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Linearized gravitational waves in de Sitter spacetime are analyzed in detail to obtain guidance for
constructing the theory of gravitational radiation in presence of a positive cosmological constant in full,
nonlinear general relativity. Specifically, (i) In the exact theory, the intrinsic geometry of I is often assumed
to be conformally flat in order to reduce the asymptotic symmetry group from DiffðIÞ to the de Sitter
group. Our results show explicitly that this condition is physically unreasonable. (ii) We obtain expressions
of energy-momentum and angular momentum fluxes carried by gravitational waves in terms of fields
defined at Iþ. (iii) We argue that, although energy of linearized gravitational waves can be arbitrarily
negative in general, gravitational waves emitted by physically reasonable sources carry positive energy.
Finally, (iv) we demonstrate that the flux formulas reduce to the familiar ones in Minkowski spacetime in
spite of the fact that the limit Λ → 0 is discontinuous (since, in particular, I changes its spacelike character
to null in the limit).
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I. INTRODUCTION

A rich theory of isolated gravitating systems, developed
systematically since the 1960s [1–4], lies at the foundation
of a large fraction of research in general relativity with zero
cosmological constant. Examples include the gravitational
radiation theory, classical and quantum aspects of black
holes, and several major initiatives in geometrical analysis
(see, e.g., [5] for a summary). But observations strongly
indicate that the cosmological constant is positive in the
Universe we inhabit [6]. Therefore it is important to extend
the conceptual framework from the Λ ¼ 0 case to the Λ > 0
regime.
In the first paper in this series [5] we began an exploration

of this problem. Our findings related to gravitational waves
can be summarized as follows. If one considers spacetimes
which are asymptotically de Sitter in the sense introduced by
Penrose [4] (more precisely, which satisfy Definition 2 in
[5]) then the asymptotic symmetry group is simply DiffðIÞ.
Thus, with these boundary conditions, one cannot single out
translations or rotations even asymptotically.1 Consequently,
one cannot introduce two-sphere charges analogous to the
Bondi four-momentum at I [1,3], or calculate fluxes of
energy-momentum and angular momentum carried away by

gravitational waves [7]. We then examined a common
strategy to reduce DiffðIÞ to the de Sitter group by
strengthening the boundary conditions. The idea is to restrict
oneself to those spacetimes for which the intrinsic three-
metric qab on I is conformally flat. This additional
restriction seems natural, because the condition is satisfied
in the familiar examples, including the Kerr–de Sitter and
Friedmann-Lemaître spacetimes. Furthermore, the two-
sphere charges at I associated with the Kerr–de Sitter time
translation and rotation yield the expected mass and angular
momentum [5].
However, we showed that the additional boundary

condition is equivalent to demanding that the magnetic
part Bab of the leading order asymptotic Weyl curvature
must vanish at I . Now, in the case of Maxwell fields on
asymptotically de Sitter spacetimes, the analogous require-
ment would be that the magnetic field Ba should vanish
at I . This requirement would remove half the space of
solutions by fiat! By analogy, in the gravitational case, the
strengthening of the boundary conditions appears to be
physically unjustifiable. Furthermore, irrespective of
whether one strengthens the boundary conditions in this
manner or not, one does not have expressions of fluxes of
energy-momentum and angular momentum carried away
by gravitational waves. Indeed, for Λ > 0, no gauge-
invariant characterization of gravitational waves is avail-
able in full general relativity! Thus, we have an apparent
impasse: On the one hand the Bab ¼ 0 condition is too
strong but, on the other hand, the boundary conditions are
too weak without it (both for the gravitational radiation
theory and quantum considerations).
A new framework is being constructed to overcome this

difficulty and address related issues discussed in [5]. In this
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1As a result, in the quantum theory, we cannot decompose

fields into positive and negative frequency parts even at I .
Therefore, in contrast with the Λ ¼ 0 case, there are no candidate
Hilbert spaces of asymptotic states which are necessary, e.g., to
systematically discuss whether the quantum evaporation of black
holes is unitary.
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paper we will complete the first step of that program by
analyzing source-free, linearized gravitational waves in de
Sitter spacetime. In the Λ ¼ 0 case, the analogous analysis
of linearized fields was necessary for the derivation of
energy loss due to a time-changing quadrupole moment in
the weak field approximation (see, e.g., [8]). More gen-
erally, it provided considerable intuition and important
checks in the final construction of the theory of gravitational
waves in exact general relativity [1–4,9]. In subsequent
papers we will see that same is true in asymptotically de
Sitter spacetimes.
The main ideas of this paper can be summarized as

follows.
We will restrict ourselves to the (future) Poincaré patch

of de Sitter spacetime because, as we will see in [10], this
provides the setting that is appropriate for describing
isolated systems in full general relativity. The subgroup
of the ten-dimensional de Sitter group that leaves this patch
invariant is seven-dimensional, consisting of four (de Sitter)
translations and three rotations; symmetries that enable one
to define the total four-momentum and angular momentum
carried by test fields, including linearized gravitational
waves. Because of the high degree of symmetry of the
Poincaré patch, as is well known, one can solve source-free
linearized Einstein’s equation explicitly. By examining the
behavior of solutions at Iþ we will explicitly show that the
(linearized analog of the) condition Bab ¼ 0 at Iþ removes,
by hand, half the number of degrees of freedom associated
with gravitational waves. This will confirm the expectation
from Maxwell’s theory.
For test matter, such as scalar, Maxwell or Yang-Mills

fields, conserved quantities can be readily constructed
using the stress-energy tensor. For linearized gravita-
tional fields, on the other hand, we do not have a gauge-
invariant, local stress-energy tensor because in general
relativity gravity is absorbed into spacetime geometry.
Therefore a new strategy is needed. A convenient route
is provided by the covariant Hamiltonian framework
where the phase space ΓCov consists of solutions to
linearized Einstein’s equation. Diffeomorphisms gener-
ated by isometries have a well-defined action on ΓCov
which preserves the natural symplectic structure ω on
ΓCov. The Hamiltonians generating these canonical
transformations provide us with formulas of energy-
momentum and angular momentum carried by gravita-
tional waves. We will express these quantities in terms of
fields that are well defined on Iþ. These expressions
will be needed in the derivation of the energy loss due to
a time-changing quadrupole moment in the Λ > 0 case,
derived in [11].
Finally, we discuss the Λ → 0 limit. Physically one

expects that in this limit energy-momentum and angular
momentum expressions should reduce to the well-known
ones for linear gravitational waves in Minkowski space.
However, the limit is delicate because of conceptually

important discontinuities. In particular, while Iþ is spacelike
for every Λ > 0, it is null for Λ ¼ 0. Similarly, while the
generator of every de Sitter time translation (used to define
de Sitter energy) is spacelike in a neighborhood of Iþ for
any Λ > 0, it is timelike in a neighborhood of Iþ for Λ ¼ 0.
Consequently, while the flux of energy at de Sitter Iþ can be
arbitrarily negative no matter how small Λ is, it is strictly
positive in theΛ ¼ 0 case. We provide a detailed, systematic
procedure to take the limit and show that the de Sitter fluxes
do go over to the Minkowski fluxes in the limit. This
procedure will be useful in reliably estimating the errors one
makes by working in the asymptotically flat context rather
than asymptotically de Sitter.
The paper is organized as follows. In Sec. II we collect

results on the geometry of the Poincaré patch that will be
used throughout our discussion and show that, for test
Maxwell fields, the familiar fluxes of (the de Sitter)
energy-momentum and angular momentum obtained
using the stress-energy tensor can be derived using
Hamiltonian methods that do not refer to the stress-energy
tensor. In Sec. III we study the asymptotic behavior of the
explicit solutions to the linearized Einstein’s equation in
the Poincaré patch and analyze the consequences of the
Bab ¼ 0 condition. In Sec. IV we introduce the covariant
phase space ΓCov of linearized gravitational fields in the
Poincaré patch, derive expressions of Hamiltonians asso-
ciated with the seven isometries, and express their limits
to Iþ using fields that have well-defined limits there. In
Sec. V, we derive two properties of these fluxes. First, we
show that when the subtleties associated with the Λ → 0
limit are taken into account, our flux expressions of
Sec. IV do reduce to the standard flux formulas associated
with linear gravitational waves in Minkowski spacetime.
Second, we show that although gravitational waves in de
Sitter spacetime can carry arbitrarily large negative
energy, for the class of solutions that are of direct physical
interest in the investigation of isolated systems, they carry
positive energy.
Our conventions are as follows. Throughout we assume

that the underlying spacetime is four dimensional and the
spacetime metric has signature −;þ;þ;þ. The curvature
tensors are defined via: 2∇½a∇b�kc ¼ Rabc

dkd, Rac ¼ Rabc
b

and R ¼ Rabgab.

