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It is now possible to compute linear in mass-ratio terms in the post-Newtonian (PN) expansion for
compact binaries to very high orders using linear black hole perturbation theory applied to various
invariants. For instance, a computation of the redshift invariant of a point particle in a circular orbit about a
black hole in linear perturbation theory gives the linear-in-mass-ratio portion of the binding energy of a
circular binary with an arbitrary mass ratio. This binding energy, in turn, encodes the system’s conservative
dynamics. We give a method for extracting the analytic forms of these post-Newtonian coefficients
from high-accuracy numerical data using experimental mathematics techniques, notably an integer
relation algorithm. Such methods should be particularly important when the calculations progress to
the considerably more difficult case of perturbations of the Kerr metric. As an example, we apply
this method to the redshift invariant in the Schwarzschild metric. Here, we obtain analytic coefficients to
12.5PN order and higher-order terms in mixed analytic-numerical form to 21.5PN, including analytic forms
for the complete 13.5PN coefficient and all the logarithmic terms at 13PN.We have computed the individual
modes to over 5000 digits, of which we use at most 1240 in the present calculation. At these high orders, an
individual coefficient can have over 30 terms, including a wide variety of transcendental numbers, when
written out in full. We are still able to obtain analytic forms for such coefficients from the numerical data
through a careful study of the structure of the expansion. The structurewe find also allows us to predict certain
“leading logarithm”-type contributions to all orders. The additional terms in the expansion we obtain improve
the accuracy of the PN series for the redshift observable, even in the very strong-field regime inside the
innermost stable circular orbit, particularly when combined with exponential resummation.
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I. INTRODUCTION AND SUMMARY

Coalescing compact binaries are a promising source of
gravitational waves, and ground-based gravitational wave
interferometers will start operating at sensitivities at which
detections can reasonably be expected as early as later
this year. To successfully detect these faint signals in the
detector’s noise—and, more importantly, to be able to infer
the properties of the system from the detected signal—it is
necessary to have highly accurate templates that model the
gravitational waves from the inspiralling binaries. Thus, for
more than a decade now, different approaches have been
developed to model relativistic binary systems. The oldest
one of these, the post-Newtonian (PN) framework, can
model such systems when the two bodies are far from one
another, so their velocities are relatively slow (see Ref. [1]
for a review of these methods and results). Numerical
relativity, on the other hand, is able to model comparable
mass ratio binaries in the strong gravitational field regime
but has difficulties with large mass ratios, large separations,

and very long waveforms (but see Refs. [2–4] for recent
advances). Another approach is gravitational self-force
theory, which models binaries with extreme mass ratios,
in which one has a small body that is about a million times
lighter than the central supermassive black hole into which
it is inspiralling [5–7].
A more recent approach, the effective-one-body (EOB)

theory, maps the binary’s motion to that of a particle
moving in an effective metric, generalizing the Newtonian
reduced-mass treatment of the two-body problem [8,9].
This theory encompasses information from the former three
approaches to calibrate the parameters that go into the
theory, which allows it to model a binary system of any
given mass ratio. Of particular interest is the overlap
region between the self-force and PN formalisms. Invariant
quantities calculated in this region are used to calibrate
the EOB parameters. One of those quantities calculated in
self-force theory is Detweiler’s redshift invariant, ΔU,
the linear-in-mass-ratio correction to the time component
of the 4-velocity of the light compact object [10]. The PN
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coefficients ofΔU are directly related to those of the linear-
in-mass-ratio portion of the binding energy and angular
momentum of the binary, as well as to the radial potential
that is fundamental to the EOB formalism, as was dem-
onstrated in Refs. [11–16].
Computation of the PN coefficients of ΔU started with

Detweiler’s original paper [10] (to 2PN; n PN corresponds
to an accuracy of v2n, where v is the orbital velocity of the
small body) and continued analytically through 3PN in
Ref. [17], using standard post-Newtonian methods, with
terms through 5PN obtained from a numerical matching in
Ref. [18] (where the logarithmic terms were obtained
analytically). In Ref. [19], Bini and Damour calculated
the nonlogarithmic portion 4PN coefficient analytically by
using analytical solutions of the Regge–Wheeler–Zerilli
equations; the logarithmic term had already been computed
by Damour in Ref. [20]. Shah, Friedman, and Whiting [21]
(hereafter referred to as SFW) calculated higher-order PN
coefficients, up to 10.5PN order, by calculating high-
precision numerical values in a modified radiation gauge
at very large radii and fitting them to a PN series to extract
the coefficients. They found that half-integer terms started
at 5.5PN, which they verified analytically (and was also
verified using standard PN methods in Refs. [22,23]). SFW
were also able to infer analytic forms for certain not-too-
complicated coefficients from their numerical data.
Concurrently, Bini and Damour calculated the coefficients
analytically to 6PN order in Ref. [24]. Analytical calcu-
lations since then [25–27], all using the Regge–Wheeler–
Zerilli gauge and the results from Ref. [28], have been
pushed to find much higher-order PN coefficients. We have
compared our results to 20.5PN with the concurrent
calculation by Kavanagh, Ottewill, and Wardell [27],
who have streamlined the Bini–Damour method, and found
complete agreement. (Note that Bini and Damour’s 9.5PN
result [26] appeared while we were finishing checking
higher-order terms in this work.)
Apart from ΔU, high-order PN coefficients of other

invariants from which the EOB formalism can benefit have
also been calculated: These are the linear-in-mass ratio
conservative corrections to the spin-precession angle [29]
and the quadrupolar [30] and octupolar [31] tidal invariants
(the eigenvalues of the electric- and magnetic-type tidal
tensors), all which have been calculated to high PN order in
Refs. [27,31–34]. Recently, Bernuzzi et al. [35] introduced
a semianalytical tidally coupled binary neutron star model
using the EOB theory in which information from the PN
expansion of the redshift and tidal invariants was incorpo-
rated (using the tidal results from Bini and Damour [33]).
The results of this model are in good agreement with a more
recent numerical simulation in full general relativity by the
Japanese school (Hotokezaka et al. [36]) in the case of
compact neutron stars.
It was recently shown (see Refs. [21,34,37]) how the

overlap region between the self-force formalism and the

PN approximation can be explored using very high-
accuracy numerical results, which make it relatively easy
to extract high-order PN coefficients that are currently out
of reach of standard PN calculations. The coefficients
obtained using this numerical extraction method were then
checked by independent analytical calculations. The ad-
vantage of developing such high-accuracy calculations
will be evident when PN coefficients are calculated for
invariants in Kerr spacetime, where purely analytical
calculations will likely be extremely difficult. The tech-
niques developed in this paper can then be generalized to
calculate the analytical form of the numerical coefficients
for various invariants in Kerr and, eventually, to calculate
the quadratic-in-mass-ratio terms using second-order self-
force results (see Sec. 4.3.3 in Ref. [7] for a brief overview
of the progress in second-order self-force calculations).
Additionally, one obtains insight into the structure of the
PN expansion from these high-order computations, par-
ticularly in comparing the terms one can predict using a
simplification in ΔU with similar terms in the energy flux
at infinity [38].
We shall now outline our method and compare it to

previous work. SFW [21] worked solely on the expansion
of the full ΔU and obtained analytic terms for the simplest
coefficients, which are purely rational, or a rational times
π, where they could easily identify the analytic form from
a large enough number of digits. They also presented three
additional analytic expressions for more complicated
higher-order terms (in the note added), which were
obtained by the first author of this paper using an integer
relation algorithm. However, the accuracy of the expres-
sions in SFW was insufficient to obtain analytic forms for
any terms beyond 10.5PN order.
The methods we use here are similar to those used to

obtain the more complicated coefficients given by SFW
(and the analytic coefficients given in Refs. [34,37]) in that
we also use an integer relation algorithm, but the present
application is more effective at obtaining higher-order
terms, since we primarily work with the individual modes
of ΔU [either retarded ðℓ; mÞ modes or renormalized ℓ

modes], where the structure of the expansion is simpler, and
one can obtain analytic forms at a given order with fewer
digits. Indeed, one can often predict some—and, in certain
cases, even all—of the entire analytic form at higher orders
from lower-order coefficients. This simplification of the
structure when considering the individual ðℓ; mÞ modes
was also seen in the expansion of the energy flux at infinity
of a point particle in a circular orbit around a Schwarzschild
black hole [38]. Additionally, the overall structure of the
expansion of the retarded ðℓ; mÞ modes of ΔU is also
similar to that of the energy flux at infinity (calculated to
22PN by Fujita [39], with the structure studied in
Ref. [38]), and we are able to use this to help determine
which transcendentals to include in the vector to which we
applied the integer relation algorithm.
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We also use the integer relation algorithm in a more
fundamental way in the current work, preferring for most of
our work to find analytic expressions for the terms order by
order and then subtract them off to obtain the numerical
values for higher-order terms to higher accuracy. (Note that
we found that for certain of the more complicated terms at
higher orders it was necessary to first obtain analytic forms
for some of the simpler coefficients at even higher orders in
order to obtain the more complicated terms to sufficient
accuracy to be able to determine an analytic form.) This
method should be contrasted with the more usual method of
finding numerical values for all terms to some accuracy
using a fit, then finding analytic forms for some coeffi-
cients, using these to improve the accuracy of the fit, and
iterating. This fitting method was used by SFW and in
Nickel’s similar computation of high-order terms in the
expansion of the ground state energy of Hþ

2 in powers of
the distance [40].1 We also used this fitting method on the
full ΔU to obtain even higher-order terms than we were
able to obtain using the first method, though these terms
were all obtained only in mixed numerical-analytic form.
These integer relation algorithms, notably the PSLQ

algorithm [42,43], are a prominent tool in modern
experimental mathematics. (See also Refs. [44,45] for further
intuition into the PSLQ algorithm and Ref. [46] for a review
of some remarkable results obtained using integer relation
algorithms. Additionally, see Refs. [47–49] for some general
reviews of the methods, philosophy, and results of modern
experimental mathematics.) The PSLQ algorithm returns a
small vector of integers that is orthogonal to a given input
vector and thus can be used to identify the analytic form of
numbers from a high-accuracy decimal expansion, which is
the task for which we use it here, employing the imple-
mentation in the FindIntegerNullVector function in
MATHEMATICA (first available in version 8).
Here, we only need to identify numbers that are linear

combinations of transcendentals with rational coefficients,
which is one of the simplest cases to which one can imagine
applying an integer relation algorithm. Nevertheless, there
are enough transcendentals at higher orders, with compli-
cated enough rational coefficients, that we still need to
compute certain individual PN coefficients to over 200
digits, even when using a simplification we found that helps
remove much of the complexity at higher orders. This
necessitates computing the modes of ΔU to over 1000
digits; we actually computed to over 5000 digits so we
could go to even higher orders, where we currently only
obtain certain coefficients analytically. Some other such
high-accuracy computations in mathematical physics,
including further applications of PSLQ, are discussed in

Ref. [50]. Additionally, Nickel [40] also uses PSLQ to
obtain analytic forms of high-order coefficients of a similar
series for the ground-state energy of Hþ

2 .
We also note, following Bini and Damour [24], that,

while one has to sum over all spherical harmonic ðℓ; mÞ
modes to obtainΔU to a given PN order (compared to, e.g.,
the energy flux, where one only has to sum a finite number
of modes to obtain the expansion to a given PN order), this
infinite sum is only necessary to obtain the nonlogarithmic
integer-order PN terms. All the other terms in the PN
expansion of ΔU come from a finite sum over modes.
It also turns out that the expression for the PN coefficient

of a given renormalized ℓ mode (at high ℓ, where it is
purely rational) is simple enough that one can infer it from
the numerical values of fewer than 100 ℓ modes, at the PN
orders at which we are working, so we can obtain these
general expressions and then perform the infinite ℓ sum
analytically, allowing us to calculate analytic forms for the
nonlogarithmic integer-order PN coefficients of ΔU with-
out performing the ℓ sum numerically. This is fortunate,
since performing the infinite ℓ sum numerically to such
high accuracies would be prohibitively expensive, compu-
tationally, due to the necessity of calculating many ℓ

modes. We obtained the full expansion up to 12.5PN this
way (including reproducing all the known analytic terms
“from scratch”).
We can even obtain fairly complicated forms of high-

order terms (though not any complete PN terms) using the
predictions of the simplification, PSLQ, and a reasonably
(but not excessively) accurate calculation of the full ΔU. In
particular, we performed a calculation of the full ΔU to
“merely” ∼600 digits at somewhat smaller radii (1018M
to 9 × 1033M, whereM is the mass of the central object) to
check the values we obtained using the data calculated to
more than 5000 digits for radii from 1050M to 1070M
(where we used at most 1240 digits and 15 radii to obtain
those results).2 Using the results of this calculation, we
were able to obtain accurate values up to 21.5PN, including
analytic forms for 48 coefficients containing as many as 27
terms (most coefficients had far fewer terms), starting from
the full ΔU, though most of these terms were predicted by
the simplification. We only had to use PSLQ to obtain at
most 4 terms. Here, we also used the analytic forms we
obtained to iteratively improve the PN coefficients, increas-
ing the accuracy of terms we had already obtained, in
addition to obtaining even higher-order terms.
The plan of the paper is as follows. We first briefly

review the relevant portions of the self-force calculation in
Sec. II and then discuss the method we use to obtain the PN
coefficients of the individual modes of ΔU (including a
simplification of the modes and consistency checks) in

1This expansion of the ground state energy ofHþ
2 has a similar

structure to an individual mode of ΔU (though it is simpler) and
can be computed using functional series techniques similar to
those we employ here, as discussed in Ref. [41].

