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The abundance of massive galaxy clusters is a powerful probe of departures from general relativity (GR)
on cosmic scales. Despite current stringent constraints placed by stellar and galactic tests, on larger scales
alternative theories of gravity such as fðRÞ can still work as effective theories. Here we present constraints
on two popular models of fðRÞ, Hu-Sawicki and “designer,” derived from a fully self-consistent analysis of
current samples of x-ray selected clusters and accounting for all the covariances between cosmological and
astrophysical parameters. Using cluster number counts in combination with recent data from the cosmic
microwave background (CMB) and the CMB lensing potential generated by large scale structures, as well
as with other cosmological constraints on the background expansion history and its mean matter density,
we obtain the upper bounds log10jfR0j < 4.79 and log10B0 < 3.75 at the 95.4% confidence level, for the
Hu-Sawicki (with n ¼ 1) and designer models, respectively. The robustness of our results derives from
high-quality cluster growth data for the most massive clusters known out to redshifts z ∼ 0.5, a tight control
of systematic uncertainties including an accurate and precise mass calibration from weak gravitational
lensing data, and the use of the full shape of the halo mass function over the mass range of our data.

DOI: 10.1103/PhysRevD.92.044009 PACS numbers: 04.80.-y, 04.80.Cc

I. INTRODUCTION

Since the discovery of the late time cosmic acceleration
[1,2] a profusion of theoretical models have been proposed
to explain this phenomenon (for recent reviews see [3–5]).
In a nutshell, one can either add a dark fluid with sufficient
negative pressure or modify the laws of gravity. Among the
alternative theories to general relativity (GR), fðRÞ gravity
has sparked a lot of interest over the last decade, motivated
by its relative simplicity and rich phenomenology [6,7]. In
this model, the Einstein-Hilbert action is supplemented by a
nonlinear function of the Ricci or curvature scalar, R.
Conveniently chosen fðRÞ functions can reproduce the
observed accelerated expansion while adding an attractive
force of the order of the gravitational interaction. This fifth
force is carried by the scalar degree of freedom, dubbed
scalaron, fR ¼ df=dR, introduced by the modification of

gravity. The range of this new interaction is given by the
inverse mass, or equivalently the Compton wavelength of
the scalaron, which is directly related to the background
amplitude of the scalaron field today, fR0.
In this model, on scales smaller than the Compton

wavelength, gravity is enhanced by a factor of 4=3 and
structure formation is consequently modified. Above this
scale, structures assemble following GR as long as the
background Compton wavelength is smaller than the
horizon, λC ≪ H−1.
Viable fðRÞ models also present a nonlinear mechanism

to suppress the modifications of gravity in high-density
environments, such as in our Solar System, where GR is
known to be a very accurate theory of gravity. This
suppression should also be observed within our Galaxy.
Theoretical arguments [8] supported afterwards by hydro-
dynamical simulations of galaxy formation and evolution
[9] require the value of the background field jfR0j to be less
than 10−6 for this to be the case. Most recently, constraints*matteoc@dark‑cosmology.dk
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from distance indicators and dwarf galaxies further reduced
this upper limit to jfR0j≲ 4 × 10−7 (here and throughout,
we state the upper limits at the 95.4% confidence level)
[10,11]. Such small fðRÞ modifications of gravity cannot
leave their imprints on cosmological scales or even on fully
nonlinear scales such as those within galaxy clusters.
Nevertheless, fðRÞ can serve as a useful effective theory
or working model for tests of gravity on large scales. For
this purpose, clusters of galaxies represent a powerful probe
of gravity down to scales ∼1–20 Mpc=h. In particular, it
has been shown [12,13] that the abundance of rare massive
halos is substantially enhanced by the presence of a fifth
force for jfR0j > jΨj ∼ 10−6–10−5, where Ψ is the typical
depth of the Newtonian potential for these objects.
In combination with other data sets, Schmidt et al. [14]

used measurements of the abundance of massive galaxy
clusters inferred from x-ray survey data to constrain the Hu-
Sawicki model of fðRÞ gravity [8] and obtained the tightest
cosmological constraint at the time jfR0j≲ 1.3 × 10−4.
These authors used a spherical collapse prediction of the
number of halos as a function of cosmological parameters,
mass and redshift that had previously been validated using
N-body simulations [12]. We employ this halo mass
function (HMF) and extend the approach by including
departures from GR as a prefactor to the HMF of Tinker
et al. [15], which is based on high-resolution GR simu-
lations. This method allows us to efficiently use the full
HMF of GR as a baseline, properly accounting for the
redshift evolution and covariances of its parameters, as well
as other systematic uncertainties (see e.g. [16]). In [14], the
authors mapped modifications of gravity into GR by
matching the Sheth-Tormen (ST) HMF [17] for fðRÞ to
a Tinker et al. mass function with rescaled σ8 at a fixed
pivot mass. This renormalization was then used to incor-
porate both CMB and cluster constraints on the growth of
structures. These simplifications allowed them to have a
limited number of parameters and therefore to be able to
perform a maximum likelihood analysis. However, this
approach may neglect relevant correlations between astro-
physical and cosmological quantities as well as introduce
spurious degeneracies between them. Here instead we carry
out a Markov Chain Monte Carlo (MCMC) analysis of the
full likelihoods of current cluster and CMB data sets, which
includes all the covariances between parameters and an
advanced treatment of systematic uncertainties and biases.
Together with CMB data, and using the full mass and
redshift dependence of the HMF, as well as high-quality
survey (x-ray) and extensive follow-up (x-ray and optical)
cluster data, spanning a redshift range 0 < z < 0.5, we
obtain robust and improved constraints on the background
scalaron field, jfR0j < 1.6 × 10−5. As in [14], our results
also include constraints from baryon acoustic oscillation
(BAO) and type Ia supernova (SNIa) data.
More recently, Dossett et al. [18] and Hu et al. [19]

