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This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical
gravity. The theory uses holonomy-flux variables with support on a lattice (LHF ¼ lattice-holonomy flux).
There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these
holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine
approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields
vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is
spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial
diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity
lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in
the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave,
estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and
determine the behavior of the spinors used in the U(N) SHO realization of LQG.
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I. INTRODUCTION

This is the second of two papers with the goal of
developing intuition on the behavior of holonomies and
fluxes in the presence of a gravitational wave. The previous
paper (paper I) constructs a lattice-holonomy flux (LHF)
theory having planar symmetry [1]. The gravitational
excitation is assumed to be unidirectional and singly
polarized. Constraints are evaluated in a small sine (SS),
slow variation (SV) limit. Small sine: holonomies are
expanded in powers of sine,

hðθ; n̂Þ1=2 ¼ cosðθ=2Þ1þ i sinðθ=2Þn̂ · σ

¼ 1þ i sinðθ=2Þn̂ · σ þ O sin2;

where h is a spin 1=2 holonomy, a rotation around axis n̂
through angle θ. Terms of order sin3 and higher in the
constraints are dropped. Slow variation: dynamical func-
tions f are assumed to vary slowly from vertex to vertex:
δf=f ≪ 1. The two assumptions, small sine and slow
variation, are closely connected, and for brevity sometimes
we will refer to them simply as the SS approximation.
Paper I imposed all gauges at the classical level, except

the spatial diffeomorphism gauge. A diffeomorphism
gauge is chosen in Sec. II of the present paper. Some
discussion is required; the gauge fixing constant C scales
with peak angular momentum of the coherent state.
Section III quantizes the theory. As emphasized in that

section (and in paper I), any classical solution to the
constraints yields a corresponding solution to the quantum
constraints, because coherent states are used as a basis for

the Hilbert space. Section IV constructs such an approxi-
mate classical solution, an undamped sine wave. Section V
adds the damping.
Section VI sketches the construction of the coherent

states. Section VI A compares the SU(2) coherent states
to the familiar coherent states for the free particle. This
analogy is used to justify the form of the SU(2) states,
in a manner which is qualitative, but should be intuitively
convincing. Full details of the construction are given in
Ref. [2]; see also [3]. Section VI B summarizes the most
important matrix elements of the SU(2) coherent states.
The coherent states depend upon a number of angle and

angular momentum parameters. Section VII determines
parameter values such that the expectation values of the
triads reproduce the sinusoidal solution constructed
in Sec. V.
Appendix A computes the ADM energy of the wave. In

LHF the energy of the packet, and therefore the lifetime,
depends on the quantized frontal area of the packet.
Experimentally, it is clear that SU(2) holonomies (which

are just rotation matrices) can be superimposed to form a
coherent state, because the earth (for example) presumably
is described by a superposition of Legendre polynomials
(rotation matrices again); yet both its angular momentum
and conjugate angle are sharp.
Theoretically, however, matters are less clear. Coherent

states eventually spread, unless the system has the equally
spaced energies characteristic of the SHO. It is necessary to
show under what conditions the spreading is limited.
Appendix B estimates the lifetime of coherent state wave
packets.
Appendix D discusses the circularly polarized case.

Appendix E discusses coarse-graining. The present solu-
tion is an especially simple example which illustrates the*dneville@temple.edu
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method of coarse-graining proposed in Refs. [4–7].
Appendix F discusses the SHO/U(N) formulation of LQG.

A. Plane waves in classical general relativity

The classical literature uses primarily two gauges:
the one used in this paper, in which −gtt ¼ gzz ¼ 1,
gμν ¼ gμνðt; zÞ; and a gauge

ds2 ¼ dx2 þ dy2 þ dz2 − dt2 þ fðu; x; yÞdu2;
u ¼ ðz − tÞ= ffiffiffi

2
p

. The first gauge was used by Baldwin and
Jefferys in their pioneering paper [8]. Peres derived an
exact solution for an undamped sinusoidal plane wave
using the second gauge [9]. The Peres solution, when
converted to the gauge used in this paper, becomes the
undamped solution of Sec. IV. Griffiths [10] shows how to
convert between the two gauges and describes additional
exact nonsinusoidal solutions.

II. FIXING THE DIFFEOMORPHISM GAUGE

Coherent states work best when eigenvalues are large;
yet fields must be weak. This is an apparent contradiction.
How can fields be small, if eigenvalues must be large?
The LHF ~E operators contain area factors not present in

their field theory (FT) analogs:

ð2=κγÞEi
IðLHFÞ ¼ ð2=κγÞΔxj ∧ ΔxkEi

IðFTÞ: ð1Þ
(In this paper “Field Theory” refers to a classical theory
based on fluxes and connections which have support on the
continuum; LHF refers to a theory based on fluxes and
holonomies which have support on a lattice. The LHF
theory may be classical or quantum depending on context.)
The area is in Planck lengths squared, because of the κγ
factor. Suppose the Δxi are taken to be 102 Planck lengths
(an extremely tiny length, by classical standards). The
classical triad may be order unity; yet the quantum
eigenvalue will be order 104. Therefore, typical angular
momenta in the wave function can be order 104, far from
order unity, even though classical values are order unity.
This fact resolves the apparent contradiction discussed in
the previous paragraph.
As in the literature for classical general relativity, the

diffeomorphism gauge is chosen such that gzz ¼ 1. In the
notation of paper I, this gauge has parameter p ¼ 1=2.

ð2Þ ~EðFTÞ ¼ ðCFTE
z
ZÞpþ1=2

¼ CFTE
z
Z;

equivalently; ðeZz Þ2 ¼ sgnðeÞCFT: ð2Þ

CFT is a constant. ð2Þ ~E is the determinant of the 2 × 2
transverse (x; y) triads. On the last line of Eq. (2) we have
expanded the ~E in triads and used ezA ¼ 0, A ¼ X; Y; sgnðeÞ
is the sign of the 3 × 3 triad determinant.

e ¼ sgnðeÞjej:

Since eZz must match to flat space at the front of the packet,

CFT ¼ sgnðeÞ;
eZz ¼ �1 ≔ sgnðzÞ: ð3Þ

We now take this over to LHF. The spatial diffeomor-
phism gauge must be chosen such that, when factors of Δxi
are stripped out, one recovers the classical gauge fixing.

ð2Þ ~EðLHFÞ ¼ CLHFE
z
ZðHFÞ;

CLHF ¼ ðΔzÞ2CFT: ð4Þ

Each Ex in ð2Þ ~E (LHF) will have an area factor ΔyΔz; each
Ey in ð2Þ ~E will have a factorΔxΔz. The factors ofΔx;Δy are
also present in Ez, but not the Δz. Therefore the missing Δz
factors turn up in CLHF. CFT is still the classical value, sgn(e).
When we pick CLHF, we are picking a value for Δz [in
Planck units, after both sides of Eq. (4) are divided by
ðκγ=2Þ2; compare Eq. (1).]
Caps ΔXI denote local Lorentz coordinates; lower case

Δxi denote coordinates on the global manifold. The two
sets of coordinates are related.

~Ei
IðLHFÞ ¼ sgnðeÞðeeiIÞðFTÞΔxjΔxk

¼ sgnðeÞeJjeKk ΔxjΔxk
¼ sgnðeÞΔXJΔXK: ð5Þ

Equation (5) may also be written as

~EiðFTÞΔxjΔxk ¼ sgnðeÞΔXJΔXK: ð6Þ

The weak-classical-field-but-large-eigenvalue connection
emerges if one multiplies the last equation by ð2=κγÞ and
equates the result to a spin eigenvalue j.

ð2=κγÞ ~EiðFTÞΔxjΔxk ¼ O j:

j can be large, even though ~E (FT) is small, because of the
large area.
The ~E (FT) will have z dependence, therefore from

Eq. (6) the ΔxjΔxk vary with z, or the ΔXJΔXK , or both.
We assume the global coordinates xi are fixed; the variation
is in the Lorentz lengths XI . Equivalently, ~E (FT) and ~E
(LHF) have the same variation with z, since ~E (FT) and ~E
(LHF) differ only by factors of Δxj, which are held fixed.
Support for this assumption comes from a later result

in the sections on coherent state parameters. The coherent
states are approximate eigenstates of the ~E (LHF) in
Eq. (5), with eigenvalues equal to an angular momentum
or Z coordinate of angular momentum.
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~Ea
AðLQGÞ∣cohi ¼ ðκγ=2ÞLa

A∣cohi; ; a ¼ x; y;

~Ez
ZðLHFÞ∣cohi ¼ ðκγ=2Þm∣cohi: ð7Þ

The last line of Eq. (5) gives

ðκγ=2ÞðLa
A or mÞ ¼ sgnðeÞΔXJΔXK: ð8Þ

If the Lorentz lengths ΔXI are taken as fixed, then the
canonical momenta cannot vary in the presence of a
gravitational wave, a reduction to the absurd.
When quantizing plane waves in FT, using ADM

variables, one can renormalize constraints by dividing
out a factor ΔxΔy. The FT expressions then contain only
integrals over z. Such a renormalization is not possible in
LHF, because not every term contains an overall factor of
ΔxΔy. Some ðΔx;ΔyÞ are hidden in holonomies and do not
cancel out. In FT the integrals over transverse directions
are infinite, and renormalization is mandatory. In LHF
the transverse integrals range over the circumferences of
the x and y circles and are finite. Renormalization is not
necessary.

A. N can be fixed at unity

Paper I introduced a modified lapse N which obeys
simpler boundary conditions than the usual lapse N.
However, it is desirable to arrange N > 0, so that dt and
dT “run” in the same direction.

dT ¼ eTt dt ¼ Ndt;

eTi ¼ 0; i ¼ x; y; z: ð9Þ

The second line is the usual gauge choice which reduces
full Lorentz symmetry to SU(2).
Fortunately, the diffeomorphism gauge just chosen leads

to a simple relation between N and N.

NðFTÞ ≔ NðEz
Z=∣e∣ÞFT ¼ NezZ ¼ NsgnðzÞ: ð10Þ

sgnðzÞ is the sign of eZz and Ez
Z. Also, the constraints of

paper I require N to be a constant: δðcÞN ¼ 0. If the constant
is chosen appropriately, N becomes unity:

NðFTÞ ¼ sgnðzÞ: ð11Þ

A corollary: with this choice, neither N nor N can
vanish. □

The LHF N follows from the field theory N, Eq. (11),
except one replaces field theory ~E by LHF ~E.

NðLHFÞ ¼ NðFTÞ=Δz ¼ 1=ΔZ: ð12Þ

N is a contravariant rank one tensor, and therefore needs a
1=Δz to make it diffeomorphism invariant.

B. N may be chosen unity

It is convenient to make the light cone variable du equal
to the inertial frame dU,

du¼ðezZdZ−etTdTÞ=
ffiffiffi
2

p
¼ðsgnðzÞdZ−dTÞ=

ffiffiffi
2

p
; ð13Þ

This requires

sgnðzÞ ¼ þ1 ¼ NðFTÞ: ð14Þ

C. Some triads can vanish

The gauge choice Eq. (3) forbids zeros of eZz , but not
zeros of ð2Þe, the determinant of the transverse eAa .

ð2Þ ~E and
Ez
Z each contain one power of ð2Þe and could conceivably

pass through zero simultaneously, when away from the
small sine limit.

D. A comment on signs

As indicated in the previous sections, there is a natural
choice for sgn(z), and similarly for the other signs. Most
formulas of this paper are worked out for both signs of the
sgnðiÞ, although this is overkill. One may always choose
sgnðiÞ ¼ þ1, and the sign does not change in the small sine
limit. Working out the results for both signs does help in
checking the algebra. Section IX and the conclusion
summarize results for the choice sgnðiÞ ¼ þ1.

III. THE QUANTUM SCALAR CONSTRAINT

Our final formula for the scalar constraint ~H in paper I
was

~H ¼
X
n

ð1=κÞfð1=2ÞðδðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
XÞ2Ez

Z

þ δðcÞEz
Z½−ðδðcÞð2Þ ~EÞ=2ð2Þ ~E� þ δðcÞðδðcÞEz

ZÞg
¼ 0: ð15Þ

The gauge choice Eq. (4) implies

δðcÞ
ð2Þ ~E=ð2Þ ~E ¼ δðcÞEz

Z=E
z
Z

¼ δðcÞEx
X=E

x
X þ δðcÞE

y
Y=E

y
Y: ð16Þ

This and the next equation use a distributive law for the
difference which is valid given the slow variation (SV)
assumption.