II. PRELIMINARIES

This section is divided into two parts: (i) symmetries of
the Poincaré patch and (ii) the covariant phase space and
conserved quantities associated with these symmetries.

A. The Poincaré patch

In the Λ ¼ 0 case, to study isolated systems in the
weak field limit, one investigates linearized gravitational
fields in Minkowski spacetime. For the Λ > 0 case, it
may seem natural to replace Minkowski space with de
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Sitter spacetime. However, because of the differences in
causal structures of these two spacetimes, an important
difference arises. Consider an isolated system–such as a
single star or a binary–that is confined to a spatially
bounded world tube for all times (see the left panel in
Fig. 1). In this case the matter world tube has future and
past end-points in both Λ ¼ 0 and Λ > 0 cases, denoted
by i�. However, whereas in the Λ ¼ 0 case the future of
i− is the entire Minkowski spacetime, if Λ > 0, it is only
the future Poincaré patch of de Sitter. No observer whose
world line is confined to the past Poincaré patch can see
the isolated system or detect the radiation it emits.
Therefore, to study this system, it suffices to restrict
oneself just to the future Poincaré patch rather than the
full de Sitter spacetime. Indeed, while it is difficult to
impose the physically appropriate ‘no incoming radia-
tion’ boundary condition at I− [12], as we will see in
[10], this condition can be naturally imposed at the
cosmological horizon Eþði−Þ that constitutes the past
boundary of this Poincaré patch. Because our primary
purpose is to develop intuition for the full, nonlinear
theory, we will restrict ourselves to this future Poincaré
patch, although all our results can be readily extended to
the full de Sitter spacetime. Next, for easy comparison
with the rich literature on gravitational waves in cosmol-
ogy, we will use coordinates η; x; y; z; with x; y; z assum-
ing their full range on R3 and the conformal time
η ∈ ð−∞; 0Þ (see the right panel in Fig. 1). Then the
de Sitter metric can be expressed as

ḡabdxadxb ¼ ð1=HηÞ2ð−dη2 þ d~x2Þ
≕ ð1=HηÞ2g̥ abdxadxb; ð2:1Þ

where H ≔
ffiffiffiffiffiffiffiffiffi
Λ=3

p
≕ 1=l is the Hubble parameter, the

inverse of the cosmological radius l.2 While these
coordinates are extremely convenient in the detailed
calculations of gravitational perturbations, it is obvious
that they are ill-suited for taking the limit Λ → 0. To take
this limit, it is simplest to use proper time t, which is
related to the conformal time η via Hη ¼ −e−Ht. In terms
of t, the de Sitter metric becomes

ḡabdxadxb ¼ −dt2 þ e2Htd~x2; ð2:2Þ

and it is manifest that the metric coefficients go to those
of Minkowski metric coefficients as Λ goes to zero.
Therefore, to compare geometric structures in de Sitter
spacetime to those in Minkowski spacetime, it is impor-
tant to use the differential structure induced on the
Poincaré patch by ðt; ~xÞ, and not by ðη; ~xÞ!
Locally, of course, this metric admits ten (de Sitter)

Killing fields. However, since the Poincaré patch is only a
part of the de Sitter spacetime, only those isometries are
permissible that map this patch to itself. Therefore, we now
have to restrict ourselves only to those Killing fields that are
tangential to its boundary Eþði−Þ in the full de Sitter
spacetime. As discussed in detail in Sec. 4.C.2 of [5], these
Killing fields constitute a seven-dimensional family. We
have three spatial translations Ta

ðiÞ and three spatial rota-
tions Ra

ðiÞ, tangential to each η ¼ const slice, generating the
Euclidean group. In addition, there is a seventh Killing
field,

FIG. 1 (color online). Left panel: The Penrose diagram of a spherical isolated star in general relativity with Λ > 0. The solid diagonal
line denotes Eþði−Þ, the future event horizon of i−. The star and the radiation it emits are invisible to all observers whose world lines are
confined to the lower portion of the de Sitter spacetime below Eþði−Þ. Therefore in the discussion of this isolated system, it is natural to
restrict oneself to the upper half. The dashed diagonal line is E−ðiþÞ, the past event horizon of iþ. Right panel: The Poincaré patch of de
Sitter spacetime of interest is the upper triangle, to the future of the event horizon Eþði−Þwhere η ¼ −∞. The η ¼ const lines denote the
cosmological slices, i.e., flat Cauchy surfaces.

2These coordinates—as well as the coordinates ðt; ~xÞ discussed
below—have the disadvantage that they do not cover the past
boundary of our Poincaré patch, i.e., the event horizon Eþði−Þ of
i−. But this limitation will not affect our considerations.
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T ¼ −H
�
η
∂
∂ηþ x

∂
∂xþ y

∂
∂yþ z

∂
∂z

�
: ð2:3Þ

We will refer to Ta as “time translation” because (i) it is
the limit of the time translation Killing field in the
Schwarzschild–de Sitter spacetime as the mass goes to
zero, and (ii) in the ðt; ~xÞ coordinates, it reduces to a time
translation in Minkowski spacetime as Λ → 0.3 The com-
mutation relations between these seven Killing fields are
given by:

½T; TðiÞ� ¼ HTðiÞ; ½T; RðiÞ� ¼ 0;

½TðiÞ; RðjÞ� ¼ ϵij
kTðkÞ; and ½RðiÞ; RðjÞ� ¼ ϵij

kRðkÞ:

ð2:4Þ

(Note that the time translation does not commute with
space-translations.) We will denote this seven-dimensional
Lie algebra of symmetries of the Poincaré patch by gPoin
and the Lie group it generates by GPoin.

4 Finally, in the
standard conformal completion of the Poincaré patch, Iþ
has R3 topology and this seven-dimensional group pre-
serves the completeness of the allowed class of metrics on
Iþ [5].

B. Maxwell fields in de Sitter spacetime

As is well known, each Killing symmetry Ka leads to a
conserved quantity. For matter fields–such as the Maxwell
field Fab–the standard procedure is to use the stress-energy
tensor Tab ¼ 1

4π ðFamFbnḡmn − ð1=4ÞḡabFcdFmnḡcmḡdn).
The conserved quantity associated with a Killing field
Ka is given by

FK ¼
Z
Σ
TabKanbd3VΣ ð2:5Þ

where the integral is taken over any Cauchy surface Σ with
unit normal na. FK may be regarded as the ‘flux’ of the
conserved quantity across Σ.
However, for the linearized gravitational field, we do not

have a gauge-invariant, locally defined stress-energy tensor.
We will now show that, in the Maxwell theory, the

expression (2.5) of FK can also be obtained using a
covariant phase space framework without having to refer
to the stress-energy tensor. In Sec. III we will use this
alternate method to calculate conserved quantities for the
linearized gravitational field.
Consider a globally hyperbolic spacetime, ðM; gabÞwith

a Killing field Ka. Denote by ΓMax
Cov the space of all suitably

regular, source-free solutions Fab to Maxwell equations
∇̄½aFbc� ¼ 0 and ḡac∇̄cFab ¼ 0. Starting from the Maxwell
Lagrangian, one can show that ΓMax

Cov is naturally endowed
with a symplectic structure (i.e., a closed, nondegenerate
two-form) ωMax:

ωMaxðF;FÞ ¼
1

4π

Z
Σ
ḡac½FabAc − FabAc�nbd3VΣ: ð2:6Þ

Here F and F are any two solutions to Maxwell equations,
Aa is any vector potential for Fab (i.e., Fab ¼ 2∇½aAb�) and
Σ is again any Cauchy surface. Using Maxwell equations
(and the suitable fall-off implicit in the regularity condition)
it is easy to verify that the right side is independent of the
choice of the Cauchy surface Σ and is gauge-invariant.
The pair ðΓMax

Cov ;ωMaxÞ is the Maxwell covariant phase
space. Each Killing field Ka on M naturally defines a
vector field K on ΓMax

Cov via: KjF ≡ δKF ≔ LKFab. Not
surprisingly, the flow generated byK on ΓMax

Cov preserves the
symplectic structure ωMax, i.e., defines a one-parameter
family of canonical transformations on ðΓMax