obtained somewhat tighter upper bounds on jfR0j by

comparing the theoretical predictions of the enhanced linear
matter power spectrum infðRÞgravitywithmeasurements of
the galaxy power spectrum made by the WiggleZ Dark
Energy Survey [20]. As described in those analyses, how-
ever, fðRÞ corrections for the nonlinear scales of the matter
power spectrum (see e.g. [21]) and for the scale dependence
of the halo bias [22] were not included. Note that in these as
well as in our work, a uniformprior on the logarithm of either
the background scalaron field or its Compton wavelength at
the present epoch is used in obtaining the main results. We
show here that a different choice of prior (e.g. uniform on
fR0) can in practice have a non-negligible effect on the
constraints (see Sec. V).
For the “designer” fðRÞ model, using data from cluster

number counts and a uniform prior on the Compton
wavelength in Hubble units (B0), Lombriser et al. [23]
placed an upper limit on this parameter that is equivalent to
jfR0j < 2 × 10−4. Unlike previous works, that paper used
optically selected clusters from the Sloan Digital Sky
Survey (SDSS) data [24]. Moreover, the modifications of
gravity were included in the Tinker et al. HMF (based on
GR) through only the calculation of the variance of the
linear matter density field. The authors justified this
approach by arguing that the data were not sufficiently
constraining to enter the regime jfR0j < 10−4, where such a
HMF is known to no longer be accurate enough.
Secondary anisotropies of the CMB can also be used to

measure modifications of gravity. The enhancement in the
growth of structure due to fðRÞ gravity has potentially
observable effects on linear scales through the Integrated
Sachs-Wolfe (ISW) effect and CMB lensing [18,25,26].
Recent measurements by the Planck satellite of the CMB
lensing potential generated by large scale structures1

together with CMB temperature and polarization data place
a weak upper bound on fðRÞ modifications, jfR0j < 10−3

[31]. This additional power is included in our analysis, and
for CMB data alone we find consistent results with previous
works. Furthermore, combining CMB with cluster data
helps break parameter degeneracies and tightens signifi-
cantly the constraints on the normalization of the matter
power spectrum, σ8. This information is fully accounted for
in our results through the multidimensional parameter
covariance provided by our joint likelihood analysis.
This paper is organized as follows. In Sec. II we review

the phenomenology of fðRÞ gravity and briefly describe its
popular models, Hu-Sawicki [8] and designer [32,33]. In
Sec. III we discuss the halo mass function employed here.
Section IV contains a description of our cluster data sets, as
well as of the other cosmological data sets with which we
combine them. Finally, we present our results in Sec. Vand
conclude in Sec. VI.

1Note that these measurements are statistically independent of
those from the temperature power spectrum in that the lensing
potential power spectrum is a higher-order correlation function of
the CMB temperature maps (see [27–30] for details).
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II. f ðRÞ GRAVITY

In this work we constrain modified gravity theories for
which the Einstein-Hilbert action in the Jordan frame
includes a general nonlinear function of the Ricci scalar,
such as

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ
16πG

�
: ð1Þ

Here and throughout, we set c ¼ 1. GR with a cosmological
constant Λ is recovered for f ¼ −2Λ. This gravity model
exhibits an additional attractive force mediated by a new
scalar degree of freedom, the scalaron field fR ≡ df=dR. For
viable fðRÞmodels (see e.g. [8,33]), its range is given by the
physical Compton wavelength λC ¼ ð3dfR=dRÞ1=2. One of
the effects of this fifth force is the enhancement of the
abundance of massive dark matter halos, as described in
Sec. III. However, such modifications of gravity are sup-
pressed by the nonlinear chameleon effect in high-density
regions,where the depth of the gravitational potentialwells is
large compared to the background field, jΨj > jfRðR̄Þj. Note
that, throughout the text, overbars denote background
quantities.
Previous analytical and numerical works [34–36] have

shown that for jfR0j ≪ 1, time derivatives of the scalar field
can be neglected compared to spatial derivatives, making
the quasi-static approximation (QSA) a fairly accurate
description of the modified dynamics on all scales.
Relaxing this approximation yields effects of the order
λ2C=H