δðcÞðABÞ ¼ ðδðcÞAÞBþ AðδðcÞBÞ ðSVÞ:

In Eq. (15), one can divide through by Ez
Z and use Eq. (16)

to eliminate δðcÞEz
Z. The double difference may be rewritten

using
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δðcÞfδðcÞEz
Zg=Ez

Z ¼ δðcÞf½δðcÞEx
X=E

x
X þ δðcÞE

y
Y=E

y
Y �Ez

Zg=Ez
Z

¼ ½δðcÞðδðcÞEx
XÞ=Ex

X þ δðcÞðδðcÞEy
YÞ=Ey

Y �
− ½δðcÞEx

X=E
x
X�2 − ½δðcÞEy

Y=E
y
Y �2

þ ½δðcÞEx
X=E

x
X þ δðcÞE

y
Y=E

y
Y �2: ð17Þ

The constraint simplifies to

0 ¼ δðcÞðδðcÞEx
XÞð1=Ex

XÞ þ δðcÞðδðcÞEy
YÞð1=Ey

YÞ: ð18Þ

At this point one can make the transition from classical to
quantum. Classical functions are replaced by quantum
operators; brackets become quantum commutators (Dirac
rather than Poisson brackets, because the unidirectional
constraints are second class). There is a factor ordering
question, because Dirac brackets imply the ~E no longer
commute with themselves. In a typical LQG quantization
involving Poisson brackets, the ~E are ordered to the right of
the K’s. Here, the δðcÞ ~E are equivalent to K’s because of the
unidirectional constraints. Therefore triads have been
moved to the right of the δðcÞ ~E.

A. Comparison to classical results

The classical calculation yields the following results for
the nonzero components of the Einstein and Weyl tensors:

Guu ¼ Ëx
X=E

x
X þ Ëy

Y=E
y
Y ¼ 0;

Cx
uxu ¼ Ëx

X=E
x
X − Ëy

Y=E
y
Y ¼ −Cy

uyu: ð19Þ

Variables are x, y, u, v. Fields are single polarization and
unidirectional (dependent on u only); dots denote deriva-
tives with respect to u. Gauge is eZz ¼ �1. The LHF
constraint Eq. (18) is just the classical constraint, with u
derivatives replaced by z differences.
From Eq. (19), the classical Weyl tensor is the scalar

constraint, with one minus sign change. This same relation
(between scalar constraint and Weyl) holds in the quantum
case. Therefore

δðcÞðδðcÞEx
XÞ=Ex

X ¼ −δðcÞðδðcÞEy
YÞ=Ey

Y ;

Weyl ¼ 2δðcÞðδðcÞEx
XÞ=Ex

X: ð20Þ

One can pick a desired curvature, choose an Ex
X which

produces this curvature, and immediately have a solution to
the scalar constraint.

B. Coherent states, Dirac brackets,
and the scalar constraint

In leading order, coherent states do not preserve quantum
commutators. LetO1; O2 be two quantum operators peaked
at values OiðclÞ. Then

hcoh∣O1O2∣cohi ¼ hcoh∣O1∣cohihcoh∣O2∣cohi
þ
X
SC

hcoh∣O1∣SCihSC∣O2∣cohi

¼ O1ðclÞO2ðclÞ þ order1=
ffiffiffiffi
L

p
: ð21Þ

The Oi acting on a coherent state typically give back the
coherent state, plus small correction (SC) states which are
down by order 1=

ffiffiffi
L

p
[2]. If we neglect the SC states, then

the commutator h½O1; O2�i is zero. Thiemann and Winkler,
without constructing the SC states, have shown that
Poisson brackets are preserved in the semiclassical limit
[11] in the sense that the quantum commutator is given by
iℏ times the classical Poisson bracket. Since Dirac brackets
are functions of Poisson brackets, it is likely that Dirac
brackets are preserved also.
The tendency of coherent states to turn quantum oper-

ators into classical expressions is helpful in another context.
If one has a classical solution to the scalar constraint, one
immediately has a quantum solution, because the classical
function is the corresponding quantum operator, evaluated
at the peak values specified by the coherent state.

ðH ¼ O1O2…Þ∣cohi
¼ ðO1ðclÞO2ðclÞ…Þ∣cohi þ order 1=

ffiffiffiffi
L

p
:

OiðclÞ is a classical function, part of a classical solution
to the constraint: the leading term on the right-hand side
vanishes. Oi is the corresponding quantum operator. The
next two sections construct such a classical solution.

IV. A GRAVITATIONAL SINE WAVE

This section constructs a sine wave solution which
is periodic, but undamped. The following section adds
damping.
The undamped solution is

Ex
XðLHT; nÞ ¼ ðΔzΔyÞsgnðxÞf1 − a sin½ð2πn=NλÞ�=2!

− ða2=32Þ½cosð4πn=NλÞ
þ ð4π=NλÞ2ðnÞ2=2�g: ð22Þ

a is a small, dimensionless, constant amplitude. Nλ is a
constant, the number of vertices in a length equal to one
wavelength. sgnðxÞ ¼ �1 is the sign of exX, −1 if the x and
X axes increase in opposite directions. The order a2 terms
are frequency doubled, a typical nonlinear effect.
From the expression for the Einstein tensor G, the

expression for Ey
Y must have a linear-in-a term identical

to Eq. (22), except a → −a (and x ↔ y).
With a slight abuse of a standard notation, one can define

a k vector in n space, i.e. a vector which gives the change in
phase per unit change in n.
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ð2π=NλÞ ≔ k;

kn ¼ ðk=∣ΔZ∣Þðn∣ΔZ∣Þ ¼ ð2π=wavelengthÞð∣Z∣Þ:
ð23Þ

The second line gives the connection to the usual k, the
change in phase per unit change in length.
The above solution is approximate because an exact

solution requires an infinite series, whereas the quantum
solution of Eq. (22) stops at order a2. Nonlinear effects
begin at order a2; if the theory is solved to order a only, we
recover the usual weak field limit.
To check the constraint and compute curvature, one must

compute δð2ÞE=E. The second difference of the linear-in-a
term, Eq. (22), is

− ða=2ÞsgnðxÞ
�X

�
sin½ð2π=NλÞðn� 1Þ�

− 2 sinð2nπ=NλÞ
�
ðΔzΔyÞ

¼ −ða=2ÞsgnðxÞfsinð2nπ=NλÞð2 cosð2π=NλÞ − 2Þg
× ðΔzΔyÞ: ð24Þ

The first sine was expanded using sinðA� BÞ ¼
sinA cosB� cosA sinB.
To estimate the size of Nλ, one can use the connection

between Nλ and the classical wavelength, Eq. (23). Since
that wavelength is macroscopic, whereas ΔZ, the change in
z per unit change in n, is of order a few hundred Planck
lengths, Nλ must be astronomically large, and 1=Nλ must be
negligible, except when multiplied by n. Therefore one can
expand the cosine in Eq. (24), and the second difference
becomes

ða=2ÞsgnðxÞð2π=NλÞ2 sinð2πn=NλÞðΔzΔyÞ: ð25Þ
The term quadratic in a, Eq. (22), is handled similarly:

trigonometric identities are used to expand functions of
n� 1; functions of 1=Nλ are power-series expanded. The
total second difference (both linear and quadratic in a) is

δð2ÞEx
XðLHF; nÞ ¼ ða=2ÞsgnðxÞð2π=NλÞ2 sinð2nπ=NλÞ

× ½1 − ða=2Þ sinð2nπ=NλÞ�ðΔzΔyÞ:
ð26Þ

The square bracket is Ex
XðFTÞ, so that the curvature is

2δð2ÞEx
XðLHF; nÞ=Ex

X ¼ 2ða=2ÞðkÞ2 sinðknÞ; ð27Þ

where we have shifted to the new k vector 2π=Nλ.
The factor of 2 on the left, Eq. (27), takes into account

the contribution from Ey
Y . The calculation for the y direction

is identical to the x calculation, except (a → −a). The y

contribution to curvature therefore exactly doubles the x
contribution; see Eq. (20). The y contribution to the scalar
constraint exactly cancels the x contribution, as at Eq. (18).
The role of the small amplitude a needs to be clarified. In

deriving Eq. (27) one may assume that the curvature is
linear in amplitude a, while transverse ~E are infinite series
in a. For example, order a2 and higher corrections to
curvature vanish. To see how this happens, rewrite the
expression for the ~E in a manner which emphasizes the
dependence on a.

δð2ÞEx=Ex ¼ ðB̈1 þ B̈2 þ � � �Þ=ð1þ B1 þ � � �Þ
¼ B̈1 þ B̈2 − B1B̈1 þ � � � : ð28Þ

Bp is order ap; double dots indicate second differences;
and � � � indicate terms which contribute cubic and higher
terms to the curvature. Choose B2 such that

ðB̈1 þ B̈2 þ � � �Þ=ð1þ B1 þ � � �Þ
¼ B̈1ð1þ B1 þ � � �Þ=ð1þ B1 þ � � �Þ:

Equivalently, choose B2 so that the order a2 terms in
Eq. (28) cancel.

B̈2=B1 ¼ B̈1: ð29Þ

Then the order a2 contributions to curvature vanish.
One can generalize Eq. (29) to cubic and higher orders

in a. Given B1; B2;…; Bp−1, determine Bp by solving the
equation

B̈p=Bp−1 ¼ B̈1: ð30Þ

Then

ðB̈1 þ � � � þ B̈pÞ=ð1þ B1 þ � � � þ Bp−1Þ
¼ B̈1ð1þ � � � þ Bp−1Þ=ð1þ � � � þ Bp−1Þ
¼ B̈1: ð31Þ

The curvature is order a, to all orders.
Let Eq. (31) represent the series for Ëx

X=E
x
X. There is

another one for Ëy
Y=E

y
Y with B1 → −B1, in order for the

Einstein tensor to vanish in order a. From the recurrence
relation Eq. (30), in the y series all terms with odd powers
of a have the opposite sign.
To make contact with the classical curvature, Eq. (19),

we divide the second difference by ðΔUÞ2, then convert
differences to derivatives with respect to U. From
U ¼ ðZ − TÞ= ffiffiffi

2
p

,

ΔU ¼ ΔZ=
ffiffiffi
2

p
;
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in a formalism where T is held constant. Then

Cx
uxuðclÞ ¼ fδð2ÞEx

XðLQG; nÞ=½Ex
XðLQG; nÞ�

− ðx → yÞg=ðΔUÞ2
¼ 2ða=2ÞðkÞ2 sinðknÞ=ðΔUÞ2
¼ að2πΔZ=λÞ2 sinðknÞ2=ðΔZÞ2
¼ 2að2π=λÞ2 sinð2πz=λÞ; ð32Þ

where λ is the classical wavelength.
In this section Ea

AðclÞ was chosen to start off with leading
term þ1. This choice, together with the gauge choice
eZz ¼ þ1, implies sgnðeÞ ¼ þ1. To obtain the opposite
choice, sgnðeÞ ¼ −1, change one Eb

B to −Eb
B. The new

solution leaves the Weyl tensor unchanged and continues to
satisfy the ~H ¼ 0 constraint.

A. A second solution

Since we are dealing with second order difference
equations, there should be a second solution, in addition
to the solution given at Eq. (22). In the theory of second-
order differential equations, the two series solutions around
z ¼ 0 have leading powers 1 and z. The first series fits the
function at z ¼ 0; the second series fits the first derivative.
By analogy, one would expect two solutions to the

difference equation, with leading powers B0 ¼ 1 and
B0 ¼ ð2πn=4qÞ ≔ kn. With this hint, plus

δð2Þ½B0 þ B1�=½B0 þ � � �� ¼ a sinðknÞ;

one can construct a second solution. It has B0 and B1 terms

kn − a½ðknÞ sinðknÞ þ 2 cosðknÞ�=k3 þ � � � : ð33Þ

This solution would be needed if the difference of Ea

were nonzero at infinity. Since the difference vanishes, this
solution can be ignored.