Cov ;ωMaxÞ. The
Hamiltonian generating this flow is a function HK on ΓMax

Cov
given by:

HK ≔ −
1

2
ωMaxðF;LKFÞ: ð2:7Þ

For any Killing field Ka one can verify that HK defined in
(2.7) equals FK defined in (2.5). (For details on the
covariant phase space of fields, including general relativity,
see, e.g., [13].)
Let us illustrate this result for the Killing fields in the

Poincaré patch. Let us first set Ka ¼ Sa, where Sa stands
for any one of the 6 Killing fields Ta

ðiÞ and R
a
ðiÞ, tangential to

the spacelike slices Σ given by η ¼ const. Then, we have

F S ¼
1

4π

Z
Σ
ðFamFbnḡmnSanbÞd3VΣ

¼ 1

4π

Z
Σ
ðϵabcEbBcSaÞd3VΣ ð2:8Þ

where Ea ≔ Fabnb and Ba ≔ �Fabnb are the electric and
magnetic parts of the Maxwell field, and ϵabc the alternat-
ing tensor on the slice Σ. Thus, as one would expect, F S
is the flux of the S-component of the Poynting vector
ϵabcEbBc across Σ. Next, let us consider the Hamiltonian
(2.7) generated by S:

3Limit Λ → 0 of Ta illustrates the importance of using the
correct differential structure to take this limit. Had we used the
differential structure provided by ðη; ~xÞ wewould have concluded
from (2.3) that Ta vanishes in the limit. But this procedure would
have been incorrect because the metric ḡab diverges in this limit
(although it reduces to the well-defined Minkowski metric if the
limit is taken using the differential structure induced by ðt; ~xÞ).
Note, incidentally, that Ta is sometimes referred to as ‘dilation’
because it is the conformal-Killing vector field representing a
dilation with respect to the flat metric g

̥
ab.

4This is the group that leaves the point i− on I− of de Sitter
spacetime invariant. As Λ → 0, GPoin reduces to a well-defined
seven-dimensional subgroup of the Poincaré group; the limit
carries the memory of the preferred t ¼ const slicing.
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HS ¼ −
1

8π

Z
Σ
ḡac½ðLSFabÞAc − FabðLSAcÞ�nbd3VΣ

¼ −
1

4π

Z
Σ
ḡbcFacðLSAbÞnad3VΣ

¼ 1

4π

Z
Σ
ðϵabcEbBcSaÞd3VΣ ð2:9Þ

where in the first step we have integrated by parts and in the
second step used Cartan identity and the Maxwell equation
D̄aEa ¼ 0. Thus, using the covariant phase space we can
recover the conserved quantity F S as the Hamiltonian HS
defined by the Killing symmetry Sa. Because of conformal
invariance of Maxwell equations, we can easily take the
limit as Σ approaches Iþ and express the conserved flux as
an integral over Iþ. The expression (2.8) brings out the
fact that if the magnetic field vanishes at Iþ, then that
electromagnetic wave carries no angular momentum or
linear momentum.
For the time translation Ta, the argument establishing the

equality of FK and HK is the same but the calculation is a
little more involved because Ta has components both along
and orthogonal to the cosmological slices [see Eq. (2.3)].
We find

F T ¼ HT

¼ 1

8π

Z
Σ
½ðEaEb þ BaBbÞḡab þ 2ϵabcEbBcTa�d3VΣ:

ð2:10Þ

In the limit as Σ approaches Iþ, Ta becomes tangential to
Iþ (since η ¼ 0 at Iþ) and ḡab vanishes. Therefore the
expression of the conserved energy reduces to an integral of
the component of the Poynting vector along Ta:

F T ¼ HT ¼ 1

4π

Z
Iþ
ðϵabcEbBcTaÞd3VIþ ð2:11Þ

where the electric and magnetic fields and the alternating
tensor are calculated using any conformally rescaled metric
that is regular at Iþ (e.g., g

̥
ab). This expression brings out

two interesting facts. First, in de Sitter spacetime while the
energy carried by electromagnetic waves is conserved as in
Minkowski spacetime, now it can be negative and is
unbounded below. Second, if we restrict ourselves to
Maxwell fields whose magnetic field vanishes at Iþ, then
those electromagnetic fields carry no energy either. Note
that the second result is specific to Iþ: If the magnetic field
vanishes on a cosmological slice η ¼ const ≠ 0, the energy
of that Maxwell field does not vanish unless the Maxwell
field itself vanishes identically. The three-momentum and
the angular momentum, on the other hand, do vanish.
To summarize, for Maxwell fields, the conserved quan-

tities associated with Killing fields in the Poincaré patch
can be recovered as Hamiltonians on the covariant phase

space, without any reference to the stress-energy tensor.
Also, because all Killing fields Ka on de Sitter spacetime
are tangential to Iþ–and hence spacelike—one can express
every conserved quantity FK as an integral across Iþ of the
component of the Poynting vector along Ka. This expres-
sion brings out the fact that if we were to require that the
magnetic field vanish at Iþ, we would be left with
electromagnetic waves that carry no 3-momentum or
angular momentum, nor energy, defined by de Sitter
isometries!

III. LINEARIZED GRAVITATIONAL FIELDS

As in Sec. II A, we will use the ðη; ~xÞ chart and the form
(2.1) of the de Sitter metric ḡab in the Poincaré patch.
The perturbed metric will be denoted by gab,

gab ¼ ḡab þ ϵγab; ð3:1Þ
where ϵ is the smallness parameter and γab denotes the first
order perturbation. Then, in the Lorentz and radiation
gauge, i.e., when the gauge freedom is exhausted by
requiring that γab satisfy

∇aγab ¼ 0; γabη
a ¼ 0; and γabḡab ¼ 0; ð3:2Þ

the linearized Einstein’s equation simplifies to

□γab − 2H2γab ¼ 0: ð3:3Þ
(Here ηa is a vector field normal to the cosmological slices
with ηa∂a ¼ ∂=∂η.) Following a common strategy in the
cosmology literature, it is convenient to rewrite (3.1) as

gab ≡ a2ðηÞðg̥ ab þ ϵhabÞ ¼
1

ðHηÞ2 ðg
̥
ab þ ϵhabÞ ð3:4Þ

since calculations are simpler in terms of the mathematical
field hab than in terms of the physical perturbation γab.
Indeed, the gauge conditions (3.2) can now be written using
the background flat geometry of g

̥
ab:

∇
̥
a
hab ¼ 0; habηa ¼ 0; and habg

̥ ab ¼ 0; ð3:5Þ
and the linearized Einstein’s equation becomes

□

̥
hab − 2

a0

a
h0ab ¼ □

̥
hab þ

2

η
h0ab ¼ 0; ð3:6Þ

where h0ab ≡ ηc∇
̥
chab. Note that the gauge conditions and

linearized Einstein’s equation satisfied by hab are the same
as those satisfied by the linearized gravitational fields in
Minkowski spacetime in absence of a cosmological con-
stant except for the extra term ð2=ηÞh0ab in the linearized
Einstein’s equation. In the ðt; ~xÞ differentiable structure that
is well suited to take the limit Λ → 0, the extra term
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ð2=ηÞ∂ηhab ¼ −2H∂thab goes to zero, just as one would
expect.
As in the case of linearized fields in Minkowski

spacetime, it is simplest to find explicit solutions using a
Fourier transform:

habð~x; ηÞ≡
Z

d3k
ð2πÞ3

X2
ðsÞ¼1

hðsÞ~k
ðηÞeðsÞab ð~kÞei~k·~x ð3:7Þ

where ðsÞ labels the two helicity states and eðsÞab ð~kÞ are the
polarization tensors, satisfying

eðsÞ½ab�ð~kÞ ¼ 0; eðsÞab ð~kÞkb ¼ 0; eðsÞab ð~kÞq
̥ ab ¼ 0;

ðeðsÞab ð~kÞÞ⋆ ¼ eðsÞab ð−~kÞ; eðsÞab ð~kÞeðs
0Þ

cd ð−~kÞq̥ acq̥ bd ¼ δðsÞ;ðs0Þ:

ð3:8Þ

Here, and in what follows, q
̥
ab is the fixed spatial Euclidean

metric on the cosmological slices, tailored to the co-moving
coordinates ~x, and ⋆ denotes complex conjugation. The two
functions hðsÞ~k