−2, which could be significant for jfR0j ∼ 1 at large
scales [35]. However, the ISW effect is the only known
observable at (near)-horizon scales, and the authors in [35]
showed that it is actually insensitive to large scale correc-
tions associated with the evolution of the scalaron field.
Note also that cluster scales are well within the horizon, and
hence are not affected by the QSA approximation.
Since fðRÞ gravity is conformally equivalent to a scalar-

tensor theory with constant coupling to the matter fields,
whereas electromagnetism is conformally invariant, the
geodesics of photons are unchanged by this modification of
gravity apart from a conformal rescaling of the gravitational
constant by 1þ fR [37]. In other words, given a fixed
density field, e.g. a halo of mass M, the resulting lensing
potential shows no deviation from that in GR as long as
jfRj ≪ 1. This argument is particularly important for our
observed mass function, since we currently employ a weak
gravitational lensing analysis to calibrate our cluster
masses. For the field values of interest here (jfRj ≪ 1),
the assumption of GR in the lensing analysis is conven-
iently valid for our calculations.
Each fðRÞ model produces its own evolution of λC [38],

and the corresponding chameleon screening becomes active
at a different redshift and degree of nonlinearity, impacting
accordingly thegrowth of structures (cf. [21,39,40]).Herewe
consider twopopular formsoffðRÞ, theHu-Sawicki (HS) [8]
and “designer” models [32,33].

A. Hu-Sawicki model

The HS models have the following functional form

fðRÞ ¼ −2Λ
Rn

Rn þ μ2n
; ð2Þ

with Λ, μ2 and n being free parameters. Note that since
R → 0 implies fðRÞ → 0 this model does not strictly
contain a cosmological constant. However, in the high-
curvature regime, R ≫ μ2, the function above can be
approximated as

fðRÞ ¼ −2Λ −
fR0
n

R̄nþ1
0

Rn : ð3Þ

fR0 ¼ −2nΛμ2n=R̄nþ1
0 , which replaces μ2 as a free param-

eter of the model, and R̄0 ≡ R̄ðz ¼ 0Þ, so that fR0 ¼
fRðR̄0Þ. Notice that, for jfR0j ≪ 1, the curvature scales
set by Λ ∼OðR̄0Þ and μ2 are very different. This guarantees
the validity of the R ≫ μ2 approximation today and in
the past.
For this model, deviations from a cosmological constant

are of the order of fR0. Consequently, in the limit
jfR0j ≪ 10−2, HS closely mimics the ΛCDM expansion
history making these two models practically indistinguish-
able by geometric tests. However, fR0 also affects the
formation of cosmic structures. If we fix the scaling index
n, geometric probes can constrain Λ, whereas growth tests,
such as cluster abundance, can constrain fR0, which controls
the strength and range of the force modification. For the HS
model, the comoving Compton wavelength takes the form

λC
1þ z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðnþ 1ÞjfR0j

R̄nþ1
0

Rnþ2

s
; ð4Þ

and for a flat ΛCDM background its value today becomes

λC0 ≈ 29.9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfR0j
10−4

nþ 1

4 − 3Ωm

s
h−1 Mpc; ð5Þ

where Ωm denotes the mean density of matter today in units
of the critical density. For larger values of n and a fixed fR0,
the Compton wavelength shrinks more rapidly when going
from z ¼ 0 to higher redshifts reducing the amount of time
for the modified forces to act on a given scale, and hence
suppressing the enhanced growth compared to smaller n. For
this reason, we expect that for larger n, larger fR0 will be
allowed by the data.

B. Designer model

Another widely investigated class of fðRÞmodels are the
designer models, for which the functional form results from
imposing a specific expansion history (see e.g. [33]). In this
work we restrict ourselves to spatially flat ΛCDM back-
grounds. This family of models is commonly parametrized
by the dimensionless Compton wavelength squared in
Hubble units
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B0 ≡ fRR
1þ fR

R0 H
H0

����
z¼0

≈ 2.1 Ω−0.76
m jfR0j; ð6Þ

with fRR ¼ dfR=dR and 0 ≡ d=d ln a.
Despite the fact that both this and the previous class of

models reproduce either exactly or approximately the
ΛCDM background, their respective scalaron fields follow
different evolutions in time (see e.g. [38,41]), and slightly
dissimilar modifications of gravity are provided by the two
cases. Therefore, one must be careful to compare only
constraints from the same class (cf. [14,23,38,40]). For
fR0 → 0 and B0 → 0, both models reduce to ΛCDM, both
in terms of expansion and growth.

III. MASS FUNCTION

A self-consistent and accurate modeling of the mass
function of dark matter halos in terms of the fðRÞ param-
eters, fR0 and n or B0, as well as the other cosmological
parameters is crucial to obtain proper constraints on these
parameters. The gold standard for predicting halo mass
functions are N-body simulations, which provide the refer-
ence values to which semi-analytical predictions [15,17] are
matched. A breakthrough occurred with the first consistent
numerical simulations of fðRÞ gravity [36], which have
since been followed up with larger and much higher
resolution simulations [42–44]. Unfortunately, these simu-
lations are still very time consuming, and it is not feasible to
sample the cosmological parameter space using full simu-
lations. For this reason, it is crucial to resort to physically
motivated semi-analytical approaches for the mass function
predictions. Schmidt et al. [12] presented a simple approach
based on both the spherical collapse approximation and the
ST prescription, which they found to provide a good match
to the mass function enhancement in fðRÞ gravity relative to
ΛCDM. We will adopt this approach, described in more
detail below, to set conservative constraints on fðRÞ gravity.
The ST description for the comoving number density of

halos per logarithmic interval of thevirialmassMv is given by

nΔv
≡ dn

d lnMv
¼ ρ̄m

Mv

d ln ν
d lnMv

νfðνÞ: ð7Þ

ν ¼ δc=σðMvÞ and δc are, respectively, the peak height and
density thresholds, and