V. INCLUSION OF DAMPING

The solution Eq. (32) is infinite in length. The solution
may be made into a packet by including damping factors.

Ex
XðLHF; nÞ ¼ ðΔzΔyÞsgnðxÞ

× f1 − ða=2Þ expð∓ ρnÞ sin½kn ∓ ϕ�
þ ð−a2=32Þ½expð∓ 2ρnÞ cosð2kn ∓ 2ϕÞ
þ ðexp½∓ 2ρn� � 2ρn − 1Þðf2=ρ2Þ cosϕ�g;

f2 ≔ ðk2 þ ρ2Þ: ð34Þ

Upper (lower) sign refers to n > 0 (n < 0). For simplicity
in what follows, The discussion to follow will consider only
the case n > 0 (upper sign); the n < 0 follows by changing

ρ → −ρ; ϕ → −ϕ: ð35Þ

The expression for Ey
YðLHF; nÞ is Eq. (34) with x ↔ y

and a → −a.
The exponential damping factors have discontinuities

in derivative at n ¼ 0; and from Eq. (35) the angle ϕ is
undefined at n ¼ 0. A discontinuity by itself is not a
problem because the damping function is defined only at
discrete points. The problems at n ¼ 0 turn out to be minor;
the value n ¼ 0 is treated in Sec. VA.
If the curvature is to remain a sine wave with zero phase,

then ~E must include a constant phase ϕ. When one solves
the differential equation F ¼ ma for the damped oscillator,
one finds that each derivative shifts the phase by more than
the usual π=2.

ðd=dtÞ½expð−ρtÞ sinðωt − ϕÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ρ2

q
expð−ρtÞ cosðωt − ϕþ ψÞ;

cosψ ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ρ2

q
: ð36Þ

Exactly the same phenomenon occurs in the difference
case. One may choose a nonzero phase ϕ for ~E, ϕ to be
determined. The differences shift this phase, until the
curvature becomes a sine wave with zero phase.
Computation of the damped second difference is

straightforward. As before, sinusoidal functions of n� 1
are expanded using trigonometric identities. As before, k is
assumed small and functions sin k, cos k are power-series
expanded. A new feature: the damping parameter ρ is
assumed small compared to wavelength,

ρ=k ≪ 1;

so that functions expð−ρÞ may be power-series expanded,
whenever ρ is not multiplied by n. Since 1=ρ measures the
length of the packet, small ρ=k implies the packet contains
many wavelengths.
The second difference of the term linear in a is

ða=2Þ expð−ρnÞfsinðkn − ϕÞ½k2 − ρ2�
þ 2kρ cosðkn − ϕÞgðΔZÞ2½1þ order k2; ρ2; kρ�;

n ≠ 0: ð37Þ

We choose ϕ so that the linear-in-a term (and ultimately,
the curvature) collapses to a sinðknÞ times a damping factor.

cosϕ ¼ ðk2 − ρ2Þ=f2;
sinϕ ¼ 2kρ=f2;

f2 ¼ k2 þ ρ2 ðn > 0Þ: ð38Þ

(For n < 0 one must replace ρ by −ρ.) The second
difference of the linear-in-a term reduces to
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ða=2Þ expð−ρnÞf2 sinðknÞðΔZÞ2:
The term quadratic in a, Eq. (34), requires one extra

trigonometric identity. After the usual expansions, that
second difference becomes

− ða2=8Þexpð−2ρnÞf−ðk2−ρ2Þcosð2kn−2ϕÞ
þð2ρkÞsinð2kn−2ϕÞþf2 cosϕgðΔZÞ2

¼−ða2=8Þf2 expð−2ρnÞf−cosð2nk−ϕÞþ cosϕgðΔZÞ2
¼−ða2=4Þf2 expð−2ρnÞfsinðkn−ϕÞsinðknÞgðΔZÞ2:

ð39Þ

The last line uses the identity

2 sinA sinB ¼ cosðA − BÞ − cosðAþ BÞ:
One can now factor out

Ex
X ¼ ðΔzΔyÞsgnðxÞ½1 − ða=2Þ expð−ρnÞ sinðkn − ϕÞ�

þ order a2

from the total second difference. The final curvature
contribution is then

δð2ÞEx
XðLHF; nÞ=Ex

X ¼ ða=2Þf2 expð−ρnÞ sinðknÞ; n ≠ 0:

ð40Þ

Again, there are no order a2 corrections.

A. Curvature at n ¼ 0

To dampen the discontinuities at n ¼ 0, we assume the
ratio ρ=k is small. This minimizes the discontinuity in the
slope of the exponent expð−ρjnjÞ at n ¼ 0, as well as
the discontinuity in the phase ϕ. From Eq. (38), the leading
terms in an expansion in powers of ρ=k are

ϕ ¼ þ2ρ=kþ � � � ðn > 0Þ;
¼ −2ρ=kþ � � � ðn < 0Þ: ð41Þ

Since ρ=Δz ¼ order 1=ðlength of the packetÞ and k=Δz ¼
2π=wavelength, the ratio ρ=k gives an estimate of the
number of wavelengths in the central, not strongly damped
part of the packet.

ρ=k ¼ order wavelength=ðpacket lengthÞ ≪ 1: ð42Þ

The packet contains many wavelengths. The relative
magnitudes are

ρ ≪ k ≪ 2ρ=k ¼ ϕ: ð43Þ
Because of the discontinuity in ϕ, Ex

X at n ¼ 0 is
undefined. We parametrize it as

Ex
Xðn ¼ 0Þ ¼ ð1þ a1 þ a2ÞΔxΔz; ð44Þ

where ap is of order ap in the small amplitude a. The Ex
X

at n ¼ �1, �2 follow from Eq. (34).

fEx
Xð�2Þ ¼ Ex

Xð�1Þg
¼ f1� aðsinϕÞ=2 − ða2=32Þ cosð2ϕÞgΔxΔz:

We have kept leading order in the smaller quantities ρ and
k, and (temporarily) all orders in ϕ.
The ai in Eq. (44) can be determined by requiring the

order a2 corrections to curvature to vanish, as at Eq. (28).
The ai contribute to curvature only at n ¼ �1 and n ¼ 0.

δð2ÞEx
Xð�1Þ=Ex

Xð�1Þ
¼ fEx

Xð�2Þ − 2Ex
Xð�1Þ þ Ex

Xð0Þg=Ex
Xð�1Þ

¼ a1 þ a2 þ ð1þ a1Þ½∓ aðsinϕÞ=2�
þ a2½cosð2ϕÞ=32þ ð1=4Þsin2ϕ�;

δð2ÞEx
Xð0Þ=Ex

Xð0Þ
¼ fEx

Xðþ1Þ − 2Ex
Xð0Þ þ Ex

Xð−1Þg=Ex
Xð0Þ

¼ −a2=16 cosð2ϕÞ − ða1 þ a2Þ þ 2ða1Þ2; ð45Þ

to order a2. Setting a2 curvature terms to zero gives

a1 ¼ 0;

a2 ¼ −a2=32; ð46Þ

neglecting terms of second order in ϕ. The surviving
contributions to curvature are now

δð2ÞEx
X=E

x
Xð�1Þ ¼∓ aðsinϕÞ=2;

δð2ÞEx
X=E

x
Xð0Þ ¼ 0: ð47Þ

The discontinuities in the triads are also minimized.
Compare

Ex
Xð0Þ ¼ 1 − a2=32;

Ex
Xð�1Þ ¼ 1 ∓ ða=2Þ sinðk − ϕÞ − ða2=32Þ: ð48Þ

In a theory so fundamentally discrete as LHF, some
traditional notions of continuity may have to be abandoned;
however, the above values for curvature and triad establish
a smooth extrapolation through n ¼ 0.

B. The ADM energy

The expression Eq. (34) contains undamped terms
involving
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2ρ∣n∣ − 1:

The quantum triads diverge at infinity.
Initially, these divergent terms were included to make the

solution analytic in ρ, in the limit ρ → 0. With these terms
included, the damped form also reduces correctly to the
undamped form, Eq. (22).
These terms also have a fundamental significance,

however. Because the rest of Eq. (34) is damped, these
are the only terms which survive at large jnj, and therefore
the only terms which contribute to the surface term in the
Hamiltonian. Some terms must survive, or the ADM energy
will vanish. The ADM energy is computed in Appendix A.

VI. COHERENT STATES

This problem requires both U(1) coherent states (for
longitudinal holonomies, along z) and SU(2) coherent
states (for transverse holonomies, along x and y). This
difference [U(1) vs SU(2)] is a consequence of the initial
gauge fixing which reduces the full 3þ 1 dimensional
problem to the planar problem. The connection reduces to
1 × 1 and 2 × 2 subblocks [12].

AZ
x;y ¼ AX;Y

z ¼ 0:

Longitudinal holonomies

exp

�
i
Z

AZ
z SZ

�

involve only AZ
z and are U(1) rotations around Z.

Transverse holonomies

exp

�
i
Z

ðAX
aSX þ AY

aSYÞ
�
; a ¼ x; y

involve no SZ (the axis of rotation lies in the XY plane) but
are otherwise full SU(2) rotations.
Longitudinal coherent states are parametrized by a peak

rotation angle and its conjugate variable, the component
of angular momentum along z. The longitudinal coherent
states have been constructed elsewhere [11], and will not be
discussed here.
Construction of the transverse, SU(2) coherent states

required an entire paper [2]. However, the basic structure of
these states should not be surprising to anyone familiar with
coherent states for a free particle. The next subsection
reviews construction of the free particle coherent states. A
follow-up section reviews the construction of the SU(2)
coherent states, emphasizing the close parallel between the
free particle and SU(2) cases.

A. The free particle analogy

The recipe for constructing a coherent state for the free
particle starts from a wave function which is a delta
function.

δðx − x0Þ ¼
Z

exp½ikðx − x0Þ�dk=2π:

This wave function is certainly strongly peaked, but it
is not normalizable. Also, it is peaked in position, but it
needs to be peaked in both momentum and position. To
make the packet normalizable, one inserts a Gaussian
operator expð−p2=2σ2Þ. (Choosing the Gaussian form is
a “cheat,” because we know the answer; but for future
reference note that all the eigenvalues k2 of p2 must be
positive, so that the Gaussian damps for all k.) To produce a
peak in momentum, we complexify the peak position:
x0 → x0 þ ip0=σ2. With these changes, the packet becomes

N
Z

exp½−p2=ð2σ2Þ� exp½ikðx − x0Þ þ kp0=σ2�dk=2π

¼ N
Z

exp½−k2=ð2σ2Þ þ ikðx − x0Þ þ kp0=σ2�dk=2π

¼ ðNexpðp2
0=2σ

2Þ=
ffiffiffiffiffiffi
2π

p
Þ · exp½ip0ðx − x0Þ

− ðx − x0Þ2σ2=2�: ð49Þ

The last line, which follows after completing the square
on the exponential, exhibits the characteristic coherent
state form.
There is not just one coherent state, but a family of

coherent states, characterized by the parameter σ. The shape
of the wave function is highly sensitive to σ; but the peak
values (x0; p0) are independent of σ, as is the minimal
uncertainty relation ΔxΔp ¼ ℏ=2. The coherent states
constructed below contain a parameter t which is analogous
to 1=σ2.
We now apply the above recipe to the SU(2) planar case.

The free particle states are parametrized by peak values
of two conjugate variables (x; p), whereas the SU(2) states
are parametrized by peak values of conjugate angles and
angular momentum. Both conjugate variables may be
thought of as vectors, since the angles determine the
rotation vector for the holonomy (directed along the axis
of rotation, with magnitude the angle of rotation). Because
angles are peaked, the holonomies are peaked. Because
angular momentum is peaked, the ~E are peaked.
The first step in the recipe requires construction of a delta

function (in angle, since angle is the new coordinate
replacing position x). One might start from the simplest
holonomy, which is

hð1=2Þ ¼ exp½im̂ · ~σθ=2�
¼ hð1=2Þð−ϕþ π=2; θ;ϕ − π=2Þ;

m̂ ¼ ðcosϕ; sinϕ; 0Þ: ð50Þ

hð1=2Þ has rotation axis along m̂, magnitude of rotation θ,
and angular momentum 1=2. A hat denotes a unit vector. m̂
has no component along z because the gauge fixing has
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eliminated the AZ
x;y. The middle line is the usual Euler angle

decomposition. A complete set of rotation matrices on the
group manifold (LHF) replaces the complete set of plane
waves on the real line (free particle). The matrices have the
same Euler angle decomposition as the simplest holonomy.