ðηÞ capture the gauge-invariant information—
the transverse traceless modes—of the linearized gravita-
tional field. Since habð~x; ηÞ are real fields, it follows that

ðhðsÞ~k
ðηÞÞ⋆ ¼ hðsÞ

−~k
ðηÞ: ð3:9Þ

The field equation (3.6) implies that the hðsÞ~k
satisfy the

ordinary differential equation (ODE):

ðhðsÞ~k
Þ00 − 2

η
ðhðsÞ~k

Þ0 þ k2hðsÞ~k
¼ 0; ð3:10Þ

where the prime denotes differentiation with respect to η,
and k2 ¼ ~k · ~k. The second order ODE (3.10) can be readily
solved to obtain the general solution

hðsÞ~k
ðηÞ ¼ ð−2HÞ½EðsÞ

~k
ðη cosðkηÞ − ð1=kÞ sinðkηÞÞ

− BðsÞ
~k
ðη sinðkηÞ þ ð1=kÞ cosðkηÞÞ� ð3:11Þ

where EðsÞ
~k

and BðsÞ
~k

are arbitrary coefficients (in the
Schwartz space), determined by the initial data of the
solution. (These coefficients can also depend on Λ. We did
not make this dependence explicit because in the main text
we work with a fixed value of Λ.) Substituting (3.11) in
(3.7) we obtain the general solutions hab representing first
order perturbations.
Next, let us discuss curvature. Since the Weyl tensor of

de Sitter spacetime vanishes, the first-order perturbations
ð1ÞEab and ð1ÞBab of the electric and magnetic parts of the
Weyl curvature are gauge-invariant and can be expressed
directly in terms of the solutions h~kðηÞ in (3.11). To find
these expressions, we first note that, in exact general
relativity, the electric and magnetic parts are related to

the first and second fundamental forms qab and Kab on any
spacelike surface via

Eab ¼ Rab − Ka
mKmb þ KKab − ð1=2Þ

× ðqamqbn þ qabqmnÞð4Rmn − ð1=6Þ4RgmnÞ
Bab ¼ ϵðamnDjmjKjnjbÞ; ð3:12Þ

where D, ϵabc and Rab are the derivative operator, alter-
nating tensor and the Ricci curvature of the three-metric
qab, and 4Rab is the Ricci curvature of the spacetime
metric gab.
It is straightforward to linearize these equations using the

cosmological foliation on the de Sitter background.
Calculations are simplified by noting that: (i) Eab and
Bab are conformally invariant, and (ii) a convenient
conformal completion of de Sitter is provided by choosing
the conformal factor Ω ¼ −Hη, so that the conformal
metric Ω2ḡab that is well behaved at Iþ is just the
Minkowski metric g

̥
ab in the ðη; ~xÞ chart. Therefore, in

effect, linearization can be carried out using this flat
background metric. The perturbed electric and magnetic
parts of the Weyl tensor can be expressed using hab and
geometric structures associated with the flat three-metric
q
̥
ab on each cosmological slice:

ð1ÞEab ¼ −
1

2

�
D
̥
2
hab þ

1

η
h0ab

�
;

and ð1ÞBab ¼
1

2
ϵ
̥
ða
mnD
̥
jmjh0jnjbÞ: ð3:13Þ

Recall that the boundary conditions at Iþ imply that the
Weyl curvature of an asymptotically de Sitter metric must
vanish at Iþ [4,5]. Therefore, the first order perturbations
ð1ÞEab and ð1ÞBab of Weyl curvature also vanish at Iþ and

Eab ≔ Ω−1ðð1ÞEabÞ; and Bab ≔ Ω−1ðð1ÞBabÞ ð3:14Þ

admit smooth limits there. We will refer to Eab and the Bab
as the perturbed electric and magnetic parts of the Weyl
curvature as a short hand since it is these quantities that will
feature in most of our discussion. Using explicit solutions
(3.11) it is easy to verify that they do indeed admit smooth
limits to Iþ:

Eabð~x; ηÞjη¼0 ¼
Z

d3k
ð2πÞ3

X2
ðsÞ¼1

k2EðsÞ
~k
eðsÞab ð~kÞei~k·~x

Babð~x; ηÞjη¼0 ¼
Z

d3k
ð2πÞ3

X2
ðsÞ¼1

k2BðsÞ
~k

�eðsÞab ð~kÞei~k·~x ð3:15Þ

where �eðsÞab ¼ ϵa
mnðkn=kÞeðsÞmb is the ‘dual’ of the polariza-

tion tensor. These formulas bring out the meaning of the
coefficients EðsÞ

~k
and BðsÞ

~k
that feature in the expression
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(3.11) of a general solution to the linearized equations. EðsÞ
~k

directly determines the electric part of the perturbed Weyl
tensor at Iþ and BðsÞ

~k
the magnetic part at Iþ.

It is therefore clear that the perturbed Weyl tensor has no
magnetic part Babð~x; ηÞ at Iþ if and only if the solution hab
has the form

hðsÞ~k
ðηÞ ¼ ð−2HÞ½EðsÞ

~k
ðη cos kη − ð1=kÞ sin kηÞ� ð3:16Þ

everywhere, obtained by setting BðsÞ
~k

¼ 0 in (3.11). Thus,
the condition that the magnetic part vanish at Iþ–or, that
conformal flatness of the three-metric at Iþ be preserved to
first order—removes, by fiat, half the degrees of freedom
from consideration. The first expectation based on
Maxwell fields is explicitly borne out. In Sec. IV we will
show that the second expectation is also borne out: the
remaining gravitational waves that do preserve conformal
flatness to first order, carry no energy-momentum or
angular momentum.
Remarks:
(i) The explicit solution (3.11) shows that, as one

approaches Iþ (i.e., as η → 0), the term associated

with EðsÞ
~k

vanishes while the term associated with

BðsÞ
~k

survives. In the cosmology literature, the first is

referred to as the ‘decaying mode’ and the second as
the ‘growing mode’. Thus, the requirement that the
magnetic part of the perturbed Weyl curvature
vanish at Iþ removes by fiat the growing mode
and leaves only the decaying mode. These pertur-
bations hab vanish at Iþ.

(ii) Let us return to the linearized Einstein’s equa-
tion (3.6) satisfied by hab. While one can think of
hab as a field propagating on the Minkowski metric
g
̥
ab, because of the additional term ð2=ηÞh0ab, the
propagation is not sharp; there is a “tail term.”On the
other hand, the linearized Weyl tensor satisfies
conformally invariant equations. Its propagation
does not have a tail term. Interestingly, the same
is true of the time derivative of the metric perturba-
tion: One can verify that it satisfies the conformally
invariant equation, ð□̄ − ð4R̄=6ÞÞh0ab ¼ 0. Equiva-
lently, since ḡab ¼ ð1=H2η2Þg̥ ab, it follows that
□

̥
½ð1=ηÞh0ab� ¼ 0. Therefore it follows that the

propagation of ð1=ηÞh0ab on ðM; g
̥
abÞ, and hence

of h0ab on ðM; ḡabÞ, is in fact sharp, without any tail
terms. This fact has an interesting implication in the
discussion of the quadrupole formula [11].

IV. THE HAMILTONIAN FRAMEWORK

This section is divided into two parts. In the first, we
construct the covariant phase space of source-free, linear-
ized gravitational fields on the de Sitter background. In the
second, we obtain expressions of energy-momentum and

angular momentum carried by gravitational waves by
computing the Hamiltonians corresponding to the seven
Killing fields on the Poincaré patch.