νfðνÞ ¼ A

ffiffiffiffiffiffiffiffiffiffiffi
2

π
aν2

r
½1þ ðaν2Þ−p� exp ½−aν2=2�: ð8Þ

σðMÞ is the variance of the linear matter density field
convolved with a top hat window function of radius r that
encloses a mass M ¼ 4πr3ρ̄m=3 for a given mean back-
ground density ρ̄m,

σ2ðR; zÞ ¼
Z

d3k
ð2π3Þ j

~WðkrÞj2PLðk; zÞ; ð9Þ

where PLðk; zÞ is the linear power spectrum evolved to
redshift z and ~WðkrÞ is the Fourier transform of the window
function. The normalization constant is chosen such thatR
dνfðνÞ ¼ 1. For ΛCDM, values of the ST mass function

parameters of p ¼ 0.3, a ¼ 0.75, and δc ¼ 1.673 (corre-
sponding to Ωm ¼ 0.24) have previously been shown to
match simulations at the 10%–20% level [12]. The virial
mass is defined as the mass enclosed at the virial radius rv,
such that the average enclosed density isΔv times the critical
density of the Universe, ρc. Equivalently, it is possible to use
ρ̄m rather than ρc as a referencevalue,with the corresponding
transformationbetweenboth cases givenby Δ̄v¼Δv=ΩmðzÞ.
The virial mass can then be mapped into any other over-
density Δ assuming a Navarro-Frenk-White (NFW) halo
mass profile with virial concentration cv and using the
procedure outlined in [45]. As shown in [12,42,46], within
rv the profiles of darkmatter halos in fðRÞ do not present any
significant deviation from those found in GR simulations,
and therefore here we can neglect fðRÞ effects in the mass
rescaling. In addition, the exact value of the mass concen-
tration has a negligible effect on our results as long as
c200 ≳ 3. For thisworkwe fix c200 ¼ 4, as appropriate for the
mass range of our data (see [47] for more details).
Our mass function calculation follows the approach

adopted in [48]. Deviations from GR are contained in a
prefactor given by the ratio of the ST mass function in fðRÞ
to that in GR

nΔ ¼
�
nfðRÞΔ
nGRΔ

����
ST

�
nΔjTinker; ð10Þ

with

nΔjTinker ¼
ρ̄m
M

d ln σ−1

d lnM
fðσ; zÞ; ð11Þ

and fðσ; zÞ being the parametrization proposed and fitted to
GR simulations by Tinker et al. [15]. The latter includes the
explicit redshift dependence of the parameters and the
covariance between them, as implemented in Mantz et al.
[16], Mantz et al. [47], accounting for systematic uncer-
tainties (such as the effects of baryons,2 nonuniversality,

2Using hydrodynamical simulations Arnold et al. [49] showed
that there is a bias between masses obtained using dynamical
methods and those from lensing techniques, confirming the
predictions of Schmidt [50]. As described in the main text, we
account for this effect by calibrating our x-ray mass estimates
with weak lensing data. In addition, the prefactor in Eq. (10)
could also be sensitive to the inclusion of baryonic physics into
the calculation of the fðRÞ HMF, for which only dark matter
(DM) predictions currently exist. Puchwein et al. [44], however,
estimated the impact of baryons on the matter power spectrum
using hydrodynamical simulations. From their results one can
show that, for scales k ≲ 10 h=Mpc, PfðRÞ

DMþbaryons=P
GR
DMþbaryons ≈

PfðRÞ
DM =PGR

DM demonstrating that the effects of baryons are similar
for fðRÞ and GR, and therefore negligible for their ratio (see also
[51]). The prefactor of Eq. (10) should thus not be significantly
affected by the presence of baryons.
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etc.). Also, as explained in [15], the evolution in redshift of
the mass function parameters is increasingly relevant for
large overdensities (smaller radii). To attenuate this effect,
we choose to work at a relatively large radius by setting
Δ ¼ 300 ΩmðzÞ. In Eq. (10), both the linear variance,
σðMÞ, and the spherical collapse parameters are calculated
using the corresponding theory of gravity, either GR or
fðRÞ. For δc, we adopt the following fitting formula [52]

