆μn that measure the deviation away from the zeroth-
order world line in the Gralla-Wald approximation.
In previous work [5,8,16], this expansion has always

been performed after choosing some set of coordinates and
some parameter s (which may differ from τ) on the world
line. Here I wish to develop a more general and more
geometrical picture. First, let me set the stage. Consider the
two smooth metrics gμν and ~gμν on a smooth manifoldM.6

Now consider a family of worldlines γϵ∶s ∈ ℝ ↦ γϵðsÞ ⊂
M with parameter s and coordinates zμϵðsÞ ¼ xμðγϵðsÞÞ.
Each family member satisfies the self-consistent equation
of motion (42), which I now write as

aμϵ ¼ Fμ
ϵðτϵÞ; ð43Þ

where τϵ ¼ τϵðsÞ is proper time on γϵ, a
μ
ϵ ≔ D2zμϵ

dτ2ϵ
is the

acceleration of γϵ, and Fμ
ϵðτϵÞ is given by the right-hand

side of Eq. (42). The family generates a two-dimensional
timelike surface S ⊂ M with coordinates ðs; ϵÞ, embedded
inM according to xμðs; ϵÞ ¼ zμϵðsÞ, which I will also write
simply as zμðs; ϵÞ.
Now if we consider an expansion in powers of ϵ, we

immediately run up against two apparent ambiguities. We
can write the expansion as

zμðs; ϵÞ ¼ zμ0ðsÞ þ ϵz̆μ1ðsÞ þ ϵ2z̆μ2ðsÞ þOðϵ3Þ; ð44Þ

where

z̆μnðsÞ ¼ 1

n!
ϵn

∂nzμ

∂ϵn ðs; 0Þ: ð45Þ

The first ambiguity in this expansion stems from the fact
that we are expanding not a vector but a scalar field, equal
to the μth coordinate field on the world line. Because of
this, the expansion depends on the choice of coordinates.
How does this play out? The zeroth-order term in the

expansion is zμ0ðsÞ ¼ zμðs; 0Þ, which, while it is a set of
coordinates along a curve γ0, is invariant in the sense of
uniquely identifying that curve. The first-order term, z̆μ1ðsÞ,
is a derivative along a curve (of increasing ϵ and fixed s) in
S. This derivative is evaluated on γ0, making it a vector on
γ0; again, this is a covariant quantity. But at second order
and beyond, the deviations z̆μn lose their vectorial character:
unlike the first derivative along a curve, second and higher
derivatives are not vectors. The function zμðs; ϵÞ describes a
curve in a particular set of coordinates, and the corrections
z̆μn depend on that choice of coordinates.
The second ambiguity in the expansion stems from the

fact that we are expanding at fixed s. Geometrically, we are
taking the limit ϵ → 0 along curves of fixed s in S. Under a
reparametrization s → s0ðs; ϵÞ, the terms z̆μn>0 are altered,
becoming derivatives along a different curve, a curve of
increasing ϵ along which s0, not s, is constant. For a general
“small” reparametrization s → s0 ¼ sþOðϵÞ, this is a type
of gauge freedom, similar to but distinct from the usual
gauge freedom of perturbation theory: rather than a small
transformation of the extrinsic coordinates xμ, it is a small
transformation of the intrinsic coordinates ðs; ϵÞ on S.
The effect of reparametrization is displayed explicitly in
Appendix A.
To avoid a mire of coordinate- and parametrization-

dependent results, I will isolate the coordinate- and para-
metrization-independent content of each z̆μn. These are the
quantities I will derive evolution equations for, and as will
become apparent in Sec. III B, they are the only quantities
necessary for a practical Gralla-Wald approximation.
We can get at these desirable quantities through more

obviously geometrical ones. First note that the surface S
can be generated by the two vector fields _zμðs; ϵÞ ¼ ∂zμ

∂s and
vμðs; ϵÞ ≔ ∂zμ

∂ϵ . The field vμ describes the deviation between
neighboring curves γϵ and γϵþdϵ, and the first-order term z̆μ1
is simply its restriction to γ0,

z̆μ1 ¼ vμjγ0 : ð46Þ

The direction of this quantity plainly depends on the choice
of parameter s. As shown in Appendix A, with a repar-
ametrization we can freely adjust the piece of z̆μ1 that lies
parallel to γ0, but we cannot alter the piece perpendicular
to γ0. Hence, a covariant and parametrization-invariant
measure of deviation is

z̆μ1⊥ ≔ Pμ
νvνjγ0 : ð47Þ

No matter the coordinate system and parametrization in
which the expansion (44) is performed, the coordinate- and
parametrization-invariant piece of z̆μ1 can be picked out
using z̆μ1⊥ ¼ Pμ

0νz̆
ν
1, where Pαμ

0 ≔ gαμ þ uα0u
μ
0.

For the second-order term, we can construct a “deviation
of the deviation” from a derivative of vμ. First consider the
vector

6In Sec. IV I will put the perturbed and background metric on
different manifolds, but here it is simplest to consider a single
manifold.
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wα ≔
1

2

Dvα

dϵ
¼ 1

2
vβ∇βvα ð48Þ

and its restriction to γ0,

z̆α2N ≔ wαjγ0 : ð49Þ

The subscript “N” stands for “normal”: z̆α2N is the second-
order term in the expansion (44) when that expansion is
performed in locally inertial (i.e., normal) coordinates
centered on γ0. In those coordinates, 1

2
vβ∇βvαjγ0 ¼

1
2
vβ∂βvαjγ0 ¼ 1

2
∂2zμ
∂ϵ2 ðs; 0Þ ¼ z̆α2ðsÞ. Unfortunately, as shown

in Appendix A, not only z̆α2N but also z̆μ2N⊥ ¼ Pμ
0 νz̆

ν
2N

depends on one’s choice of parametrization.
Fortunately, we can easily construct a related quantity

that does not depend on parametrization. This is done by
projecting out all information about the flow parallel to γ.
Replacing vμ with its orthogonal projection vμ⊥ ≔ Pμ

νvν,
and then taking the orthogonal piece of the result, we obtain
a quantity

z̆α2‡ ≔
1

2
Pα

γv
β
⊥∇βv

γ
⊥jγ0 ð50Þ

that Appendix A shows is paramatrization-independent. z̆α2‡
is simply related to z̆α2N⊥ according to

z̆α2‡ ¼ z̆α2N⊥ þ z̆1∥ŭ
β
1⊥; ð51Þ

where z̆1∥ ≔ z̆μ1u0μ, ŭ
μ
1 ≔

Dz̆μ
1

dτ0
, and ŭμ1⊥ ≔ Pμ

0 νŭ
ν
1 ¼ Dz̆μ

1⊥
dτ0

. If

we construct z̆μn according to Eq. (44) in some coordinate
system and with some choice of parameter s, then we can
extract the covariant and parametrization-invariant content
of z̆μ2 using the relation

z̆α2‡ ¼ Pα
0 β

�
z̆β2 þ

1

2
Γβ
μνz̆

μ
1z̆

ν
1 þ z̆1∥ŭ

β
1

�
; ð52Þ

which follows from z̆α2N ¼ 1
2
D2zα

dϵ2 jγ0 ¼ z̆α2 þ 1
2
Γα
μνz̆

μ
1z̆

ν
1 and

Eq. (51).
z̆α1⊥ and z̆α2‡will bemy first- and second-ordermeasures of

the deviation of the accelerated world line from the zeroth-
order geodesic. They are the quantities I seek evolution
equations for. In Sec. III B, I will show that they suffice to
obtain the Gralla-Wald approximation (23) in any coordi-
nate system, despite the coordinate dependence of Eq. (44).
Evolution equations for z̆α1⊥ and z̆α2‡ can be derived

in several ways, but here I wish to use a technique that
will also apply directly to the discussion of gauge trans-
formations in later sections. And as will become clear in
those later sections, that means performing an expansion
along a flow generated by a vector field. Let φϵ be the
diffeomorphism describing the flow generated by vμ, and
let A be a smooth tensor field on S (suppressing indices on

A for compactness). The expansion of A along a flow line
beginning at zμ0ðsÞ reads

ðφ�
ϵAÞðz0ðsÞÞ ¼ ðeϵLvAÞðz0ðsÞÞ ð53aÞ

¼ Aðz0ðsÞÞ þ ϵLvAðz0ðsÞÞ

þ 1

2
ϵ2L2

vAðz0ðsÞÞ þOðϵ3Þ; ð53bÞ

where φ�
ε is the pullback. We want to apply this expansion

to Eq. (43), and from sequential orders obtain the evolution
equations for zμ0, z̆

μ
1⊥, and z̆μ2‡. For convenience in perform-

ing the expansion, I choose the parameter s such that it
reduces to τ0 on γ0. This does not imply any loss of
generality, since it does not restrict the direction of vμ; it is
analogous to choosing a particular set of background
coordinates in perturbation theory, which does not restrict
the choice of gauge.
Now, the zeroth-order term in the expansion is simply

aμðs; 0Þ ¼ Fμðs; 0Þ. Since Fμðs; 0Þ ¼ 0, this gives us the
geodesic equation in the background metric,

D2zμ0
dτ20

¼ 0: ð54Þ

The first-order term is

Lvaμðs; 0Þ ¼ LvFμðs; 0Þ: ð55Þ
To evaluate the left-hand side, I write the acceleration
explicitly as

aμðs; ϵÞ ≔ D2zμ

dτ2
¼

�
ds
dτ

�
2

½̈zμ − κ_zμ�; ð56Þ

where _zμ ≔ dzμ
ds , ̈z

μ ≔ D_zμ
ds , and κðsÞ ≔ d

ds ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

p
. I

then apply Eqs. (B2), (B3), (B6), and the Ricci identity. The
result is

Lvaμjγ0 ¼ ðvνaμ;ν − aνvμ;νÞjγ0 ð57aÞ

¼ D2z̆μ1⊥
dτ20

þ Rμ
ανβuα0 z̆

ν
1⊥u

β
0: ð57bÞ

To evaluate the right-hand side of Eq. (55), I first substitute
the expansion (23) into the right-hand side of Eq. (42) to get
the force in the form

Fμðs; ϵ; γϵÞ ¼ ϵfμ1ðs; ϵÞ þ ϵ2fμ2ðs; ϵÞ þOðϵ3Þ; ð58Þ
where fμ1 is given by Eq. (39) with the replacement
hR1μν → h̆R1μν , and f

μ
2 by Eq. (40) with h

Rn
μν → h̆Rnμν . The forces

fμn are ordinary tensors on γϵ, whereas the forces Fμ
n are

tensor-valued functionals. I leave it to the next section to
show how the expansion (23) is explicitly obtained from the
coefficients hRnμν ðx; zϵÞ of the self-consistent expansion.
So now noting that Lvϵ ¼ 1, we find
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LvFμjγ0 ¼ −
1

2
Pμδ
0 ð2h̆R1δβ;γ − h̆R1βγ;δÞuβ0uγ0 ð59aÞ

≕F̆μ
1: ð59bÞ

Putting these results together, we get

D2z̆α1⊥
dτ20

¼ F̆α
1 − Rα

μβνu
μ
0z̆

β
1⊥uν0: ð60Þ

Note that this result is independent of the choice of
parameter s. For any choice, the expansion of the equation
of motion along the flow of vμ only determines the
evolution of z̆α1⊥; the piece of z̆α1 parallel to uμ0, which
can be arbitrarily altered by a reparametrization, is not
determined by the equation of motion.
The second-order term in the equation of motion (43) is

1

2
L2
vaμðs; 0Þ ¼

1

2
L2
vFμðs; 0Þ: ð61Þ

To evaluate and simplify the left-hand side, I again begin
with Eq. (56) and then repeatedly apply Eqs. (B2), (B3),
(B6), and the Ricci identity. The result is