A. The covariant phase space

For linearized gravitational fields, the covariant phase
space ΓCov can be taken to be the space of solutions γab to
the Eqs. (3.2) and (3.3). For simplicity, we will assume that
the solutions of interest have initial data in the Schwartz
space of rapidly decreasing, smooth fields, although these
conditions can be weakened considerably. The standard
procedure (see, e.g., [13]) endows ΓCov with a symplectic
structure ω. Restricted to the cosmological slices Σ (given
by η ¼ const), it becomes:

ωðγ; γÞ≡ ωðh; hÞ

≔
a2ðηÞ
4κ

Z
Σ
d3xðhabh0cd − h0abhcdÞq

̥ acq
̥ bd; ð4:1Þ

where hab is related to the physical metric perturbation γab
via γab ¼ a2hab [see Eq. (3.4)] and κ ¼ 8πG. It is easy to
verify that (3.5) and (3.6) imply that the integral is
independent of the η ¼ const slice on which it is evaluated.
This form of the symplectic structure is useful in calcu-
lations within the Poincaré patch. Furthermore, as we will
see in Sec. IV B, it is well adapted for taking the limit
Λ → 0.
In the cosmology literature, one often works with

the functions hðsÞ~k
ðηÞ defined in (3.7) and their Fourier

transforms

ϕðsÞð~x; ηÞ ≔ 1ffiffiffiffiffi
4κ

p
Z

d3k
ð2πÞ3 h

ðsÞ
~k
ðηÞei~k·~x ð4:2Þ

in place of the tensor fields γab or hab. (The factor of
ffiffiffiffiffi
4κ

p
is

introduced to endow ϕðsÞ with the standard dimensions of a
scalar field, so that the scalar and tensor perturbations can
be treated in a completely parallel manner. See, e.g.,
Sec. 3.D of [14].) These are referred to as the two tensor
modes. It is straightforward to verify that these fields satisfy
the wave equation in de Sitter spacetime

□̄ϕðsÞð~x; ηÞ ¼ 0: ð4:3Þ

Thus, each tensor mode ϕðsÞ of the linearized gravitational
field satisfies just the massless Klein-Gordon equation. It is

clear that, given fixed polarization tensors eðsÞab ð~kÞ, there is a
natural isomorphism between the functions ϕðsÞð~x; ηÞ and
solutions habð~x; ηÞ to the linearized Einstein equation (3.6)
and gauge conditions (3.5). It is easy to check that the
symplectic structure (4.1) on ΓCov translates to the standard
symplectic structure on the covariant phase space ΓKG

Cov

consisting of pairs of solutions ϕ≡ fϕðsÞð~x; ηÞg to the
Klein-Gordon equation:

ASYMPTOTICS WITH A …. II. LINEAR FIELDS ON … PHYSICAL REVIEW D 92, 044011 (2015)

044011-7



ωKGðϕ;ϕÞ ¼ a2ðηÞ
Z
Σ
d3x

X2
ðsÞ¼1

ðϕðsÞðϕðsÞÞ0 − ðϕðsÞÞ0ϕðsÞÞ:

ð4:4Þ

This form of the symplectic structure is useful to compute
expressions of fluxes of energy-momentum and angular
momentum that are adapted to the ‘tensor modes’ used in
the cosmological perturbation theory.
However, expressions (4.1) and (4.4) of the symplectic

structure have one drawback: because of the multiplicative
factor a2ðηÞ ¼ ð1=H2η2Þ, they are not well suited to take
the limit to Iþ (where η ¼ 0). While, the limit itself is
well defined because the symplectic structure is indepen-
dent of η, to express physical results—e.g., the formula of
energy—in terms of fields that are well defined at Iþ, one
has to be extremely careful in keeping track of terms in the
integrand which tend to zero at the appropriate rate to
compensate for the apparent blow up as 1=η2 due to the
prefactor in front of the integral. Also, these expressions are
not gauge-invariant as they use specific gauge conditions
(3.5). To overcome these limitations, it is convenient to
recast the expression (4.1) using the relation between the
perturbed electric part of the Weyl tensor Eab and the metric
perturbation,

2Eabð~x; ηÞ ¼
1

Hη2
ðh0ab þ ηD

̥
2
habÞ; ð4:5Þ

that holds on any cosmological slice. Substituting for h0ab in
terms of Eab and simplifying by performing integrations by
parts, we obtain:

ωðh; hÞ ¼ 1

2Hκ

Z
Σ
d3xðhabEcd − habEcdÞq

̥
acq
̥
bd: ð4:6Þ

We will use both expressions, (4.1) and (4.6), of the
symplectic structure on ΓCov in our discussion of the
conserved fluxes associated with the seven Killing vectors.
(The equivalent form (4.4) in terms of the Klein-Gordon
fields ϕðsÞ turns out not to be as useful in providing hints for
the full, nonlinear theory.)
We will conclude this discussion by pointing out several

consequences that follow immediately from the form (4.6)
of the symplectic structure. First, it is transparent that
ð1=2HκÞEab can be regarded as the momentum that is
canonically conjugate to the metric perturbation hab.
Second, as we saw in Sec. III, the perturbations hab as
well as the perturbed electric part of the Weyl tensor Eab
admit well-defined limits to Iþ. Therefore, one can take the
limit Σ → Iþ simply by evaluating the integral (4.6) on Iþ.
This feature will facilitate our task of expressing energy-
momentum and angular momentum in terms of asymptotic
fields at Iþ. In turn, these expressions will be directly
useful in [11] to obtain a formula for the energy emitted by

a time-changing quadrupole and establish its positivity. The
third and more important feature is gauge invariance. Note
first that Eab by itself is gauge-invariant, it is tangential to
the cosmological slices, and it is divergence- and trace free.
This fact enables us to drop the gauge-fixing conditions
(3.5) and consider general perturbations. For, if either γ

ab
or

γ
ab

is a pure gauge field—i.e., of the form ∇̄ðaξbÞ for a
spacetime vector field ξa—properties of Eab ensure that the
expression (4.6) of ωðh; hÞ vanishes identically. Thus, the
passage from h0ab to Eab using (4.5) has provided us with a
manifestly gauge-invariant expression (4.6) of the sym-
plectic structure. Finally, using the explicit solutions (3.11),
we can reexpress the symplectic structure in terms of the
coefficients E~k and B~k:

ωðh; hÞ ¼ 1

κ

Z
d3k
ð2πÞ3

X2
ðsÞ¼1

kððBðsÞ
~k
Þ⋆EðsÞ

~k
− ðBðsÞ

~k
Þ⋆EðsÞ

~k
Þ;

ð4:7Þ
where, as before, ⋆ denotes complex-conjugation.
Consequently, the pull-back of the symplectic structure
to the subspace of ΓCov on which Bab vanishes on Iþ–or,
alternatively, on which Eab vanishes on Iþ–is identically
zero. These subspaces are among the maximal Lagrangian
subspaces of ΓCov. In this respect the situation is again
completely parallel to that in the Maxwell theory.

B. Three-momentum, angular momentum and energy
carried by gravitational waves

We can now calculate the Hamiltonians on ΓCov corre-
sponding to the seven Killing fields on the Poincaré patch.
Recall from (3.4) that the physical metric perturbation is
γab ¼ a2hab and it satisfies the gauge conditions (3.2) and
linearized Einstein’s equation (3.3) that refer only to the
background de Sitter metric ḡab. Therefore, if γab ∈ ΓCov,
then so is γðKÞab ≔ LKγab, for any Killing field Ka of ḡab.
From the definition (3.4) of hab, it follows that

γðKÞab ¼ a2ðLKhab þ 2ða−1LKaÞhabÞ ≕ a2hðKÞab ð4:8Þ

with a ¼ −1=ðHηÞ. As in the Maxwell case, the isometries
generated by each of the seven Killing fields Ka in gPoin
provide a one-parameter family of canonical transforma-
tions on ΓCov. From general results on the covariant phase
space [13] it follows that the corresponding Hamiltonian is
again given by

HK ≔ −
1

2
ωðγ; γðKÞÞ ¼ −

1

2
ωðh; hðKÞÞ: ð4:9Þ

Recall from Sec. III that if Bab ¼ 0 at Iþ, then hab also
vanishes there. In this case, then, we have HK ¼ 0. Thus,
although there do exist linearized gravitational waves that
retain conformal flatness of the induced geometry at Iþ to
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first order, they carry no energy, three-momentum, or
angular momentum.
We will now compute the Hamiltonians (4.9) for the

seven Killing fields in gPoin.