δðχ − βÞδðθ − αÞδðϕ − βÞ= sinðαÞ
¼

X
J;m;m0

ðð2J þ 1Þ=4πÞDðJÞðhÞmm0DðJÞðuÞ�mm0 ;

DðhÞ ¼ Dð−χ þ π=2; θ;ϕ − π=2Þ;
DðuÞ ¼ Dð−β þ π=2; α; β − π=2Þ: ð51Þ

Note the need for an extra variable χ. Haar measure requires
three angles for full orthogonality. If χ appeared in a final
formula, presumably one should take the limit χ → β.
Proceeding along these lines, one would arrive at states
very similar to those constructed by Thiemann and Winkler
for the general case of full local SU(2) symmetry
[11,13,14].
The planar case, however, has an unusual holonomy-flux

algebra based on anticommutators.

fEa
A; hag ¼ iðγκ=2Þ½σA=2; ha�þ: ð52Þ

The ~E are double grasp: they grasp both incoming and
outgoing holonomies at the vertex. Because the transverse
topology is S1, one and the same holonomy is both
incoming and outgoing. It is grasped on both sides, leading
to the anticommutator. Note this seldom happens in the
full SU(2) case, where the holonomy usually connects two
different vertices. Even if an ~E is double grasp, an ~E can
grasp only one side of a given holonomy. Equation (52) can
be generalized to the higher spin holonomies DðhÞ present
in Eq. (51)

fEa
A; D

ðJÞðhÞmm0 g
¼ iðγκ=2Þ½hm∣SA∣niDnm0 þDmnhn∣SA∣m0i:� ð53Þ

SA is the 2J þ 1 dimensional representation of the rotation
generator.
Presumably an approach based on Eqs. (51) and (53)

would work. We did not pursue that approach, because
it is possible to construct a more convenient basis where χ is
not needed and a grasp produces only a single rotation
generator, rather than the two of Eq. (53) [15].
To discover the new basis, we note that the basic

anticommutator, Eq. (52), maps the three matrix elements
of h into themselves. (There are only three independent
elements of h, not four. Because the axis of rotation lies in
the XY plane, the two diagonal elements of h are equal.)
The action of the ~E on the three h is isomorphic to the
action of the generators of the rotation group O(3) on the

three-dimensional representation of O(3), the spherical
harmonic YM

L with L ¼ 1.
The matrix elements of h happen to be proportional to

spherical harmonics, although spherical harmonics with
unusual, half-angle angular dependence. From Eq. (50),

ðN =
ffiffiffi
2

p
Þh∓;� ¼∓ N sinðθ=2Þ exp½�ðiϕ − iπ=2Þ�=

ffiffiffi
2

p

¼ Y�
1 ðθ=2;ϕ − π=2Þ;

N hþþ ¼ N h−− ¼ N cosðθ=2Þ
¼ Y0

1ðθ=2;ϕ − π=2Þ:

The subscripts on h abbreviate the spin values; e.g. hþ− is
the element in row m ¼ þ1=2 and column m ¼ −1=2. It is
interesting that the h are proportional to spherical harmon-
ics; but the essential feature is that grasps of triads map
ðh−þ; hþþ; hþ−Þ into h in the same way that the O(3)
generators SA map ðYþ

1 ;Y
0
1;Y

−
1 Þ into Y1. For a sample

anticommutator calculation which illustrates this mapping,
see appendix C. The unconventional half-angle θ=2 is a
reminder that the Y’s are constructed from holonomies
hð1=2Þ depending on a half-angle.
To obtain higher spin representations of this O(3)

symmetry, one couples together L ¼ 1 representations in
the usual manner to form the L > 1 representations YM

L .
The action of the ~E is given by a single matrix element of
an O(3) generator.

ðγκ=2Þ−1Ex
�Y

M
L ¼ ΣNYLNhL;N∣S�∣L;Mi;
f� ≔ ðfx � ifyÞ=

ffiffiffi
2

p
: ð54Þ

YLM ¼ YLMðθ=2;ϕ − π=2Þ. For L ¼ 1 the Y1M reduce to
matrix elements of h, and the anticommutator Eq. (52)
gives the expansion on the right-hand side of Eq. (54).
Equation (54) gives the two ~E isomorphic to S�. What is

the operator isomorphic to S0? It cannot be Ex
Z since that

field has been gauged to zero. If one applies the commu-
tator of the Ex

� to h, one finds an operator

ðγκ=2Þ−1Ea
0ha ≔ ½ha; σz=2�−: ð55Þ

Note the commutator. One can verify directly that this
commutator is isomorphic to the action of S0: the diagonal
elements of h (isomorphic to Y0) are mapped into zero; off-
diagonal elements (isomorphic to Y�) are multiplied by
factors of �1=2. The action on a general Y is Eq. (54) with
S� replaced by S0.

ðγκ=2Þ−1Ex
0Y

M
L ¼ MYM

L : ð56Þ

When the O(3) symmetry is taken into account, the
formula for the delta function is
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δðθ=2 − α=2Þδðϕ − βÞ= sinðα=2Þ ¼
X
L;M

YLMðhÞYLMðuÞ�;

YðhÞ ≔ Yðθ=2;ϕ − π=2Þ;
YðuÞ ≔ Yðα=2; β − π=2Þ:

ð57Þ

This delta function may also be expressed in terms of
rotation matrices, since Y is just a rotation matrix.

YLMðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þ=4π

p
DðLÞ

0Mð−β þ π=2; α=2; β − π=2Þ:
ð58Þ

The axis of rotation for u must lie in the xy plane, since
u is the peak value of h. This dictates the Euler angle
decomposition.
It is useful to compare old and new delta functions,

Eqs. (51) and (57). The two expansions use different basis
functions. For example, for DðuÞ,

fDðJÞ
mm0 ð−β þ π=2; α; β − π=2Þg
→ fDðLÞ

0Mð−β þ π=2; α=2; β − π=2Þg:

The sum over L excludes the half integers, because of the
shift from SU(2) to O(3). The DðJÞðuÞ are products of the
matrix elements of a basic j ¼ 1=2, SU(2) matrix
uð1=2Þðα; βÞ. The DðLÞ are products of the same matrix
elements uð1=2Þðα; βÞ, but arranged so as to form Dð1Þ, the
L ¼ 1 representation of O(3). The new basis harmonics
DðLÞ depend on the half angle α=2 rather than α, but they
have the same axis of rotation (same β) as the old basis.
Because Dð1Þ is just a reshuffling of uð1=2Þðα; βÞ, one could
label a coherent state using the symbol u, rather than the
more awkward Dð1Þ; and we will generally do this.
We continue with the recipe for constructing the coherent

state: we dampen the sum using a Gaussian

exp½−tLðLþ 1Þ=2�:
The parameter t is the analog of the parameter 1=σ2 in the
free particle case. We complexify by extending the angles
in u to complex values, replacing u by a matrix g in the
complex extension of O(3). The coherent state has the
general form

∣u; ~pi ¼ N
X
L;M

exp½−tLðLþ 1Þ=2�YðhÞLMYðgÞ�LM: ð59Þ

Every matrix g in the complex extension of O(3) can be
decomposed into a product of a Hermitian matrix times a
unitary matrix (polar decomposition; see for example [16]).

g ¼ Hermitian x unitary: ð60Þ

It is useful to compare this to the free particle case, where
the complexification is also a product of factors. The
“matrices” in that case are 1 × 1.

exp½−ikx0� → exp½−ikx0 þ kp0=σ2�:

Here, exp½−ikx0� plays the role of the unitary factor. The
free particle analogy suggests that the Hermitian factor
should produce the damping and should contain a vector
related to (angular) momentum.
There are a lot of matrices in the complex extension.

Some trial and error is needed to obtain the desired peak
properties. The natural first choice for the unitary factor in
Eq. (60) is u, the value of g in the limit the damping
disappears (Hermitian matrix → 1). This choice leads to
the simplest proofs.
The Hermitian factor (≔ H) may be parametrized by a

vector ~p ¼ pp̂. In the L ¼ 1 representation,

g ¼ Hu ¼ expð~Sð1Þ · ~pÞu: ð61Þ

The vector ~p gives the matrix H an axis p̂, analogous to
axes m̂ and n̂ for matrices h and u.
The higher order representations YLM may be com-

plexified similarly.

DðLÞ
0MðuÞ → exp½~SðLÞ · ~p�0RDðLÞ

RMðuÞ ¼ HðLÞuðLÞ: ð62Þ

This formula replaces the Y’s by the corresponding rotation
matrices, in order to clarify the matrix multiplication.
HðLÞ is expected to diverge as expðpLÞ for large L,

because of its exp½~S · ~p� form. We multiply this exponential
by the damping factor:

exp½−tLðLþ 1Þ=2� exp½pL�
¼ expf−ðt=2Þ½Lþ 1=2 − p=t�2 þ fðt; pÞg: ð63Þ

The exponent has a maximum at an hLi given by

hLi þ 1=2 ¼ p=t:

The 1=2 looks a bit peculiar until one realizes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

p
≅ Lþ 1=2:

Evidently the coherent states tend to maximize
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þp

rather than L. Usually the 1=2 will be dropped.
All three axes of rotation are assumed to lie in the xy

plane: p̂; m̂, and n̂ for H, h, and u respectively.

p̂ ¼ ðcosðβ þ μÞ; sinðβ þ μÞ; 0Þ;
m̂ ¼ ðcosϕ; sinϕ; 0Þ;
n̂ ¼ ðcos β; sin β; 0Þ: ð64Þ
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μ is the angle between the peak axis of rotation n̂ and p̂. Of
course the axis of u should lie in the XY plane, because u is
the peak value of h, and the axis of h is in the XY plane.
Placing p̂ in the xy plane is a bit worrisome, because it

seems to suggest the angular momentum is restricted to the
xy plane. However, we shall see in the next section that the
angular momentum is not along p̂ but rather along p̂ rotated
through u.

B. Basic matrix elements

ð2=γκÞEa
AðLHFÞ∣uðnÞ; ~pðnÞi
¼ hLaðnÞip̂BDð1ÞðuÞBA∣u; ~pi þ order

ffiffiffiffiffiffiffi
hLi

p
;

hLaðnÞi ¼ paðnÞ=t;
ĥ∣u; ~pi ¼ iσ · n̂ sinðα=2Þ∣u; ~pi þ order

ffiffiffiffiffiffiffi
hLi

p
;

h̄∣u; ~pi ¼ 1 cosðα=2Þ∣u; ~pi þ order
ffiffiffiffiffiffiffi
hLi

p
: ð65Þ

There are two transverse directions, a ¼ x; y. Therefore
each of the above equations is actually two equations, one
for x and one for y. The brackets around hLi are of course
designed to distinguish the peak value from the variable L
which is summed over in e.g. Eq. (57).
The direction of angular momentum is given by a rotated

version of p̂ (first line). The last two lines give the matrix
elements for the two parts of the holonomy.

ĥ ¼ ðh − h−1Þ=2;
h̄ ¼ ðhþ h−1Þ=2:

Only ĥ occurs in the small sine Hamiltonian. The explicit
dependence of p̂BDð1ÞðuÞBA on the angles μ; α; β will be
derived at a later point, Eq. (74) of Sec. VII. For
completeness, here is the result.

P̂a
AðαÞ ≔ p̂a

BD
ð1ÞðuaÞBA ¼ cos μaðn̂aÞA

þ sin μa½cosðαa=2ÞðẐ × n̂aÞA þ sinðαa=2ÞẐ�:
n̂a ¼ ðcos βa; sin βa; 0Þ; a ¼ x; y:

u, the peak value of the holonomy, is a rotation through α=2
around the axis n̂. μ is the angle between n̂ and p̂.
There are now two p̂ vectors. The original p̂, introduced

in Eq. (61), characterizes the complex extension of O(3),
and lies in the XY plane. The new P̂, just introduced, is the
original p̂ after a rotation by Dð1Þ (rotation through α=2
around axis along n̂). From Eq. (65), the new P̂ gives the
direction of angular momentum.
Longitudinal matrix elements resemble the transverse

ones.