2These calculations were computationally not exceptionally
expensive, requiring ∼45 h per radius on two processors at ∼600
digits and ∼10 h per radius on 16 processors at ∼5000 digits.

EXPERIMENTAL MATHEMATICS MEETS GRAVITATIONAL … PHYSICAL REVIEW D 92, 044007 (2015)

044007-3



Sec. III. We then give the terms in the full ΔU that are
predicted to all orders by the simplification of the modes
in Sec. IV and discuss how we compute the infinite
sum over the modes of ΔU to obtain the final results for
the PN coefficients of ΔU (and our independent check
of these results) in Sec. V. We discuss the convergence
of the series in Sec. VI and conclude in Sec. VII. In the
Appendix, we give some discussion of how one can obtain
certain parts of the simplifications of the modes of ΔU
from an inspection of the method we use to calculate it.
We use geometrized units throughout (setting the speed of
light and Newton’s gravitational constant both to unity,
i.e., G ¼ c ¼ 1).

II. SELF-FORCE CALCULATION

Here, we give the basics of the method we use
to calculate ΔU (and its precise definition)—see
Refs. [21,51–53] for further details. We calculate ΔU in
a modified radiation gauge, where ℓ ≥ 2 modes are
calculated in an outgoing radiation gauge (with hαβnα ¼
0 and h ¼ 0, where nα is the ingoing null vector and hαβ
and h are the metric perturbation and its trace, respectively)
and the lower ones (ℓ ¼ 0; 1) are calculated in the
asymptotically flat Schwarzschild gauge. The setup is as
follows: A particle of mass m is orbiting a Schwarzschild
black hole of mass M in a circular orbit of radius r ¼ r0 in
Schwarzschild coordinates ðt; r; θ;ϕÞ. The particle’s
4-velocity, uα, is given by

uα ¼ uttα þ uϕϕα; ð1Þ

where tα and ϕα are the timelike and rotational Killing
vectors of the Schwarzschild metric, respectively. The
components, ut and uϕ, are given by

U ≔ ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r0

q ; ð2Þ

uϕ ¼ utΩ; with ð3Þ

Ω ¼
ffiffiffiffiffi
M
r30

s
: ð4Þ

We follow the Chrzanowski–Cohen–Kegeles–Wald formal-
ism (outlined in Ref. [51]) of extracting the metric
perturbation from the perturbed spin-2 Weyl scalar ψ0 as
follows. We first solve the spin-2 separable Teukolsky
equation, of which the retarded solution, ψ0 (the superscript
“ret” is omitted here), is given by

ψ0ðxÞ ¼ ψ ð0Þ
0 þ ψ ð1Þ

0 þ ψ ð2Þ
0 ; ð5Þ

with

ψ ð0Þ
0 ¼ 4πmut

Δ2
0

r20

X
ℓm

Aℓm½ðℓ − 1Þℓðℓþ 1Þðℓþ 2Þ�1=2

× RHðr<ÞR∞ðr>Þ2Yℓmðθ;ϕÞȲℓm

�
π

2
;Ωt

�
; ð6aÞ

ψ ð1Þ
0 ¼ 8πimΩutΔ0

X
ℓm

Aℓm½ðℓ − 1Þðℓþ 2Þ�1=22Yℓmðθ;ϕÞ1Ȳℓm

�
π

2
;Ωt

�

× f½imΩr20 þ 2r0�RHðr<ÞR∞ðr>Þ þ Δ0½R0
Hðr0ÞR∞ðrÞθðr − r0Þ þ RHðrÞR0

∞ðr0Þθðr0 − rÞ�g; ð6bÞ

ψ ð2Þ
0 ¼ −4πmΩ2ut

X
ℓm

Aℓm2Yℓmðθ;ϕÞ2Ȳℓm

�
π

2
;Ωt

�

× f½30r40 − 80Mr30 þ 48M2r20 −m2Ω2r60 − 2Δ2
0 − 24Δ0r0ðr0 −MÞ þ 6imΩr40ðr0 −MÞ�RHðr<ÞR∞ðr>Þ

þ 2ð6r50 − 20Mr40 þ 16M2r30 − 3r0Δ2
0 þ imΩΔ0r40Þ½R0

Hðr0ÞR∞ðrÞθðr − r0Þ þ R0
∞ðr0ÞRHðrÞθðr0 − rÞ�

þ r20Δ2
0½R00

Hðr0ÞR∞ðrÞθðr − r0Þ þ R00
∞ðr0ÞRHðrÞθðr0 − rÞ þW½RHðrÞ; R∞ðrÞ�δðr − r0Þ�g; ð6cÞ

where Δ ≔ r2 − 2Mr; the function RH is the solution
of the homogenous radial Teukolsky equation which
is ingoing at the future event horizon, and R∞ is the
one that is outgoing at null infinity. Here, r< ≔ minðr; r0Þ,
and r> ≔ maxðr; r0Þ. A prime denotes a derivative
with respect to the r coordinate, and overbars
denote complex conjugation; δ and θ denote the Dirac
delta distribution and Heaviside theta function,
respectively. The Wronskian of these two retarded

radial solutions is W½RHðrÞ; R∞ðrÞ� ¼ RHR0
∞ − R∞R0

H.
The quantity Aℓm, given by

Aℓm ≔
1

Δ3W½RHðrÞ; R∞ðrÞ�
; ð7Þ

is a constant independent of r, that is, A0
ℓm ¼ 0. The

functions RH and R∞ are calculated to more than 5000
digits of accuracy using the Mano, Suzuki, and Takasugi
(MST) method given in Ref. [54], namely,
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RH ¼ eiϵxð−xÞ−2−iϵ
X∞
n¼−∞

anFðnþ νþ 1 − iϵ;−n − ν − iϵ;−1 − 2iϵ; xÞ; ð8aÞ

R∞ ¼ eizzν−2
X∞
n¼−∞

ð−2zÞnbnUðnþ νþ 3 − iϵ; 2nþ 2νþ 2;−2izÞ; ð8bÞ

where x ¼ 1 − r
2M, ϵ ¼ 2MmΩ, z ¼ −ϵx, F is the hyper-

geometric function 2F1, and U is the (Tricomi) confluent
hypergeometric function. To expedite the calculation, and
reach the high accuracies we require, we use various
recurrence relations for U and Gauss’s relations for con-
tiguous functions for 2F1 (see, e.g., Ref. [55]) to write the
various n-dependent functions and their derivatives in terms
of the functions calculated for n ¼ 0; 1. For details regard-
ing the derivation of ν, the renormalized angular momen-
tum, and the coefficients an and bn, please refer to
Refs. [54,56]. The spin-weighted spherical harmonics
sYℓmðθ;ϕÞ are calculated analytically and are given in
Ref. [52].
From ψ0, we compute the intermediate Hertz potential,

Ψ, from which the components of the metric perturbation
are calculated. The radial parts of Ψ and ψ0 are related by
an algebraic relation given by

Ψℓm¼8
ð−1Þmðℓþ2Þðℓþ1Þℓðℓ−1Þψ̄ℓ;−mþ12imMΩψℓm

½ðℓþ2Þðℓþ1Þℓðℓ−1Þ�2þ144m2M2Ω2
;

ð9Þ

where

Ψ ¼
X
ℓ;m

ΨℓmðrÞ2Yℓmðθ;ϕÞe−imΩt; ð10aÞ

ψ0 ¼
X
ℓ;m

ψℓmðrÞ2Yℓmðθ;ϕÞe−imΩt: ð10bÞ

Once we compute Ψ, the components of the metric
perturbation along the Kinnersley tetrad are given by

h11 ¼
r2

2
ðð̄2Ψþ ð2Ψ̄Þ;

h33 ¼ r4
�∂2

t − 2f∂t∂r þ f2∂2
r

4
−
3ðr −MÞ

2r2
∂t

þ fð3r − 2MÞ
2r2

∂r þ
r2 − 2M2

r4

�
Ψ;

h13 ¼ −
r3

2
ffiffiffi
2

p
�
∂t − f∂r −

2

r

�
ð̄Ψ; ð11Þ

where f ¼ Δ=r2, and the angular operators ð and ð̄, the
s-raising and -lowering operators, are given by

ðη ¼ −ð∂θ þ i csc θ∂ϕ − s cot θÞη;
ð̄η ¼ −ð∂θ − i csc θ∂ϕ þ s cot θÞη; ð12Þ

where η has spin weight s.

The linear-in-mass-ratio correction to the time compo-
nent of the 4-velocity of the particle due to its finite but
small mass is then given by

ΔU ¼ −UHren; ð13Þ
where

Hren ¼ 1

2
hrenαβ u

αuβ: ð14Þ
The superscript ren denotes the renormalized, singularity-
free part of the metric perturbation. We refer the reader to
Refs. [21,51–53,57–59] for details pertaining to the
renormalization procedure.
As mentioned earlier, ψ0 only provides us with the

radiative part of the metric perturbation. One also has to
add on the nonradiative parts associated with the change
in mass and angular momentum of the Schwarzschild
spacetime with the particle. These contributions are given
by (Eqs. (137) and (138) of Ref. [53])

HδM ¼ mðr0 − 2MÞ
r1=20 ðr0 − 3MÞ3=2

; ð15aÞ

HδJ ¼
−2Mm

r1=20 ðr0 − 3MÞ3=2
: ð15bÞ

The indices δM and δJ refer to the parts coming from the
change in mass and angular momentum, respectively. Also
note that the ℓ ¼ 1; m ¼ �1 (even) contribution to such
gauge-invariant quantities, corresponding to the shift in the
center of mass of the binary m −M system, is zero.

III. OBTAINING ANALYTIC FORMS OF THE
PN COEFFICIENTS OF THE INDIVIDUAL

ðℓ ;mÞ MODES OF ΔU

A. PN expansion of the (2, 2) mode of ΔU and a
way to simplify a general ðℓ ;mÞ mode of ΔU

We start by giving our expression for the PN expansion
of Υ22, the (2, 2) mode of ΔU=U, through 12.5PN, as well
as the simplification of the modes we have discovered,
before describing our method for obtaining these results.
[We give the analogous results for the other modes in the
Supplemental Material [60], along with higher-order PN
coefficients in the (2, 2) mode for which we only know
analytic forms for some of the terms and the 13.5PN piece
we do know all of.] Here, we consider ΔU=U instead of
just ΔU as this is the quantity that we worked with on the
level of the individual modes [note that ΔU=U ¼ −Hren;
cf. Eq. (13)]. We present the expansion in terms of the same
dimensionless and gauge invariant radius variable used by
SFW, viz., R ≔ ðMΩÞ−2=3 ¼ r0=M:
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Υ22¼
31