1

2
L2
vaαjγ0 ¼

D2z̆α2N⊥
dτ20

þ Pα
0 ρR

ρ
μβνðuμ0z̆β2Nuν0 þ 2ŭμ1z̆

β
1u

ν
0Þ

− 2Pα
0 ρR

ρ
μβν;γ z̆

ðμ
1 u

βÞ
0 z̆

½ν
1 u

γ�
0 þ uα0ă1∥ŭ1∥

þ ŭα1ă1∥ þ uα0F̆
μ
1ŭ1μ þ 2F̆α

1ŭ1∥

− F̆β
1v

α
;βjγ0 ; ð62Þ

where ŭ1∥ ≔ u0μ
Dz̆μ

1

dτ0
and ă1∥ ≔ u0μ

D2 z̆μ
1

dτ2
0

. On the left-hand

side of Eq. (61) we have

1

2
L2
vFμjγ0 ¼ fμ2ðs; 0Þ þ Lvf

μ
1ðs; 0Þ ð63aÞ

¼ fμ2ðs; 0Þ þ z̆α1f
μ
1;αðs; 0Þ

− F̆α
1v

μ
;αjγ0 : ð63bÞ

Combining Eqs. (62) and (63) in Eq. (61), and rewriting the
result in terms of the variables z̆μ1⊥ and z̆μ2‡, we arrive at

D2z̆α2‡
dτ20

¼ F̆α
2 − Pα

0 ρR
ρ
μβνðuμ0 z̆β2‡uν0 þ 2ŭμ1⊥z̆

β
1⊥uν0Þ

þ 2Pα
0 ρR

ρ
μβν;γ z̆

ðμ
1⊥u

βÞ
0 z̆

½ν
1⊥u

γ�
0 : ð64Þ

The force F̆μ
2 appearing in this equation of motion is given

by

F̆μ
2 ≔ fμ2ðs; 0Þ þ z̆α1⊥f

μ
1;αðs; 0Þ − uμ0F̆1νŭν1⊥ ð65aÞ

¼ −
1

2
Pμρ
0 ð2h̆R2ρσ;λ − h̆R2σλ;ρÞuσ0uλ0

−
1

2
Pμρ
0 ð2h̆R1ρσ;λδ − h̆R1σλ;ρδÞuσ0uλ0z̆δ1⊥

− ð2h̆R1νσ;λ − h̆R1σλ;νÞ
�
1

2
ŭμ1⊥uν0uσ0uλ0 þ Pμν

0 ŭðσ1⊥u
λÞ
0

�

þ 1

2
Pμν
0 h̆R1 ρ

ν ð2h̆R1ρσ;λ − h̆R1σλ;ρÞuσ0uλ0: ð65bÞ

The sequence of equations (54), (60), and (64), with
Eqs. (59b) and (65b), are the Gralla-Wald expansion
of the geodesic equation (42). They are covariant and
reparametrization-invariant evolution equations for the
deviation of the accelerated world line γϵ from the geodesic
γ0. As such, they represent a refinement of the coordinate-
and parametrization-specific expansion in Ref. [8] and of
the covariant but parametrization-dependent one in [11].
Other covariant expansion methods have been used for
somewhat similar purposes [29], but the analysis here
has the advantage of clearly excising the parametrization
dependence of the Gralla-Wald expansion. More
importantly for the purposes of this paper, its use of
Lie derivatives exactly parallels their use in gauge
transformations, which in later sections will help to clarify
an essential notion: the gauge-dependence of the
world line.

B. Expansions of the metric and field equations

The preceding section illuminated the relationship
between the equations of motion in our two formalisms.
But of course, these equations of motion are largely
meaningless in themselves; to fully understand the relation-
ship between the formalisms, one must know the relation-
ship between their metric perturbations hnμν and h̆nμν. In
this section, I show explicitly how the metric perturbations
(and their field equations) in the Gralla-Wald approxima-
tion can be obtained from the self-consistent approximation
by expanding the world line.

1. Expansion of functionals of zμ

We are ultimately interested in expanding the metric
perturbations and stress-energy tensor. But first consider
the expansion of a generic tensor-valued functional Aðx; zÞ
of arbitrary rank ðp; qÞ (suppressing indices for generality).
The functionals of interest to us may be written in the form7

7It is not clear whether the perturbations hn≥2μν can be written in
such a simple integral form, but they can be written in a more
complicated, implicit integral form [6], which also allows an
explicit (if more laborious) expansion of the world line.

GAUGE AND MOTION IN PERTURBATION THEORY PHYSICAL REVIEW D 92, 044021 (2015)

044021-11



Aðx; zÞ ¼
Z
γ
Bðx; zðsÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0 _zμ

0
_zν

0
q

ds; ð66Þ

where Bðx; zÞ is a bitensor that behaves as a scalar at zμðsÞ
and as a tensor of rank ðp; qÞ at xμ, and primed indices
indicate evaluation at xμ

0 ¼ zμðsÞ. (See Ref. [10] for
a pedagogical introduction to bitensors.) Concrete
examples of such a quantity are Tμν

1 ðx; zÞ and h1μνðx; zÞ,
shown below in Eqs. (76) and (81). We can also write the
functional as Aðx; zÞ ¼ R

γ
~Bðx; zðsÞÞds, where ~Bðx; zÞ ≔

Bðx; zðsÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0 _zμ

0
_zν

0
q

is a tensor at xμ and a scalar density

with respect to reparametrizations of γ.
To facilitate the expansion of A, I introduce a Lie

derivative £ that acts on the functional dependence on zμ:

£ξAðx; zÞ ≔
d
dλ

Aðx; zþ λξÞjλ¼0 ð67aÞ

¼
Z
γ
Lξ0 ~Bðx; zðsÞÞds: ð67bÞ

This Lie derivative is closely related to the ordinary one that
acts on the dependence on xμ. L drags fields along a flow of
the field point xμ relative to the world line zμ; £ drags fields
along a flow of the world line zμ relative to the field
point xμ.
An expansion of Aðx; zðs; ϵÞÞ in the limit ϵ → 0 is an

expansion along a flow of increasing ϵ in S. We can write
this in terms of £ as

Aðx; zϵÞ ¼
X
n≥0

ϵnδnAðx; z0Þ; ð68Þ

where

δnAðx; z0Þ ≔
1

n!
£nvAðx; z0Þ: ð69Þ

With simple manipulations, one may reexpress this in terms
of zμ1 and zμ2N to find

δAðx; z0Þ ¼
Z
γ0

z̆μ
0

1 ∇μ0 ~Bðx; z0Þds; ð70Þ

δ2Aðx; z0Þ ¼
Z
γ0

�
z̆μ

0
2N∇μ0 ~Bðx; z0Þ

þ 1

2
z̆μ

0
1 z̆

ν0
1∇μ0∇ν0 ~Bðx; z0Þ

�
ds; ð71Þ

where primed indices now refer to the point zμ0ðsÞ.
We can also go one step further and express δAðx; z0Þ

and δ2Aðx; z0Þ in terms of the reparametrization-invariant
quantities zμ1⊥ and zμ2‡. After expressing z

μ
1 and z

μ
2N in terms

of these quantities [using Eq. (51)] and writing

~Bðx; zÞ ¼ Bðx; zðsÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0 _zμ

0
_zν

0
q

, one may eliminate all

parametrization-dependent content by repeatedly applying
Eq. (B1) and integrating by parts, utilizing the Ricci
identity, and appealing to the equation of motion (60).
The result is

δAðx; z0Þ ¼
Z
γ0

z̆μ
0

1⊥∇μ0Bðx; z0Þdτ0; ð72Þ

δ2Aðx; z0Þ ¼
Z
γ0

�
z̆μ

0
2‡∇μ0Bðx; z0Þ þ

1

2
zμ

0
1⊥F̆1μ0Bðx; z0Þ

þ 1

2
z̆μ

0
1⊥z̆ν

0
1⊥∇μ0∇ν0Bðx; z0Þ

�
dτ0: ð73Þ

Here I have expressed the final results in terms of the
parameter τ0 on γ0, but as discussed in the previous section,
this choice of parameter on γ0 represents no loss of
generality. We see explicitly in these results that z̆μ1⊥ and
z̆μ2‡ are the only required measures of first- and second-
order deviation.

2. Stress-energy tensor

We are interested in applying the above expansion to two
quantities: the metric perturbation and the stress-energy
tensor. Let us first consider the stress-energy.
According to Eq. (68), the nth-order stress-energy can be

expanded as

ϵnTμν
n ðx; zÞ ¼ ϵnTμν

n ðx; z0Þ þ ϵnþ1δTμν
n ðx; z0; z̆1Þ

þOðϵnþ2Þ: ð74Þ

and so the first- and second-order stress-energies in the
Gralla-Wald formalism are

T̆μν
1 ðx; z0Þ ¼ Tμν

1 ðx; z0Þ; ð75aÞ

T̆μν
2 ðx; z0; δm; z̆1Þ ¼ Tμν

2 ðx; z0; δmÞ
þ δTμν

1 ðx; z0; z̆1Þ; ð75bÞ

where Tμν
1 and Tμν

2 are given by Eq. (14).
The unknown term at this stage is δTμν

1 ðx; z0; z̆1Þ. To
calculate it, I first write Tμν

1 ðx; zÞ in the reparametrization-
invariant form [10]

Tαβ
1 ðx; zÞ ¼ m

Z
γ
gαα0 ðx; zÞgββ0 ðx; zÞ_zα

0
_zβ

0

×
δðx; zÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0 ðzÞ_zμ0 _zν0

q ; ð76Þ

where gαα0 ðx; zÞ is a parallel propagator from the source
point xμ

0 ¼ zμðs; ϵÞ to the field point xμ. One may then
derive δTμν

1 from Eq. (72). Simplifying the result using
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Eq. (B1) and the distributional identities ∇μ0δðx; zÞ ¼
−gμμ0∇μδðx; zÞ and gαα0;β0δðx; zÞ ¼ 0 [10], one finds

δTαβ
1 ¼ m

Z
γ0

gαα0g
β
β0 ½2uðα

0
0 ŭβ

0Þ
1⊥δðx; z0Þ

− uα
0

0 u
β0
0 z̆

γ0
1⊥g

γ
γ0∇γδðx; z0Þ�dτ0: ð77Þ

We can now plainly identify the content of δTαβ
1 . It

contains two types of terms: a ∇μδ term and a δ term. The
first simply represents the displacement of the point particle
mass away from γ0. The second is proportional to

muðα
0

0 ŭβ
0Þ

1⊥; under the usual interpretation of components
of the stress-energy tensor, this represents the particle’s
density of linear momentum in the direction perpendicular
to γ0, arising from the fact that the particle is not just
displaced from γ0, but moving away from it.

3. Expansion of the first-order field

Next I turn to the expansion of the metric perturbation.
In analogy with Eq. (75), we have

h̆1μνðx; z0Þ ¼ h1μνðx; z0Þ; ð78aÞ

h̆2μνðx; z0; z̆1Þ ¼ h2μνðx; z0Þ þ δh1μνðx; z0; z̆1Þ: ð78bÞ

Likewise, the singular and regular fields are expanded as

h̆S=R1μν ¼ hS=R1μν ðx; z0Þ; ð79aÞ

h̆S=R2μν ¼ hS=R2μν ðx; z0Þ þ δhS=R1μν ðx; z0; z̆1Þ: ð79bÞ

As in the case of the stress-energy, the unknown terms here
are the δ terms. I express them concretely by assuming
the existence of a Green’s function for Eq. (15). Given a
Green’s function satisfying8

EμνρσGρσμ0ν0 ¼ 8π

�
gμðμ0g

ν
ν0Þ −

1

2
gμνgμ0ν0

�
δðx; x0Þ ð80Þ

and some boundary conditions, the first-order self-consistent
field satisfying the same boundary conditions is

h1μνðx; zÞ ¼
Z

Gμνμ0ν0 ðx; x0ÞTμ0ν0
1 ðx0; zÞdV 0 ð81aÞ

¼ m
Z
γ
Gμνμ0ν0

_zμ
0
_zν

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gα0β0 _zα

0
_zβ

0
q ds: ð81bÞ

Applying Eq. (72) and simplifying using Eq. (B1), we get

δh1μνðx; z0; z̆1Þ ¼ m
Z
γ0

ð2Gμνμ0ν0u
ðμ0
0 uν

0Þ
1⊥

þGμνμ0ν0;γ0u
μ0
0 u

ν0
0 z̆

γ0
1⊥Þdτ0: ð82Þ

Our interpretation of the two terms in δTμν
1 informs our

interpretation of this result: the first term in δh1μν is the
contribution to the metric from the particle’s momentum
directed away from γ0, while the second term is the
contribution from the displacement of the particle away
from γ0. In the Lorenz gauge, one can use standard local
expansions of the Green’s function [10] to establish this
more directly. Although I omit the details here, the result of
that calculation [11] is that the Gμνμ0ν0;γ0 term in Eq. (82)
provides the explicit z̆μ1 term in the local expression (27b),
while the Gμνμ0ν0 term provides the z̆μ1-modfication to ˘δmμν

mentioned below that equation.