ð2=γκÞEz
ZðLHFÞ∣hθzi; hmZii ¼ hmZi∣hθzi; hmzii;

ĥz∣hθzi; hmzii ¼ iσz sinðhθzi=2Þ∣hθzi; hmzii;
h̄z∣hθzi; hmzii ¼ 1 cosðhθzi=2Þ∣hθzi; hmzii: ð66Þ

Again, each Eq. (66) is really a pair of equations. If the
holonomy is outgoing (respectively, incoming), then the
peak angle is labeled θzðn;nþ1Þ [respectively,
θzðn−1;nÞ], and the peak z component of angular momen-
tum is mf (respectively, mi).
Table I lists the various parameters occurring in the

coherent state, together with a brief definition.
Occasionally, where there is no danger of confusion, the
parameters will be written without their characteristic
transverse label a ¼ x or y.

C. The Δxi should be simple

The LHF formulas for the triads will contain factors of
Δxi. These parameters are largely arbitrary, and to keep
formulas simple, We choose them to be positive and
independent of nz. We respect the symmetry by choosing

TABLE I. Parameters occurring in the coherent state. a ¼ x or y.

Parameter Definition

uð1=2Þa Peak value of j ¼ 1=2 transverse SU(2) holonomy h1=2a

Dð1ÞðuaÞ Peak value of L ¼ 1 O(3) holonomy Dð1Þ
0M; matrix elements proportional to matrix elements of uð1=2Þa

n̂a Axis of rotation for Dð1ÞðuaÞ and uð1=2Þa ; lies in XY plane
αa; βa ua ¼ uaðαa; βaÞ; αa=2 ¼ angle of rotation around n̂a; βa ¼ angle between n̂a and X axis
DðLÞðuaÞ0M O(3) rotation matrix, a product of L copies of ua; rotation angle αa=2; axis of rotation n̂a
~pa Vector in XY plane characterizing the complex rotation exp½~S · ~p� multiplying each

term in the coherent superpostion; ~pa ¼ pap̂a

P̂aðαaÞ ¼ p̂a
BD

ð1ÞðuaÞBA. p̂a after rotation through α=2; gives direction of angular momentum ~La

μa Angle between p̂a and n̂a

Ma Peak value of Z component of transverse angular momentum
mf;mi Peak value of Z component of angular momentum carried by Z axis holonomies

entering (mi) or leaving ðmfÞ vertex n
hθzi Peak value of angle for the Z axis holonomy
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Δx ¼ Δy:

Global and local Lorentz coordinates xi and XI are
related by

xi ¼ XIeiI ¼ XIEi
I=∣e∣:

If the two coordinates increase in opposite directions, then
the corresponding Ei

IðclÞ has leading term −1 and ΔXi=Δxi
is negative. Since the Δxi have been chosen always
positive,

ΔXI ¼ jΔXIjsgnðiÞ;
Ei
IðFTÞ ¼ sgnðiÞ þ � � � : ð67Þ

sgnðiÞ is the sign of Ei
I and eiI .

In the present gauge (eZz ¼ �1), ΔZ ¼ �Δz. Only the
ΔX;ΔY can vary with nz; ΔZ is a constant.

VII. DETERMINING THE COHERENT
STATE PARAMETERS

The Hamiltonian, Eq. (18), is correct for one specific set
of gauge conditions and symmetries. However, the coher-
ent states just constructed above are general. They are not
gauge-fixed and do not reflect the symmetries. Imposition
of symmetries and gauges determines the peak values ua
and ~pa.
The states must obey nine constraints: four single

polarization constraints (which constrain the four off-
diagonal transverse ~E and transverse K to vanish); two
unidirectional constraints; two diffeomorphism constraints;
and the Gauss constraint.
A coherent state “obeys” a constraint when the peak

values satisfy the constraint. The state is usually not an
eigenfunction of the constraint.
Equation (65) expresses the basic quantities ~E and ĥ in

terms of coherent state parameters. The Hamiltonian
depends only on ~E; but the constraints depend on extrinsic
curvature K and spin connection Γ as well. The next section
relates K and Γ to the basic quantities.

A. K and Γ

From paper I, the connection A becomes −2iĥIi in the
small sine (SS) limit. K becomes

γKI ¼ AI − ΓIðFTÞ
→ −2iĥI − ΓIðSSÞ
¼ 2n̂I sinðα=2Þ − ΓI: ð68Þ

The last line expresses ĥ in terms of the peak values for the
angle of rotation α, and axis of rotation

n̂ ¼ ðcos β; sin β; 0Þ:

For longitudinal fields, the ĥðnÞ on the second line of
Eq. (68) is replaced by the average of the two z holonomies
at vertex n:

ĥzðnÞ ≔ ½ĥzðn; nþ 1Þ þ ĥzðn − 1; nÞ�=2;

where ĥðn; nþ 1Þ is the holonomy on edge (n; nþ 1).
Now consider Γ. From [1] the products Γ · E are given by

ΓY
xEx

X þ ΓX
y E

y
Y ¼ ½δðcÞEy

Y=E
y
Y − δðcÞEx

X=E
x
X�Ez

Z;

ΓY
xEx

X − ΓX
y E

y
Y ¼ δðcÞEz

Z: ð69Þ

In the present gauge we may use Eq. (16) to replace δðcÞEz
Z

on the last line by

½δðcÞEx
X=E

x
X þ δðcÞE

y
Y=E

y
Y �Ez

Z;

then solve for the individual Γ · E.

ΓX
y E

y
Y ¼ −δðcÞðEx

XÞEy
Y=CðLHFÞ;

ΓY
xEx

X ¼ þδðcÞðEy
YÞEx

X=CðLHFÞ;
CðLHFÞ ¼ sgnðeÞðΔzÞ2: ð70Þ

The two Γ in Eq. (70) are the only ones which occur in the
constraints. The single polarization constraints force all
other Γ to vanish.
All nonbasic variables (K, Γ) are now expressed in terms

of basic variables (ĥ, ~E). The latter in turn have been
expressed in terms of coherent state parameters at Eq. (65).

B. Evaluation of the βa
It is a bit easier to work with the combinations U1 � U3

of unidirectional constraints from paper I. Using Eq. (68),
the K’s may be replaced by combinations of the ~E and
holonomies, quantities with known action on coherent
states.

0 ¼ ½KY
yE

y
Y þ Ez

ZδðcÞðEx
XÞ=Ex

X�=
ffiffiffiffiffiffi
Ez
Z

p
¼ f2 sin βy sinðαy=2Þ=γ þ δðcÞðEx

XÞ=CðLHFÞgEy
Y=

ffiffiffiffiffiffi
Ez
Z

p
;

0 ¼ ½KX
x Ex

X þ Ez
ZδðcÞðEy

YÞ=Ey
Y �=

ffiffiffiffiffiffi
Ez
Z

p
¼ ½2 cos βx sinðαx=2Þ=γ þ δðcÞðEy

YÞ=CðLHFÞ�Ex
X=

ffiffiffiffiffiffi
Ez
Z

p
:

ð71Þ

Similarly, the single polarization constraints KX
y ¼

KY
x ¼ 0 may be expressed in terms of the ~E and holon-

omies, using Eqs. (68) and (70).
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0 ¼ γKX
y

¼ 2 cos βy sinðαy=2Þ þ δðcÞðEx
XÞ=CðLHFÞ;

0 ¼ γKY
x

¼ 2 sin βx sinðαx=2Þ − δðcÞðEy
YÞ=CðLHFÞ: ð72Þ

The unidirectional constraints have an additional ~E=
ffiffiffiffiffiffi
Ez
Z

p
on the right. However, this additional factor merely
produces a constant, when acting on a coherent state.
Therefore this factor may be commuted to the left. The
two sets of constraints, unidirectional and single polari-
zation, arise from different physical effects, but display
similar mathematical structure. Unidirectional constraints
are linear in the δðcÞE because time plus space derivatives
equal zero, and δðcÞE supplies the space derivative. The
single polarization constraints K = 0 are linear in δðcÞE
because the K’s are holonomy minus spin connection, and
the spin connection is linear in δðcÞE. If one eliminates the
δðcÞE, one finds the first two equations below:

tan βx ¼ −1=γ;

tan βy ¼ þγ;

cos βx ¼ sgnðn̂xÞγ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
;

sin βx ¼ −sgnðn̂xÞ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
;

cos βy ¼ sgnðn̂yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
;

sin βy ¼ sgnðn̂yÞγ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
: ð73Þ

The remaining four equations follow by solving the first
two for cosine and sine. There is a sign ambiguity:
sgnðn̂aÞ ¼ �1, n̂a the axis of rotation for the peak
holonomy ua, because the first two lines determine βa
only mod π. Since βa is the angle between n̂a and the X
axis, n̂a is determined only up to an overall sign
(equivalently, only up to a reflection through the origin).
Independent of signs, the two rotation axes n̂x and n̂y are
90° apart. This can be seen by computing

tan βx ¼ −1= tan βy ¼ tanðβy � π=2Þ:

The unidirectional and single polarization constraints
are now equivalent. One can drop the unidirectional
constraints and focus on the single polarization con-
straints; the number of independent constraints has
dropped to seven.

C. Evaluation of the μa
We can determine the μa from Eq. (65). μa occurs in p̂a,

and Eq. (65) relates the ~E to P̂a, the rotated version of p̂a.

First we need an explicit expression for P̂a. In order to
study the rotation of p̂a into P̂a, it is convenient to use as
basis n̂, plus two vectors perpendicular to n̂, since
that vector is invariant under rotations. For arbitrary
polarization,

p̂a ¼ cos μan̂a þ sin μaẐ × n̂a;

P̂a ¼ cos μan̂a þ sin μa½cosðαa=2ÞẐ
× n̂a þ sinðαa=2ÞẐ�: ð74Þ

Proof: The unrotated p̂a lies in the xy plane, and therefore
has components along n̂a (rotation axis for u, so also in the
xy plane) and Ẑ × n̂a. The angle between p̂ and n̂ is μ,
which gives the first line of Eq. (74). After p̂ is rotated
through α=2 around axis n̂, the angle between n̂ and p̂
remains μ, which explains the n̂ term on the second line.
The vector Ẑ × n̂a becomes the square bracket on the
second line. □

When Eq. (74) is substituted into the first Eq. (65),
we obtain four equations which may be written in matrix
form.