δcðΩm; zÞ ¼ A
�
1 − Blog10

�
1þ Ω−1

m − 1

ð1þ zÞ3
��

; ð12Þ

withA ¼ 1.6865 and B ¼ 0.0123 for GR, andA ¼ 1.7063
and B ¼ 0.0136 for fðRÞ. The latter values were calculated
assuming a spherical perturbation smaller than the local
Compton wavelength and forces enhanced by 4=3 every-
where and for all epochs, and therefore are independent of
the particular choice of fðRÞ model. Using N-body
simulations, Schmidt et al. [12] showed that in the
large-field regime (jfR0j≳ 10−5) these values provide an
underestimate of the effect on the mass function, and will
thus yield conservative upper limits on jfR0j.3 In addition,

in order to model the GR limit we set nfðRÞST =nGRST to 1
whenever this ratio becomes smaller than 1. Effectively,
this approximation introduces a screening mechanism that
is much more efficient than the one predicted by simu-
lations, allowing larger values of fR0 to be consistent with
the data. A less conservative approach would be to model
the chameleon mechanism, which would change the
predictions for the mass function when jfR0j≲ 10−5.
Note, however, that entering this regime without properly
validating the modeling of the chameleon suppression with
simulations might result in spuriously tight constraints. We
leave the accurate modeling of the mass function in this
regime for future work (Cataneo et al., in preparation). This
will then allow us to explore the rest of the parameter space
currently available to clusters, and to cosmological data by
extension. See also [13,53] for recent approaches to
modeling the chameleon mechanism.
Lastly, note that, to calculate ΔfðRÞ

v , we use the fitting
formula valid for flat ΛCDM [54]

ΔGR
v ðΩmzÞ¼18π2−82ð1−ΩmzÞ−39ð1−ΩmzÞ2; ð13Þ

with Ωmz ≡ΩmðzÞ, and fix the ratio ΔfðRÞ
v =ΔGR

v to 74=94
[12]. We have checked that this scaling is a good approxi-
mation (better than 2%) for a range of 0.1 < Ωm < 0.6,

which is much wider than the constraints on this quantity
set by our cluster data alone (see [47]), and for a redshift
range of 0 < z < 0.7, which extends beyond that of our
cluster growth data.

IV. DATA

A. Cluster data

For the cluster growth analysis we employ the
ROSAT brightest cluster sample [BCS; z < 0.3 and
FXð0.1–2.4 keVÞ > 5 × 10−12 erg s−1 cm−2] [55], the
ROSAT-ESO flux limited x-ray sample [REFLEX; z <
0.3 and FXð0.1–2.4 keVÞ > 3 × 10−12 erg s−1 cm−2] [56],
and the bright sample of the Massive Cluster Survey
[Bright MACS; 0.3 < z < 0.5 and FXð0.1–2.4 keVÞ >
2 × 10−12 erg s−1 cm−2] [57]. In order to reduce systematic
uncertainties, a few detections later found to have their
x-ray emission dominated by point sources (active galactic
nuclei) rather than the intracluster medium have been
removed, and higher flux limits have been applied to avoid
incompleteness when selecting clusters from BCS
(cf. [16,47]). Overall, the sample contains a total of 224
clusters. For 94 of these clusters x-ray luminosities and gas
masses from ROSAT and/or Chandra data (see [58] for
details) were used to constrain cluster scaling relations and
take full advantage of the mass information available for
individual clusters [47].
For the calculation of the absolute cluster mass scale we

use state-of-the-art weak gravitational lensing measure-
ments for 50 massive clusters (see [47,59–61] for details).
As discussed above, since for the relevant field regime the
lensing mass in fðRÞ is the same as in GR up to currently
undetectable effects of order fR0, we do not need to apply
any correction on the mass function due to the effect of the
fifth force on the mass estimates [50].
We also employ x-ray measurements of the gas mass

fraction, fgas, in a shell of 0.8 to 1.2 times the radius
corresponding to a critical overdensity Δ ¼ 2500 for a
sample of the hottest, most x-ray luminous and dynamically
relaxed galaxy clusters [62]. These data add constraining
power on the background expansion model, and on Ωm,
which helps break the degeneracy of the normalization of the
matter power spectrum σ8 ≡ σðr ¼ 8 h−1Mpc; z ¼ 0Þ with
this parameter. In this experiment, cluster masses are also
calibrated using weak lensing data, in order to constrain
instrumental (calibration) and astrophysical (bias due to the
assumption of hydrostatic equilibrium) systematics.
As shown in [50], we could also employ our measure-

ments of the ratio between lensing and x-ray mass estimates
to constrain fR0. In our current analysis, this signal would
be completely degenerate with our instrumental and astro-
physical uncertainties, and from our present estimates of
these systematics, we would have little constraining power
on fR0. However, this is a promising new avenue for the
near future.

3Even though this HMF was originally calibrated for the HS
model with n ¼ 1, Ferraro et al. [38] showed that for the regimes
of interest here, large-field (linear) and transition, this HMF can
also be safely used for other values of n, and by extension for the
designer model by correspondingly adjusting only the linear term
σðM; zÞ. The results on the matter power spectrum for the HS and
designer models from He et al. [39] give also additional support
to the latter conclusion.
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B. CMB data

For the analyses including CMB data, we use measure-
ments from either the Wilkinson Microwave Anisotropy
Probe (WMAP 9-year release; [63,64]) or the Planck
satellite (year-1 release plus WMAP polarization data,
hereafter denoted as PlanckþWP; [65]). We also use
data from the gravitational lensing potential generated by
large scale structures, as measured by the Planck
Collaboration [30]. We refer to the combination of these
with PlanckþWP power spectrum data as
PlanckþWPþ lensing. Our two complete sets of CMB
data also include high-multipole measurements from the
Acatama Cosmology Telescope (ACT; [66]) and the South
Pole Telescope (SPT; [67–69]).
When using CMB data, we also fit for the cosmic baryon

and dark matter densities,Ωbh2 andΩch2; the optical depth
to reionization, τ; the amplitude and spectral index of the
scalar density perturbations, As and ns; and the character-
istic angular scale of the acoustic peaks, θ (which effec-
tively determines H0). We also marginalize over the set of
nuisance parameters associated with each CMB data set,
accounting for the thermal Sunyaev-Zel’dovich effect and
unresolved foregrounds.