4. Field equations

Finally, we can now immediately obtain the field
equations (28)–(30) of the Gralla-Wald approximation by
substituting the expansions of hnμν and Tμν

n into the field
equations (15), (16), and (11)–(12) of the self-consistent
approximation and regrouping the results according to
powers of ϵ.
The analysis in this section has accomplished two things.

First, it has shown explicitly how to implement an
expansion of the world line in the equations of motion
and field equations, and the relationship between the
solutions. Second, it has shown how to do this in a way
that is covariant and reparametrization invariant. Since the
quantities δTμν

1 and δhμν1 depend only on the perpendicular
deviation z̆μ1⊥, there is no influence from the arbitrarily
specified parallel deviation.
In the explicit expansions I have shown, I have not used

the second variation (71) of any quantity; they would first
become involved via terms δ2T1

μν and δ2h1μν in the third-
order Gralla-Wald approximation. However, Eq. (73)
shows that these quantities will again depend only on
the covariant and reparametrization-invariant content of the
second deviation. More generally, it should be the case that
at any order, from the equation of motion for zμ, one can
obtain equations of motion for covariant, parametrization-
invariant deviation vectors on zμ0, and one can then write the
expansion (68) in terms of those vectors.
Perhaps most importantly, as I mentioned in the intro-

duction, these tools and results are not confined to relating
the self-consistent to the Gralla-Wald approximation. They
can be utilized in any scenario in which one wishes to
expand the self-consistent world line around some neigh-
boring (possibly nongeodesic) world line.

8To make the index structure clear, I write Eμν
1 ½G� as

EμνρσGρσμ0ν0 .
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IV. GAUGE TRANSFORMATIONS IN THE
SELF-CONSISTENT AND GRALLA-WALD

APPROXIMATIONS

In the preceding sections, I have elucidated the two
approximations’ treatments of perturbative motion and
the relation between those treatments. I now describe the
effects of smooth gauge transformations within these
approximations. As we shall see, the differing treatments
of the world line entail differing treatments of gauge
transformations.
Section IVA opens the discussion with a review of gauge

freedom in perturbation theory, following Refs. [30–32].
The material is standard, but it establishes my notation and
reminds the reader of the basics, which are well known
at linear order but less familiar at nonlinear orders.
Sections IV B and IV C then focus in turn on the self-
consistent and Gralla-Wald approximations.
In Sec. IV D I discuss some general issues related to the

freedom of choosing what to hold fixed in the limit ϵ → 0,
which is distinct from the usual gauge freedom discussed in
Secs. IVA–IV C.

A. Review of gauge freedom in perturbation theory

1. Active view

In perturbation theory, we consider a family of metrics
gμνðx; ϵÞ, or simply g in the absence of a chart. (It will be
convenient in this section to adopt index-free notation for
tensors.) The family of metrics lives on a family of
manifolds Mϵ, and a given choice of gauge refers to an
identification map ϕX

ϵ ∶M0 → Mϵ. The identification map
induces a flow through the family down to the base
manifold M0 where the background metric g ≔ g0 lives.
Call the generator of this flow X ≔ dϕX

ϵ
dϵ . We wish to

approximate a tensor A at a point q ¼ ϕX
ϵ ðpÞ ∈ Mϵ in the

limit of small ϵ. In ordinary (i.e., not singular [18,33,34])
perturbation theory, A is well approximated by a Taylor
expansion around its value at ϵ ¼ 0, given by

ðϕX �
ϵ AÞðpÞ ¼ ðeϵLXAÞðpÞ ¼

X
n≥0

ϵn

n!
ðLn

XAÞðpÞ; ð83Þ

where p ∈ M0. This expansion depends on the choice of
gauge X, and we define the nth-order perturbation AX

n to be

AX
n ðpÞ ≔

1

n!
ðLn

XAÞðpÞ: ð84Þ

Now say we work in a different gauge. This corresponds
to a different choice of identification map ϕY

ϵ ∶M0 → Mϵ

or flow generator Y ≔ dϕY
ϵ

dϵ . The approximation of the tensor
A in terms of tensors at the point p ∈ M0 is now given by

ðϕY �
ϵ AÞðpÞ ¼ ðeϵLYAÞðpÞ; ð85Þ

and the nth-order perturbation is

AY
nðpÞ ≔

1

n!
ðLn

YAÞðpÞ: ð86Þ

The two expansions (83) and (85) approximate the
tensor’s value at two different points in Mϵ, q ¼ ϕX

ϵ ðpÞ
and q0 ¼ ϕY

ϵ ðpÞ, but in both cases the terms AX
n and AY

n are
evaluated at the same point p in M0; the situation is
illustrated in Fig. 1. We now ask how the quantities AX

n and
AY
n differ when evaluated at this point p. Their difference is

ΔAnðpÞ ¼
1

n!
ðLn

YAÞðpÞ −
1

n!
ðLn

XAÞðpÞ: ð87Þ

The first- and second-order terms are easily expressed in
the usual form

ΔA1 ¼ Lξ1A0; ð88aÞ

ΔA2 ¼ Lξ2A0 þ
1

2
L2
ξ1
A0 þ Lξ1A1; ð88bÞ

where ξ1 ≔ Y − X and ξ2 ≔ 1
2
½X; Y� are the usual gauge

vectors. Higher-order terms can be easily worked out.
For compactness, in later sections I will adopt a more

familiar notation, writing the gauge transformation as
An → A0

n ¼ An þ ΔAn, where the primed tensor refers to
the Y gauge and the unprimed to the X gauge.

2. Passive view

The notion of gauge described in the previous section
does not utilize coordinates. However, gauge transforma-
tions are sometimes more conveniently thought of as small
coordinate transformations.

FIG. 1. Relationship between points in the perturbed and
background spacetimes in two different gauges. In the two
gauges X and Y, the point p ∈ M0 is identified with the two
different points q and q0 in Mϵ, respectively. Likewise, a given
point q in Mϵ is identified with the two different points p and p0

in M0. Very roughly speaking, the transformation generators ξμn
point from q to q0, and their opposites, −ξνn, from p to p0.
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Let us introduce a coordinate system xμ on M0 and use
the identification maps ϕX

ϵ and ϕY
ϵ to carry the coordinates

up toMϵ. In gauge X, keep the name xμ for the coordinates
on Mϵ, such that the point q ¼ ϕX

ϵ ðpÞ has a coordinate
label xμðqÞ ¼ xμðpÞ. In gauge Y, use the name x0μ for the
coordinates on Mϵ, such that the point q0 ¼ ϕY

ϵ has the
coordinate label x0μðq0Þ ¼ xμðpÞ. The two choices of gauge
then become expansions at fixed coordinate values xμ and
x0μ, respectively. So we may do away with the differing
identification maps, adopt a fixed identification (say, X),
and think of the gauge transformation as the coordinate
transformation xμ → x0μ. For small ϵ, this is a near-identity
transformation. To figure out its small-ϵ expansion, first
consider the differing coordinate values at the points q
and q0 in the chart xμ. The chart consists of four scalar
fields, to which we can apply the general expansion (85)
to find

xμðq0Þ ¼ xμðqÞ þ ϵξμ1ðxðqÞÞ

þ ϵ2
�
ξμ2ðxðqÞÞ þ

1

2
ξν1ðxðqÞÞ∂νξ

μ
2ðxðqÞÞ

�
þOðϵ3Þ;

ð89Þ
where I have expressed Y derivatives as ξ derivatives using
LXxμ ¼ 0, and I have expressed the components on the
right-hand side as functions of xμðqÞ using the fact that
xμðpÞ ¼ xμðqÞ. Now, rather than an active diffeomorphism
on Mϵ, let us consider this as the passive change in chart
xμðqÞ ↦ x0μðxðqÞÞ. From the definitions above, we have
x0μðq0Þ ¼ xμðqÞ. Rewriting Eq. (89) as an equation for
xμðqÞ, we then arrive at

x0μðq0Þ ¼ xμðq0Þ− ϵξμ1ðxðq0ÞÞ

− ϵ2
�
ξμ2ðxðq0ÞÞ−

1

2
ξν1ðxðq0ÞÞ∂νξ

μ
1ðxðq0ÞÞ

�
þOðϵ3Þ:

ð90Þ

One may now use this transformation to obtain gauge
transformation rules. For example, the components of g
transform as

g0μνðx0; ϵÞ ¼
∂xα
∂x0μ

∂xβ
∂x0ν gαβðxðx

0Þ; ϵÞ ð91aÞ

¼ gμνðx0; ϵÞ þ Lξgμνðx0; ϵÞ þ
1

2
L2
ξgμνðx0; ϵÞ

þOðϵ3Þ; ð91bÞ
where ξμ ¼ ϵξμ1 þ ϵ2ξμ2 þOðϵ3Þ. We see that in general,
the tensor transformation is an expansion along the flow
generated by ξμ. Recall that we are now using a single
identification map, say ϕX

ϵ , and with that identification,
component values of g are identical to component values of
ðϕϵ

�gÞ. Also note that Eq. (91) applies even if gμνðx0; ϵÞ is

not expanded for small ϵ. But if it is so expanded, then the
passive transformation law (91) agrees with Eq. (88).

B. Gauge in the self-consistent approximation

I now move to the self-consistent expansion. This is not
an ordinary expansion of the sort described by Eq. (83). To
understand what sort it is, consider its form in a chart xμ. In
a gauge in which no logarithms of ϵ appear in the metric, it
is plain to see from Eq. (3) that the self-consistent
expansion has the form of a Taylor expansion at not only
fixed coordinate values, but also at a fixed coordinate
description of the world line, zμ ¼ xμðγÞ. Hence, if we
imagine working with the expansion (3) prior to imposing
the gauge condition, leaving γϵ freely specifiable, then
when we take the limit ϵ → 0 and move down through our
family of spacetimes, we shrink the object toward zero size
and mass on the world line γXϵ ≔ ðϕX

ϵ Þ−1ðγÞ in M0.
After we impose the gauge condition and fix γϵ’s

dependence on ϵ, the situation becomes more complex.
In this case, the limit ϵ → 0 takes γϵ to γ0, and it may seem
that we can no longer imagine the “fixed zμ” limit.
However, this is slightly misleading. The essential aspect
of the approximation is that for a given value of ϵ, the
object’s world line, as identified by the location of the
metric’s ∼1=rn behavior, is at the same coordinate position
in M0 as in Mϵ.

9 What is happening here is that we map
from Mϵ to M0 holding γϵ fixed, shrinking the object to
zero size on γXϵ and obtaining the perturbations hnμνðx; zÞ
that live onM0. By enforcing the gauge condition, we then
ensure that those fields on M0 provide an asymptotic
solution to the Einstein equation.
This setup is illustrated in Fig. 2, and it remains true even

in the case that logarithms appear.
Under a gauge transformation, we not only change the

coordinates xμ → x0μ, but also the coordinate description of
the world line, zμ → z0μ, and that change must be accounted
for in the transformation law for the perturbations hnμν. In
coordinate-independent language, we say that in the two
gauges we shrink the object toward zero size and mass on
two different world lines in M0: γXϵ ≔ ðϕX

ϵ Þ−1ðγÞ in gauge
X; γYϵ ≔ ðϕY

ϵ Þ−1ðγÞ in gauge Y. Figure 3 shows the
relationship between these two world lines.
In the course of this section, I use these ideas to work

through transformation laws for the world line, the metric
perturbations, the singular and regular fields, and finally,
tensors that live only on theworld line, such as the self-force.