1. Three-momentum and angular momentum

As in the case of Maxwell fields discussed in Sec. II B,
the calculations are identical for the three spatial trans-
lations Ta

ðiÞ and the three rotations Ra
ðiÞ. Let us, therefore,

again denote by Sa any of these six Killing fields and
calculate the three-momentum or angular momentum HS,
and then discuss energyHT separately. For these six Killing
fields, we have hðSÞab ¼ LShab since these fields are all
tangential to the η ¼ const surfaces. Furthermore, from
(4.5) it follows that the corresponding perturbed electric
part of the Weyl tensor, EðSÞ

ab , is given by

EðSÞ
ab ¼ 1

2Hη2
ðLηðLShabÞ þ ηD

̥
2ðLShabÞÞ ¼ LSEab:

ð4:10Þ

Therefore, (4.9) becomes

HS ¼ −
1

2
ωðh; hðSÞÞ

¼ −
1

4Hκ

Z
Σ
d3xðhabEðSÞ

cd − hðSÞab EcdÞq
̥ acq

̥ cd

¼ 1

2Hκ

Z
Σ
d3xðEabLShcdÞq

̥
acq
̥
cd; ð4:11Þ

where, in the second step we have integrated by parts. Thus,
the expressions of three-momentum and angular momen-
tummirror those in the Maxwell theory. Since the integrand
in (4.11) refers only to the fields hab, Eab and the metric
q
̥
ab, all of which have smooth limits to Iþ, to take the limit

Σ → Iþ, we just have to evaluate (4.11) on Iþ.
Finally, let us consider the limit Λ → 0 of HS. Since the

Hubble parameter H tends to zero in this limit, from the
form of (4.11), the limit seems divergent at first sight.
However, this conclusion is incorrect because fields in the
integrand also depend on H. Let us, therefore, analyze the
limit more carefully. As explained in Sec. II, to take this
limit, we should use the differential structure induced by
the chart ðt; ~xÞ on the Poincaré patch (and not by the chart
ðη; ~xÞ). Then, for the background geometry, we find that as
Λ → 0, we have

ḡab → ηab ¼ −∂at∂btþ ∂ax∂bxþ ∂ay∂by

þ ∂az∂bz;

Hη≡ −e−Ht → −1;
∂
∂η →

∂
∂t≡ ta∂a; Ta → ta: ð4:12Þ

Note that the Minkowski metric ηab in (4.12) is distinct
from the Minkowski metric g

̥
ab in (3.4). In the Poincaré

patch, each of the Cartesian coordinates ðt; ~xÞ of ηab takes
the full range of values, ð−∞;∞Þ [whereas η of g

̥
ab only

runs from ð−∞; 0Þ]. A second important point for the limit
is that the ðt; ~xÞ chart does not cover Iþ (where t ¼ ∞).
Therefore, to take the Λ → 0 limit, we are led to evaluate
the symplectic structure and Hamiltonians HS on a cos-
mological slice corresponding to a finite constant value of t.
Consider any one-parameter family of smooth fields

habðΛÞ which solve the gauge condition (3.5) and the
linearized Einstein equation (3.6) for each Λ and admit a
smooth limit h

̥
ab as Λ → 0 everywhere on the Poincaré

patch. Then, using (4.12), it is straightforward to show that
h
̥
ab satisfies the Lorentz and radiation gauge, as well as

the linearized Einstein’s equation with respect to the
Minkowski metric ηab:

∂ah
̥
ab ¼ 0; h

̥
abη

ab ¼ 0;

h
̥
abtb ¼ 0; and ∂c∂ch

̥
ab ¼ 0: ð4:13Þ

Denote the space of solutions h
̥
ab to these equations by

Γ
̥
cov. It is straightforward to verify that in the limit Λ → 0,

the symplectic structure ω on ΓCov goes over to the standard
symplectic structure ω

̥
on Γ

̥
cov:

ω
̥ ðh
̥
; h
̥
Þ ¼ 1

4κ

Z
Σ
d3xðh

̥
ab∂tðh

̥
cdÞ − ∂tðh

̥
abÞh

̥
cdÞq

̥ acq
̥ bd;

ð4:14Þ

where the integral is taken on a t ¼ const slice. Finally,
the limit H

̥
S of the Hamiltonian HS ¼ ð−1=2Þωðh; hðSÞÞ is

given by

H
̥
S ¼ −

1

2
ω
̥ ðh
̥
;LSh

̥
Þ

¼ 1

4κ

Z
Σ
d3xð∂tðh

̥
abÞLSh

̥
cdÞq

̥ acq
̥ bd: ð4:15Þ

This is precisely the expression of the linear and angular
momentum of linearized gravitational waves in Minkowski
spacetime. Thus, although the procedure of taking the limit
Λ → 0 is rather subtle, the de Sitter three-momentum and
angular momentum (4.11) do reduce to the standard
conserved fluxes in Minkowski spacetime.
Remark: While taking the limit, we assumed the exist-

ence of a family habðΛÞ, satisfying the gauge conditions
(3.5) and linearized Einstein equation (3.6) for each Λ, that
admits a smooth limit h

̥
ab on the Poincaré patch as Λ → 0.

An explicit example of such a family is provided by setting
in (3.11)
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EðsÞ
~k
ðΛÞ ¼ CðsÞ

~k
sinðk=HÞ þDðsÞ

~k
cosðk=HÞ;

BðsÞ
~k
ðΛÞ ¼ −CðsÞ

~k
cosðk=HÞ þDðsÞ

~k
sinðk=HÞ: ð4:16Þ

A careful calculation shows that in the limit Λ → 0 the field
hðsÞ~k

ðΛÞ of (3.7) goes over to

h
̥ ðsÞ
~k ¼ 2CðsÞ

~k
sin ktþ 2DðsÞ

~k
cos kt; ð4:17Þ

and the limit h
̥
ab of the family habðΛÞ is given by

h
̥
abð~x; tÞ ¼

Z
d3k
ð2πÞ3

X2
ðsÞ¼1

�
AðsÞ
~k
eikt

þ ðAðsÞ
~k
Þ⋆ e−ikt

�
eðsÞab ð~kÞei~k·~x; ð4:18Þ

where 2AðsÞ
~k

¼ DðsÞ
~k

− iC~k. Thus, a general solution to the
linearized Einstein’s equation in Minkowski space in the
transverse, traceless, radiation gauge can be obtained as a
limit of this family habðΛÞ.

2. Energy

Next, let us consider the energy HT defined by the time
translation Ta of (2.3). In this case, the calculation is not as
straightforward because (i) the vector field Ta is not
tangential to the cosmological slices η ¼ const except at
Iþ, (ii) hðTÞab has an extra term relative to hðSÞab ,

hðTÞab ¼ LThab þ 2Hhab; ð4:19Þ

and (iii) a detailed calculation shows that EðTÞ
ab also has an

extra term,

EðTÞ
ab ¼ LTEab −HEab: ð4:20Þ

Once these differences are taken into account, the con-
served energy-flux HT across Σ can be calculated using
(4.9). We have

HT ¼ −
1

4Hκ

Z
Σ
d3xðhabLTEcd − EcdLThab

− 3HhabEcdÞq
̥ acq

̥ bd; ð4:21Þ

where, as before, Σ is any cosmological slice. However,
since T is not tangential to Σ, on a general cosmological
slice we cannot integrate by parts as we did for HS. Again
the limit to Iþ is straightforward since all fields in the
integrand have smooth limits to Iþ. Furthermore, in the
limit, Ta becomes tangential to Iþ enabling us to simplify
(4.21) further,

HT ¼ 1

2Hκ

Z
Iþ

d3xEcdðLThab þ 2HhabÞq
̥ acq

̥ bd ð4:22Þ

¼ H
κ

Z
d3k
ð2πÞ3 k

X2
ðsÞ¼1

ðEðsÞ
~k
LkðBðsÞ

~k
Þ⋆ þ 2EðsÞ

~k
ðBðsÞ

~k
Þ⋆Þ;

ð4:23Þ

where in the second step we have used the explicit solutions
(3.11) for hab in terms of Fourier modes. Since Bab ¼ 0 if
and only if BðsÞ

~k
¼ 0, the last expression makes it explicit

that if a gravitational wave does not change conformal
flatness of the intrinsic geometry at Iþ to first order, it does
not carry energy. Finally, the expression (4.9) of HK is
linear in Ka for all Killing fields. Therefore, HλT ¼ λHT
for all real numbers λ. For linearized gravitational waves
on Minkowski spacetime, energy is positive definite and
vanishes if and only if the perturbation is pure gauge. On
the de Sitter spacetime, the conserved energy HT can have
either sign and we have an infinite-dimensional subspace of
the physical, transverse-traceless modes for which the
energy vanishes. From (4.22) it is clear that energy also
vanishes if Eab vanishes on Iþ. (The other possibility,
LThab ¼ −2Hhab on Iþ, is not realized because such
perturbations would not be in the Schwartz space on Iþ of
the Poincaré patch, which is topologically R3 [5].)
Finally, let us consider the limit Λ → 0 of the conserved

energyHT. For reasons given in Sec. IV B 1, we have to use
the differential structure induced by the coordinates ðt; ~xÞ
and work with a cosmological slice in the Poincaré patch
with η ≠ 0. Let us again suppose that we have a one-
parameter family of perturbations habðΛÞ that satisfy the
gauge conditions (3.5) and the linearized Einstein equa-
tion (3.6), and admit a smooth limit h

̥
ab as Λ → 0. As

discussed above, h
̥
ab is a metric perturbation on the

Minkowski metric ηab, satisfying (4.13). The limit H
̥
t of

the Hamiltonian HT ¼ ð−1=2Þωðh; hðTÞÞ is given by

H
̥
T ¼ −

1

8κ

Z
d3xðh

̥
ab∂2

t h
̥
cd − ð∂th

̥
abÞð∂th

̥
cdÞÞq

̥ acq
̥ bd

¼ 1

8κ

Z
d3xðð∂th

̥
abÞð∂th

̥
cdÞ

þ ðD
̥
mh
̥
abÞðD

̥
nh
̥
cdÞq

̥ mnÞq̥ acq̥ bd; ð4:24Þ

where in the second step we have used (4.13) and integrated
by parts. This is precisely the conserved energy flux of the
linearized gravitational field h

̥
ab in Minkowski spacetime.