22
1

R
þ 191

2371
1

R2
þ1116731

253271
1

R3
þ 58130771

26315272111
1

R4
þ
�
1917271789381591

29335273111131
−
27

51
eulerlog2ðRÞ

�
1

R5

þ
�
29171173313301133231

210355273111131
þ261511

315171
eulerlog2ðRÞ

�
1

R6
−
271071

315271
π

R6.5þ
�
−
621715121719594711089611

212345474112131171

þ2468991

335172
eulerlog2ðRÞ

�
1

R7
þ2610711511

325272
π

R7.5þ
�
1813991108189021840428990871

213365475112132171191
−
281071

325171
π2−

211

51
ζð3Þ

−
2315291219111

345372111
eulerlog2ðRÞþ

2101071

315271
eulerlog22ðRÞ

�
1

R8
þ24107168991

345273
π

R8.5þ
�
−
25717011251420513585466028331

217375375112132171191

þ2710711511

335172
π2þ2101511

315171
ζð3Þ−2

6

51
logð2=RÞþ5314670036811611

365373111131
eulerlog2ðRÞ−

2910711511

325272
eulerlog22ðRÞ

�
1

R9

þ
�
−
23348714081531

355373111
−
2111071

325271
π2þ2111072

325372
eulerlog2ðRÞ

�
π

R9.5þ
�
−
2193712904127711386244347381727739171

218375576113132172191231

þ25107168991

355173
π2þ2868991

335172
ζð3Þ−2

532

51
logð2=RÞþ1571374566160091

21365274131
eulerlog2ðRÞ−

27107168991

345273
eulerlog22ðRÞ

�
1

R10

þ
�
23912819143063918991

375474111131
þ21010711511

335272
π2−

21010721511

335373
eulerlog2ðRÞ

�
π

R10.5

þ
�
28314280593261770893438785729019605702071

220385677113133172192231
−
24348714081531

365273111
π2−

2121071

325371
π4−

27291585649631

345372111
ζð3Þ

þ215

51
ζð5Þ−2

345071

315171
logð2=RÞþ

�
−
23137117911871179071580078671

23365574112131171
þ2121072

335272
π2þ2151071

315271
ζð3Þ

�
eulerlog2ðRÞ

þ26348714081531

355373111
eulerlog22ðRÞ−

2141072

335372
eulerlog32ðRÞ

�
1

R11
þ
�
1001321131351693391

21375475131
þ28107168991

355273
π2

−
28107268991

355374
eulerlog2ðRÞ

�
π

R11.5þ
�
−
231246619908831537222310455210383138658591

2213115677113133172192231
þ2128915983034078391

385374111131
π2

þ21110711511

335372
π4þ24461154111147706291

365373111131
ζð3Þ−2

141511

315171
ζð5Þ−2

219111243431

325372
logð2=RÞþ291071

315271
log2ð2=RÞ

þ
�
17911229384882345812630174071

24395575112132171191
−
21110721511

345273
π2−

21410711511

325272
ζð3Þ

�
eulerlog2ðRÞ

−
2323912819143063918991

375474111131
eulerlog22ðRÞþ

21310721511

345373
eulerlog32ðRÞ

�
1

R12
þ
�
−
791891139709123091472520331

23375674112131171

−
271704761045411

365473111
π2þ2151071

335371
π4þ2151072

325372
ζð3Þþ

�
2710711850980370531

365574111
þ2151072

335372
π2
�
eulerlog2ðRÞ

−
2141073

335473
eulerlog22ðRÞ

�
π

R12.5þ
�
−
30942707693267131529565293293479262815467669462411

2243115777114133173192232291

þ43119313730887391611

385375131
π2þ29107168991

355373
π4þ23231245915245709091

365374131
ζð3Þ−2

1268991

335172
ζð5Þ−1493

11855571

21315372

×logð2=RÞþ 216

3152
logð2=RÞeulerlog2ðRÞþ

28311071

5271
log2ð2=RÞþ

�
1913712271401192033172758215409831

28395476112132171

−
29107268991

365274
π2−

212107168991

345273
ζð3Þ

�
eulerlog2ðRÞ−

22472300973148199671

375475131
eulerlog22ðRÞþ

211107268991

365374

×eulerlog32ðRÞ
�

1

R13
þ
�
5623204122099819885533688671

243105576112132171191
þ24802849557341891

385373111131
π2−

21410711511

345372
π4−

21410721511

335373
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× ζð3Þ þ
�
−
241071121311916311357042731

385575111131
−
21410721511

345373
π2
�
eulerlog2ðRÞ þ

21310731511

345474
eulerlog22ðRÞ

�
π

R13.5

þO

�
1

R14

�
: ð16Þ

Here,

eulerlogmðRÞ ≔ γ þ logð2m=R1=2Þ; ð17Þ
where γ is the Euler–Mascheroni gamma constant, is the
function associated with many higher-order tail terms in
the PN expansion, first introduced in general by Damour,
Iyer, and Nagar [61], with a slightly different definition,
since they use a different variable. Additionally, ζ denotes
the Riemann zeta function.

The PN expansion of the (2, 2) mode for ΔU has quite a
bit of structure that is readily apparent in its prime
factorization, and the PN expansions of the other modes
display a similar structure. In particular, we can write most
of the eulerlognmðRÞ, half-integer, and zeta function terms
(including the even powers of π) in Υℓm [the ðℓ; mÞ mode
of ΔU=U] to the orders currently known in the following
form (C is for “complications”):

ΥC1
ℓm ¼

�
e2ν̄ℓmeulerlogmðRÞ

�
1

2ν̄ℓm

1

R2
−

5

12

ν̄ℓmπ
2

R2
þ 7

3

ν̄2ℓmζð3Þ
R2

þ ð2mÞ2 ζð3Þ
R5

−
m2ν̄ℓm
15

π4

R5
− ð2mÞ4 ζð5Þ

R8
−
ν̄ℓm
4m

π

R0.5

þ ν̄3ℓm
24m

π3

R0.5 −
mν̄ℓm
3

π3

R3.5 − 2mν̄2ℓm
πζð3Þ
R3.5 þ 4m3ν̄ℓm

45

π5

R6.5

�
−

1

2ν̄ℓm

1

R2

�X∞
k¼0

AðkÞ
ℓm

Rkþℓþ1þεℓm

¼
�
e2ν̄ℓmeulerlogmðRÞ

�
1

2ν̄ℓm

1

R2
− ν̄ℓm

�
5

2
ζð2Þ − 7

3
ν̄ℓmζð3Þ

�
1

R2
þ ð2mÞ2

�
ζð3Þ − 3

2
ν̄ℓmζð4Þ

�
1

R5
− ð2mÞ4 ζð5Þ

R8

−
ν̄ℓm
4m

½1 − ν̄2ℓmζð2Þ�
π

R0.5 − 2mν̄ℓm½ζð2Þ þ ν̄ℓmζð3Þ�
π

R3.5 þ ð2mÞ3ν̄ℓmζð4Þ
π

R6.5

�
−

1

2ν̄ℓm

1

R2

�X∞
k¼0

AðkÞ
ℓm

Rkþℓþ1þεℓm

≕ C½1�
ℓm

X∞
k¼0

AðkÞ
ℓm

Rk : ð18Þ

Here, we have given two forms for ΥC1
ℓm to better illustrate

its structure3; recall that ζð2Þ ¼ π2=6 and ζð4Þ ¼ π4=90.
Additionally,

ν̄ℓm ≔ ν − ℓ ¼
X∞
k¼1

½νℓ�k
ð2mÞ2k
R3k ; ð19Þ

where ν is the renormalized angular momentum intro-
duced in the MST formalism [54,56]. (Here, we denote
its dependence on ℓ and m explicitly, which is usually
not done in the literature, though we suppress its
dependence on R, even though we displayed the analo-
gous dependence on v in Ref. [38].) See the Appendix of
Bini and Damour [24] for explicit expressions for ½νℓ�k,

k ∈ f1; 2; 3g, where these are referred to as ν2kðℓÞ.
Note also that ½ν2�1 ¼ −1071=21315171, which explains
the appearance of factors of 107 in many places in
the prime factorization of Υ22 in Eq. (16). In fact, ν
(along with its analog for ℓ → −ℓ − 1) gives many of
the leading logarithms in the homogeneous solutions
of the Regge–Wheeler equation, as noted in Sec. II B of
Ref. [27] (some similar results for the Teukolsky equa-
tion are also implicit in the results of Ref. [38]). Addi-
tionally, −iν is the monodromy of the radial Teukolsky
equation about the irregular singular point at infinity, as
is mentioned in Ref. [62]. One also sees ½νℓ�1, multiplied
by a rational with small prime factors, appearing in the
coefficients of integrals involving an ℓ multipole in
the standard PN calculation of the next-to-leading two
half-integer terms in ΔU in Ref. [23]; cf. their
Eqs. (3.14)–(3.18) and (4.7)–(4.11) with the values for
½νℓ�1, ℓ ∈ f2; 3; 4g given in Table I in Ref. [38]. Finally,
the general form of ½νℓ�1 appears in the coefficient
of log τ0 (where τ0 is the constant associated with the

3Note that we only need to use ΥC1
ℓm to simplify the m ≠ 0

modes. The m ¼ 0 modes are nonradiative and thus already have
purely rational simple integer-order PN series, with no simpli-
fication necessary. Therefore, even though ν̄ℓm ¼ 0 for m ¼ 0,
one does not need to be concerned about potential division by
zero [or logarithms of zero in eulerlogmðRÞ] in Eq. (18).
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regularization parameter r0, not to be confused with the
r0 in this paper) in post-Newtonian expressions for all
the mass-type radiative multipole moments; cf. Eq. (3.9)
in Ref. [63] and Eq. (A2) in Ref. [24]. This coefficient
was derived by Blanchet and Damour in the Appendix
of Ref. [64] using methods that differ from both the
continued fraction method of MST [54] and the mono-
dromy method of Castro et al. [62]. We also define

εℓm ≔
�
0 if ℓþm is even;

1 if ℓþm is odd:
ð20Þ

The AðkÞ
ℓm coefficients are rational and are given by the

coefficients of the eulerlogmðRÞ terms. While we might
expect there to be contributions to the eulerlog terms that
are not part of this simplification starting at 9PN, by
analogy with the remainder of the Sℓm factorization of
the modes of the energy flux from Ref. [38], it appears
that this is not the case, since we see the same structure in
the remainder with this choice for the AðkÞ

ℓm coefficients as
for the Sℓm factorization of the modes of the energy flux
to all the orders we have considered.
If we apply this simplification to the (2, 2) mode, then we

have

X∞
k¼0

AðkÞ
22

Rk ¼ −
27

51
þ 261511

315171
1

R
þ 2468991

335172
1

R2
−
2315291219111

345372111
1

R3
þ 5314670036811611

365373111131
1

R4
þ 1571374566160091

21365274131
1

R5

−
23137117911871179071580078671

23365574112131171
1

R6
þ 17911229384882345812630174071

24395575112132171191
1

R7

þ 1913712271401192033172758215409831

28395476112132171
1

R8
þ � � � ; ð21Þ

which yields

Υ22 − ΥC1
22 ¼

X13
k¼1

αðkÞ22

Rk þ
�
−
26

51
1

R9
−
2532

51
1

R10
−
2345071

315171
1

R11
−
2219111243431

325372
1

R12
−
149311855571

21315372
1

R13

�
logð2=RÞ

þ 216

3152
logð2=RÞeulerlog2ðRÞ

R13
þ
�
291071

315271
1

R12
þ 28311071

5271
1

R13

�
log2ð2=RÞ þ

�
−
2101071

325271
1

R12

−
29111132

325271
1

R13

�
π2 þ

�
−
211

51
1

R12
−
21032

51
1

R13

�
ζð3Þ − 213

3152
π

R11.5 −
212191

325271
π

R12.5 −
2101116731

345271
π

R13.5

þ
�

1

R14
and higher terms that we do not yet know all of

�
þ
�
−
292400136371

335472111
þ 2171071

325371
eulerlog2ðRÞ

þ 2161071

315371
logð2=RÞ − 217

3252
π2
�

π

R14.5 −
2131072

335372
log3ð2=RÞ

R15
þO

�
1

R15.5

�
; ð22Þ

where αðkÞ22 ∈ Q. Here, to simplify the remainder, we
have not used ½ν�3 in ΥC1

22 , but rather the expression for
the 1=R9 piece of the 1=R expansion of ν that is valid
for all ℓ > 2, without the additional piece that only
contributes for ℓ ¼ 2 (for positive ℓ). Specifically, this
is the expression for ν6ðℓÞ given in the Appendix of
Bini and Damour [24] with the final c6 term omitted.
We omit this term because c6 ¼ 2171=31511071, and
we do not actually see such factors of 107 (or any other
anomalously large primes) in the denominators of the
PN expansion of fluxes or gauge-invariant self-force
quantities available to date. For instance, if we had
used ½ν�3 instead of the general ℓ > 2 expression in ΥC1

22 ,
then the 11.5PN and higher half-integer coefficients
in the remainder would have had more complicated

expressions (with factors of 107 in the denominator).
In particular, the 11.5PN coefficient in the remainder
would be 21267371π=3252711071. However, we do
see such factors of 107 and other large primes
from the numerator of the ½ν�1 in the denominators of
certain terms in the factorizations of the modes of
the energy flux at infinity given in Ref. [38], which
is not surprising, since the full ν is used in these
simplifications.
Indeed, if one looks at the coefficients of eulerlogmðRÞ

in the PN expansion of the logarithms of the modes of
the energy flux at infinity (for a point particle in a
circular orbit around a Schwarzschild black hole), then
these coefficients give the coefficients of the 1=R
expansion of ν up to the point at which the first departure
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from the general ℓ behavior occurs (at 1=R3ðℓþ1Þ).
Specifically, if ηℓm denotes the ðℓ; mÞ mode of this
energy flux, the coefficient of eulerlogmðvÞv6n in
log ηℓm is 2½ν̄ℓm�nð2mÞ2n for n < ℓþ 1. This behavior
is to be expected, given the action of the Sℓm factori-
zation from Ref. [38]; n ¼ ℓþ 1 is the point at which
the −ν − 1 portion of Binc

ℓmω in the MST formalism starts
to contribute eulerlogmðvÞ terms to ηℓm [cf. Eq. (19b)
in Ref. [38] and the discussion in Sec. IV of that
paper]. What is striking is that the coefficient of
eulerlogmðvÞv6ðℓþ1Þ is given by the general-ℓ expression
for the PN coefficients of ν. For an illustration of all of
this for the (2, 2) mode, compare the expression for
log ηℓm in Eq. (32) in Ref. [38] with the expressions for
the PN expansion of ν given in the Appendix of Bini and
Damour [24]. However, for n ¼ ℓþ 2, things are more
complicated, since the expression for the PN coefficient
for a general ℓ develops a pole, the residue of which
seems to have nothing to do with the difference between
the coefficients of eulerlogmðvÞv6n in log ηℓm and the PN
coefficients of ν. In particular, this residue is quite simple
and has no large prime factors.