1. Transformation of the world line

The transformation of the world line, γXϵ → γYϵ , is an
immediate consequence of the coordinate transformation

9Strictly speaking, γε lies in ~Mε, the manifold of the effective
spacetime ð~gμν; ~MεÞ. This technicality is required because Mε
may not be be diffeomorphic to M0 in a region including γ0.

GAUGE AND MOTION IN PERTURBATION THEORY PHYSICAL REVIEW D 92, 044021 (2015)

044021-15



law (90). Under a gauge transformation, the coordinates
zμðs; ϵÞ ¼ xμðγϵðsÞÞ become

z0μðs; ϵÞ ¼ zμðs; ϵÞ − ϵξμ1ðzÞ

− ϵ2
�
ξμ2ðzÞ −

1

2
ξν1ðzÞ∂νξ

μ
1ðzÞ

�
þOðϵ3Þ; ð92Þ

where functions of zμ are evaluated at zμðsÞ.

Since it is easy to get lost in the sign conventions, it is
worth verifying we have the correct signs. Going back to
Fig. 1 and Eq. (89), we see that the transformation from q to
q0 maps to the left in the figure, in the direction of
Y − X ¼ ξ1. This is the direction of the transformation
between the two points inMϵ. Now look instead at how the
point q is mapped to two different points in M0: p ¼
ðϕX

ϵ Þ−1ðqÞ and p0 ¼ ðϕY
ϵ Þ−1ðqÞ. These two points are

related by a map to the right, in the direction of
X − Y ¼ −ξ1. Comparing the appearance of p and p0 in
Fig. 1 to that of γXϵ and γYϵ in Fig. 3, we see that we have the
correct (minus) sign in front of ξμ1 in Eq. (92).

2. Transformation of the metric perturbations

Now we may consider the transformation of the metric
perturbations. As described above, the expansions in the
two gauges are performed by writing gμν in the coordinates
xμ or x0μ as gμνðx; ϵ; zÞ or g0μνðx0; ϵ; z0Þ and then expanding
for small ϵ at fixed xμ and zμ or x0μ and z0μ. In terms of
hμν ≔ gμν − gμν and h0μν ≔ g0μν − gμν, the two expansions
read

hμνðx; ϵ; zÞ ¼
X

ϵnhnμνðx; zÞ; ð93Þ

h0μνðx0; ϵ; z0Þ ¼
X

ϵnh0nμνðx0; z0Þ: ð94Þ

Transforming between the two coordinate systems, we find
that gμνðx; ϵ; zÞ and g0μνðx0; ϵ; z0Þ are related by

g0μνðx0; ϵ; z0Þ ¼
∂xα
∂x0μ

∂xβ
∂x0ν gαβðxðx

0Þ; ϵ; zðz0ÞÞ; ð95aÞ

¼ gμνðx0;ϵ;zðz0ÞÞþLξgμνðx0;ϵ;zðz0ÞÞ

þ1

2
L2
ξgμνðx0;ϵ;zðz0ÞÞþOðϵ3Þ: ð95bÞ

Now expanding gμνðx0; ϵ; zðz0ÞÞ, we get

h0μνðx0; ϵÞ ¼ ϵ½h1μνðx0; zÞ þ Lξ1gμνðx0Þ� þ ϵ2
�
h2μνðx0; zÞ

þ Lξ2gμνðx0Þ þ Lξ1h
1
μνðx0; zÞ

þ 1

2
L2
ξ1
gμνðx0Þ

�
þOðϵ3Þ: ð96Þ

In Eq. (96) I have not yet expanded zμðz0Þ around zμ ¼ z0μ.
After we perform that expansion, the perturbation reads

h0μνðx0; ϵÞ ¼ ϵ½h1μνðx0; z0Þ þ Lξ1gμνðx0Þ� þ ϵ2
�
h2μνðx0; z0Þ

þ Lξ2gμνðx0Þ þ ðLξ1 þ £ξ1Þh1μνðx0; z0Þ

þ 1

2
L2
ξ1
gμνðx0Þ

�
þOðϵ3Þ; ð97Þ

FIG. 2. Gralla-Wald and self-consistent limits, shown super-
imposed. A family of spacetimes is stacked vertically, with ϵ
running upwards. The top surface is the specific spacetime we
seek to approximate, with a specific value of ϵ. In that spacetime,
the small object is shown in black. In the limit toward ϵ → 0, this
object shrinks toward zero size, and the strong curvature due to
the object likewise decreases toward zero. The Gralla-Wald
approximation shrinks the object down to a background geodesic
γ0. The self-consistent approximation shrinks the object down to
a world line γ that is accelerated in the background.

FIG. 3. World lines in different gauges in the self-consistent and
Gralla-Wald pictures. The family of perturbed world lines fγϵgϵ
generate a surface that runs down through the family of mani-
folds, terminating at the zeroth-order world line γ0; when this
surface is mapped down to M0 using a particular identification
map, it becomes the surface S of Sec. III A 2. In gauge X, γϵ is
identified with γXϵ in M0; in gauge Y, with γYϵ . The two gauge-
related world lines in M0 are connected by a surface generated
by the vector field ⃖ξμ ¼ −ϵξμ1 − ϵ2ξμ2 þOðϵ3Þ. The self-
consistent approximation works directly with γXϵ or γYϵ . The
Gralla-Wald approximation uses expansions of those world lines
around γ0.
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where £ξ1h
1
μνðx0; z0Þ ¼ δh1μνðx0; z0; ξÞ uses the Lie derivative

introduced in Sec. III B.
The two Lie derivatives in ðLξ1 þ £ξ1Þh1μνðx0; z0Þ have an

important interpretation. Lξ1 moves points relative to the
world line, and £ξ1 moves the world line relative to the
points; hence, their sum has no net effect on the position of
points relative to the world line. More concretely, the term
Lξ1h

1
μν introduces a mass dipole moment into the metric,

£ξ1h
1
μν introduces an equal but opposite moment, and in the

end h0μν contains no mass dipole moment when written as a
functional of the transformed world line z0μ. The fact that
the dipole moment vanishes relative to z0μ can be seen
explicitly by acting with ðLξ1 þ £ξ1Þ on the leading term in

h1μν, which is
2mδμν

r ∼ 2mδμν
jxi−zij: in Lξ1

2mδμν
r the derivative moves

xi relative to zi, contributing a mass dipole term −2mξi
1
ni

r2 δμν

with moment Mi ¼ −mξi1, while in £ξ1
2mδμν

r the derivative
moves zi, counteracting the effect of Lξ1 . Note that though
their effects on the mass dipole moment cancel in this way,
the two derivatives do not precisely cancel one another,
because h1μν has a different tensorial character at x than at z.
We can infer the net action of the derivatives from the
result (D2).
Equation (97) provides the transformation hμν → h0μν of

the total perturbation. Comparing it to Eq. (94), we read off
the transformation hnμν → h0nμν of the coefficients of ϵn in the
two expansions (93) and (94):

h01μνðx0; z0Þ ¼ h1μνðx0; z0Þ þ Lξ1gμνðx0Þ; ð98aÞ
h02μνðx0; z0Þ ¼ h2μνðx0; z0Þ þ ðLξ1 þ £ξ1Þh1μνðx0; z0Þ

þ Lξ2gμνðx0Þ þ
1

2
L2
ξ1
gμνðx0Þ: ð98bÞ

Note what might be the most essential characteristic of
these transformation laws: the metric perturbations in any
given gauge always diverge on the center-of-mass world
line in that particular gauge. So hnμν½z� diverges on zμ, but
h0nμν½z0� diverges on z0μ.
With little additional effort, we could extend the analysis

in this section to allow functional gauge generators ξμnðx; zÞ.
Such transformations are necessary (and natural) because
ξμn is often required to transform away from a specific
metric perturbation hμνðx; zÞ, making ξμn depend on
hμνðx; zÞ and therefore on zμ. However, to avoid over-
burdening the discussion, I leave this extension to the
reader.

3. Transformation of the singular and regular fields

Though we derived the transformation laws for hnμν with
relative ease, we must take care in doing the same for the
singular and regular fields hSnμν and hRnμν . Suppose that in the
X gauge the regular field satisfies the “nice” properties that
~gμν is a vacuummetric and zμ is a geodesic of that metric. In

principle, after transforming to the Y gauge, we may split
h0nμν into any singular and regular piece we like. However,
clearly we would like to do so in a way that preserves the
nice properties of the split, such that ~g0μν ¼ gμν þ h0Rμν is a
vacuum metric and z0μ is a geodesic of that metric.
Appropriate transformation laws can be found by recall-

ing that for a smooth metric and geodesic, the geodesic
equation and vacuum Einstein equation are invariant under
a generic smooth coordinate transformation. In our present
context, the world line automatically transforms according
to the standard transformation law. It follows that if we let
the effective metric also transform according to the ordinary
coordinate-transformation law, with ~g0μνðx0; ϵ; z0Þ ¼
∂xα
∂x0μ

∂xβ
∂x0ν ~gαβðxðx0Þ; ϵ; zðz0ÞÞ, then we preserve the nice proper-

ties of the regular field. Applying this rule, we have

h0R1μν ðx0; z0Þ ¼ hR1μν ðx0; z0Þ þ Lξ1gμνðx0Þ; ð99aÞ

h0R2μν ðx0; z0Þ ¼ hR2μν ðx0; z0Þ þ ðLξ1 þ £ξ1ÞhR1μν ðx0; z0Þ

þ Lξ2gμνðx0Þ þ
1

2
L2
ξ1
gμνðx0Þ: ð99bÞ

At the same time, the perturbations h0nμν ¼ h0Rnμν þ h0Snμν

must satisfy Eqs. (98). This forces the singular field to
transform as

h0S1μν ðx0; z0Þ ¼ hS1μνðx0; z0Þ; ð100aÞ

h0S2μν ðx0; z0Þ ¼ hS2μνðx0; z0Þ þ ðLξ1 þ £ξ1ÞhS1μνðx0; z0Þ: ð100bÞ

To reiterate, with these rules, the effective metric in all
smoothly related gauges is always a smooth solution to the
vacuum Einstein equation, and the center-of-mass world
line is always a geodesic of that effective metric. Other
transformation laws could also do the trick, but these are the
most natural.

4. Governing equations in different gauges

By design, the transformation laws (92), (99), and (100)
ensure that the governing equations of the self-consistent
approximation are invariant under a smooth gauge
transformation.
By this I mean, first and foremost, that in all smoothly

related gauges, the regular field satisfies the vacuum
equation

δRμν½ϵhR1 þ ϵ2hR2� þ ϵ2δ2Rμν½hR1; hR1� ¼ Oðϵ3Þ ð101Þ

and the world line satisfies the geodesic equation (42).
These facts are obvious from the transformation laws
for hRnμν .
Even beyond the regular field, we can establish that the

equations of the self-consistent approximation have a
certain invariant form. For example, we can work out
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the distributional equation satisfied by the full field.
Starting from Eq. (20), using Eq. (98) to express hnμν½z�
in terms of h0nμν½z0�, appealing to Eqs. (C5)–(C7), and
expanding T̄n

μν½z� around T̄n
μν½z0�, we arrive at

δRμν½ϵh01 þ ϵ2h02� þ ϵ2δ2Rμν½h01; h01�
¼ 8πϵT̄1

μν½z0� þ 8πϵ2T̄2
μν½z0�

þ 8πϵ2ðLξ1 þ £ξ1ÞT̄1
μν½z0� þOðϵ3Þ: ð102Þ

This is simply Eq. (20) with a transformed distributional
source,

T̄ 01
μν½z0� ¼ T̄1

μν½z0�; ð103aÞ

T̄ 02
μν½z0� ¼ T̄2

μν½z0� þ ϵ2ðLξ1 þ £ξ1ÞT̄1
μν½z0�: ð103bÞ

Therefore the field equation (20) is satisfied in all gauges,
although the source must be appropriately transformed
between them. This change in the stress-energy corre-
sponds precisely to the transformation of the singular field
in Eq. (100). It is examined in detail in Appendix D.
So far we have only seen that the total field equations