Thus, our energy expression (4.21) for linearized gravita-
tional fields in de Sitter spacetime does have the expected
limit as Λ → 0. Note that the limit is quite subtle and
discontinuous: While HT can be negative and arbitrarily
large, no matter how small the positive Λ is, in the limit
Λ → 0 we obtain H

̥
T which is positive definite!

Geometrically, this occurs because while the Killing field
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Ta of de Sitter metric ḡab is spacelike in the upper half of
the Poincaré patch for every Λ > 0, its limit, the Killing
field ta of ηab, is timelike everywhere.
Remarks:
(i) In the cosmological literature, the discussion of

energy often refers to the Hamiltonians Hη or Ht
that generate evolution along the conformal time η or
proper time t. Since ηa and ta are not Killing fields,
these Hamiltonians are not conserved. Thus, they are
unrelated to the conserved energy HT discussed
above and are not the analogs of the standard notion
of energy in Minkowski spacetime, used in the
gravitational radiation theory.

(ii) As discussed in Sec. IVA, in cosmology one often
encodes the metric perturbations γabð~x; ηÞ in the two
tensor modes ϕðsÞð~x; ηÞ that satisfy the Klein-
Gordon equation with respect to the de Sitter metric
ḡab. On the Klein-Gordon phase space ΓKG

Cov, the
isometry generated by any Killing field Ka again
defines a one-parameter family of transformations
that preserve the symplectic structure ωKG. As one
would expect, the corresponding Hamiltonians agree
with the HK obtained above for all seven Killing
fields. That is, our energy-momentum and angular
momentum expressions HT and HS hold both for
the metric perturbations γab satisfying (3.2) and (3.3)
and the tensor modes ϕðsÞ satisfying the wave
equation (4.3) in the Poincaré patch.

(iii) Finally, we note that the explicit solutions (3.11) are
widely used in the cosmological literature on lin-
earized gravitational waves. However, the primary
interest there is on the effect of these gravitational
waves on the polarization of the CMB electromag-
netic waves. To our knowledge, this literature does
not contain the analysis of the asymptotic behavior
of these perturbations at Iþ, or the implications of
the assumption that the perturbations preserve con-
formal flatness of Iþ to linear order, nor a discussion
on the isometry group GPoin that preserves the
Poincaré patch, or the associated conserved fluxes
HK given above.

V. DISCUSSION

In the Λ ¼ 0 case, there is a well-developed theory of
isolated systems and gravitational radiation in full, non-
linear general relativity that has played a dominant role in a
number of areas of gravitational science. In the first paper
[5] in this series, we showed that there are significant
conceptual obstacles in extending this theory to allow a
positive cosmological constant, however small, because the
limit Λ → 0 is discontinuous. In particular, whereas I is
spacelike, no matter how small Λ is, it is null when Λ
vanishes. If Λ were zero and the accelerated expansion of
the Universe is caused by some matter field rather than a
cosmological constant, that field would not have the

asymptotic fall-off we are familiar with in the Λ ¼ 0 case,
and spacetime curvature far away from the sources would
be similar to that in asymptotically de Sitter spacetimes.
Therefore, difficulties discussed in [5] would persist also in
the Λ ¼ 0 case if the observed accelerated expansion
continues to infinite future. To overcome these obstacles,
one needs a new framework. In this paper we completed the
first step to this goal by discussing linear gravitational
waves in de Sitter spacetime.
Motivated by considerations of isolated systems dis-

cussed in Sec. II A, we focused on the upper Poincaré patch
of de Sitter spacetime. Isometries generated by seven of the
ten de Sitter Killing fields leave this patch invariant. This
group GPoin is generated by three space-translations and
three rotations that are tangential to the cosmological slices
and a time translation that is transversal to them. Therefore,
one expects well-defined notions of linear and angular
momentum, and energy, associated with any physical field
on the Poincaré patch. We showed in Sec. II B that, in the
case of Maxwell fields, these conserved fluxes arise as
the Hamiltonians generating canonical transformations
induced by the action of Killing fields on the covariant
phase space ΓMax

Cov . Furthermore, in the Λ ¼ 0 case, the
Hamiltonian framework has been used very effectively also
for gravitational waves in full, nonlinear general relativity: It
leads to flux integrals corresponding to the Bondi-Metzner-
Sachs (BMS) asymptotic symmetries [7]. Therefore, it is
natural to use this strategy also in the Λ > 0 case.
Since the covariant phase space consists of solutions to

the field equations, in Sec. III we discussed the asymptotic
properties of solutions to linearized Einstein’s equation in
de Sitter spacetime. In Sec. IV we constructed the covariant
phase space ðΓCov;ωÞ of these linear gravitational waves.
Each of the seven Killing fields Ka naturally defines a flow
on ΓCov that preserves the symplectic structure ω thereon,
and thus defines a Hamiltonian HK . These Hamiltonians
provided us with the expressions (4.11) and (4.21) of fluxes
of energy-momentum and angular momentum carried by
gravitational waves. Furthermore, we could express these
conserved fluxes in terms of fields defined on Iþ.
These results have a number of interesting features. First,

to make the full nonlinear theory manageable in the Λ > 0
case, at first it seems natural to strengthen the boundary
conditions by requiring that the intrinsic geometry of Iþ be
conformally flat, as in de Sitter spacetime. However, almost
30 years ago Friedrich showed that the freely specifiable
data at I− consist, up to arbitrary conformal rescalings, of a
freely specifiable Riemannian metric and a trace-free,
symmetric tensor field of valence two, which satisfies a
divergence equation [15]. Therefore, by applying those
results to Iþ (in place of I−), it follows that demanding
conformal flatness of the metric at Iþ removes by hand part
of this free data. In the linearized approximation, we could
sharpen the implication of this condition. First, because the
perturbed electric and magnetic parts of the Weyl curvature
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are gauge-invariant, we can discuss the physical or true
degrees of freedom, not just the freely specifiable data.
Second, we could parametrize the gauge-invariant content
of a general linearized solution in terms of 4 functions EðsÞ
and BðsÞ on Iþ that capture these true (phase space) degrees
of freedom. Finally, we showed that the additional con-
dition at Iþ sets BðsÞ ¼ 0. Therefore, in the linear approxi-
mation one sees explicitly that this condition cuts the true
degrees of freedom in gravitational waves exactly by half.
Furthermore, the gravitational waves that do satisfy this
condition carry no energy-momentum or angular momen-
tum. Thus, although this strategy of gaining control over
the nonlinear theory seems plausible at first, it is simply not
viable. By isolating the true degrees of freedom at Iþ, it
should be possible to show that this sharper result holds
also in full general relativity with positive Λ.
Second, we found that the conserved energy has a

peculiar feature: For matter fields as well as linearized
gravity, energy HT defined by the time translation Ta can
have either sign and, furthermore, is unbounded below.
Thus, there exist both electromagnetic and gravitational
waves on de Sitter spacetime which carry arbitrarily
negative energy, no matter how small the positive Λ is.
This is in striking contrast with the Λ ¼ 0 situation, where
the corresponding waves carry strictly positive energyH

̥
t in

Minkowski spacetimes. How can one reconcile this strong
contrast? What happens to the infinitely many solutions
with large negative energy in the limit Λ → 0?
To analyze this issue, let us first recall that, to take this limit,

one has to use the differential structure induced by the
coordinates ð~x; tÞ. In this chart, the cosmological horizons
which bound region I of Fig. 2 lie at r2 ¼ ð3=ΛÞe−2Ht (where
r2 ¼ ~x · ~x). Therefore, in the limit Λ → 0, region I in which
Ta is timelike fills out thewholeMinkowski space. This is the
geometric reason why even though HT is unbounded below
nomatter howsmall thepositiveΛ is, the limitingH

̥
t is strictly

positive. In the phase space language, as Λ changes, the
covariant phase spaceΓðΛÞ

Cov, onwhich theHamiltonianHT are
defined, itself changes. In the limit, the set of solutions hab on
which HT is negative simply disappears.
To summarize, as we showed explicitly in Sec. IV B 1,

there are families of metric perturbations γabðΛÞ that satisfy
the gauge conditions (3.2) and field equations (3.3) for each
Λ, and admit well-defined limits h

̥
ab as Λ → 0 satisfying

the standard gauge conditions and field equations (4.13)
in Minkowski spacetime. This limiting procedure is onto:
the limits h

̥
ab span the entire phase space Γ

̥
cov of metric

perturbations in Minkowski spacetime. Furthermore along
any of these families, the energyHT jγðΛÞ tends to the energy
H
̥
T jh̥ of the limiting perturbation in Minkowski spacetime.