The simplification we introduce here is in many ways
analogous to the Sℓm factorization of the modes of the
energy flux at infinity introduced in Ref. [38] and likely has
a similar expression in terms of gamma functions, where
the current expression is just low-order terms in its PN
expansion. However, while it is reasonably easy to read off
the Sℓm factorization from the MST expression for the
modes of the energy flux, it is far less easy to ascertain the
similar full expression for this simplification of the modes
of ΔU, except for the e2ν̄ℓmeulerlogmðRÞ piece, as discussed in
the Appendix. Note also that the Sℓm factorization is
applied to the entire mode (by division), while here we
only subtract off a portion of the expansion with the
simplification.
There is also some notable structure in the remainder (in

particular all the factors of 107 in the prime factorization),
and it appears that the powers of logð2=RÞ and the ζð3Þ terms
in the remainder can all be derived from a single series, akin
to ΥC1

ℓm. By analogy with ΥC1
22 and the Vℓm factorization of

the modes of the energy flux fromRef. [38] (though theVℓm
factorization does not remove some of the terms that are
analogous to those considered here, so the analogy is far
from exact), we conjecture that it has the form

ΥC2
ℓm ¼

�
e2ν̄ℓm logð2=RÞ

�
1

2ν̄ℓm
þ 23m2ζð3Þ

R3

�
−

1

2ν̄ℓm

�X∞
k¼0

BðkÞ
ℓm

Rkþ5þ2ℓþϵℓm

≕ C½2�
ℓm

X∞
k¼0

BðkÞ
ℓm

Rk ; ð23Þ

where

X∞
k¼0

BðkÞ
22

Rk ¼ −
26

51
−
2532

51
1

R
−
2345071

315171
1

R2
−
2219111243431

325372
1

R3
−
149311855571

21315372
1

R4
þ � � � ; ð24Þ

and we give the expressions for the other modes to the order
we know them in the Supplemental Material [60]. However,
note that we do not yet know the expansion of the individual
modes to high enough orders to be able to check whether
many of the predicted terms appear and whether the
coefficient of logð2=RÞ=R14 also gives the coefficients of
the other higher-order terms this expression suggests it will.
Nevertheless, we are able to check some of these predictions
for the first appearance of a given power of a logarithm in the
(2, 2) mode using our results for the higher-order PN
coefficients of the fullΔU and the rest of the simplification,
as discussed in Sec. VA. Additionally, we obtain a few less
direct checks onmore of these predictions for the (2, 2)mode
and others from the simplifications of the remainders of
other logarithmic terms in the full ΔU. Moreover, there is a
very similar structure in the remainder of the Sℓm factori-
zation of the modes of the energy flux at infinity [38],

lending further support to this conjectured form. In general,
these similarities between the structures that can be sim-
plified for the energy flux and ΔU are not surprising, since
they likely all come from tail effects.

B. Applying PSLQ to the coefficients of the PN
expansion of the modes of ΔU

We now outline the general method we use to obtain
the analytic forms of the coefficients of the PN expansion
of the modes of ΔU. First, we note that the form of the
PN expansion of the modes of the energy flux generally
provides a good guide to the growth of complexity of the
terms in the expansion of the modes of ΔU, in particular
concerning the appearance of terms that we are not able
to remove using the simplification—cf. the discussion in
Ref. [38]. Next, we note that the individual retarded ðℓ; mÞ
modes of ΔU have the following general structure:
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X∞
n¼1þεℓm

Að0Þ
n

Rn þ
X∞

n¼3þℓþεℓm

Að1Þ
n eulerlogmðRÞ

Rn þ
X∞

n¼6þℓþεℓm

Að2Þ
n eulerlog2mðRÞ

Rn þ���

þπ

� X∞
n¼4þℓþεℓm

Bð0Þ
n

Rnþ1=2þ
X∞

n¼7þℓþεℓm

Bð1Þ
n eulerlogmðRÞ

Rnþ1=2 þ
X∞

n¼10þℓþεℓm

Bð2Þ
n eulerlog2mðRÞ

Rnþ1=2 þ���
�

þ
X∞

n¼5þ2ℓþεℓm

Cð0Þ
n logð2=RÞ

Rn þ
X∞

n¼8þ2ℓþεℓm

Cð1Þ
n log2ð2=RÞ

Rn þ���

¼
X∞

n¼1þεℓm

Að0Þ
n

Rn þ
X∞
k¼0

� X∞
n¼3kþ3þℓþεℓm

Aðkþ1Þ
n eulerlogkþ1

m ðRÞ
Rn þπ

X∞
n¼3kþ4þℓþεℓm

BðkÞ
n eulerlogkmðRÞ

Rnþ1=2 þ
X∞

n¼3kþ5þ2ℓþεℓm

CðkÞ
n logkþ1ð2=RÞ

Rn þ���
�
:

ð25Þ

[Recall that εℓm is defined in Eq. (20).] In particular, note
that the individual modes are purely rational integer-order
PN series until the first appearance of the logarithm, where
they start to have transcendental contributions, as well. The
transcendentals and the logarithm first only appear together
in the form of eulerlogmðRÞ in the integer-order terms, but
then, starting with the 1=R6þℓþϵℓm term (i.e., the same order
at which eulerlog2 terms start to appear), they also get π2 and
ζð3Þ terms, where ζ is the Riemann zeta function. Much of
the increase of complexity is described by the simplifications
[Eqs. (18) and (23)], though there are a few logarithms,
transcendentals,4 and half-integer terms that the simplifica-
tions do not remove, just as found for the energy flux in
Ref. [38], which should be expected, from the form of the
expressions used to obtain both quantities. In particular, the
expression in Eq. (25) does not include the appearance of
the eulerlog2ðRÞ logð2=RÞ=R13 and π logð2=RÞ=R14.5 terms
that are known in the (2, 2) mode of ΔU (which are also not
given by either of the simplifications).
We apply the PSLQ integer relation algorithm [42,43]

in its implementation as the FindIntegerNullVector func-
tion in MATHEMATICA to obtain analytic forms for the
PN coefficients of the retarded ðℓ; mÞ modes of ΔU.5

Specifically, if one inputs a vector of decimals to the
PSLQ algorithm, it returns the (nonzero) vector that is
orthogonal to the input vector and has a small (L2) norm.
One can thus apply PSLQ to identify the analytic form of a
number from a sufficiently accurate decimal representation,
if one knows (or has an educated guess for) the transcen-
dental numbers [here, for instance, π, logð2Þ, γ, ζð3Þ, etc.]
present in the analytic form. This is particularly simple
when the number one will obtain is a linear combination of
the transcendentals with rational coefficients, as is the case
here, where the vector in question is simply the decimal

expansion of the number to be identified, along with 1, and
any transcendentals thought to be present. Of course, PSLQ
will give an output for any vector, but the outputs that do
not correspond to a true relation are almost always large
and “ugly looking” for a sufficient number of digits, while
the true vector will have a certain “nice-looking” structure
(which we will discuss further later).

C. Example: Obtaining the analytic form of
the β7 coefficient of the full ΔU from the

decimal form given by SFW

As an example, we consider obtaining the β7 coefficient
[i.e., the coefficient of the logðRÞ=R8 term in ΔU] from the
numerical value given in SFW, as was reported there (and
confirmed by the analytic calculation in Ref. [25]). This is
the coefficient of logðRÞ at the first order where there is a
log2ðRÞ term, so, by analogy with the transcendentals
appearing in the nonlogarithmic term at the first appearance
of logðRÞ, we expect to have γ and logð2Þ terms here. As we
saw in the expression of the structure of the PN expansion
of the modes in terms of eulerlogs above, this linking of
logðRÞ, logð2Þ, and γ is a generic feature, though it is
broken at high orders by the appearance of the logð2=RÞ
terms. Indeed, since this is the first appearance of log2ðRÞ,
and thus only comes from the (2, 2) mode, we can actually
subtract off the logð2Þ and γ terms and only have to obtain
the rational piece using PSLQ. However, we shall first
consider the case of using PSLQ to obtain the full term,
since this is how we initially obtained it.
Starting from

β7¼536.4052124710242868717895394750389112702062

69552321207927883360240368736326766131833…;

ð26Þ
which is taken directly from SFW’s Table I, we can apply
PSLQ in the formofMATHEMATICA’s FindIntegerNullVector
function to the vector fβ7; 1; γ; logð2Þg and obtain the
expression of

4Note that γ and ζ evaluated at odd integers are not known to
be transcendental, or in most cases even irrational. However, they
are all strongly conjectured to be transcendental, so we shall refer
to them as such.

5Note that we shall often use the name PSLQ as a shorthand for
the FindIntegerNullVector function.
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β7 ¼
5163722519

5457375
−
109568

525
γ −

219136

525
logð2Þ ð27Þ

with at least 42 digits. (Note: We find that the final digit
given by SFW is incorrect and should be a 6.) We were able
to reject the expressions produced by smaller numbers of
digits since they lead to anomalously large prime factors in
the denominator (i.e., the term in the vector returned by
PSLQ corresponding to β7 itself), except if one only
evaluates β7 to a very small number of digits, of course;
see Fig. 1. (Compare Fig. 5 in Ref. [50], which shows an
alternative method for detecting a likely true relation using
PSLQ by looking at the size of the smallest entry in the
vector versus the number of iterations of the algorithm,
which is not information available when using
MATHEMATICA’s FindIntegerNullVector.) We shall discuss
this method of looking at the prime factorization further in
Sec. III F.
Interestingly enough, the minimum number of digits

required to obtain this expression accurately with
FindIntegerNullVector is somewhat dependent on the
order of the terms in the vector. For instance, if we
consider instead the vector fβ7; logð2Þ; 1; γg, we only need
39 digits to obtain an accurate analytic form. If we scale
by the denominator of β6 (which is 575), i.e., consider the
vector f575β7; 1; γ; logð2Þg, we also only need 39 digits;
this sort of scaling is much more effective at higher orders
where the denominators are much larger and can decrease
the minimum number of digits required to obtain an
accurate expression by 27 digits or more. If we subtract
off the γ and logð2Þ terms using the expectations from
the eulerlog22ðRÞ form of the log2ðRÞ coefficient at

this order, then we only need 22 digits to obtain the
resulting β̄7 (here we use the vector fβ̄7; 1g, of course).
While FindIntegerNullVector returns the correct result
with between 12 and 15 digits in this case, it then
returns an erroneous relation when one uses between
16 and 21 digits before returning to the correct result for
22 digits and above. We have not observed such unusual
behavior in our other determinations. Here, scaling by 575
actually increases the minimum number of digits required
for an accurate result by 1, which can sometimes be the
case when one is scaling by a relatively small number,
as here.