Rμν½gþ hR� ¼ 0 and Rμν½gþ h� ¼ P
nϵ

nT̄n
μν hold true in

any gauge (minding that T̄n
μν must be transformed along

with hnμν). However, we may like a stronger result: that the
individual fields h0Rnμν ½z0� and h0nμν½z0� satisfy the separate field
equations (11), (15), and (17). This is nontrivial because we
are not working with ordinary Taylor series. In Sec. II A 1, I
defined the functionals hnμν as the solutions to Eqs. (7),
enforcing a particular division of hμν. In writing down
Eq. (98) for h0nμν½z0�, I have adopted another particular
division of h0μν in Eq. (97). A priori, these two divisions
could disagree; ϵh01μν½z0� could differ by oðϵÞ from a solution
to an equation of the form E01

μν½ϵh01� ¼ 8πϵT̄1
μν½z0�, for

example.
To see that Eqs. (11), (15), and (17) do hold in all gauges,

return to the idea that the self-consistent approximation
corresponds to a Taylor series at fixed zμ. In accord with
that idea, write the operators En

μν in any gauge as

E1
μν½h1½z�� ¼

d
dϵ

Rμν½gþ ϵh1½z� þOðϵ2Þ�jϵ¼0; ð104aÞ

E2
μν½h2½z�� ¼

�
1

2

d2

dϵ2
Rμν½gþ ϵh1½z� þ ϵ2h2½z� þOðϵ3Þ�

− δ2Rμν½h1½z�; h1½z��
	����

ϵ¼0

; ð104bÞ

where before evaluating the derivatives, the expansion (4)
of the equation of motion is substituted, and the evaluation
at ϵ ¼ 0 is performed while holding zμ and _zμ fixed.
With these definitions, let us first establish the desired

result for h01μν½z0�:

E01
μν½h01½z0�� ¼ 8πT̄1

μν½z0�: ð105Þ

The left-hand side may be rewritten as

E01
μν½h01½z0�� ¼

d
dϵ

δRμν½ϵh01½z0��jϵ¼0 ð106aÞ

¼ d
dϵ

δRμν½ϵh1½z0��jϵ¼0 ð106bÞ

¼ E1
μν½h1½z0��; ð106cÞ

where the second line is a consequence of δRμν½Lξ1g� ¼ 0.
Equation (105) then follows from E1

μν½h1� ¼ 8πT̄1
μν.

The desired result for h02μν½z0�,

E02
μν½h02½z0�� þ δ2Rμν½h01½z0�; h01½z0�� ¼ 8πT̄ 02

μν½z0�; ð107Þ

follows from Eq. (104b) in the same manner [repeating the
operations that led to Eq. (102)]. And we may likewise
obtain the desired equations for h0Rnμν ½z0�.
Let me summarize: If the approximation scheme

described in Sec. II A 1 is applied in two slightly different
coordinate systems related by an equation of the form (90),
then the terms in the two resulting approximations are
related according to Eqs. (98), (99), and (100). In all cases,
the center-of-mass world line is a geodesic of the effective
metric, and the effective metric is a vacuum metric.

5. Transformation of the self-force
(and other fields on the world line)

In the above sections, I described the effect of a gauge
transformation on quantities evaluated at a given point in
M0. However, in self-force theory, we are often interested
in something quite different: the effect of a gauge trans-
formation on quantities evaluated specifically on the world
line. This differs from the previous case because the
position of the world line itself changes under the
transformation.
The correct treatment of this situation can be deduced

from Fig. 3. Suppose that in gauge X, we calculate some
tensor A ¼ A0 þ ϵA1 þ � � � on the world line γXϵ , and in
gauge Y we calculate the same tensor as A0 ¼A0þ ϵA0

1þ���
on the world line γYϵ . How are the results related? The
world line γXϵ is mapped to γYϵ via the transformation
ψϵ ≔ ðϕY

ϵ Þ−1∘ϕX
ϵ . We can find the tangent field to this map,

call it ⃖ξμ, by writing eLξ⃖ ¼ψ�
ϵ ¼ðϕX

ϵ Þ�ðϕY
ϵ Þ−1� ¼ eϵLXe−ϵLY .

Expanding the exponentials, we find

⃖ξμ ¼ −ϵξμ1 − ϵ2ξμ2 þOðϵ3Þ: ð108Þ

We can then expand tensors at γYϵ around their values at γXϵ
using ψ�

ϵ ¼ eL⃖ξ . Hence, the difference between the expan-
sions in the two gauges on the two world lines is
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ΔA ¼ ψ�
ϵA0 − A: ð109Þ

Here we find the change in the result not only due to the
change of gauge, A → A0, but also due to the change in
evaluation point, p ∈ γXϵ → p0 ¼ ψϵðpÞ ∈ γYϵ . The com-
parison is made at the original point on γXϵ , and that is
where the tensor ΔA is defined. I use a slanted Δ to
distinguish this transformation from the ordinary trans-
formation A → A0.
Equation (109) becomes clearer when applied to a

particular case. To demonstrate its use, I now work out
the gauge transformation of the equation of motion
aμ ¼ Fμ.
On the left-hand side, we have

Δaμ ¼ −ϵLξ1a
μ − ϵ2

�
Lξ2a

μ −
1

2
L2
ξ1
aμ
�
þOðϵ3Þ: ð110Þ

On the right-hand side, we have

ΔFμ ¼ ϵΔFμ
1 þ ϵ2½ΔFμ

2 − Lξ1ðFμ
1 þ ΔFμ

1Þ� þOðϵ3Þ:
ð111Þ

To evaluate these expressions, I return to the type of
calculations performed in Sec. III A 2. In that section, I took
Lie derivatives of the self-accelerated equation of motion to
expand it around its value on a background geodesic. Now I
expand its value on one self-accelerated world line around
its value on another self-accelerated world line, with the
two world lines related by a gauge transformation. The role
of the surface S in Sec. III A 2 is now played by the shaded
surface connecting γXϵ to γYϵ in Fig. 3, and the role of the
vector field vμ is now played by ⃖ξμ. However, the situations
are not quite identical, partly because the acceleration does
not vanish on either world line, but more importantly
because we cannot easily choose an arbitrary parameter on
γYϵ . If we parametrize γXϵ with proper time, call it τX, then
the map ψϵðγϵðτXÞÞ induces a natural parameter sðτXÞ on
γYϵ , defined via z0μðsðτXÞÞ ¼ xμðψϵðγϵðτXÞÞÞ.
As in Sec. III A 2, I rewrite the acceleration on γYϵ in

terms of s,

aμ ¼
�
ds
dτ

�
2

ð̈zμ − κ_zμÞ; ð112Þ

where τ is proper time on γYϵ , and s now refers specifically
to the parameter induced by ψϵ. With this specific param-
eter, just as we had L_zvμ ¼ Lv _zμ ¼ 0, we now have

L⃖ξ _z
μ ¼ L_z

⃖ξμ ¼ 0; ð113Þ

and so

⃖ξν∇ν _zμ ¼ _zν∇ν
⃖ξμ: ð114Þ

If we did not use the naturally induced parameter, these
useful relations would not hold.
Since ⃖ξμ plays precisely the same role as vμ did

previously, we can apply all the results of Sec. B.
Concretely, Eqs. (B2)–(B6) all hold true with the replace-
ment vμ → ⃖ξμ.
With those identities in hand, along with the expressions

for ΔhRnμν , we can go ahead and calculate Δaμ and ΔFμ

according to Eqs. (110) and (111). Since aμ ¼ Fμ, we
necessarily get Δaμ ¼ ΔFμ, and the explicit calculations
bear this out. Either way, one finds the following trans-
formation law for the self-force:

ΔFμ ¼ −ϵðPμ
ν
̈ξν1 þ Rμ

uξ1uÞ

− ϵ2
�
Pμ

νζ̈
ν þ Rμ

uζu þ ξμ1;νð̈ξν1 þ Rν
uξ1uÞ

− 2Rμ
uξ1u

_ξν1uν þ 2Rμ
_ξ1uξ1

þ uμRuξ1u_ξ1

þ 1

2
_Rμ

ξ1uξ1 þ
1

2
uμ _Ruξ1uξ1 −

1

2
Rμ

uξ1ujξ1

− uμð̈ξν1 _ξ1ν þ 4̈ξν1uν _ξ
ρ
1uρÞ − 2 ̈ξμ1 _ξ

ν
1uν þ 2Fμ

1
_ξν1uν

þ Fν
1ðuμ _ξ1ν − ξμ1;νÞ

�
þOðϵ3Þ; ð115Þ

where ζμ ≔ ξμ2 −
1
2
ξν1ξ

μ
1;ν, overdots denote covariant differ-

entiation with respect to τ, and I have used the notation
_Rμ

ξ1uξ1 ≔ Rμ
αβγ;νξ

α
1u

βξγ1u
ν and Rμ

uξ1ujξ1 ≔ Rμ
αβγ;νuαξ

β
1u

γξν1
(for example). The first-order term is precisely the standard
transformation law derived by Barack and Ori [17]. The
second-order term appears here for the first time.
Wecan also apply the transformation law (109) to anyother

quantity of interest on theworld line. For example, applying it
to the regular field evaluated on the world line, we get

ΔhRμν ¼ ϵLξ1gμν þ ϵ2
�
Lξ2gμν −

1

2
L2
ξ1
gμν

�
þOðϵ3Þ:

ð116Þ
Here the ðLξ1 þ £ξ1ÞhR1μν terms inEq. (99b)are removedby the
action ofψ�

ϵ , leaving only a transformation of the background
metric.
As a final observation in this section, I note that one

could choose a gauge in which the “accelerated” world
line in the background is in fact the geodesic γ0. This is
easily seen from Fig. 3: in place of the vector fields X or Y,
simply choose a vector field Z that is tangent to the shaded
surface connecting γ0 to γϵ. This vector field will define an
identification map ϕZ

ϵ satisfying ϕZ
ϵ ðγ0ðsÞÞ ¼ γϵðsÞ. Hence,

from this perspective the deviation of the self-accelerated
world line from the background geodesic is pure gauge.
This will be illustrated more explicitly in the next section.
However, I will argue in Sec. V that such a gauge choice is
unacceptable on the physically interesting domains of size
∼1=ϵ; on such a domain, it forces the metric perturbation to
become large.
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C. Gauge in the Gralla-Wald approximation

I now consider the effect of a gauge transformation in the
Gralla-Wald approximation. My treatment mirrors that of
the previous section. However, since the coefficients h̆nμν in
the Gralla-Wald expansion are independent of ϵ, gauge
transformations require somewhat less care.
Unlike in the self-consistent case, where we imagine the

object shrinking toward zero size on an accelerated world
line in M0, here the object shrinks toward zero size on a
background geodesic γ0, as illustrated in Fig. 2.