�
Ea
X=ΔxΔz

Ea
Y=ΔxΔz

�
¼ ðhLaðnÞi=L0Þ

×

�
cos βa − sin βa cosðαa=2Þ
sin βa cos βa cosðαa=2Þ

�

×

�
cos μa
sin μa

�
; ð75Þ

where a ¼ x; y and L0 ¼ ð2=γκÞΔxΔz.
cosðαa=2Þ is near 1, since α is small.

cosðαa=2Þ ¼ 1 − sinðαa=2Þ2=2þ O sinðαa=2Þ4:

In the following section we shall see that sinðαa=2Þ is order
a in the small amplitude a. Initially we replace the cosine
by unity, and obtain the μ correct to order a. The matrix on
the right in Eq. (75) becomes orthogonal and can be
evaluated using Eq. (73) for the βa. The vector on the left
becomes

sgnðxÞ
�
1 − E1

0

�
or sgnðyÞ

�
0

1þ E1

�
;

for a ¼ x or y respectively. To suppress distracting detail,
we have abbreviated the order a parts of ~E by E1. Inversion
of Eq. (75) yields
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ðhLxi=L0Þcosμxð0Þ¼sgnðxÞsgnðn̂xÞ
�
γ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

q �
ð1−E1Þ;

ðhLxi=L0Þsinμxð0Þ¼sgnðxÞsgnðn̂xÞ
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

q �
ð1−E1Þ;

ðhLyi=L0Þcosμyð0Þ¼sgnðyÞsgnðn̂yÞ
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

q �
ð1þE1Þ;

ðhLyi=L0Þsinμyð0Þ¼sgnðyÞsgnðn̂yÞ

×
�
−γ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

q �
ð1þE1ÞþOa2:

ð76Þ

The (0) indicates zero order in a. This is not quite the whole
story, however, because we have not yet evaluated the hLai.
If we impose ðcos μaÞ2 þ ðsin μaÞ2 ¼ 1, we find

ðhLxi=L0Þ ¼ 1 − E1;

ðhLyi=L0Þ ¼ 1þ E1 þ O a2: ð77Þ

The E1 dependence cancels out of Eq. (76); the μa are
constants to order a2.

cos μxð0Þ ¼ sgnðxÞsgnðn̂xÞ
�
γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
;

sin μxð0Þ ¼ sgnðxÞsgnðn̂xÞ
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
;

cos μyð0Þ ¼ sgnðyÞsgnðn̂yÞ
�
γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
;

sin μyð0Þ ¼ sgnðyÞsgnðn̂yÞ
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
þ O a2; ð78Þ

The sgnðaÞsgnðn̂aÞ factors mean that p̂a, like n̂a, is
determined only up to a reflection through the origin.
(Equivalently, μa, the angle between p̂a and n̂a, is deter-
mined only up to π.)
One may choose hLai any convenient size by adjusting

the Δxa in L0 ¼ ð2=γκÞΔxΔz. Equation (77) is a precise
statement of a scaling behavior: the amplitudes La scale
with the Δxa.
To zeroth order in a, p̂x lies along the X axis, while p̂y

lies along the Y axis. This may be seen from

tan μxð0Þ ¼ − tan βx;

tan μyð0Þ ¼ 1= tan βy ¼ − tanðβy � π=2Þ;

which implies

μxð0Þ ¼ −βxmod π; μyð0Þ ¼ −ðβy � π=2Þmod π:

p̂a makes an angle μa þ βa with the X axis. Hence p̂x is
along X and p̂y is along Y. □

Actually, p̂y (for example) is not exactly along the Y
axis; it has a small X component of order a2. If one solves
Eq. (75) exactly, without expanding cosðαa=2Þ, one finds

sin μa cosðαa=2Þ ¼ cos μa=γ: ð79Þ

One can expand each of the factors in Eq. (79).

μa ¼ μað0Þ þ μað2Þ; cosðαa=2Þ ¼ 1 − sin2ðαa=2Þ=2;

correct to order a2. The solution for μð2Þ is

μð2Þ ¼ sin2ðαa=2Þ=2½γ=ð1þ γ2Þ�;
cos μð0Þ → cos½μð0Þ þ μð2Þ�

¼ cos μð0Þ − sin μð0Þμð2Þ þ O a4: ð80Þ

The second line shows a sample correction to the formulas
of Eq. (78). The next section calculates sinðαa=2Þ, which is
found to be order a and oscillating, with ∣sinðαa=2Þ∣
independent of a. Therefore μð2Þ is order a2 and oscillat-
ing; and it needs no x; y subscript.
The nonzero transverse components of rotated P̂a and

unrotated p̂a can now be written to order a2.

P̂a
A ¼ sgnðaÞ cos½μð0Þ þ μð2Þ�= cos μð0Þ�; a ¼ A;

p̂x ¼ fcos½0mod π þ μð2Þ�; sin½0mod π þ μð2Þ�g;
p̂y ¼ fcos½π=2mod π þ μð2Þ�; sin½π=2mod π þ μð2Þ�g;

ð81Þ

i.e., apart from correction factors of order a2, transverse P̂a

and p̂ are unit vectors along Â.
Note the quantity sgnð~naÞ drops out of the physically

significant result, the direction of transverse angular
momentum P̂a

A, a ¼ A. Each factor in the expression for
transverse momentum is a product of a trigonometric
function of β times a trigonometric function of μ. Since
both sets of trig functions contain sgnð~naÞ, the sign occurs
squared. This is the first example of a general feature:
sgnð~naÞ does not occur in physically significant results.
The unidirectional constraints and two of the single

polarization constraints are now satisfied. The remaining
constraints are the two single polarization constraints, two
diffeomorphism constraints, and Gauss.

D. Determination of sinðα=2Þ
Section V constructed a set of transverse ~E which satisfy

the scalar constraint. One can insert those ~E into the
remaining single polarization constraints Eq. (72), and
thereby determine sinðα=2Þ, α=2 the peak angle of rotation.
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0 ¼ γKB
a ; a ≠ B;

¼ 2 sin βx sinðαx=2Þ − δðcÞE
y
YðFTÞðΔx=ΔzÞsgnðeÞ

¼ 2 cos βy sinðαy=2Þ þ δðcÞEx
XðFTÞðΔy=ΔzÞsgnðeÞ:

ð82Þ

From Eq. (34),

δðcÞEx
XðFT;nÞ ¼ sgnðxÞf−ða=2Þf expð−ρnÞcosðkn−ϕ=2Þ

þ ð−a2=16Þ½f expð−2ρnÞ cosð2kn− 3ϕ=2Þ
þ ½−ρ expð−2ρnÞ þ ρ�ðf=ρ2Þ cosϕ�g;

f2 ¼ ðk2 þ ρ2Þ: ð83Þ

We insert Eqs. (83) and (73) into Eq. (82).

− 2sgnðn̂xÞ sinðαx=2Þ

¼þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
δðcÞE

y
YðFTÞðΔx=ΔzÞsgnðeÞ

¼ sgnðyÞsgnðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
ða=2Þf expð−ρnÞ

×cosðkn−ϕ=2ÞðΔx=ΔzÞ;

2sgnðn̂yÞ sinðαy=2Þ ¼−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
δðcÞEx

XðFTÞðΔy=ΔzÞsgnðeÞ

¼þsgnðxÞsgnðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
ða=2Þf

×expð−ρnÞcosðkn−ϕ=2ÞðΔy=ΔzÞ; ð84Þ

neglecting terms of order a2. As advertised, the sinðαa=2Þ
are order a.
Previously we mentioned that sgnðn̂aÞ drops out of final

formulas for the transverse components of P̂a. We now
know that sinðαa=2Þ is proportional to sgnðn̂aÞ, and from
this we can conclude that sgnðn̂aÞ also drops out of final
formulas for the longitudinal components of P̂a. From
Eq. (74), longitudinal components are given by

P̂a
Z ¼ sin μa sinðαa=2ÞẐ:

Both factors in this expression contain sgnðn̂aÞ.
There is a geometrical reason why sgnðn̂aÞ always drops

out. The basic holonomy is

ua ¼ cosðαa=2Þ þ iσ · n̂a sinðαa=2Þ:

This rotation depends on the product of axis of rotation
times rotation angle. If one changes sgnðn̂aÞ (reflects the
axis, changes n̂a → −n̂a) and simultaneously changes the
sign of sinðαa=2Þ, one obtains the same physical rotation.
Only the product sgnðn̂aÞ sinðαa=2Þ is geometrically sig-
nificant. This means sinðαa=2Þ must contain a factor
sgnðn̂aÞ. Also, if a final formula does not contain
sinðαa=2Þ, then it cannot contain sgnðn̂aÞ.

E. KZ
z , E

z
Z, and Gauss

The four single polarization constraints are now satisfied.
Gauss and two diffeomorphism constraints remain.
The diffeomorphism constraints from paper 1 are (for

p ¼ 1=2)

1 ¼ ð2Þ ~E=ðCðLHFÞEz
ZÞ;

CðLHFÞ ¼ ðΔzÞ2sgnðeÞ;
0 ¼ Kz:

The last line yields

0¼ γKZ
z ðnÞ

¼ −2i½ĥZz ðn;nþ 1Þ þ ĥZz ðn− 1; nÞ�=2− ΓZ
z

¼ 2½sinðhθzi=2Þðn;nþ 1Þ þ sinðhθzi=2Þðn− 1; nÞ�=2− 0:

ð85Þ

Either all peak θz are zero, or θz alternates between two
values having opposite sign. Since holonomic angles
should go to zero in the flat space in front of the
packet, hθzi ¼ 0.
The remaining diffeomorphism constraint may be used

to show Ez
Z,

ð2Þ ~E, and ðmf þmiÞ are constants, to order a2.
Since Ez

Z grasps on both sides of the vertex, its expectation
value depends on mf þmi, the expectation values of Sz on
the ingoing plus outgoing sides of the vertex.

Ez
ZðLHFÞ ¼ ðκγ=2Þðmf þmiÞ: ð86Þ

The LHF values are related to classical values by the
diffeomorphism constraint Eq. (4).

Ez
ZðLHFÞ ¼ ðEx

XE
y
YÞðLHFÞ=CðLHFÞ

¼ ðEx
XE

y
YÞðclÞsgnðeÞΔxΔy:

The classical ~E have the form

Ex
XðFTÞ ¼ ð1 − E1 þ E2ÞsgnðxÞ;

Ey
YðFTÞ ¼ ð1þ E1 þ E2ÞsgnðyÞ;

where Ep ¼ O ap. Therefore

Ez
ZðLHFÞ ¼ sgnðzÞ½1 − E2

1 þ 2E2 þ O a3�ΔxΔy: ð87Þ

Comparison of Eqs. (86) and (87) gives

ð2=κγÞEz
ZðLHFÞ ¼ ðmf þmiÞ

¼ sgnðzÞð2=κγÞΔxΔyð1þ O a2Þ: ð88Þ
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Ez
ZðFTÞ, ð2Þ ~EðFTÞ, and ðmf þmiÞ are constants, to

order a2. □

Equation (88) is another example of scaling behavior.
The overall amplitudes (but not the fluctuating factors)
scale with the Δxi.
The quantity mf −mi occurs in Gauss’s law. Gauss

requires a vanishing net flow of z momentum through
all six sides of the cube surrounding a given vertex.
Equivalently, if the βx; βy, and θz at a given vertex are
all subjected to the same rotation, the product of holon-
omies at the vertex must be invariant. This requires

Mx þMy þ ðmf −miÞ ¼ 0:

The first two terms are the net outflow of Z angular
momentum contributed by the transverse directions; the
last parenthesis is net outflow contributed by the z
holonomies.
The expectation value ofMa is given by the operator Ea

0,
Eqs. (65) and (74).

Ma ¼ hLaip̂a
BD

ð1ÞðuaÞB0
¼ hLai sin μa sinðαa=2Þ: ð89Þ

Gauss then requires

0 ¼ hLxi sin μx sinðαx=2Þ þ hLyi sin μy sinðαy=2Þ
þ ðmf −miÞ: ð90Þ

From Eq. (84) sinðαx=2Þ is a power series in a of the form

sinðαx=2Þ ¼ sgnðxÞsgnðn̂xÞ½−A1 þ A2 þ � � ��Δx=Δz;
ð91Þ

where Ap ¼ O ap. From Eq. (77),

hLxi ¼ L0½1 − E1 þ E2 þ � � ��: ð92Þ

From Eq. (80), μ is a constant plus corrections of order a2;
therefore the power series for sin μ goes as

sinðμxÞ ¼ sgnðn̂xÞsgnðxÞ½B0 þ B2 þ � � ��; ð93Þ

where Bp ¼ O ap.
We insert these expansions into Eq. (90) (as usual,

changing the sign of odd powers of a for the y term).
Equation (90) then collapses to (for Δx ¼ Δy)

2ðΔx=ΔzÞ½B0A2 þ E1A1 þ O a3�L0 þ ðmf −miÞ ¼ 0:

ð94Þ

From L0 ∝ ΔxΔz plus Eq. (88),

mf ¼ mi ¼ sgnðzÞðκγÞ−1ðΔxÞ2ð1þ O a2Þ: ð95Þ

In the above calculation Eq. (90) was used for Gauss,
rather than its small sine approximation,

0 ¼ δðcÞEz
Z þ ð−2iÞĥAaEa

A:

The latter is not quite as accurate. For example,
δðcÞEz

Z ¼ mf −mi, but only after using slow variation.
The small sine version is fine when Gauss occurs multiplied
by factors of sine, as in the Hamiltonian and vector
constraints. When Gauss is standalone, Eq. (90) is more
accurate.

VIII. THE METRIC AT SPATIAL INFINITY

To this point the calculation has been carried out to order
a2 in the small amplitude a. This is fine, except for the
undamped part of the amplitude, which diverges at infinity.