D. Combining together the values at
different radii to increase the number

of digits known

For the low-order coefficients, which are purely
rational integer-order PN coefficients, we can apply
PSLQ directly to an appropriate number of digits at a
given radius (e.g., for R ¼ 1050, one can expect to get at
least ∼40 accurate digits at a given order for the leading
term). If one can identify the rational represented using
PSLQ with this number of digits, then one can subtract it
off and proceed to the next order. For the higher-ℓ
modes, the purely rational coefficients persist to high
enough orders and are large enough that one needs more
than the number of digits provided by merely evaluating
ΔU at R ¼ 1070, the largest radius we consider. In such
cases, and also when we need to consider cases with
logarithms and transcendentals at higher orders, we
combine together the values from several radii (up to
as many as 15 radii for certain high-order pieces). The
expressions we use for this purpose are long and
unilluminating, but we give a simple example here to
illustrate the method.
Let us assume that we are at a point in the computation

where we expect that the first few terms of the PN
expansion of the mode we are considering to look like

SNðRÞ ¼
αN;0

RN þ αNþ1;0 þ αNþ1;1 logðRÞ
RNþ1

þ αNþ2;0

RNþ2

þOðR−N−3Þ ð28Þ

(taking the R−N−2 term to have no logarithms, since we are
just interested in its overall scaling, even though this will
never be the case in this sort of situation in actuality), and
we wish to obtain αN;0 to ∼2k digits. Now, since we know
the value of SNðRÞ at R ¼ 10k for a range of integers k, we
can combine together the values of SNðRÞ at the radii
R ¼ 10k, 10kþp, and 10kþq (with p; q ∈ N such that 10kþp

and 10kþq give radii at which we know the value of SN),
giving

10 15 20 25 30 35 40 45
Number of digits in β
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FIG. 1 (color online). The largest prime in the denominator of
the expression for β7 returned by MATHEMATICA’s FindInteger-
NullVector function applied to the vector fβ7; 1; γ; logð2Þg for β7
evaluated to varying numbers of digits from 10 to 45. The vertical
dotted line marks the point at which this function returns an
accurate analytic expression for β7.
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αN;0 ¼ 10kN
ðq − pÞSNð10kÞ − q10ðNþ1ÞpSNð10kþpÞ þ p10ðNþ1ÞqSNð10kþqÞ

q − p − q10p þ p10q
− q − p − q10−p þ p10−q

q − p − q10p þ p10q
αNþ2;0

102k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

: ð29Þ

Here, the remainderR gives a small enough correction that
the first term will give αN;0 to ∼2k digits, provided that
αNþ2;0 is not much larger than αN;0, which will usually be
the case. (Note that we have neglected the rest of the
remainder, the leading term of which goes as 10−3k. We
also have not included half-integer terms in the remainders
for simplicity, though the presence of a half-integer term
before the given remainder term will, of course, reduce the
number of digits one obtains from the expression.)
We obtained the particular linear combination given

in Eq. (29) by considering SNð10kÞ þ ASNð10kþpÞ þ
BSNð10kþqÞ and fixing the coefficients A and B by
demanding that the resulting expression does not contain
the two R−N−1 terms (viz., αNþ1;0 and αNþ1;1). One then
solves the resulting expression for αN;0 to obtain Eq. (29).
One derives the more involved expressions for more
complicated cases with more terms and more radii in the
same way by solving a linear system, which MATHEMATICA

will do quite efficiently. For the determinations reported in
this work, we needed at most 1240 digits and 15 radii,
which we used to determine the coefficient of the
log2ðRÞ=R17.5 term in the (2, 2) mode [and implicitly
check the prediction of the simplification for the coefficient
of the log3ðRÞ=R17.5 term]; removing these terms was
necessary to obtain the nonlogarithmic part of 12PN
coefficient of the (2, 2) mode.

E. Overview of our method for obtaining analytic
forms of the coefficients of the modes of ΔU

Our general approach for determining analytic forms of
the PN coefficients of the modes of ΔU is first to obtain
the coefficient of the highest power of logðRÞ present at a
given order, which will always be rational (or a rational
times π, for the half-integer terms) and will always come
from the corresponding power of eulerlogmðRÞ, where m
is the mode’s degree (i.e., its magnetic quantum number).
Indeed, once we have obtained the coefficients of the first
three logðRÞ terms in the PN expansion of a given mode,
we are able to predict the coefficients of all of the highest
powers of logðRÞ (and, in fact, much more) using the
simplification. Thus, while an individual PN coefficient
of the (2, 2) mode of ΔU can have as many as 17
transcendentals at the relatively high PN orders we are
considering, we have to use at most five transcendentals
in the vector to which we apply PSLQ (for the 10PN
nonlogarithmic term), since the coefficients of the remain-
ing transcendentals are predicted by the simplification or
given by the coefficients of higher powers of logarithms
at that order. (We only need four transcendentals for the

nonlogarithmic piece at 12PN, despite its more compli-
cated structure, since at this point in the calculation we
have removed some of the transcendentals that entered at
10PN using the simplification.)
Once we have obtained (or—more often—checked the

simplification’s prediction for) the coefficient of the
highest power of logðRÞ at a given PN order, we then
subtract off the appropriate rational times a power of
eulerlogmðRÞ and proceed to the lower powers of logðRÞ,
which have a more complicated structure. At the orders
where there are powers of logð2=RÞ present, we still
subtract off the putative contribution as if the lognðRÞ
term came solely from a eulerlognmðRÞ term and then
include the appropriate piece when obtaining the coef-
ficient of the next lower power of logðRÞ to account
for the presence of the lognðRÞ term. For instance,
when the logðRÞ term comes from a eulerlogmðRÞþ
b logð2=RÞ, so we subtract off ðaþ 2bÞeulerlogmðRÞ,
taking the logðRÞ term to come solely from an
eulerlogmðRÞ term, we thus include the remaining
transcendental, viz., 2γ þ logð2Þ þ 2 logðmÞ, in the vector
to which we apply PSLQ when obtaining the coefficient
of the nonlogarithmic term at this PN order.
The only exception to this procedure occurs when we

can predict the coefficient of the eulerlognmðRÞ contribution
from the simplification [necessarily for n ≥ 2, since the
coefficients of the eulerlogmðRÞ terms are inputs to the
simplification, and thus not predicted by it], in which case
we simply obtain the coefficient of lognð2=RÞ directly from
the coefficient of lognðRÞ. Additionally, at 12PN in the
(2, 2) mode, things are quite complicated, since we have to
disentangle contributions from eulerlog2ðRÞ, eulerlog22ðRÞ,
eulerlog2ðRÞ logð2=RÞ, logð2=RÞ, and log2ð2=RÞ terms.
Here, we just subtract off the log2ðRÞ coefficient we
obtained as a log2ðRÞ term and then include γ þ logð2Þ
and logð2Þ in the vector to which we apply PSLQ to obtain
the logðRÞ coefficient. The coefficients of γ þ logð2Þ and
logð2Þ in the logðRÞ coefficient then let us predict the
coefficients of certain γ logð2Þ and log2ð2Þ contributions
in the nonlogarithmic coefficient, so we need to include
only 2γ þ 3 logð2Þ and γ2 þ 3γ logð2Þ þ ð9=4Þ log2ð2Þ in
the vector to which we apply PSLQ.
For the more complicated terms, we use the modes of

the energy flux at infinity as a guide to the transcen-
dentals we expect to be present that are not already
predicted by the form of the simplification we have
determined at a given order. (These modes have been
calculated to 22PN by Fujita [39], with simplified and
factorized forms given in Ref. [38].) Once we have
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obtained a new transcendental (or other new contribution
that looks as if it is part of the simplification) at a given
order6 in a few modes, we conjecture its general appear-
ance in the simplification and then check it using a few
other modes. Again, comparison with the analogous Sℓm
factorization of the modes of the energy flux from
Ref. [38] is useful in determining what likely comes
from the simplification, though the structures are not
exactly the same. We also may need to obtain simpler
higher-order terms (i.e., higher powers of logarithms at
higher PN orders, or half-integer terms, which are simpler
than integer-order terms at comparable orders) first, in
order to remove sufficient terms from the series so that
we can obtain the expression to enough digits with a
relatively small number of radii.
Finally, as mentioned above, we generally scale by the

denominator of the rational term at the previous PN order
(i.e., the current PN order minus 1), since we find that this
significantly reduces the number of digits required to
make an accurate determination of the analytic form. One
exception to this is any case in which the simplification
predicts most of the term [e.g., up to a lognð2=RÞ
contribution or the additional contributions to the non-
logarithmic part of half-integer terms at higher orders].
In this case, we will not scale at all or scale by the
denominator of the similar addition at the previous PN
order, as these additional terms have significantly simpler
denominators than the full coefficient. With these scal-
ings, we need at most 249 digits to successfully obtain an
analytic form. This maximum is needed for the non-
logarithmic 1=R13 term of the (2, 2) mode, the most
complicated coefficient of a mode we consider.
For the modes with ℓ ≥ 4, we also scale by a high power

ofm (as high as 12 for ℓ ¼ 9 and 10) when determining the
(linear) logðRÞ and half-integer terms, since such high
powers of m occur there. For these modes, we are able to
use the simplification to make the determination of the
analytic form of the PN coefficients mostly automatic
(in the sense that we only have to choose the number of
digits used and various scalings and verify that the results
satisfy all the consistency checks we discuss below). Note
also that we are only considering the linear logðRÞ terms
here, since all the higher powers of logðRÞ in these modes
are given by the simplification, to the order we are currently
working.

F. Checks on the output of PSLQ

When we are performing these PSLQ determinations,
it is important to ensure that one has sufficient accuracy

(and the correct transcendentals in the vector) so that the
form returned by PSLQ is reliable. Besides the basic test
of making sure that the analytic form does not change as
one increases the number of digits, up to the maximum
number that are expected to be given accurately by the
combination of radii being used, a very stringent test is
generally making sure that the denominators do not have
any large prime factors. Such smooth numbers are
distributed relatively sparsely among large numbers when
the largest prime allowed is relatively small (e.g., smaller
than the logarithm of the large number); see, e.g.,
Granville’s review [65] for a discussion of the properties
of smooth numbers.
In particular, Granville gives an upper bound on the

smooth number counting function in his Eq. (1.23) that
gives an easy way to see how unlikely it is for a randomly
selected d digit number to have all its prime factors less
than p. This probability will be less than

1

10dþ1 − 10d

�
⌊ðdþ 1Þ logð10Þ= logð2Þ⌋þ πðpÞ

πðpÞ
�
; ð30Þ

where ð ·· Þ is the binomial coefficient, ⌊ · ⌋ is the floor
function, and πðpÞ is the number of primes ≤ p. This
probability is generally extremely small for the cases in
question. For instance, the denominators of the purely
rational terms at 12 and 12.5PN each have 32 digits,
but their largest primes are both 19, for which the
probability is less than 10−21, for a randomly selected
32 digit number.
In addition to making sure that the denominator is a

smooth number, other consistency tests include checking
that the result is insensitive to small changes in the prime
factorization of the overall scaling or computing the
coefficients of UαΔU for different α (e.g., α ¼ −1=2
and α ¼ þ1=2, though we used other values, as well)
and making sure that the results are consistent. One also
expects that terms that have only recently started to appear
in the expansion will have simpler forms than those that
have been present in the expansion for longer, which also
allows one to reject some spurious expressions. In particu-
lar, one expects to see powers of the characteristic large
prime from the numerator of the first PN coefficient of ν
(cf. Table I in Ref. [38]) in such terms that have just started
to appear.
Finally, if one happens to have many digits for a given

term, other consistency checks include adding on other
transcendentals to the vector and making sure that PSLQ
gives zero coefficients for them or obtaining the result
without subtracting off some of the known results from
the simplification (particularly if this is a term one already
has to include in the vector anyway, since the simplifi-
cation only gives a portion of it). All these checks, plus
the overall consistency check that we continue to obtain

6Here, we consider not the absolute PN order but the relative
PN order past the first appearance of an eulerlog term, since a
term at such a relative PN order will have the same complexity in
all modes, while the complexity at a given absolute PN order
decreases with increasing ℓþ εℓm.
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expressions of the expected form for the various modes
(given the simplification and the form of the modes of the
energy flux) as we continue to high orders, give us high
confidence that our analytic results for the modes (and, as
described later, the full ΔU) are indeed the true ones.
This confidence was recently confirmed by the exact
agreement of our results with the 20.5PN results of
Kavanagh, Ottewill, and Wardell [27], obtained com-
pletely analytically.