1. Transformation of the world line

In the self-consistent case, we had a transformation of the
entire world line zμ. In the Gralla-Wald case, we instead
have transformations of each term z̆μn in the expansion of zμ.
They can be found immediately by expanding Eq. (92) in
powers of ϵ, yielding

z00μðsÞ ¼ zμ0ðsÞ; ð117aÞ

z̆0μ1 ðsÞ ¼ z̆μ1ðsÞ − ξμ1ðz0Þ; ð117bÞ

z̆0μ2 ðsÞ ¼ z̆μ2ðsÞ − ξμ2ðz0Þ þ
1

2
ξν1ðz0Þ∂νξ

μ
1ðz0Þ

− z̆ν1ðsÞ∂νξ
μ
1ðz0Þ; ð117cÞ

where functions of zμ0 are evaluated at zμ0ðsÞ. Note that the
zeroth-order world line is unchanged; the effect of the
transformation is to alter the deviations relative to that
world line.
These results depend on both the background coordinates

and the parametrization of the accelerated world line
zμðs; ϵÞ. We are perhaps more interested in the covariant
and parametrization-invariant quantities z̆μ1⊥ and z̆μ2‡.
Projecting out the parallel components in Eq. (117b),
we get

z̆0μ1⊥ðsÞ ¼ z̆μ1⊥ðsÞ − ξμ1⊥ðz0Þ; ð118Þ

where ξμ1⊥ ≔ Pμ
0νξ

ν
1. Evaluating Eq. (117c) in a normal

coordinate system centered on γ0, we get

z̆0μ2NðsÞ ¼ z̆μ2NðsÞ − ξμ2ðz0Þ þ
1

2
ξν1ðz0Þ∇νξ

μ
1ðz0Þ

− z̆ν1ðsÞ∇νξ
μ
1ðz0Þ: ð119Þ

This result is covariant but parametrization-dependent. We
can next apply Eq. (51) to get z̆0μ2‡ ¼ z̆0μ2N⊥ þ z̆01∥ŭ

0μ
1⊥. When

combined with Eqs. (119) and (117b), this gives us (after
some simplification)

z̆0μ2‡ ¼ z̆μ2‡ − ξμ2⊥ þ Pμ
0ν

�
1

2
ξα1⊥ − z̆α1⊥

�
∇αξ

ν
1⊥: ð120Þ

2. Transformation of the metric perturbations

Now turn to the metric perturbations. Applying the
transformation laws (88), we find

Δh̆1μνðx; z0Þ ¼ Lξ1gμν; ð121aÞ

Δh̆2μνðx; z0Þ ¼ Lξ2gμν þ
1

2
L2
ξ1
gμν þ Lξ1 h̆

1
μνðx; z0Þ: ð121bÞ

All the perturbations h̆0nμν in the new gauge, like all the
perturbations h̆nμν in the old, diverge on the zeroth-order
world line zμ0. This is an essential point of difference from
the self-consistent approximation: In the self-consistent
approximation, a gauge transformation shifts the curve on
which the singular field diverges. In the Gralla-Wald
approximation, the zeroth-order world line, on which the
singular field diverges, is invariant.
Instead of altering the curve on which the fields diverge,

the gauge transformation alters the singularity on that
curve, by altering the functions z̆μn>0 that appear in h̆n>1

μν .
It effects this change in singularity structure by altering the
mass dipole moment. Recall the discussion in Sec. IV B 2,
from which we can infer that the term Lξ1 h̆

1
μν generates a

mass dipole moment −mξi1 relative to the world line on
which h̆1μν diverges, which is z

μ
0. In the self-consistent case,

we began with no mass dipole moment in the unprimed
gauge, and the dipole moment induced by Lξ1 was exactly
cancelled by the action of £ξ1 , leaving us again with no
dipole moment. In the Gralla-Wald case, we instead
generically begin with a mass dipole moment Mμ, and
the gauge transformation alters it by an amount
ΔMμ ¼ −mξμ1⊥.
I remind the reader that the first-order deviation in the

Gralla-Wald approximation is defined as zμ1⊥ ≔ Mμ=m.
Hence, the transformation law ΔMμ ¼ −mξμ1⊥, obtained
from the transformation of the metric perturbation, pre-
cisely reproduces the transformation law (118). In fact, at
any order, the transformation laws for z̆μn>0, as given at first
and second order in Eq. (117), can always be derived
directly from the transformation laws for the metric
perturbations. In principle, one need never appeal to
Eq. (92). This becomes important in the case of trans-
formations that are singular on the world line, which spoils
the application of Eq. (92) but does not prevent the
application of Eq. (121) [5,19,20].

3. Transformation of the singular and regular fields

We must now apportion Eq. (121) into transformation
laws for the singular and regular fields. In exact analogy
with the self-consistent case, we make the natural choice of
transforming the regular field like an ordinary smooth
perturbation, which now means
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Δh̆R1μν ðx; z0Þ ¼ Lξ1gμν; ð122aÞ

Δh̆R2μν ðx; z0Þ ¼ Lξ2gμν þ
1

2
L2
ξ1
gμν þ Lξ1 h̆

R1
μν ðx; z0Þ: ð122bÞ

This leaves the singular field to transform as

Δh̆S1μνðx; z0Þ ¼ 0; ð123aÞ

Δh̆S2μνðx; z0Þ ¼ Lξ1 h̆
S1
μνðx; z0Þ: ð123bÞ

As in the self-consistent case, these laws preserve all the
nice properties of the singular-regular split.

4. Governing equations in alternative gauges

By construction, all the governing equations are invari-
ant: the equations of motion (60) and (64) apply in all
gauges, and in all gauges the regular fields satisfy the
vacuum Einstein equations (29).
As in the self-consistent case, the only thing to be

mindful of is the transformation (123b) of the singular field,
or put another way, the transformation of the stress-energy.
Repeating the analysis that led to Eq. (102), we find that the
field equations (28) for h̆nμν are invariant, but the stress-

energy is altered between gauges. Specifically, ˘̄T 01
μν ¼ ˘̄T1

μν,

and ˘̄T 02
μν ¼ ˘̄T2

μν þ Δ ˘̄T2
μν, where

Δ ˘̄T2
μν ¼ Lξ1

˘̄T1
μν: ð124Þ

An explicit expression for Lξ1
˘̄T1
μν can be derived from one

for Lξ1T
μν
1 , given in Eq. (D1). From that equation, we see

that the Lie derivative both alters δmμν and more notably,
shifts the mass dipole moment by an amount ΔMμ ¼
−mξμ1⊥, in agreement with the discussion above.

5. Transformation of the self-force
(and other fields on γ0)

Working out gauge transformations of fields on the
world line is simultaneously simpler and subtler than it
was in the self-consistent case. I first present the simpler
viewpoint; at the end of the section I turn to the subtle
point.
From the simple viewpoint, transformations of tensors

on γ0 are straightforward for the obvious reason that γ0 is
unmoved by the transformation. Hence, we can use the
same transformation laws for tensors at a point on γ0 as at
any other point in M0.
Let us utilize this perspective in working out the trans-

formation of the self-forces in Eqs. (59b) and (65b). Since
the equations of motion (60) and (64) are valid in any
gauge, we can easily find the transformations of F̆μ

n

by writing those equations in terms of quantities z̆01⊥ ¼
z̆1⊥ þ Δz̆1⊥, z̆02‡ ¼ z̆2‡ þ Δz̆2‡, and F̆0μ

n ¼F̆μ
nþΔF̆μ

n.

Substituting Eqs. (118) and (120) and then solving for
ΔF̆α

n yields

ΔF̆α
1 ¼ −

D2ξα1⊥
dτ20

− Rα
μβνu

μ
0ξ

β
1⊥uν0; ð125Þ

and

ΔF̆α
2 ¼ −

D2ξα2‡
dτ20

− Rα
μβνu

μ
0ξ

β
2‡u

ν
0

− 2Pα
0ρR

ρ
μβνuν0ð_ξμ1⊥z̆β1⊥ þ uμ1⊥ξ

β
1⊥ − _ξμ1⊥ξ

β
1⊥Þ

þ 2Pα
0ρR

ρ
μβν;γðξðμ1⊥uβÞ0 z½ν1⊥uγ�0 þ zðμ1⊥u

βÞ
0 ξ

½ν
1⊥u

γ�
0

− ξðμ1⊥u
βÞ
0 ξ

½ν
1⊥u

γ�
0 Þ; ð126Þ

where ξα2‡ ≔ ξα2⊥ − Pμ
0νð12 ξα1⊥ − z̆α1⊥Þ∇αξ

ν
1⊥.

One could equally well derive these results by directly
substituting h0Rnμν ¼ hRnμν þ ΔhRnμν into Eqs. (59b) and (65b)
and then using the expressions (122) for ΔhRnμν .
Now to the subtle issue, which is clearly seen from a

geometrical standpoint. Consider a tensor T defined only
on the family of world lines γϵ. Figure 3 shows that the
relationship between γϵ ⊂ ~Mε and γ0 ⊂ M0 is unaltered
by a gauge transformation: the shaded surface connecting
them, call it S�, is gauge independent. It follows that the
expansion of a tensor T that lives only on the world line is
gauge invariant. Its expansion always reads eϵLZTjγ0 .
To write the quantities in this expansion in any particular

gauge X, we can relate the situation back to the expansion
of the world line in Sec. III A 2. The surface S described
there is a gauge-dependent quantity, equal in the gauge X to
ðϕX

ϵ Þ−1ðS�Þ, a surface connecting γ0 to γXϵ . It is generated
by the vector field v, which in analogy with Eq. (108) is
now given by v ¼ ϵðZ − XÞ þ 1

2
ϵ2½X; Z� þOðϵ3Þ. So in

gauge X the expansion reads eϵLZT ¼ T0 þ ϵðT1þ
LvT0Þ þOðϵ2Þ, where T1 ¼ LXT. In a gauge Y the
expansion would read eϵLZT¼T0þϵðT 0

1þLv0T0ÞþOðϵ2Þ,
where T 0

1 ¼ LYT and v0 ¼ ϵðZ − YÞ þ 1
2
ϵ2½Y; Z� þOðϵ3Þ.

Clearly, the results in the two gauges must agree, since they
both began from the gauge-invariant field Z. Put another
way, Z provides a preferred reference gauge in this
scenario, and when we examine the expansion of quantities
defined only on the world line, we must always transform
to this reference gauge, with the vector v acting as the
gauge vector.
However, in most circumstances, this subtle point need

not be minded. In a typical situation, we are faced with
some quantity written in terms of tensors on γ0, and we are
only interested in whether the value of that quantity is
altered when we calculate the tensors in a different gauge.
We can then go ahead and adopt the simple viewpoint
described above.
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D. Gauge freedom of another kind

In general, three kinds of “gauge freedom” exist in
perturbation theory. In this paper, I have focused exclu-
sively on one of them: the identification of points in the
perturbed spacetime with points in the background space-
time. This is the gauge freedom usually discussed in the
context of perturbation theory [30–32]; it is equivalent to
expanding out the effect of a small coordinate transforma-
tion, such that the background is left unchanged and order-ϵ
transformations of background fields are treated as alter-
ations of the perturbations to those fields.
A second type of gauge freedom is the freedom to

perform a coordinate transformation (or diffeomorphism)
on the background, inducing, via one’s identification map,
a coordinate transformation in the full spacetime.
However, prior to these two types of freedoms, there is a

third type: the choice of the spacetime family itself. Given a
particular metric g involving a numerically small parameter
ϵ, one can embed it into different families gϵ. This
corresponds to choosing “what to hold fixed” while taking
the limit ϵ → 0. As a trivial example, consider adding a
linear, global mass perturbation h1 ¼ ∂g

∂M δM to a black hole
metric g. Such a perturbation can be incorporated into the
background g via a redefinition of the background mass,
M → M þ δM, thereby choosing to hold M þ δM, rather
thanM, fixed while ϵ varies. Since the mass of a spacetime
cannot be altered by a coordinate transformation, this trivial
example illustrates that this freedom is independent of the
usual “small coordinate transformations.”
In the context of self-force theory, this third freedom has

important consequences. Consider theGralla-Wald approxi-
mation. Choosing a family of spacetimes requires choosing
the family of world lines zμϵ . As an example, suppose we are
given a spacetime ðgμνðxÞ;MÞ containing a small object of
massmmoving about a nonspinning black hole ofmassM in
a quasicircular orbit. On a short timescale the orbit has an
approximately constant orbital frequency Ω� measured by
an inertial observer at infinity. We can imagine embedding
this spacetime into many different families. We might
choose a family gμνðx; ϵ;ΩÞ, satisfying gμνðx; ϵ�;ΩÞ ¼
gμνðxÞ for some ϵ� > 0, in which all members share the
same orbital frequency Ω ¼ Ωðϵ�Þ ≔ Ω�. But we might
instead choose a family gμνðx; ϵ;ΩðϵÞÞ, satisfying
gμνðx; ϵ�;Ωðϵ�ÞÞ ¼ gμνðxÞ, in which the orbital frequency
varies between family members, such that Ωðϵ�Þ ¼ Ω�
but Ωðϵ ≠ ϵ�Þ ≠ Ω�.
With all else the same, in both cases we write gμνðxÞ as

an expansion around the same background metric
gμνðxÞ ¼ gμνðx; 0;ΩÞ ¼ gμνðx; 0;Ωð0ÞÞ, which in the
present example is a Schwarzschild metric of mass M.
But the background geodesic around which we expand the
world line zμ differs between the two families. In the first
case, we expand zμ around a circular background geodesic
of the same frequency, Ω�, while in the second case we

expand it around a circular geodesic of a different
frequency, Ωð0Þ ≠ Ω�. Either way, we describe the same
physical spacetime ðgμνðxÞ;MÞ, but we do so by writing it
as an expansion along flows in two different families of
spacetimes. Because the orbital frequency (as measured by
an inertial observer at infinity) is a gauge-invariant quantity,
the two families are mathematically distinguishable; the
difference between them is not a difference that can be
removed by a small coordinate transformation.
This example is relevant for many practical calculations

in the literature. For a canonical instance, refer to
Refs. [35,36]. There the authors first expanded the circular
orbit about a circular geodesic of the same Schwarzschild-
coordinate radius r0. This specifies a perfectly acceptable
family of spacetimes, the members of which contain orbits
of differing frequencies ΩðϵÞ. However, the authors then
reexpanded their expressions such that the end result is
equivalent to expanding the circular orbit about a circular
geodesic of the same orbital frequency Ω ¼ Ω�, now
placing the metric in a new family of spacetimes, each
member of which contains an orbit of frequency Ω�.10 This
second choice is more useful in most cases, because it
enables comparison to other formalisms, such as post-
Newtonian theory, which can obtain results at fixed
frequencies but, because they do not expand around a
Schwarzschild background, cannot obtain results at fixed
Schwarzschild-coordinate radius. However, from the
perspective of perturbation theory on a given background,
the “fixed-r0” and “fixed-Ω” expansions are equally
admissible, and they equally well approximate the particu-
lar spacetime ðgμνðxÞ;MÞ.
For more details of how this type of freedom can play

out, I refer the reader to Ref. [16].