Nonetheless, the lower bound of the energy function on
phase spaces ΓðΛÞ

Cov is discontinuous in the limit: It equals
−∞ for every Λ, however small, but vanishes for Λ ¼ 0.
Even though we do recover positivity of energy in the

limit Λ → 0, we are left with a conundrum because there is

strong evidence that Λ is small but nonzero in our Universe:
Can realistic gravitational waves have arbitrarily large
negative energy in de Sitter spacetime or, in the nonlinear
context, in asymptotically de Sitter spacetimes? To probe
this issue let us first analyze in some detail the origin of
negative energy. Let us begin with Maxwell fields in de
Sitter spacetime. The stress-energy satisfies the dominant
energy condition and the Killing field Ta is future pointing
on the part of Eþði−Þ that lies in region I and past pointing
on the part that lies in region II (see the left panel in Fig. 2).
Therefore, the energy flux across Eþði−Þ into region I is
positive but that into region II is negative. It is because of
this negative flux into region II that the total energy can be
negative. Therefore, if the Maxwell field under consider-
ation vanished on the part of the horizon Eþði−Þ that lies in
region II, the energy of those electromagnetic waves would
be necessarily positive. For gravitational waves, we do not
have a stress-energy tensor. However, using the fact that the
Killing field Ta is future directed and timelike in region I, it
is easy to show that, if the initial data on any cosmological
slice Σ were restricted to lie entirely in the intersection of
Σ with region I, the energy (4.21) of that cosmological
perturbation is necessarily positive.5 In the limit η → −∞,
the cosmological slice tends to Eþði−Þ. Therefore, it again
follows that the conserved energy flux at Iþ can be negative
only because there is a negative energy flux into the Poincaré
patch across the part of Eþði−Þ that lies in region II. But in
realistic situations gravitational waves from isolated systems
would be generated entirely by a time changing quadrupole
moment (depicted in the right panel of Fig. 2), whence there
would be no incoming flux across Eþði−Þ at all. The flux
across Iþ would just equal that across the future horizon
E−ðiþÞ that separates regions I and II. Since the Killing field
Ta is null and future directed on this horizon, this flux has to
be positive. Indeed wewill show this explicitly in [11]. Thus,
in terms of fields at Iþ, while general initial data can have
arbitrarily large negative energies, the initial data induced by
gravitational waves produced by realistic sources are
appropriately constrained for the energy flux across Iþ
to be positive. In the linearized case, it appears to be rather
straightforward to make these constraints explicit [16]. An
interesting challenge in full nonlinear general relativity is to
find the analogous constraints on fields at Iþ induced by
gravitational waves produced by realistic sources, in absence

5This is most easily seen by using the symplectic form in (4.1)
to rewrite the energy as follows:

HT ¼ −
1

8κHη

Z
d3xððr̂m − ηmÞðr̂n − ηnÞ þ smn

þ 2

�
1þ r

η

�
r̂mηnÞ∇

̥
mhab∇

̥
nhcdq

̥ acq
̥ bd; ð5:1Þ

where q
̥
abr̂ar̂b ¼ 1 and smn ¼ q

̥
mn − r̂mr̂n. If the initial data are

restricted to the intersection of Σ with region I we have jr=ηj < 1
and, consequently, HT is necessarily positive.
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of incoming radiation [10] (at least from the portion of the
event horizon Eþði−Þ that lies to the future of the cross-over
surface C). With these constraints at hand, one could hope to
show that fluxes of energy carried by gravitational waves
produced in physically realistic processes would be positive
in full nonlinear general relativity with Λ > 0, as one
physically expects.
Finally, note that our entire analysis–and in particular the

limit (4.18) to Minkowski space–was carried out by restrict-
ing ourselves to the future Poincaré patch of de Sitter space.
As discussed in Sec. II A, in the description of isolated
systems, this restriction is motivated by direct physical
considerations. However, one may still ask if the results
can be extended to full de Sitter spacetime. The explicit form
of the solutions we presented is indeed restricted to the future
Poincaré patch because of the heavy use of the cosmological
slicing. But each of these solutions admits a well-defined
extension to full de Sitter spacetime simply because every
solution in our covariant phase space ΓCov induces well-
defined initial data on the de Sitter–Cauchy surfaces. For
these extended solutions, our main results also hold on I−.
The central formula (4.9) holds for all ten Killing fields Ka

of de Sitter spacetime in this extension.
These constructions and results provide further guidance

for the development of the gravitational radiation theory in
full nonlinear general relativity with Λ > 0. We will
conclude this discussion with two examples.
Consider first the problem of defining the two-sphere

energy-momentum and angular momentum charge inte-
grals, analogous to the Bondi four-momentum in the Λ ¼ 0
case. For a given prescription for selecting asymptotic
symmetries, considerations involving field equations and
geometry of Iþ (discussed in Sec. 5 of [5]) suggest a
natural, candidate expression for these charges for Λ > 0.
The difference between these integrals evaluated on any 2

two-spheres on Iþ provides a candidate expression of
fluxes in the full theory across the region of Iþ bounded by
these two-spheres. One can show that their linearization
provides precisely the flux formulas (4.11) and (4.22) at
Iþ, derived using completely independent Hamiltonian
methods. This result provides a powerful hint for the charge
integrals in the full nonlinear theory. The remaining open
issue is the selection of appropriate asymptotic symmetries,
without assuming conformal flatness of the intrinsic geom-
etry of Iþ (which, as we showed, trivializes the situation by
forcing all fluxes to vanish).
A second issue in the full theory is the following. While

observations strongly suggest that Λ is positive in our
Universe, almost all analytical calculations and numerical
simulations in gravitational wave science set Λ to zero and
work in the asymptotically Minkowskian context. (For
notable exceptions, see [17–19].) Since the actual value of
Λ is so small compared to the scales involved, say, in binary
coalescences of astrophysical interest, it is natural to
assume that setting Λ to zero is an excellent approximation.
However, it is not completely clear that this is true for
two reasons. First, as we pointed out, the limit Λ → 0 is
discontinuous in important respects. Second, advanced
LIGO will be eventually capable of detecting gravitational
waves from sources that are ∼1 Gpc away, a distance that is
approximately 20% of the cosmological radius. Therefore,
apart from the intrinsic conceptual interest, it is important to
be able to reliably calculate the “errors” one makes by
setting Λ to zero.6 The details of the discussion of the
Λ → 0 limit presented in this paper will help significantly
in streamlining these calculations.

FIG. 2 (color online). Left panel: Integral curves of the time translation Killing field Ta in the Poincaré patch. Ta is future directed and
timelike in region I and spacelike in region II. It is future directed and null on portion of the event horizon E−ðiþÞ to the future of the
cross-over two-sphere (bifurcate horizon) C and on the portion of the null event horizon Eþði−Þ to the past of C. It is past directed and
null on the portion of Eþði−Þ to the future of C. Right panel: A time-changing quadrupole emitting gravitational waves. Radiation
crossing the cosmological horizon E−ðiþÞ and reaching Iþ originates in region I; there is no incoming radiation on Eþði−Þ.

6For example, there may be subtle effects—analogous to the
nonlinear memory in the Λ ¼ 0 case—that have remained under
the radar so far.
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