IV. TERMS PREDICTED BY THE SIMPLIFYING
FACTORIZATION TO ARBITRARILY

HIGH ORDERS

The two simplifications we have found also predict
certain higher-order logarithmic and half-integer terms,
extending to arbitrarily high orders, since we assume that

the e2ν̄ℓmeulerlogmðRÞ and e2ν̄ℓm logð2=RÞ portions of the sim-
plifications hold to all orders, as we expect them to, since
the similar Sℓm and Vℓm factorizations found for the
energy flux in Ref. [38] hold to high orders (presumably
to all orders) and contain the same exponential terms.
Moreover, we can see where these factors arise in the
calculation from a study of the structure of the MST
solution used to compute ΔU; see the Appendix. In
particular, we can predict the coefficients of the first five
appearances of a given power of logðRÞ in both the
integer-order and half-integer terms. The only thing that
prevents us from being able to predict further terms is the
appearance of pieces that are not given by these sim-
plifications at higher orders.
Specifically, the higher-order logarithmic and half-

integer terms in the full ΔU that the simplification predicts
are given by the appropriate terms from
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and the “appropriate terms” that one should take from this
expression are (as discussed above) the first five appear-
ances of a given power of the logarithm in each of the
integer and half-integer PN coefficients. (Note that the final
subtracted terms in CS1

ℓm and CS2
ℓm are only necessary to

remove some low-order nonlogarithmic integer-order
terms, so one could leave off the subtracted term and
simply ignore the additional terms, since they do not mix
with the predictions of the simplification.) While this
expression gives further appearances of these powers, such
further appearances are not predictions for complete

coefficients of the full ΔU, which obtains contributions
from terms that are not included in the simplification. (We
give a code that picks out the accurate predictions in the
Supplemental Material [60].) Moreover, even if there were
no additional terms besides those given by the simplifica-
tion, one would need to add on more terms in the series for
a given mode, as well as additional modes, to obtain the
sixth and higher appearances of a given power of a
logarithm. Also, note that here we only need ν̄ℓm to second
order [i.e., to Oð1=R6Þ; recall that ν is a series in 1=R3] in
CS1
ℓm and to first order [i.e., to Oð1=R3Þ] in CS2

ℓm, and these
higher-order terms are only needed for the highest few
appearances of a given power of a logarithm.
It is also possible to obtain explicit expressions for the

coefficients of the first few appearances of a given power of
logðRÞ in the PN expansion of ΔU from Eq. (31), using the
Taylor series for the exponential function. As an illustra-
tion, we give here the expressions for the coefficients of the
first two appearances of the nth power of logðRÞ in both the
integer and half-integer PN terms of ΔU:
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Here, one must only consider n ≥ 1 in the integer-order
terms but can consider n ¼ 0 in the half-integer terms. Note
that the first appearance of a given power of logðRÞ (in
either the integer or half-integer PN terms) comes solely
from the leading term of the series multiplying CS1

22 (i.e.,
just from the dominant 2, 2 mode), while the second
appearance comes from the next term in the series multi-
plying CS1

22 in addition to the leading terms multiplying CS1
ℓm

for ðℓ; mÞ ∈ fð2; 1Þ; ð3; 3Þ; ð3; 1Þg.
One can also similarly predict arbitrarily high-order

“leading logarithmic” terms in the energy flux using the
Sℓm factorization from Ref. [38], though this was not
noted there; here, one obtains the coefficients of the first

six occurrences of each power of a logarithm in the
integer-order PN terms and the first five occurrences in
the half-integer PN terms. We give a code that computes
these predictions in the Supplemental Material [60].
Additionally, note that Nickel [40] makes similar pre-
dictions of leading logarithmic-type terms to arbitrarily
high orders for the ground-state energy of Hþ

2 and is able
to derive some of them. Finally, these sorts of predic-
tions of leading logarithms to arbitrarily high orders are
likely related to the multipole moment beta functions
discussed by Goldberger et al. [66,67], where they
predict the coefficient of the first occurrence of a given
power of a logarithm in both the energy flux and the
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binding energy using the beta function for the dominant

(2, 2) mode.

V. COMPUTING THE INFINITE SUM OVER
RENORMALIZED ℓ MODES TO OBTAIN THE

FINAL RESULT FOR ΔU

ΔU, being a conservative invariant (and thus coming
from the half-retarded plus half-advanced field, as dis-
cussed in Sec. 5 of Ref. [6]), requires a renormalization
procedure in which a noncontributing singular part of the
retarded ΔU calculated at the position of the particle
needs to be subtracted. This is done by using a mode-sum
regularization technique in which the retarded part is
written as a sum over angular harmonics and the singular
part is written as a sum over angular harmonics by
extending it on the coordinate 2-sphere passing through
the particle (i.e., at r ¼ r0). The explicit equations used
in renormalization are given in Ref. [52]. The sum over ℓ
modes converges quite slowly (the summand goes as
ℓ−2), so it is customary to improve the convergence by
finding higher-order regularization coefficients numeri-
cally, as in Refs. [10,52,68]. However, to obtain an
accuracy of N digits in the final result of the renormalized
ΔU, one has to obtain these higher-order regularization
coefficients to N digits as well, which would necessitate
going to prohibitively large ℓ (e.g., ℓmax ∼ 103 for an acc-
uracy of 5000 digits). (The Wentzel–Kramers–Brillouin
method detailed in Ref. [69] could be useful here in
future work.)
Nevertheless, it is possible to obtain the analytic form for

a given nonlogarithmic integer-order PN term by obtaining
the general form of the PN coefficient of a renormalized ℓ

mode and performing the sum analytically, as in Bini and
Damour [24–26]. We thus note that the nPN coefficients of
all the renormalized ℓ modes with ℓ ≥ n − 1 are purely
rational (with no transcendentals or logarithms). (Here,
we only consider n ∈ N, since the half-integer terms only
have a finite number of ℓ modes contributing.) One can
thus easily obtain analytic forms for these coefficients
using PSLQ. (Here, one scales with the denominator of
the previous ℓ mode, to help with the determination,
and needs at most the values at four radii to obtain enough
digits at 12PN.) We then find that the general form of
these coefficients as a function of ℓ can be expressed
as linear combinations of members of a small family of
functions, namely,

T n
kðℓÞ ≔

1

ðℓþ kþ 1=2Þn þ
ð−1Þn

ðℓ − kþ 1=2Þn ; ð34aÞ

Un
kðℓÞ ≔

1

ðℓþ kÞn þ
ð−1Þn

ðℓ − kþ 1Þn ; ð34bÞ

VnðℓÞ ≔ 1

ðℓþ 1=2Þn : ð34cÞ

(Note that Vn is the only one of these for which the effect of
the superscript n is the same as taking V to the nth power.)
These functions are similar to, though slightly more
complicated than, the form considered for the regulariza-
tion coefficients in Sec. Vof Shah et al. [52]. We solve the
linear system to obtain the coefficients (noting that one
obtains excessively large rationals for the coefficients if
one does not include the correct functions in the solve)
and check that the expression successfully reproduces the
values of the coefficients that were not used in the solve.
We need to go to ℓ ¼ 87 (starting from ℓ ¼ 16, to avoid
logarithmic terms at higher orders) for 12PN, the most
complicated case we consider, for a total of 72 ℓ modes.
The general expressions for the first six PN coefficients

have the form

T 1
1;

T 1
1–2 & U1

1;

T 1
1–3 & T 2

1 & U1
1–2 & V2;

T 1
1–4 & T 2

1 & T 3
1 & U1

1–3 & V2;

T 1
1–5 & T 2

1–2 & T 3
1 & U1

1–4 & U2
1 & U3

1 & V2;

T 1
1–6 & T 2

1–3 & T 3
1 & T 4

1 & U1
1–5 & U2

1–2 & U3
1 & V2 & V4;

ð35Þ
wherewe just give the functions present, not the coefficients,
and a range in a subscript indicates that all the functions
in that range are present. We give the explicit expressions
up to 12PN in the Supplemental Material [60] and only
note here that the specifics of the functions present grows
in about the way one would expect: At nPN, one
has T k

1−ðn−3kþ3Þ, Uk
1−ðn−3kþ2Þ terms present, for ks with

n − 3kþ 3 ≥ 1 and n − 3kþ 2 ≥ 1, respectively, as well
as T 1

p, U1
p terms for larger p (for which the specifics of the

terms present at a given PN order has a somewhat more
complicated structure). One also has Vk present for all even
k ≤ ð2=3Þn. For instance, at 12PN, we have
T 1

1−12 & T 2
1−9 & T 3

1−6 & T 4
1−3 & T 5

1 & T 6
1 & T 7

1 & T 8
1

& U1
1−11 & U2

1−8 & U3
1−5 & U4

1−2 & U5
1 & U6

1 & U7
1

& V2 & V4 & V6 & V8: ð36Þ
Also note that these general expressions diverge at the ℓs for
which the PN coefficient is no longer purely rational, due to
the U1

n−1 term (cf. the discussion of the appearance of the
logarithms at places where there are apparent poles in ℓ in
the general form in Sec. II F of Bini and Damour [24]).
As Bini and Damour mention [24], the infinite sums over

these functions are straightforward to evaluate if one makes
a partial fraction decomposition (and MATHEMATICA will
do them automatically without even needing to perform a
partial fraction decomposition first). One finds that the
sums over many of the terms telescope to a finite sum, and
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the rest can be evaluated in terms of the Riemann zeta
function evaluated at even integers (giving even powers of
π with rational coefficients). Since these general expres-
sions are not valid for the low-ℓ modes, where there are
also transcendentals present, one adds on the contributions
from these low-order modes separately to obtain the final
expression. One finds that the sizes of the numerator and
denominator of the final purely rational term are good
indicators of errors in the calculation. If one has omitted a
piece, or determined its analytic form incorrectly, this
rational will be more complex than one would expect it
to be, given the complexity at the previous order.
While we have analytic forms of the PN coefficients for

ΔU through 12.5PN, with the 13.5PN term and all but the
nonlogarithmic piece of the 13PN also known, we only
give the full ΔU to 11.5PN here to save space. The
analytic forms of these high-order coefficients are quite

lengthy, even when written in eulerlog form. We give the
previously known lower orders (which we have re-
obtained) in their eulerlog form as well, for comparison,
and to illustrate the structure. We also give the expression
with the terms given by the simplifications removed,
where we go all the way to 12.5PN. We give the full
expressions for all these quantities in the Supplemental
Material [60]. Here, we scale ΔU by u ≔ 1=R and write
the expansion in terms of u so that the coefficient of un

gives the n PN term of ΔU. We also abuse notation
(i.e., we use “physicist’s function definitions,” not
“mathematician’s function definitions”) and write
eulerlogmðuÞ ≔ γ þ logð2mu1=2Þ, which has the same
value as the previous expression in terms of R if one
uses the u related to this R but is, of course, not given by
substituting u for R in the previous expression,

ΔU
u

¼ −1 − 2u − 5u2 þ
�
−
121

3
þ 41

32
π2
�
u3 þ

�
−
1157

15
þ 677

512
π2 −

128

5
eulerlog2ðuÞ

�
u4 þ

�
1606877

3150
−
60343

768
π2

−
5

7
eulerlog1ðuÞ þ

5632

105
eulerlog2ðuÞ −

243

7
eulerlog3ðuÞ

�
u5 −

13696

525
πu5.5 þ

�
17083661

4050
−
1246056911

1769472
π2

þ 2800873

262144
π4 −

1193

945
eulerlog1ðuÞ þ

187904

2835
eulerlog2ðuÞ þ

1215

7
eulerlog3ðuÞ −

32768

567
eulerlog4ðuÞ

�
u6

þ 81077

3675
πu6.5 þ

�
12624956532163

382016250
−
9041721471697

2477260800
π2 −

23851025

16777216
π4 −

2048

5
ζð3Þ − 1199567

332640
eulerlog1ðuÞ

−
11564789888

5457375
eulerlog2ðuÞ −

2873961

24640
eulerlog3ðuÞ þ

14024704

31185
eulerlog4ðuÞ −

1953125

19008
eulerlog5ðuÞ

þ 109568

525
eulerlog22ðuÞ

�
u7 þ 82561159

467775
πu7.5 þ

�
−
7516581717416867

34763478750
−
246847155756529

18496880640
π2

þ 22759807747673

6442450944
π4 −

41408

105
ζð3Þ − 64

5
logð2uÞ − 31988738821

1222452000
eulerlog1ðuÞ þ

80813099648

33108075
eulerlog2ðuÞ

−
85126268709

15695680
eulerlog3ðuÞ −

67792273408

70945875
eulerlog4ðuÞ þ

798828125

741312
eulerlog5ðuÞ −

3359232

17875
eulerlog6ðuÞ

þ 16022

11025
eulerlog21ðuÞ −

4820992

11025
eulerlog22ðuÞ þ

18954

49
eulerlog23ðuÞ

�
u8 þ

�
−
2207224641326123

1048863816000
−
219136

1575
π2

þ 23447552

55125
eulerlog2ðuÞ

�
πu8.5 þ

�
−
10480362137370508214933

2044301131372500
−
11665762236240841

226072985600
π2

þ 32962327798317273

549755813888
π4 −

27101981341

100663296
π6 þ 10221088

2835
ζð3Þ − 448

5
logð2uÞ − 61470271483

814968000
eulerlog1ðuÞ

þ 2840603616267776

442489422375
eulerlog2ðuÞ þ

8677864251603

392392000
eulerlog3ðuÞ −

5946112890241024

442489422375
eulerlog4ðuÞ

−
58533203125

15567552
eulerlog5ðuÞ þ

309049344

125125
eulerlog6ðuÞ −

96889010407

277992000
eulerlog7ðuÞ þ

51178

19845
eulerlog21ðuÞ

−
5373212672

9823275
eulerlog22ðuÞ −

94770

49
eulerlog23ðuÞ þ

1647312896

1964655
eulerlog24ðuÞ

�
u9 þ

�
−
30185191523470507

12236744520000

−
1055996

11025
π2 þ 1712534

1157625
eulerlog1ðuÞ −

1031692288

1157625
eulerlog2ðuÞ þ

246402

343
eulerlog3ðuÞ

�
πu9.5
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þ
�
−
238946786344653264799175280203