Ea
AðLHFÞ ¼ ðΔzΔxbÞsgnðxÞf1þ � � �

þ ða2=32Þð∓ 2ρnþ 1Þðf=ρ2Þ cosϕg; ð96Þ

from Eq. (34), z ¼ �∣z∣. If there are divergent corrections
of higher order in n, they will be needed to compute the
ADM energy.
It is safe to assume that the space outside the wavepacket

is flat. The present solution is time varying, and the wave
has not yet reached spatial infinity, which must be flat
therefore. In flat space both the scalar constraint and the
Riemann tensor must vanish. From Eq. (19),

∂2
uEx

X ¼ ∂2
uE

y
Y ¼ 0: ð97Þ

The variable
ffiffiffi
2

p
u ¼ ðz − ctÞ corresponds to the discrete

variable n. In the present small sine LQG approach,
derivatives with respect to

ffiffiffi
2

p
u become differences with

respect to n. The ~E are therefore linear functions of n at
infinity. Equation (34) for the ~E diverges linearly at infinity,
and therefore is correct as it stands. There are no higher
order corrections in n (though there may be higher order
corrections in a).
The surviving terms at n → �∞ may be read off from

Eq. (34).

Ex
X ¼ Ey

Y → ðΔzΔyÞsgnðxÞ
× f1þ ð−a2=32Þð�2ρn − 1Þðf2=ρ2Þ cosϕg

≔ ðΔzΔyÞsgnðxÞf1�DnþD0g: ð98Þ

D0 and D are constants of order a2. If terms down by
ρ=k ≪ 1 are dropped,
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D0 ¼ ða2=32Þðf=ρ2Þ cosϕ ¼ 1þ ða2=32Þðk=ρÞ2;
Dn ¼ −ða2=16Þðk2=ρÞn: ð99Þ

Ez
Z follows from the gauge choice Ez

Z ∝ Ex
XE

y
Y , Eq. (4).

Ez
ZðLHFÞ ¼ sgnðeÞðΔzΔyÞ½1�DnþD0�2

¼ sgnðeÞðΔzΔyÞ½1� 2Dnþ 2D0 þ O a4�;
δðcÞEz

ZðLHFÞ ¼ sgnðeÞðΔzΔyÞ½�2Dþ O a4�: ð100Þ

The order a4 terms should be dropped, because the Ea
A

are known only to order a2.
Since δðcÞ Ez

Z appears in the surface term for the energy, it
is useful to check the above result by a second method:
solve the constraint ~H ¼ 0. From paper I, the section on
the final form of the Hamiltonian,

N ~H ¼
X
n

ð1=κÞf� � � þ δðcÞEz
Z½−ðδðcÞð2Þ ~EÞ=ð2Þ ~E

þ δðcÞEz
Z=2E

z
Z� þ δðcÞðδðcÞEZ

z Þg ¼ 0; ð101Þ

where we emphasize the terms which survive to infinity.
We have dropped a term proportional to

ðδðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
XÞ2:

This expression vanishes at infinity for the present explicit
solution, and also generally, because it represents the
physical degree of freedom, which should be absent in
flat space. We use the diffeomorphism gauge Eq. (4) to
replace

ðδðcÞð2Þ ~EÞ=ð2Þ ~E ¼ δðcÞEz
Z=E

z
Z

¼ δðcÞE
y
Y=E

y
Y þ δðcÞEx

X=E
x
X

→ 2δðcÞEx
X=E

x
X:

Equation (101) becomes

−δðcÞEx
X=E

x
X þ δðcÞðδðcÞEZ

z Þ=δðcÞEz
Z ¼ 0:

The solution is

δðcÞEZ
z → AEx

X; ð102Þ

A a constant. We know Ex
X is linear in n at infinity, from the

argument at Eq. (97). We now know that δðcÞEZ
z is also

linear in n. Equation (102) agrees with our previous result
for δðcÞEZ

z if we take A ¼ �2D, use Eq. (98) for Ex
X, and

drop order a4.

IX. SIGNS, FOR sgnðiÞ ¼ þ1

It is useful to examine the pattern of signs for the
simplest and most natural case: axes xi and XI running in
the same direction; right-handed coordinate system:
sgnðiÞ ¼ sgnðeÞ ¼ þ1. For this case, only three signs
are left in the problem: the sign of the small amplitude
a; and sgnðn̂aÞ.
The last two have limited physical significance. Only

the signs of the products sgnðn̂aÞ times sinðαa=2Þ are
physically significant, since a rotation through α around
axis n̂ is equivalent to a rotation through −α around −n̂.
However, presumably the relative sign

sgnðn̂xÞ sinðαx=2Þ=sgnðn̂yÞ sinðαy=2Þ

has some significance. From Eq. (84), this ratio is

ð−aÞf expð−ρnÞ cosðkn − ϕ=2Þ=ðþaÞf
× expð−ρnÞ cosðkn − ϕ=2Þ þ O a2 ¼ −1: ð103Þ

Meaning, for a given value of n, only one of numerator and
denominator will be positive, and which one depends on
the sign of a.
Given the high degree of symmetry between the x and y

directions, and the lack of a screw sense (no circular
polarization) one would expect solutions to occur in pairs
differing by x ↔ y. The two solutions differing by a ↔ −a
form such a pair. As a check: performing both changes
simultaneously (a ↔ −a, x ↔ y) leaves the curvature
unchanged.

TABLE II. Variables to order a, for signðiÞ ¼ þ1.
f2 ¼ k2 þ ρ2 ≅ k2;L0 ¼ ð2=γκÞΔxΔz.
Variable Behavior Reference

EðFTÞxX 1 − ða=2Þ expð∓ ρnÞ sinðkn − ϕÞ Eq. (34)

EðFTÞyY 1þ ða=2Þ expð∓ ρnÞ sinðkn − ϕÞ Eq. (34)

EðFTÞzZ 1þ O a2 Eq. (87)

LðnÞxP̂x
X L0f1 − ða=2Þ expð∓ ρnÞ

× sin½kn ∓ ϕ�g
Eqs. (77), (81)

LðnÞyP̂y
Y L0f1þ ða=2Þ expð∓ ρnÞ

× sin½kn ∓ ϕ�g
Eqs. (77), (81)

Mx ¼ L0P̂
x
Z −ðL0fa=4Þ expð∓ ρnÞ

×cosðkn − ϕ=2Þ
Eqs. (84), (89)

My ¼ L0P̂
y
Z þðL0fa=4Þ expð∓ ρnÞ

×cosðkn − ϕ=2Þ
Eqs. (84), (89)

βa fixed Eq. (73)

μa fixed Eq. (80)

mf;mi fixed > 0 Eq. (95)

hθzi 0 Eq. (85)
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Table II gives the order a behavior of the dynamical
variables, for the choice sgnðiÞ ¼ 1 and the reader’s choice
of signs for n̂a and a.

X. DISCUSSION

The oscillations in transverse coordinates follow from
Eqs. (6) and (34).

ΔY ¼ sgnðyÞΔyf1− ða=2Þexpð∓ ρnÞsin½kn∓ϕ�þO a2g;
ΔX¼ sgnðxÞΔxf1þða=2Þexpð∓ ρnÞsin½kn∓ϕ�þO a2g:

ð104Þ

For example, a light beam traveling between markers
separated by Δx would travel a standard meter stick
distance given by ΔX.
To study the movement of test particles in the field of the

wave, one can calculate geodesic deviation. Alternatively,
one can reverse the interpretation of coordinates used in
Eq. (104). The coordinates ðΔX;ΔYÞ now become fixed,
because they are the coordinates of a particle in free fall.
The ðΔx;ΔyÞ become the variables. We invert Eq. (104),
obtaining

Δy¼ sgnðyÞΔYf1þða=2Þexpð∓ ρnÞsin½kn∓ϕ�þO a2g;
Δx¼ sgnðxÞΔXf1− ða=2Þexpð∓ ρnÞsin½kn∓ϕ�þO a2g:

ð105Þ

We interpret ðΔX;ΔYÞ as the position vector of a test
particle near the origin. Operationally, the ðx; yÞ coordi-
nates are constructed so as to be inertial coordinates before
arrival of the wave. After the wave arrives, we may interpret
the ðx; yÞ coordinates geometrically, as a noninertial sys-
tem. Alternatively, we can continue to interpret the coor-
dinates as inertial. Then ðΔx;ΔyÞ become the position of
the particle under the effect of the “force” of gravity.
Equation (105) yields

½ΔxðtÞ=Δxð−∞Þð1þ a sinωtÞ�2
þ ½ΔyðtÞ=Δyð−∞Þð1 − a sinωtÞ�2 ¼ 2: ð106Þ

We have replaced kn → kn − ωt and evaluated at n ¼ 0.
ðΔX;ΔYÞ are also the ðΔx;ΔyÞ coordinates of the
particle before the wave arrives, ðΔxð−∞Þ;Δyð−∞ÞÞ.
Equation (106) is the usual elliptical picture: a circle of
test particles becomes an ellipse with time varying major
and minor axes.
The standard formula for the area,

area ¼ κγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
;

might suggest that spins are input and areas are output.
However, when deriving the classical limit, it is perhaps

better to think of area as input, and (average or peak) spin as
output. For example, from Eq. (88),

ð2=γκÞΔxΔy½1þ O a2� ¼ sgnðzÞðmf þmiÞ:

One adjusts the left-hand side, until the right-hand side is
large enough to be semiclassical. Classical field theory
variables ~EðFTÞ can be near unity, even though LHF
eigenvalues are far from unity, because of the area
elements in

~EðLHFÞ ¼ ~EðFTÞΔxiΔxjd:

Also, because of the area elements in the LHF triads, fixing
the diffeomorphism gauge fixes ΔZ, the linear spacing
between vertices.
The z components of angular momentum mi;mf are not

related to the helicity operator for the wave. The helicity is
given by [17]

−2i
X
n

ðEþ
þK−

− − E−
−K

þ
þÞ; ð107Þ

where f� ¼ ðfx � ifyÞ=
ffiffiffi
2

p
. Equation (107) countsþ 2ℏ

times the number of spin 2 Eþ
þ minus 2ℏ times the number

of spin −2 E−
−. If the E and K are expanded in terms of more

familiar fields,

Eþ
þ ¼ ½Ex

X þ iEx
Y þ iðEy

X þ iEy
YÞ�=2; ð108Þ

etc., one can show that the helicity operator vanishes, as it
should [18]. From the discussion in Appendix A, mf þmi

is closely related to energy, rather than helicity.
The behavior of the transverse holonomies is relatively

simple. Each holonomy is characterized by an axis of
rotation n̂a and an angle of rotation αa=2. n̂a can be
reflected through the origin, but otherwise cannot change:
the angle it makes with the X axis, βa, is fixed by the
Immirzi parameter. sinðαa=2Þ is proportional to δðcÞEa

A,
from Eq. (84), and therefore oscillates with the frequency of
the wave, the amplitude of oscillation being order k a. We
can visualize this oscillation by drawing a unit vector along
the Z axis and imagining that a rotation around n̂a is
applied to this vector. The tip of this vector oscillates along
a small arc, approximately a straight line centered on the Z
axis and lying in the plane perpendicular to n̂a.
The directions of the axes of rotationmust be fixed in order

for the unidirectional and single polarization constraints to
agree. If the single polarization constraint is relaxed, the
rotation axes are no longer fixed; see Appendix D.
In contrast to the transverse holonomies, longitudinal

holonomies are trivial: hθzi ¼ 0. To order a, the longi-
tudinal momenta and angles (mz and hθzi) do not oscillate.
Turning from holonomies to fluxes and angular

momenta, the unrotated p̂a must be very close to the Â
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axis, so that a small rotation through αa=2 can remove the
component perpendicular to Â, as required by the single
polarization constraints. The rotated P̂a is also close to the
Â axis, therefore.
The peak values of the P̂a, Eq. (74), have Z components.