V. SUMMARY AND DISCUSSION
OF PRACTICAL ISSUES

In this paper, my central concern has been elucidating the
mathematical structure and gauge freedom of approxima-
tion schemes involving perturbed motion in general rela-
tivity. The presentation has been, for the most part, quite
abstract. However, it has also led to several concrete,
applicable results, including

(i) a covariant and reparametrization-invariant expan-
sion of an accelerated world line around a neighbor-
ing geodesic. This led to the second-order equation
of motion (64) and the world-line-deviation terms in
the stress-energy tensor (77) in the Gralla-Wald
approximation. Moreover, the methods can be
applied in any problem in which one is interested
in expanding one world line about another. Such

10Of course, one can instead expand at fixed frequency
directly, without first expanding at fixed orbital radius.
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expansions appear in osculating-geodesic and
two-timescale expansions, amongst others.

(ii) gauge transformation laws for themetric perturbation
of the self-consistent expansion, given by Eq. (98), as
well as a general transformation law for tensors that
live only on the world line, given by Eq. (109).

(iii) natural transformation rules for the singular and
regular fields, given by Eqs. (99)–(100) [or
Eqs. (122)–(123) in the Gralla-Wald approxima-
tion], which preserve the essential properties of
those fields and leave invariant all the governing
equations of self-force theory.

(iv) a transformation law for the second-order self-force,
given by Eq. (115) [Eq. (126) in the Gralla-Wald
approximation].

In the remainder of the discussion, I describe some
practical issues related to these results.

A. Working in gauges other than Lorenz

To clarify point (iii), I note that to make use of the fact
that the governing equations are the same in all smoothly
related gauges, one must first find an effective metric
satisfying them in a particular gauge. And given that
multiple effective metrics can satisfy the same governing
equations, one must realize that under a gauge trans-
formation, one is referring to the transformation of one’s
particular choice of effective metric.
Currently, an effective metric satisfying the desired

properties through second order has been found only in
the Lorenz gauge [1,7,24]. Furthermore, although a local
expansion of the second-order field has been derived in an
alternative gauge [8], it is available in a practical form only
in the Lorenz gauge [24].
However,with the results of this paper, in principle one can

calculate the field in any gauge smoothly related to Lorenz.
One need only apply Eq. (100) to find the correct singular
field in the non-Lorenz gauge. Of course, this requires
knowing the gauge generator ξμ1 that brings the first-order
field from Lorenz to non-Lorenz; depending on how h1μν is
found, obtaining this gauge generator can be quite difficult.
A larger issue is that the restriction to smooth trans-

formations is quite severe. The gauges that are most
convenient for explicit computations in a black hole
background, the Regge-Wheeler and radiation gauges,
are not related to Lorenz by smooth transformations.
One might be able to utilize the simplicity of these gauges
by working in a mixed gauge: adapting the ideas of
Ref. [8], one might implement a puncture scheme in which
the puncture is constructed from the singular field in the
Lorenz gauge, but the residual field (the numerical variable
in the scheme) is calculated in any desired gauge. The
transformation to such a mixed gauge is not perfectly
smooth on the world line, but it is of nonnegative differ-
entiability, since it only alters the gauge of the residual
field, not the puncture.

If one wishes to work in gauges further removed from
Lorenz, substantially more analysis is required. In particu-
lar, if the gauge generator ξμ1 is not C

1 at the world line, or if
ξμ2 is not C

0 there, then the transformation law for the world
line is not given by Eq. (92). This spoils the reasoning used
to choose the relation (99) between the regular fields in the
two gauges. In that case, one must derive an alternative to
Eq. (92) from first principles, and from there write new
transformation laws for the singular and regular fields. This
analysis has been carried out at first order in ϵ in recent
formulations of self-force theory in singular gauges
[19–21], but it remains to be done at second order.

B. Gauge and motion on large scales

Forget, for a moment, the question of which gauge we
are using, and simply suppose we have computed the
motion and metric in some gauge. We must next consider
how the results depend on that choice of gauge. Because the
world line is a gauge-dependent quantity, the answer is not
obvious, and we must do some work to disentangle the
motion from the gauge.
First consider the Gralla-Wald case. Here it may seem

that motion and gauge are entirely indistinguishable, since
we can freely adjust each deviation vector z̆μn with a gauge
transformation. Nevertheless, we can distinguish the two
notions. Begin in a gauge where the first-order field
h̆1μνðx; z0Þ does not grow large with time; any of the typical
gauge choices, such as Lorenz or Regger-Wheeler,
will achieve this (putting aside spurious, growing gauge
modes [37]). In this gauge, the deviation vector z̆μ1 grows
quadratically with time, according to Eq. (60), which
causes the second-order field h̆2μνðx; z0Þ to likewise grow
quadratically with time, as we see in Eq. (27b). Now
suppose we perform a gauge transformation generated by
ξμ1 ¼ z̆μ1. This removes the first-order deviation, setting
z̆0μ1 ¼ 0 and thereby eliminating the growing term in
h̆02μνðx; z0Þ. But according to Eq. (121a), the transformation
generically introduces growing terms into h̆01μνðx; z0Þ. That
is, the object’s motion away from zμ0 induces secular growth
in the second-order field; if we force the object to stay on zμ0
via a gauge choice, then we instead induce secular growth
in the first-order field.
This distinction between gauge and motion carries over

to the self-consistent case, but the situation becomes more
subtle. Here all of the fields hnμν are functionals of a gauge-
dependent world line. Even for manifestly physical quan-
tities such as the gravitational waveform, we hence seem to
lack invariance. If we calculate, say, the Weyl scalar ψ0

from the linearized field in a particular gauge,the result is
invariant under the transformation h1μν → h1μν þ Lξgμν, but
it is not invariant under h1μν½z� → h1μν½z0� þ Lξgμν.
To resolve this, we may first consider behavior of the

approximation on short, order-unity time scales ∼ϵ0.

GAUGE AND MOTION IN PERTURBATION THEORY PHYSICAL REVIEW D 92, 044021 (2015)

044021-23



On these time scales, the difference between h1μν½z� and
h1μν½z0� ¼ h̆1μν is of second order. Hence, the first-order
information in ψ0, as constructed from h1μν½z�, is invariant;
there is merely an irrelevantly small bit of gauge-dependence
buried within it. Similarly, if we construct a curvature
invariant from h1μν½z� plus h2μν½z�, it will be invariant through
second order and contain a negligible third-order gauge-
dependence.
However, this description ignores the principal aim of the

self-consistent expansion, which is to model long-term
evolution. Specifically, look at an EMRI. A single orbit
occurs on the time scale ∼ϵ0, but the inspiral of the orbit
occurs on a much longer time scale. Gravitational waves
carry away orbital energy at the rate _E=E ∼ ϵ, implying that
the inspiral occurs on the time scale ∼E= _E ∼ 1=ϵ. Hence,
when modeling an EMRI we do not want to work on a
fixed, ϵ-independent interval of time; instead, we want to
look at the limit ϵ → 0 in a domain D of size ∼1=ϵ that
blows up in the limit.
Working on an ϵ-dependent domain forces us to revise

our thinking about gauge and motion. For our approxima-
tion to be sensible, we must require that on the domain we
work in, all excluded terms are much smaller than the
included ones, and all included ones are well ordered. For
example, to claim first-order accuracy, we must have
h1μνðx; zÞ ∼ ϵ0 on D, and we must have that all excluded
terms are ≪ ϵ0. These criteria strongly restrict the allowed
choices of gauge. If, for example, we adopt a gauge in
which there is no self-force, then h1μνðx; zÞ grows large with
time; this is not an allowed gauge. Although these issues
have not been studied in any detail, if we wish to stay
within a class of gauges satisfying the above criteria, a
natural requirement is to insist that all gauge vectors are
uniformly small (and uniformly well ordered, such that
ϵnþ1ξμnþ1 ≪ ϵnξμn) in D.
This implies that in well-behaved approximations in D,

the effects of the self-force are not pure gauge. The
accelerated world line zμ eventually deviates from any
given geodesic zμ0 by a very large amount, while with an
allowable gauge transformation we may shift it only by a
very small amount. In other words, although the self-forced
deviation from zμ0 is pure gauge on a domain of size ∼ϵ0, it
is not pure gauge in a domain of size ∼1=ϵ. Furthermore,
since the object is of size ϵ and the gauge transformation
may only shift the object by an amount of order ϵ, within
the allowed class of gauges, the gauge ambiguity in the
object’s position is of the same order as the size of the
object itself. For the purposes of modeling long-term
inspirals, this should not concern us; what concerns us
is only the large, long-term changes in the object’s position.
Let me summarize the practical relevance of all this.

Suppose that in some gauge, one computes a metric
perturbation over a long time scale in the self-consistent
approximation, using the self-accelerated orbit as a source.

Further suppose that one ends up with a well-behaved
approximation, in the sense that ϵnþ1hnþ1

μν ≪ ϵnhnμν ≪ gμν
for all included terms, and that error estimates suggest that
all excluded terms are smaller. Then one has included the
correct invariant information about the orbit’s long-term
evolution. One has also included some gauge-dependent
information about the orbit, but on all scales, this infor-
mation is negligibly small compared to the order of
accuracy one should expect from one’s approximation.
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APPENDIX A: REPARAMETRIZATION
TRANSFORMATIONS

Section III A describes how the coefficients in the
expansion

zμðs; ϵÞ ¼
X
n≥0

ϵnz̆μnðsÞ ðA1Þ

depend on the choice of parameter s. This appendix works
out explicitly how the terms z̆μnðsÞ transform under a
reparametrization s → s0ðs; ϵÞ.
Let z0μðs0; ϵÞ ¼ zμðsðs0; ϵÞ; ϵÞ be the coordinates of the

world line in the new parametrization. Their expansion
reads

z0μðs0; ϵÞ ¼
X
n≥0

ϵnz̆0μn ðs0Þ; ðA2Þ

with coefficients z̆0μn ðs0Þ ≔ 1
n!

∂nz0μ
∂ϵn ðs0; 0Þ.