C. Additional data sets

Certain parameter degeneracies relevant at late times, like
the one between fR0 and Ωm, can be helped by including
additional cosmological distance probes, such as those using
SNIa and BAO data. We use the Union 2.1 compilation of
SNIa [70], and BAO data from a combination of measure-
ments from the 6-degree Field Galaxy Survey (6dF;
z ¼ 0.106; [71]), the Sloan Digital Sky Survey (SDSS; z ¼
0.35 and z ¼ 0.57; [72,73]), and the WiggleZ Dark Energy
Survey (z ¼ 0.44; 0.6 and 0.73; [74]). Note, however, that
including these additional data sets affects our results only
when we use WMAPþ ACTþ SPT as a CMB data set. In
this case, we find that the addition of SNIaþ BAOdata helps
in breaking the degeneracy with Ωm and improves our
constraints on fR0 or B0. If instead of WMAP we use
PlanckþWP, the impact of adding SNIaþ BAO data is
negligible (see Sec. V).

V. RESULTS

We obtain the posterior probability distribution functions
(pdf) of our parameters using the MCMC engine
COSMOMC4 [75] (October 2013 version), but modified
to include two additional likelihood modules, one for fgas
data5 and the other for cluster growth data [47]. Hereafter,
we will refer to both of them together as cluster data. To
calculate the evolution of the cosmic mean background
density and its linear perturbations we use MGCAMB6

[76,77], which is an extension of the Boltzmann code
CAMB7 [78] that includes modified gravity models. We
have also implemented the HS model8 into MGCAMB, and
a few corresponding modifications to facilitate the calcu-
lations of secondary anisotropies of the CMB generated by
the modified growth of structure.
Throughout our analysis, we assume the minimal value

of the species-summed neutrino mass allowed by neutrino
oscillation measurements in the normal hierarchy,P

mν ¼ 0.056 eV, and the standard effective number of
relativistic species, Neff ¼ 3.046. Massive neutrinos sup-
press structure formation on scales smaller than the free
streaming scale, and this effect can counteract the enhance-
ment introduced by fðRÞmodifications of gravity, allowing
larger fR0 values currently excluded [79,80]. In order to use
cluster data to test fðRÞ models while also allowing

P
mν

and Neff to be free parameters would require an accurate
HMF validated by simulations that incorporates simulta-
neously both extensions of ΛCDM. Note, though, that the
minimal neutrino mass adopted in the present work is too
small to significantly alter our HMF.
For the present-day amplitudes of the scalaron field in

each modified gravity model, we employ the following
uniform priors: log10 B0 ∈ ½−10; 0.5� and log10 jfR0j ∈
½−10;−2.523�. Since from theory we have no information
on the order of magnitude of the modification (see also
[18,81]), we use logarithmic priors, which weight all scales
equally. Note, however, that GR (B0 ¼ 0 or fR0 ¼ 0) is in
practice unreachable in log space, and therefore the results
for log10 B0 or log10 jfR0j will be dependent on the lower
bound of the prior. Using the combination Planckþ
WPþ lensingþ SNIaþ BAO, for the “designer” model
we have explicitly checked the dependence of the margin-
alized pdf on the lower bound of the log-prior for two
different values, ½−10; 0.5� and ½−7; 0.5�. The resulting
upper limits on log10 B0 show a difference of about 10%.
We have also run MCMC chains with uniform priors on B0

showing that, as expected, in these cases we obtain upper
limits that are about an order of magnitude larger than those
for the log-priors.9 It is therefore important to fully state the

4http://cosmologist.info/cosmomc/.
5http://www.slac.stanford.edu/~amantz/work/fgas14/.
6http://www.sfu.ca/~aha25/MGCAMB.html.

7http://camb.info.
8http://icosmology.info/HuSawicki.html.
9Intuitively, this can be understood by applying a change of

variable to convert the linear to the logarithmic pdf (or vice
versa). Going from fR0 (B0) to log10 jfR0j (log10 B0) exponentially
suppresses the probability for small parameter values due to the
Jacobian of the transformation. If one uses directly a log-prior all
scaleswill contribute to the pdf correspondingly lowering the upper
limit. One can also directly convert theMCMC scalaron amplitude
values from linear to log, accounting for the Jacobian of the
transformation. The pdf obtained from the resulting chains will be
approximately equivalent to that calculated fromchains using a log-
prior with a lower bound determined by matching the two pdfs.
Note that this bound will be related to the tail of the linear run,
which is characterized by the constraining power of the data.
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priors used in the analysis in order to allow others to
properly compare results.
For the HS model with n ¼ 1, Fig. 1 shows the joint

constraints on fR0 and σ8 from the CMB (blue contours;
including also SNIa and BAO) and from these plus clusters
(gold contours). For large values of fR0, CMB data present
a clear degeneracy between fR0 and σ8. For jfR0j ≲ 10−6

we recover as expected the same values of σ8 as those
obtained for GR. This is because in this regime the variance
of the linear matter fluctuations on a scale of 8h−1Mpc
becomes insensitive to the modifications of gravity.
Given the use of clusters and the CMB, the addition of