4522423405833558225000
−
1070208441923650860489683

58656715985387520000
π2 þ 832229033014028790267991

1662461581197312000
π4

þ 54067065388369

12884901888
π6 −

128695611256

5457375
ζð3Þ þ 32768

5
ζð5Þ − 20416

35
logð2uÞ − 157982464536376957

674943865596000
eulerlog1ðuÞ

þ
�
−
1483437716511288604288

14480466347221875
þ 46895104

33075
π2 þ 3506176

525
ζð3Þ

�
eulerlog2ðuÞ −

52813127885844357

10492954472000
eulerlog3ðuÞ

þ 8040008069311889408

82745521984125
eulerlog4ðuÞ −

263296063591796875

8742130068672
eulerlog5ðuÞ −

13640920722432

1146520375
eulerlog6ðuÞ

þ 6491563697269

1181466000
eulerlog7ðuÞ −

1099511627776

1688511825
eulerlog8ðuÞ þ

54944178599

7491884400
eulerlog21ðuÞ

þ 69907855522816

3781960875
eulerlog22ðuÞ þ

79338802833

61661600
eulerlog23ðuÞ −

705049919488

108056025
eulerlog24ðuÞ

þ 7548828125

4077216
eulerlog25ðuÞ −

187580416

165375
eulerlog32ðuÞ

�
u10 þ

�
54441085537326639211

3824681905044000
þ 78847804

66825
π2

þ 1096738

416745
eulerlog1ðuÞ −

38224121176064

34037647875
eulerlog2ðuÞ −

1232010

343
eulerlog3ðuÞ

þ 10351714238464

6807529575
eulerlog4ðuÞ

�
πu10.5 þ

�
3814229145040080910470246242071097

13798711885916862654750000

−
497508986166915487823810257447

36601790774881812480000
π2 þ 1213451006696869077146724173

2234348365129187328000
π4 −

5276940898567193189

25975962206208
π6

−
2759468242424

19864845
ζð3Þ þ 3283328

105
ζð5Þ − 175005952

55125
logð2uÞ þ 54784

525
log2ð2uÞ

þ
�
−
292720019838735815778069367

313683671243842099200000
þ 1712534

694575
π2 þ 128176

11025
ζð3Þ

�
eulerlog1ðuÞ

þ
�
17152255889408499680050304

325477442086506084375
−
2063384576

694575
π2 −

154271744

11025
ζð3Þ

�
eulerlog2ðuÞ

þ
�
−
37422973611649093363871733

81277585903754240000
þ 1232010

343
π2 þ 1364688

49
ζð3Þ

�
eulerlog3ðuÞ

−
1595162202161082218708992

9299355488185888125
eulerlog4ðuÞ þ

282725878023723294921875

829173552753401856
eulerlog5ðuÞ

−
12192267599501090688

202481230826875
eulerlog6ðuÞ −

60335405593501190803

1792954994688000
eulerlog7ðuÞ

þ 690493302243328

57747104415
eulerlog8ðuÞ −

205891132094649

168551219200
eulerlog9ðuÞ þ

792734736884113

14316991088400
eulerlog21ðuÞ

−
501413283015334912

22370298575625
eulerlog22ðuÞ þ

12234781198165473

196392196000
eulerlog23ðuÞ þ

1768982113681408

127830277575
eulerlog24ðuÞ

−
3087470703125

159011424
eulerlog25ðuÞ þ

72640032768

17892875
eulerlog26ðuÞ −

6850136

3472875
eulerlog31ðuÞ þ

8253538304

3472875
eulerlog32ðuÞ

−
985608

343
eulerlog33ðuÞ

�
u11 þ

�
−
45399846479271440442297518687

663973981856472412125000
−
10107325522351333

1311079770000
π2 þ 3506176

23625
π4

þ 375160832

55125
ζð3Þ þ 839591622096533

112490644266000
eulerlog1ðuÞ þ

�
2629370415206008832

65522472159375
þ 375160832

165375
π2
�
eulerlog2ðuÞ

þ 732046976712531

308616308000
eulerlog3ðuÞ −

4430533694062592

374414126625
eulerlog4ðuÞ þ

5835244140625

1749125664
eulerlog5ðuÞ

−
20071104512

5788125
eulerlog22ðuÞ

�
πu11.5 þOðu12Þ: ð37Þ
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The terms through 13.5PN for which we obtained
analytic forms that we do not show here (i.e., all of
these terms except for the nonlogarithmic 13PN term)
have the expected increase in complexity, given the
pattern at lower orders, and the complexity of the energy
flux at infinity (see Refs. [38,39]). In particular, we
obtain a π8 term (from the sum over all ℓ modes) at
12PN, along with an eulerlog2ðuÞ logð2uÞ term [from the

(2, 2) mode alone]. We also see the expected π4 and ζð5Þ
terms in the linear logarithmic term at 13PN (which we
obtain from our fit to the full ΔU, as described below)
and get the first logð2uÞ term in a half-integer piece at
13.5PN.
If we write ΔU as a remainder plus the terms given by

the two simplifications, we have, now going all the way
to 12.5PN,

ΔU
u

¼ −1 − 2u − 5u2 þ
�
−
121

3
þ 41

32
π2
�
v3 þ

�
−
1157

15
þ 677

512
π2
�
u4 þ

�
1606877

3150
−
60343

768
π2
�
u5

þ
�
17083661

4050
−
1246056911

1769472
π2 þ 2800873

262144
π4
�
u6 þ

�
12624956532163

382016250
−
8826302018257

2477260800
π2 −

23851025

16777216
π4
�
u7

þ
�
−
7516581717416867

34763478750
−
741674600438227

55490641920
π2 þ 22759807747673

6442450944
π4
�
u8

þ
�
−
10480362137370508214933

2044301131372500
−
25850880135908623907

494421619507200
π2 þ 32962327798317273

549755813888
π4 −

27101981341

100663296
π6
�
u9

þ
�
−
238946786344653264799175280203

4522423405833558225000
−
18927900985563784496607041

1583731331605463040000
π2

þ 166464310992954697947563

332492316239462400
π4 þ 54067065388369

12884901888
π6
�
u10 −

8192

75
πu10.5

þ
�
3814229145040080910470246242071097

13798711885916862654750000
−
31306151918920018820376206813081

2305912818817554186240000
π2

þ 48548370032386602537826133

89373934605167493120
π4 −

5276940898567193189

25975962206208
π6
�
u11 −

2192896

6741
πu11.5

þ
�
176538264526096039025674251863176559931511

12080725340499801136900598850000
−
230595271714866856972896270561913344391

558842583466071892143636480000
π2

−
902366950567138330511081959572149

18875774988611374546944000
π4 −

167517791710253563186933

26599385299156992
π6 þ 44336492264184971

2473901162496
π8

þ 65536

75
logð2uÞeulerlog2ðuÞ

�
u12 −

31486592

43335
πu12.5 þ

X10
ℓ¼2

Xℓ
m¼1

C½1�
ℓmΥ

S1
ℓm þ

X4
ℓ¼2

Xℓ
m¼1

C½2�
ℓmΥ

S2
ℓm þOðu13Þ; ð38Þ

whereΥS1
ℓm andΥS2

ℓm are integer-order power series in uwith
rational coefficients, which we give (to the order known) in
the Supplemental Material [60] [see Eqs. (21) and (24) for
the expressions for the (2, 2) mode of ΔU=U]. (Note that
the odd m terms for the ℓ ¼ 10 ΥS1

ℓms and the ℓ ¼ 4 ΥS2
ℓms

do not contribute until 13PN.)
We find that the 13.5PN piece of ΔU has more

terms that are not removed by the simplification
than the previous half-integer PN terms do, just as
occurs at this order in the energy flux (see the expression
for the Sℓm factorization of η22 in the Supplemental
Material for Ref. [38]), and, as in the energy flux, the
additional terms all come from the dominant (2, 2) mode
at this order. Specifically, the 13.5PN piece of ΔU=u
remaining after subtracting off the parts given by the
simplification is

�
−
2096793662144

139033125
−
131072

225
π2þ 14024704

7875
eulerlog2ðuÞ

þ 7012352

2625
logð2uÞ

�
πu13.5: ð39Þ

However, the portion remaining in other PN coefficients
of ΔU after using the simplification does not have exactly
the same structure as that in η22=jS22j2. For instance,
η22=jS22j2 also has eulerlog2 and eulerlog22 terms in the
12PN coefficient.

A. Checking the results for ΔU by
making an independent fit

We performed an independent check of these results by
making a fit for the PN coefficients of ΔU using data at
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smaller radii and the fit procedure described by SFW [21].
In addition to checking the decimal expansions of the terms
we have already obtained analytically, we also implicitly
check all the coefficients we have obtained in the fit by
verifying that the higher-order coefficients are not too large,
as described below. We perform these fits iteratively,
obtaining analytic forms for as many terms as possible
with the accuracy obtained from a given fit, subtracting
these off, and fitting again. In this case, we proceeded
through six iterations, in which the first fit only went to
20PN and these coefficients were obtained with an accu-
racy of just a few digits, while at the fifth and final iteration,
after we had subtracted off 48 coefficients, we obtained the
20PN coefficients that we did not obtain analytically to∼41
digits and were able to go all the way to 21.5PN, where we
obtained the coefficients we did not know analytically from
the simplification to ∼10 digits.
We made verifications of these results by checking that

the analytic forms we obtain have the expected forms, and
that the terms given by the simplification agree, in addition
to the stringent verification provided by the fit itself,
described below. We used the simplification to aid this
process, so we needed to include at most three tran-
scendentals in the vector to which we apply PSLQ
(for the 16.5PN linear logarithmic term). This procedure
(of using PSLQ to iteratively improve a fit, aided by a
conjecture for the form of certain leading logarithm-type
terms) is very similar to the one used by Nickel to obtain
high-order terms in the expansion of the ground state
energy of Hþ

2 in Ref. [40].
We give the final results of this fit (both analytical and

numerical) in the Supplemental Material [60], including
showing the remainder of the analytic terms after removing
the portions given by the simplification.
One advantage of using high-precision data to extract

PN coefficients is that it is relatively easy to check the
accuracy of the analytical coefficients calculated using
PSLQ. If we had used an incorrect coefficient, say for an n
PN nonlogarithmic term, and used it to find other coef-
ficients, the coefficient of the n PN higher logarithmic
terms and subsequent higher-order PN coefficients would
have increased by many orders of magnitude to give a
nonsensical result.
Let us illustrate this with an example. The numerically

extracted 21.5PN nonlogarithmic coefficient (α21.5, in the
terminology of SFW) has a size of ∼1011. If we had used an
incorrect 21PN log5ðRÞ term (ζ21), the α21.5 we extracted
from the fit would have increased to a size of about 1040, a
nonsensical result. The analytical form of ζ21 was deter-
mined from its numerical value, which was extracted with
an accuracy of 13 significant digits. So, to test the
sensitivity of the fit to the values of the digits we did
not extract, we inject random analytical (absolute) errors in
ζ21 of magnitude ranging from 10−13 to 10−27 and extract
α21.5. These errors are injected by using random numbers

between 1000 and 5000, multiplied with powers of 10
ranging from −16 to −30. We see that, if we had included
an error of magnitude 10−13, the numerically extracted α21.5
would have had a size of ∼1047, and if we had included an
error of magnitude 10−27 (which is more than twice the
number of significant digits used to calculate the analytical
form of ζ21), α21.5 would have had a size of ∼1035.
This example clearly demonstrates the sensitivity of the

numerical fitting technique we use and how the analytical
forms of numerically extracted PN coefficients can be
checked by injecting errors. Of course, it is always possible
to have a quantity that only differs from a reasonable-
looking analytic form at extremely high positions in its
decimal expansion (see some of the examples given by
Bailey and Borwein [47,49]). However, this seems quite
unlikely to be the case here, particularly because we have a
good idea of the form of the coefficients and the growth of
their complexity, from the forms of lower orders and the PN
expansion of the energy flux at infinity.