We find the relationship between z̆μ1 and z̆0μ1 by writing

∂z0μðs0; ϵÞ
∂ϵ ¼ dzμðsðs0; ϵÞ; ϵÞ

dϵ
ðA3aÞ

¼ ∂zμðs; ϵÞ
∂ϵ þ ∂sðs0; ϵÞ

∂ϵ
∂zμðs; ϵÞ

∂s : ðA3bÞ

Evaluating at ϵ ¼ 0, we have

z̆0μ1 ¼ z̆μ1 þ _zμ0
∂s
∂ϵ

����
ϵ¼0

; ðA4Þ

where _zμ0 ≔
dzμ

0

ds . From this we immediately find that the
perpendicular piece of z̆μ1, unlike z̆μ1 itself, is reparametri-
zation invariant:
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z̆0μ1⊥ ¼ z̆μ1⊥: ðA5Þ

Similarly, we find the relationship between z̆μ2 and z̆0μ2 by
writing

∂2z0μðs0; ϵÞ
∂ϵ2 ¼ d2zμðsðs0; ϵÞ; ϵÞ

dϵ2
ðA6aÞ

¼ ∂2zμðs; ϵÞ
∂ϵ2 þ ∂2sðs0; ϵÞ

∂ϵ2
∂zμðs; ϵÞ

∂s
þ 2

∂sðs0; ϵÞ
∂ϵ

∂2zμðs; ϵÞ
∂ϵ∂s

þ
�∂sðs0; ϵÞ

∂ϵ
�

2 ∂2zμðs; ϵÞ
∂s2 : ðA6bÞ

Evaluating this at ϵ ¼ 0 and specializing to a coordinate
system that is normal along γ0, we find

z̆0μ2N ¼ z̆μ2N þ 1

2

∂2s
∂ϵ2

dzμ0
ds

þ ∂s
∂ϵ

Dz̆μ1
ds

þ 1

2

�∂s
∂ϵ

�
2D2zμ0
ds2

; ðA7Þ

where the partial derivatives are evaluated at ϵ ¼ 0. By
projecting orthogonally to u0μ, we find that unlike at first
order, the perpendicular deviation z̆μ2N⊥ is not parametriza-
tion independent:

z̆0μ2N⊥ ¼ z̆μ2N⊥ þ ∂s
∂ϵ

Dz̆μ1⊥
ds

; ðA8Þ

where I have used the geodesic equation
D2zμ

0

ds2 ¼ κ
dzμ

0

ds .
However, after invoking Eq. (51) and Eq. (A4), we find
that the quantity z̆μ2‡ is parametrization independent:

z̆0μ2‡ ¼ z̆μ2‡: ðA9Þ

APPENDIX B: IDENTITIES ON S

In Sec. III A 2, we require various derivatives of quan-
tities on a surface S ¼ fzμðs; ϵÞg. This appendix displays
useful identities for that purpose.
The surface can be generated by the two tangent vector

fields vμ ¼ ∂zμ
∂ϵ and _zμ ¼ ∂zμ

∂s . An important relation between

these fields follows from the equality L_zvμ ¼ ∂2xμ
∂s∂ϵ ¼ ∂2xμ

∂ϵ∂s ¼
Lv _zμ; since L_zvμ ¼ −Lv _zμ, this implies L_zvμ ¼ 0 ¼ Lv _zμ

and hence

vμ;ν _zν ¼ _zμ;νvν: ðB1Þ
Using the identity (B1), we can derive a host of others. It

immediately gives us

Lv
ds
dτ

¼
�
ds
dτ

�
3

vα;β _zα _zβ; ðB2Þ

since ds
dτ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

p
. This in turn gives us

Lvκ ¼ −
�
ds
dτ

�
2

ð̈zα _zβvβ;α þ ̈zα _vα − 2κ_zα _vαþ_zα _zβ _zγvα;βγÞ;

ðB3Þ

where κ ¼ −_zα∂α ln
ds
dτ.

Similarly,

Lvuμ ¼ uμuν
Dvν

dτ
; ðB4Þ

vν∇νuμ ¼ Pμ
ν
Dvν

dτ
; ðB5Þ

where uμ ¼ dzμ
dτ ¼ ds

dτ _z
μ, and

vν∇ν ̈zα ¼ ð_zα;β _zβÞ;γvγ ðB6aÞ

¼ v̈α þ Rα
μβν _zμvβ _zν; ðB6bÞ

where the second line follows from Eq. (B1) and the Ricci
identity.

APPENDIX C: IDENTITIES FOR
GAUGE TRANSFORMATIONS FOR

CURVATURE TENSORS

Let A½g� be a tensor of any rank constructed from a
metric g. (To streamline the presentation, I adopt index-free
notation throughout most of this appendix.) Now define

δnA½f1;…;fn�≔
1

n!
dn

dλ1 � ��dλn
A½gþλ1f1þ���þλnfn�jλi¼0;

ðC1Þ

where “λi ¼ 0” stands for evaluation at λi ¼ � � � ¼ λn ¼ 0.
The tensor-valued functional δnA½f1;…; fn� is linear in
each of its arguments f1;…; fn; it is also symmetric in
them. In the case that all the arguments are the same, we
have δnA½h;…; h� ¼ 1

n!
dn
dλn A½gþ λh�jλ¼0, the piece of

A½gþ h� containing precisely n factors of h and its
derivatives.
The following identities are easily proved (and will be

proved below) by writing Lie derivatives as ordinary
derivatives:

LξA½g� ¼ δA½Lξg�; ðC2Þ

1

2
L2
ξA½g� ¼

1

2
δA½L2

ξg� þ δ2A½Lξg;Lξg�; ðC3Þ

LξδA½h� ¼ δA½Lξh� þ 2δ2A½Lξg; h�; ðC4Þ

where we can also write δ2A½Lξg; h� ¼ δ2A½h;Lξg� ¼
1
2
ðδ2A½h;Lξg� þ δ2A½Lξg; h�Þ. As an example, if A is the

Ricci tensor, then
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LξRμν½g� ¼ δRμν½Lξg�; ðC5Þ

1

2
L2
ξRμν½g� ¼

1

2
δRμν½L2

ξg� þ δ2Rμν½Lξg;Lξg�; ðC6Þ

LξδRμν½h� ¼ δRμν½Lξh� þ 2δ2Rμν½h;Lξg�; ðC7Þ

where I have restored indices to avoid confusion with the
Ricci scalar (though the same equation, with indices
removed, would apply to the Ricci scalar).
Before moving to the proof of these results, I note one of

their consequences: when examining perturbations of a
curvature tensor, we can derive transformation laws in two
equally natural ways: directly from Eq. (88) or from the
transformations of the metric perturbations. For example, in
a vacuum background, Eq. (88) directly implies

ΔδRμν½h1� ¼ Lξ1Rμν½g� ¼ 0; ðC8Þ

ΔðδRμν½h2� þ δ2Rμν½h1; h1�Þ ¼ LξδRμν½h1�; ðC9Þ

or the same equations can be found by instead applying
Eq. (88) to the metric itself, writing

ΔðδRμν½h2� þ δ2Rμν½h1; h1�Þ
¼ δRμν½h02� þ δ2Rμν½h01; h01�− ðδRμν½h2� þ δ2Rμν½h1; h1�Þ

ðC10aÞ

¼ δRμν

�
h2 þ Lξ2gþ

1

2
L2
ξ1
gþ Lξ1h

1

�

þ δ2Rμν½h1 þ Lξ1g; h
1 þ Lξ1g� ðC10bÞ

¼ δRμν½Lξ2g� þ
1

2
δRμν½L2

ξ1
g� þ δRμν½Lξ1h

1�
þ 2δ2Rμν½h1;Lξ1g� þ δ2Rμν½Lξ1g;Lξ1g� ðC10cÞ

and then applying Eqs. (C5)–(C7).
Now, let us return to the proofs. To establish Eq. (C2),

one can write the metric as a function of a parameter λ along
the flow generated by ξ and then perform a Taylor
expansion:

LξA½g� ¼
d
dλ

A

�
gð0Þ þ λ

dg
dλ

����
λ¼0

�����
λ¼0

ðC11aÞ

¼ δA

�
dg
dλ

����
λ¼0

�
ðC11bÞ

¼ δA½Lξg�: ðC11cÞ

Similarly, to establish Eq. (C3), one can write

1

2
L2
ξA½g� ¼

1

2

d2

dλ2
A

�
gð0Þ þ λ

dg
dλ

����
λ¼0

þ 1

2
λ2

dg
dλ2

����
λ¼0

�����
λ¼0

¼ 1

2
δA½L2

ξg� þ δ2A½Lξg;Lξg�; ðC12aÞ

and to establish Eq. (C4), one can write g as a function of
parameters ðλ; ϵÞ along commuting flows, where h≔dg

dϵjϵ¼0,
and then write

LξδA½h� ¼
d2

dλdϵ
A

�
gðλ; 0Þ þ ϵ

dg
dϵ

ðλ; 0Þ
�����

λ¼ϵ¼0

ðC13aÞ

¼ d2

dλdϵ
A

�
gð0; 0Þ þ λ

dg
dλ

ð0; 0Þ þ ϵ
dg
dϵ

ð0; 0Þ

þλϵ
d2g
dλdϵ

ð0; 0Þ
�����

λ¼ϵ¼0

ðC13bÞ

¼ δA½Lξh� þ 2δ2A½h;Lξg�: ðC13cÞ

APPENDIX D: GAUGE TRANSFORMATION OF
THE SECOND-ORDER STRESS-ENERGY

According to Eq. (103), the gauge transformation of the
(trace-reversed) second-order stress-energy, ΔT̄2

μν, is given
by Lie derivatives of the first-order stress-energy. This
appendix evaluates those derivatives.
The calculation can be performed following Sec. III B 2.

For any vector ξμ1, the Lie derivative £ξ1T
μν
1 ðx; zÞ is given by

Eq. (77) with the replacements z̆μ1 → ξμ1 and uμ0 → uμ. The
ordinary Lie derivative Lξ1T

μν
1 can be evaluated by follow-

ing very similar steps as were used to derive Eq. (77),
leading to

Lξ1T
αβ
1 ¼ −m

Z
γ
gαα0g

β
β0

�
2uðα0

Dξβ
0Þ

1⊥
dτ0

δðx; zÞ

þ uα
0
uβ

0
�
dξ1∥
dτ

þ ξ1ρ
0
;ρ0

�
δðx; zÞ

− uα
0
uβ

0
ξγ

0
1⊥g

γ
γ0∇γδðx; zÞ

	
dτ; ðD1Þ

where ξβ
0

1⊥ ≔ Pβ0
α0ξ

α0
1 and ξ1∥ ≔ uμ0ξ

μ0
1 . The total of the two

Lie derivatives yields the simple result

ðLξ þ £ξÞTμν
1 ¼ −m

Z
gμμ0g

ν
ν0u

μ0uν
0

×

�
dξ∥
dτ

þ ξρ
0
;ρ0

�
δðx; zÞdτ: ðD2Þ

The �ξμ1∇μδðx; zÞ terms in Eqs. (D1) and (77) signal that
the massm is displaced from zμ by an amount�ξμ1; the lack
of any such term in Eq. (D2) signals that the displacements
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due to the two derivatives precisely cancel one another,
leaving the mass m moving on zμ.
Equation (103) involves derivatives of T̄1

μν, not of T
μν
1 . So

we have

ΔT̄2
μν ¼

�
gμαgνβ −

1

2
gμνgαβ

�
ðLξ1 þ £ξ1ÞTαβ

1 þ 2

�
ξ1ðμ;αÞgνβ

þ gμαξ1ðν;βÞ −
1

2
ξ1ðμ;νÞgαβ −

1

2
gμνξ1α;β

�
Tαβ
1 ; ðD3Þ

with ðLξ1 þ £ξ1ÞTαβ
1 given by Eq. (D2).

These are the results for the self-consistent case. For the
Gralla-Wald case, we simply drop the £ξ1 term and set
zμ ¼ zμ0:

Δ ˘̄T2
μν ¼

�
gμαgνβ −

1

2
gμνgαβ

�
Lξ1 T̆

αβ
1 þ 2

�
ξ1ðμ;αÞgνβ

þ gμαξ1ðν;βÞ −
1

2
ξ1ðμ;νÞgαβ −

1

2
gμνξ1α;β

�
T̆αβ
1 ; ðD4Þ

where Lξ1 T̆
αβ
1 is given by Eq. (D1) with zμ → zμ0. Unlike in

the self-consistent case, where the ∇μδðx; zÞ terms can-
celled in the final result, in the Gralla-Wald case there is a
term ∝ ξμ1⊥∇μδðx; zÞ, corresponding to the center of mass
having been displaced by an amount Δzμ1 ¼ −ξμ1⊥ relative
to zμ0.
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