SNIa and BAO data impacts on our results mainly by
constraining Ωm. When we use clusters plus Planckþ
WPþ lensingþ ACTþ SPT, the impact of including
SNIaþ BAO data is negligible since the combined Ωm

FIG. 1 (color online). Constraints on the HS model with n ¼ 1. Dark and light shadings indicate the 68.3% and 95.4% confidence
regions (accounting for systematic uncertainties) from the following data sets: the CMB combined with SNIaþ BAO (blue), and the
combination of all these with clusters (gold). In the left panel, we use WMAPþ ACTþ SPT as CMB data, and PlanckþWPþ
lensingþ ACT þ SPT in the right panel.

FIG. 2 (color online). Constraints on the HS model with
varying n. Dark and light shadings indicate the 68.3% and
95.4% confidence regions (accounting for systematic uncertain-
ties) from the combination of clusters, CMB (Planckþ
WPþ lensingþ ACTþ SPT) and SNIaþ BAO.

FIG. 3 (color online). Constraints on the designer model. Dark and light shadings indicate the 68.3% and 95.4% confidence regions
(accounting for systematic uncertainties) from the following data sets: clusters (purple), the CMB plus SNIaþ BAO (blue), and the
combination of all these (gold). In the left panel, we use WMAPþ ACT þ SPT as CMB data, and Planck þWPþ lensingþ ACTþ
SPT in the right panel.
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constraints are essentially unchanged. However, for the
combination of clusters with WMAPþ ACTþ SPT, the
inclusion of SNIaþ BAO data sets shifts the constraints on
Ωm to higher values providing similar results to those
obtained from the combination with Planck data.
Cluster data provides strong measurements on the growth

of structure at late timeswhen themodifications of gravity are
relevant. The main contribution of the CMB to the combined
results is to tighten the constraints on matter power spectrum
parameters such as As and Ωm, which consequently allow
clusters to break the degeneracy between fR0 and σ8 by
constraining the latter, and thus providing a tight upper limit
on the scalaron amplitude. This is clear in Figs. 1 and 3 by
comparing the constraintswithout andwith clusters (blue and
gold contours, respectively). Using WMAPþ ACTþ SPT
as the CMB data set, we obtain log10 jfR0j < −4.73, and
using PlanckþWPþ lensingþ ACTþ SPT we have
log10 jfR0j < −4.79 (see also Table I).
The CMB constraints on the left panel of Fig. 1

correspond to WMAPþ ACTþ SPT data, and those on
the right panel to PlanckþWPþ lensingþ ACTþ SPT
data. The higher precision of the measurements from
Planck improves the constraints on many of the nongravity
specific cosmological parameters and ultimately on σ8, as
shown by comparing these two panels. As pointed out in
[18], without the lensing potential data, large fR0 values are
preferred due to lower power in the low multipoles and
higher lensing signal in the high multipoles of the Planck
temperature power spectrum. The addition of the lensing
potential data, which probes scales in the range 10−2 <
k < 10−1 h=Mpc at z ∼ 2, disfavors large values of fR0,
while keeping the constraints on the other cosmological
parameters essentially unchanged.
We have also run a more general analysis for the HS

model including n as an additional free parameter with a
uniform prior of 0.2 ≤ n ≤ 3. As expected and shown in
Fig. 2, for increasing n the constraints on fR0 become
weaker due to a growth of structure that is asymptotically
closer to GR. Nonetheless, our results indicate a greater
constraining power from the current data than the
conservative projections in [38].
For the designer model we find similar results. Figure 3

shows that the combination of cluster and CMB data, either
fromWMAPþ ACTþ SPT (left panel) or from Planckþ
WPþ lensingþ ACTþ SPT (right panel), constrains the
background Compton wavelength to a few tens of

megaparsecs (log10 B0 < −3.75 and log10 B0 < −3.68,
respectively). As shown before [18], we also find that
adding the CMB lensing potential data to the combination
of PlanckþWPþ ACTþ SPT places a mild upper limit
on B0 (see e.g. the right panel of Fig. 3). However, for the
HS model the same data combination does not provide an
upper limit on jfR0j at the value that one would expect from
naively using Eq. (6) to convert the limit obtained on B0 for
the designer model. This is due to the different evolution of
the Compton wavelength in the two models.
Table I summarizes the upper limits on fR0 and B0

10 for
the combinations of data sets used in this work, which are
compatible with those obtained combining CMB and
matter power spectrum measurements [18,19]. These limits
are arguably the most robust to date using the abundance of
galaxy clusters and unlike previous work [14,23] push the
constraints into the transition regime where the most
massive halos are screened.