VI. CONVERGENCE

It is interesting to consider the convergence of the high-
order PN expression we have obtained forΔU. In Fig. 2, we
compare the convergence of the plain 21.5PN expansion of
ΔU with various resummations. Here, we compare with the
numerical data from Table III in Dolan et al. [30] for radii
of f4; 5; 6; 10gM and with data from Table IX in Akcay
et al. [16] for a radius of ð10=3ÞM ≃ 3.33M, converting
their hR;Luu ðxÞ into our ΔU using their Eqs. (17) and (2) in
Ref. [21]. We find that, while the rate of convergence
decreases as the radius of the orbit decreases (as expected),
the series still converges reasonably well inside the inner-
most stable circular orbit (ISCO) at r ¼ 6M and continues
to converge quite monotonically close to the light ring at
r ¼ 3M, albeit extremely slowly. Moreover, the exponen-
tial resummation (of the entire series, as originally pro-
posed by Isoyama et al. [70], not mode by mode, as in
Refs. [38,71]) improves the convergence substantially for
low to medium orders, particularly within the ISCO, though
it makes it significantly less monotonic and actually
worsens the convergence at high orders in the strong field
regime.
If one performs a partial mode-by-mode exponential

resummation, either exponentially resumming the modes
through ℓ ¼ 10 and the remainder of the full ΔU sepa-
rately, or using the simplifications on the modes and
exponentially resumming the portions that multiply the
simplifications, as well as the remainders of the modes, this
does not perform better than exponential resummation
applied to the entire expression (though it also does not
behave as erratically as full exponential resummation at
high orders in the strong field). If one just applies
exponential resummation to the individual modes, then
one finds that it does improve the convergence of some
modes, particularly the ones with larger ℓ −m. Factoring
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out the test particle binding energy, as done by Akcay et al.
[16], also improves the convergence, particularly near the
light ring (where the test particle binding energy diverges)
but does not improve the convergence nearly as much as the
exponential resummation on its own.

One can also estimate the radius of convergence (in v)
of the PN series for ΔU by looking at a−1=nn , where an
is the nonlogarithmic coefficient of vn. If the series has
no logarithmic terms, then the radius of convergence, vr, is
given by 1=vr ¼ lim supn→∞a

1=n
n . Thus, since ΔU diverges
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FIG. 2 (color online). Convergence of the 21.5PN expression for ΔU for orbits at various radii, comparing with the numerical data
from Dolan et al. [30] and Akcay et al. [16]. Specifically, we show the convergence of the plain series as well as the results of factoring
out the test particle binding energy and/or performing exponential resummation on the entire series.
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at the light ring (as discussed in, e.g., Ref. [16]), one
expects the radius of convergence of the PN series for ΔU
one estimates in this way by taking only the nonlogarithmic
portion of the coefficients (and just considering the known
orders, without taking the limit) to be close to the light ring.
Or, to put it another way, one expects the size of the
coefficients of vn to grow approximately like 3n=2. One
indeed sees that this is the case, as shown in Fig. 3, where
we plot the Schwarzschild radial coordinate of the radius of
convergence estimated in this fashion. We also plot the
growth of the PN coefficients of the energy flux at infinity,
for comparison.

VII. CONCLUSIONS AND OUTLOOK

We have introduced a method for obtaining analytic
forms of high-order post-Newtonian coefficients to linear
order in the mass ratio from high-accuracy numerical
results from black hole perturbation theory. We have also
given the first application of this method to the case of
Detweiler’s redshift invariant, which (when evaluated in
linear black hole perturbation theory) gives the linear in
mass ratio piece of the binary’s binding energy and the
EOB radial potential. Here, we have found analytic forms
for all these coefficients to 12.5PN and have obtained
mixed analytic-numerical results to 21.5PN (including
analytic forms for the complete 13.5PN term and all but
the nonlogarithmic piece of the 13PN term), substantially
improving on the previous 9.5PN knowledge of this
quantity. We also found a simplification of the individual
modes, similar to that found for the energy flux at infinity
in Ref. [38], which also allows us to predict certain
leading logarithmic-type terms to all orders in the
full ΔU.

The new terms we have obtained improve the accuracy
of the series, even inside the ISCO and near the light ring
(though the convergence there is very slow, as expected);
factoring out the energy, which diverges at the light ring,
improves the convergence somewhat. Since exponential
resummation of the individual modes of radiative quantities
improves the convergence much more than exponential
resummation of the full quantity (see Refs. [38,71]), we had
hoped that there might be a better way of performing the
exponential resummation here, which would behave better
in the strong-field regime. However, our experiments in this
regard were unsuccessful, in that we only obtained very
modest improvements, much less than the best improve-
ment of exponential resummation applied to the full series,
though the improvements did not have the full exponential
resummation’s erratic behavior.
It might also be possible to use these high-order pertur-

bative results to improve convergence by finding non-
perturbative pieces, using resurgence (see, e.g., Ref. [72]
for an application of these ideas in quantum mechanics).
Another possibility would be to try to resum the purely
integer-order PN series with rational coefficients that enter
into the simplification or its remainder, as was done for a
(likely considerably simpler) self-force series in Ref. [73].
We are now in a position to apply this method to the

much more difficult case of perturbations of the Kerr
metric. Here, we will likely combine a study of ΔU with
a study of the structure of the energy flux at infinity
(computed numerically to 20PN in Ref. [37] and analyti-
cally to 11PN in Ref. [71]), since our previous study of this
structure in the Schwarzschild case [38] was very useful in
the present calculation.
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APPENDIX: OBTAINING THE e2ν̄ℓmeulerlogmðRÞ AND
e2ν̄ℓm logð2=RÞ CONTRIBUTIONS TO THE

SIMPLIFICATIONS OF THE MODES OF ΔU

Just as one can see where the Sℓm and Vℓm factorizations
of the energy flux from Ref. [38] arise from the MST
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FIG. 3 (color online). An estimate of the Schwarzschild radial
coordinate (in M) of the radius of convergence of the PN series
for ΔU=u, obtained from a2=nn , where an denotes the nonlogar-
ithmic coefficient of vn. We also show the same estimate for the
test particle energy flux at infinity ðdE=dtÞ∞, scaled by the
Newtonian energy flux (from Ref. [39]), for comparison.
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formalism (as discussed in Sec. IV of Ref. [38]), it should
be possible to see how the simplifications for ΔU we have
found [Eqs. (18) and (23)] arise from the MST formalism
and (in the best case) predict higher-order terms in them.
However, we shall see that the situation for ΔU is more
complicated than that for the energy flux and will at present
content ourselves with seeing how the e2ν̄ℓmeulerlogmðRÞ and
e2ν̄ℓm logð2=RÞ contributions to the simplifications arise. Note
that here we shall expand in v instead of R, for simplicity
and to avoid confusion with some other quantities
named R.
Specifically, if one looks at Eq. (29) in Ref. [53] and our

Eqs. (6) and (9), one finds that the modes of ΔU have the
form

Υℓm ∼
RinRup

W½Rin; Rup� þ c:c:; ðA1Þ

where we have noted that ΔU comes from the metric
perturbation and are using the same notation as in Sec. IVof
Ref. [38], where ∼ denotes that we are neglecting any terms
that do not lead to transcendentals and logarithms (includ-
ing the overall scaling). We have suppressed the depend-
ence of Rin and Rup on ℓ and m here (and in similar
expressions later), for simplicity. Note that in the expres-
sions in previous sections we denote Rin and Rup by RH and
R∞, respectively. Also, we have (Eq. (166) in Sasaki and
Tagoshi’s review [56])

Rin ¼ KνRν
C þ K−ν−1R−ν−1

C ðA2Þ

(Kν and Rν
C are given in, e.g., Eqs. (6) and (7) in Ref. [38])

and [Eqs. (4.1) and (4.9) in Ref. [54], evaluated for jsj ¼ 2]

Rup ¼ SνRν
C − ieiπνR−ν−1

C

Sν þ e2iπν
; ðA3Þ

where we have defined

Sν ≔
sin πðνþ iϵÞ
sin πðν − iϵÞ ; ðA4Þ

and (Eq. (23) in Sasaki and Tagoshi’s review [56])

W½Rin; Rup� ∼ CtransBinc ðA5Þ

denotes the Wronskian of Rin and Rup. Here, [Eqs. (157),
(158), (168), and (170) in Sasaki and Tagoshi’s review [56],
noting that κ ¼ 1 for Schwarzschild]

Ctrans ∼ Aν
−ϵ

iϵ; ðA6aÞ
Binc ∼ ðKν − ie−iπνSνK−ν−1ÞAνþϵ−iϵ; ðA6bÞ

Aνþ ∼ 2−iϵe−πϵ=2eiπν=2
Γð1þ νþ iϵÞ
Γð1þ ν − iϵÞ ; ðA6cÞ

Aν
− ∼ 2iϵe−πϵ=2e−iπν=2: ðA6dÞ

We thus have

W½Rin; Rup� ∼ ðKν − ie−iπνSνK−ν−1ÞAνþAν
−

∼ ðKν − ie−iπνSνK−ν−1Þ
Γð1þ νþ iϵÞ
Γð1þ ν − iϵÞ e

−πϵ;

ðA7Þ

so we can write Eq. (A1) as

Υℓm ∼ eπϵ
Γð1þ ν − iϵÞ
Γð1þ νþ iϵÞ

Rν
CðSνRν

C − ieiπνR−ν−1
C Þ

Sν þ e2iπν

×
1þ K−ν−1

Kν

R−ν−1
C
Rν
C

1 − ie−iπνSν
K−ν−1
Kν

þ c:c: ðA8Þ

The K−ν−1R−ν−1
C =ðKνRν

CÞ term is likely the origin of
the e2ν̄ℓm logð2=RÞ contribution to the ΥC2

ℓm simplification
(just as it is for the Vℓm simplification in Ref. [38]), since
K−ν−1R−ν−1

C =ðKνRν
CÞ ∼ ð2v2Þ2νfgamma function termsg

(cf. Eqs. (27a) and (27c) in Ref. [38]). As these K−ν−1=Kν

terms only contribute at higher orders, as discussed in
Sec. IV of Ref. [38], we shall thus omit the final fraction
in the product in the ensuing discussion, where we are
concerned with the ΥC1

ℓm simplification.
Now (recalling that ϵ ¼ 2mv3 and ωr0 ¼ mv), we have

Rν
C ∼ ð1 − 2v2Þ−2imv3e−imvð2mvÞν Γð1þ νþ iϵÞ

Γð1þ 2νÞ : ðA9Þ

Thus, the Rν
CR

−ν−1
C term in Υℓm contributes

∼eπϵ
Γð1þ ν − iϵÞΓð1 − νþ iϵÞ

Γð1þ 2νÞΓð1 − 2νÞ X ; ðA10Þ

where

X ≔
ð1 − 2v2Þ−4imv3eiðπν−2mvÞ

Sν þ e2iπν
þ c:c: ðA11Þ

This cannot contribute any eulerlog terms (the expansion of
the gamma functions does not contain a γ), so we leave
it alone.
The ðRν

CÞ2 term in Υℓm, on the other hand, does give
exactly the eulerlog contribution found in ΥC1

ℓm.
Specifically, it gives

∼ eπϵð2mvÞ2ν jΓð1þ νþ iϵÞj2
½Γð1þ 2νÞ�2

~X

¼ ~X exp

�
2νeulerlogmðvÞþ 2πmv3þ

X∞
n¼2

ζðnÞ
n

G
�
; ðA12Þ
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where

~X ≔
ð1 − 2v2Þ−4imv3e−2imv

1þ e2iπν=Sν
þ c:c:;

G ≔ ð−ν − 2imv3Þn þ ð−νþ 2imv3Þn − 2ð−2νÞn: ðA13Þ

[Here, we have abused notation in the “physicist’s way”
with eulerlogm again, writing eulerlogmðvÞ≔γþlogð2mvÞ,
which is not what one would obtain when substituting v for
the argument of either of the previous two definitions but,
of course, agrees with them when one substitutes the values

of R or u corresponding to this v.] Unfortunately, the
process of obtaining the full simplification from a study of
the pieces entering the MST computation is obviously more
subtle in this case than it is for the energy flux (discussed in
Ref. [38]); the remaining terms in the expansion of this
quantity (i.e., leaving off the e2νeulerlogmðvÞ factor) are not
those found from a study of the expansion ofΥℓm and given
in Eq. (18). The terms obtained from this expansion are
more numerous and do not have the correct coefficients.
The leading term indeed has the factor of 1=ν, but none of
the other terms seem to match.
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