VI. CONCLUSIONS

We have performed a full, self-consistent joint MCMC
likelihood analysis for two fðRÞ models, Hu-Sawicki (HS)
and “designer”. These two models mimic either closely or
exactly the expansion history of ΛCDM, but deviate with
respect to its growth history. Our results are driven by the
combination of galaxy cluster and CMB data, to which we
also add other data sets. The abundance of massive galaxy
clusters is a powerful cosmological probe of gravity on scales
that are inaccessible to local and astrophysical tests of
gravity, and its sensitivity derives from the steepness of
the high mass tail of the halo mass function. The CMB data
provide tight measurements on the matter power spectrum at
high redshifts that together with those from the cluster data at
low redshifts allow us to break key degeneracies and
constrain fðRÞmodifications on the growth rate at late times.
In the context of fðRÞ gravity, departures from GR are

sourced by an additional scalar degree of freedom respon-
sible for an effective fifth force that enhances the growth of
structures for scales smaller than its Compton wavelength.
As a result, the abundance of massive halos increases for

TABLE I. Marginalized 95.4% upper limits on fðRÞ parameters for the two models discussed in the text, Hu-Sawicki (HS) and
designer.

Data

HS model Designer model

log10 jfR0j n log10 B0

Clusters þWMAPþ ACT þ SPTþ SNIaþ BAO −4.73 1 −3.75
Clusters þ PlanckþWPþ lensingþ ACTþ SPTþ SNIaþ BAO −4.79 1 −3.68
Clusters þ PlanckþWPþ lensingþ ACTþ SPTþ SNIaþ BAO −3.95 0.2 ≤ n ≤ 3

10Because their growth histories are similar, although not
identical, note that the constraints on HS models with n ¼ 1
and designer models are comparable. An approximate conversion
between fR0 and B0 can be achieved using Eq. (6).
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amplitudes of the background scalar field jfR0j ≳ 10−6;
below this value, the chameleon screening mechanism
leads to a negligible modification of the abundance of
massive clusters.
We use constraints on the expansion and growth histories

from cluster abundance data, and on the expansion history
from fgas data. For the latter, it is interesting to note that a
comparison between the dynamical masses derived from
x-ray data and the weak lensing mass calibration [50] could
also be included in the fðRÞ analysis to add constraining
power in the large-field regime, and to possibly help
breaking parameter degeneracies. In particular, while mas-
sive neutrinos can partially counteract the effects of fðRÞ
gravity on the abundance of galaxy clusters, these will not
lead to a mismatch between their lensing and x-ray masses.
This promising measurement is currently limited by instru-
mental and astrophysical uncertainties in the determination
of our x-ray masses. In order to make this option viable, we
will therefore need to reduce these systematic uncertainties
by e.g. using new x-ray line emission data from the
upcoming Astro-H mission to measure residual bulk
motions. Additional lensing data will then ensure us
sufficient constraining power on fðRÞ.
From the combination of cluster and CMB data, either

from PlanckþWP (or WMAP) plus ACTþ SPT, and
including also SNIaþ BAO data, we obtain tight upper
bounds log10 jfR0j < −4.79 (or −4.73) for the HS model
(with n ¼ 1) and log10 jB0j < −3.68 (or −3.75) for the
designer model. Our results are obtained using high-quality
cluster growth data up to z ∼ 0.5, a tight control of
systematic uncertainties, a robust mass calibration from
weak lensing data, and the full shape of the halo mass
function for the mass range of our data. Including CMB
data is essential to significantly tighten the constraints on
cosmological parameters such as As and Ωm, which then
enables clusters to break a remaining key degeneracy
between σ8 and fR0 (B0). SNIa and BAO data are only
relevant when WMAPþ ACTþ SPT is used as a CMB
data set. In this case, the addition of the SNIaþ BAO data
provides similar constraints on Ωm, and consequently on
fR0, to those obtained with the combination that instead of
WMAP has Planck data.

For the near future, further progress using current cluster
data is within reach. Primarily, this will require an accurate
modeling of the Chameleon screening mechanism in high-
density environments as a function of standard cosmologi-
cal and model parameters, halo mass, and redshift. Testing
the resulting theoretical prediction for the HMF against
cosmological simulations for different cosmologies will be
crucial to assess the accuracy of this result (Cataneo et al.,
in preparation).
A self-consistent implementation of the non-linear

Chameleon suppression of fðRÞ into our cluster likelihood
analysis should reduce the current upper limits by about
another order of magnitude, below which data limited to
relatively low redshift massive galaxy clusters cannot
distinguish between GR and fðRÞ gravity.
Ongoing and planned surveys will also be able to improve

further fðRÞ constraints. The Dark Energy Survey [82],
Euclid [83] and the Large Synoptic Survey Telescope [84] in
the optical, the eROSITA all-sky survey [85] in the x-ray, and
Sunyaev-Zel’dovich effect surveys (such those from Planck
[86], the South Pole Telescope [87], and the Atacama
Cosmology Telescope [88]) in the mm/submm will substan-
tially expand both the mass and redshift range of cluster
samples, including identifying the most massive clusters up
to z ∼ 2. This will allow us to probe all the relevant evolution
of the Compton wavelength and extend the measured mass
function to masses where departures fromGR are significant
in the regime jfR0j≲ 10−6 due to the inefficiency of the
chameleon screening mechanism.
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