This is a bit surprising, since from Eq. (65) P̂a is the peak
value of a transverse operator Ea

A, and the triads Ea
Z have

been gauged to zero. If one imagines a rectangular volume
ΔXΔYΔZ surrounding each vertex, Ea

A supposedly gives
the area of the side having normal Â ≠ Ẑ.
One might try to understand the need for Z components

by noting that change in area with normal Â produces
change in area with normal Ẑ. The triad Ey

Y (for example)
changes because the associated area ΔXΔZ changes. That
area changes because length ΔX changes. (ΔZ is gauge
fixed.) The changes in ΔX in turn induce changes in the
area ΔXΔY with normal Ẑ. Unfortunately, we must try
harder: this interpretation predicts Z components P̂a

Z going
as ΔX, i.e. as sine rather than cosine.
At Eq. (55) we sketched the construction of the two

operators Ea
0 which produce the Z components of P̂a. These

operators do not act in the same manner as the dynamical
variables (Ex

X, E
y
Y , E

z
Z). The latter take the sum of the areas

at front and back of a small cube surrounding the vertex;
for example, the grasp of Ez

Z is proportional to mf þmi. In
contrast, (Ex

0, E
y
0) are not fundamental but emerge in the

course of constructing the coherent states. They take the
difference between front and back areas. In particular,
Gauss’s law, Eq. (90), is

0 ¼ hLxi sin μx sinðαx=2Þ þ hLyi sin μy sinðαy=2Þ
þ ðmf −miÞ:

The first two terms are eigenvalues of the Ea
0 operators, and

Gauss’s law involves differences.
The action of (Ex

X, E
y
Y) on the basic holonomy is given by

an anticommutator, Eq. (52), whereas the action of the Ea
0 is

given by a commutator, Eq. (55). Presumably this is the
reason for the shift from sum to difference.
The explicit expressions for momentum in Table II are

consistent with the foregoing qualitative discussion (largest
component of P̂a along Â; smaller component along Ẑ,

proportional to a difference). For example ~Ly to order a is

~Ly
Y ¼ LyðnÞP̂y

Y

¼ L0½1þ ða=2Þ expð∓ ρnÞ sinðkn − ϕÞ�Ŷ;
My ¼ ẐL0 expð∓ ρnÞðfa=4Þ cosðkn − ϕ=2Þ: ð109Þ

The largest component is along Y and is a measure of area
ΔXΔZ. Hence this component tracks the variation of ΔX,
Eq. (104), which varies as a sine. The smaller, Z component
tracks the first difference of the area ΔXΔZ, and therefore

varies as the first difference of the sine, namely
f cos ≅ k cos. We have listed transverse and longitudinal
components on separate lines to emphasize their conceptual
difference: area sum vs area difference.
The above results are largely unaffected by spatial

diffeomorphisms, since the holonomies and ~E (LHF) are
constructed to be invariant. Even the classical Ea

AðFTÞ are
largely invariant. Change occurs only in order a2. From
Eq. (2), the classical gauge is characterized by a power p.
The following gauge transformation changes p to p0.

z0 ¼
Z

z
½sgnðzÞEz

Z�ð1−2p0Þ=4dz: ð110Þ

The above integrand, expanded in powers of a, is unity plus
order a2. Therefore the order a terms in ~E (FT) are
invariant. A corollary: the order a oscillations of ΔX;ΔY
are invariant.
Although the treatment given in this paper is primarily

classical, the results carry over to the quantum theory
because of the use of coherent states. From Eq. (21) the
expectation value of the quantum constraint vanishes, if the
classical constraint vanishes. Also, the expectation value
of a quantum operator varies in the same manner as the
corresponding classical operator.
Although this paper uses O(3) harmonics YL rather than

SU(2) harmonics, the latter are not wrong, merely less
convenient. In particular, despite the use of an O(3) basis,
we do not lose information about SU(2).

Dð−ϕþ π=2; θ;ϕ − π=2ÞðjÞ∣u; ~pi
¼ Dð−β þ π=2; α; β − π=2ÞðjÞ∣u; ~pi;

where DðjÞ is a representation of SU(2). The O(3) and
SU(2) harmonics have identical axes of rotation, with

hLi ¼ h2ji:

As a check: for L ¼ 1, the O(3) harmonics are combina-
tions of j ¼ 1=2 SU(2) harmonics.
We list two concerns. We dampened the sine wave using

an exponential. This choice works well to order a2, and we
have suggested a procedure for extending the calculation to
higher powers in a. The choice of exponential is motivated
by mathematical simplicity, rather than dynamics, however,
and the procedure we suggest may break down in higher
orders.
Also, Eq. (A3), and the discussion in the last few

paragraphs of Appendix B suggests that the energy of
the wave is quantized, because the frontal area of the wave
is quantized. In weak field limit the energy is quantized in
units of ℏω, but the present calculation goes beyond the
weak field, and perhaps a new quantization rule is to be
expected.
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However, the packet is three-dimensional. Should not
energy be quantized because volume is quantized, rather
than frontal area only? This question may be connected to
the previous one about damping. Presumably an improved
damping mechanism would quantize the length of the
packet.

APPENDIX A: THE ADM ENERGY

From [1], the surface term is given by
−NδðcÞEz

ZðLHFÞ=κ. From Eqs. (100) and (99) for Ez
Z at

infinity,

ADM energy ¼ −ðN=κÞsgnðzÞΔxΔyð∓ a2=8Þðk2=ρÞjþ∞
−∞

¼ ð1=ΔZκÞΔxΔysgnðzÞ2ða2=8Þðk2=ρÞ;
ðA1Þ

where NðLHFÞ ¼ 1=ΔZ. ΔZsgnðzÞ ¼ Δz is positive
[Eq. (67)].
The factor of ΔZsgnðzÞ ¼ Δz looks gauge variant.

However, we can introduce a kðclÞ and ρðclÞ, defined by

exp½−ρn� sin½kn� ¼ exp½−ρðclÞnΔz� sin½kðclÞnΔz�;
nΔz ¼ z;

ρðclÞ ¼ ρ=Δz;

kðclÞ ¼ k=Δz: ðA2Þ

If we shift to the classical quantities in Eq. (A1), the factor
of ΔZsgnðzÞ ¼ Δz disappears.

ADM energy ¼ ℏcðΔxΔy=κÞða2=4Þðk2=ρÞðclÞ: ðA3Þ

The first term in parentheses is dimensionless because we
have given κ the dimension of length squared.
The energy should be proportional to the volume

occupied by the wave. After the shift to classical k and
ρ, the ADM energy contains a factor

ΔxΔy=ρðclÞ ∼ ΔxΔy length:

The above expression is a measure of volume. Since the
packet is proportional to exp½−ρðclÞz�, 1=ρðclÞ is a measure
of the length of the packet.
Rough estimates of the energy give results similar to

Eq. (A1). The energy in weak field approximation is of
order

Z
ð∂z

~EÞ2 ∼ ðxy areaÞðkðclÞaÞ2

×
Z

dz½sinðkðclÞzÞ expð−ρðclÞzÞ�2

¼ ðxy areaÞðkðclÞaÞ2½kðclÞ2=ð2ρðclÞÞ�
× f1=½kðclÞ2 − ρðclÞ2�g

≈ ðxy areaÞðka=ΔzÞ2ðΔz=2ρÞ: ðA4Þ

The last line of Eq. (A4) neglects terms down by
ρðclÞ=kðclÞð¼ ρ=kÞ ≪ 1Þ. This back-of-the-envelope esti-
mate contains the same factors as Eq. (A1).
One might suppose the energy is not quantized, because

periodic boundary conditions were not used, and k in
Eq. (A1) can be anything. However, see the next section.

APPENDIX B: SPREADING OF A COHERENT
WAVE PACKET

The extent of wave packet spreading was estimated
elsewhere [19]; the present appendix modifies that dis-
cussion for the planar case. We first argue that all packets
approach (nonspreading) simple harmonic oscillator (SHO)
packets in the limit of large quantum numbers.
For minimal spreading, the spacing between energy levels

of the system should be as constant as possible, resembling
the spacing between levels of the usual oscillator [20,21].
Suppose, for example, the energy goes as Lp, p some power
other than linear, L a quantum number. (For example, the
spherical harmonicsmaking up the coherent state of the earth
have energy going as L2.) The spacing between levels is

δE ¼ constpLp−1δL; ðB1Þ

which is no longer in SHO form: a constant times the change
of an integer.
Although the factor multiplying the integer is now a

function, rather than a constant, the variation of this factor
across the packet is very small.

δðfactorÞ=factor ¼ ðp − 1ÞδL=L
¼ ðp − 1ÞσðLÞ=L: ðB2Þ

On the second line we have estimated the spread of L values
in the packet, δL, using σðLÞ, the standard deviation of the
L values in the classical limit σðLÞ is expected to be ≪ L.
All packets approach a SHO packet in the limit of large
quantum numbers.
Now consider the present case. We will need some

assumptions to make the case that lifetime of the packet is
infinite.
In weak field geometrodynamics, the packet can be

Fourier transformed. The dynamics guarantees every
Fourier component has the same velocity c, and the wave
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does not disperse. The present dynamics is nonlinear and
this simple option is not available.
From Eq. (A3) the energy is proportional to the frontal

area of the wave ΔxΔy. This area is quantized, by equation
Eq. (95), and the quantum number is an integer (m, rather
than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

).
The quoted m is a peak value; the wave is actually a

superposition of area eigenvalues m. This resembles the
SHO situation, a superposition of occupation number
eigenvalues n.
In order to obtain constant energy spacing between area

eigenstates, we must assume the remaining factor in the
ADM energy (a2kðclÞ2=ρðclÞ) is constant. Presumably this
factor is determined by the matter source, and investigation
of the source is beyond the scope of the present work. The
constants (k, ρ, a) are unlikely to contain hidden depend-
ence on other gravitational quantum numbers, however,
because those constants occur in expressions such as

δðcÞEx
X=E

x
X; δðcÞE

y
Y=E

y
Y

which are independent of area.
When higher orders in a are included, the area ΔXΔY

and hence m fluctuate at finite values of n. The ADM
energy, however, is determined by long-range “tails” which
extend beyond the packet. These presumably do not
fluctuate. We assume the higher orders in a correct the
a2kðclÞ2=ρðclÞ factor; the spacing between levels changes,
but the spacing remains uniform.
A three-dimensional wave has a frontal area determined

by jðjþ 1Þ area eigenvalues. Integer eigenvalues m are
special to the planar case. We would expect the three-
dimensional packet to be long lived, by the argument at the
beginning of this section. But it is not clear that the lifetime
would be infinite.

APPENDIX C: THE PLANAR HILBERT SPACE

It is possible, but inconvenient, to use coherent states
with full SU(2) symmetry [13,14] as a basis for the Hilbert
space. The flux-holonomy algebra unique to the planar case
allows one to construct a Hilbert space with simpler matrix
elements for the transverse ~E.
We recall first the structure of the transverse holonomies.

The x and y holonomies involve only generators SX; SY ,
since the AZ

a have been gauged to zero. Each transverse
holonomy hð1=2Þ therefore has an axis of rotation with no Z
component.

hð1=2Þ ¼ exp½im̂ · ~σθ=2�;
m̂ ¼ ðcosϕ; sinϕ; 0Þ; ðC1Þ

for some angle ϕ. There is one holonomy for each trans-
verse direction x; y; and one ϕ for each transverse direction,
ϕx and ϕy. Since the two directions are treated equally, it is

sufficient to discuss only the x holonomies; the subscript x
will be suppressed. When expanded out, the spin 1=2
holonomy hð1=2Þ, Eq. (C1), becomes

hð1=2Þ ¼
�

cosðθ=2Þ i expð−iϕÞ sinðθ=2Þ
i expðþiϕÞ sinðθ=2Þ cosðθ=2Þ

�

ðC2Þ

The usual Euler angle decomposition for this rotation is

hð1=2Þ ¼ exp½−iσZðϕ − π=2Þ=2� expðiσYθ=2Þ
× exp½þiσZðϕ − π=2Þ=2�

¼ hð1=2Þð−ϕþ π=2; θ;ϕ − π=2Þ: ðC3Þ

The flux-holonomy algebra is somewhat unusual. From
the discussion at Eq. (52), ~E produces an anticommutator.

Ex
Ah

ð1=2Þ ¼ Ex
A exp

�
i
Z

AB
xSBdx

�

¼ ðγκ=2Þ½σA=2; hð1=2Þ�þ: ðC4Þ

Fortunately, the anticommutator reshuffles the elements
of h in a relatively simple way. We introduce the operators
Ex
�, where

f� ≔ ðfx � ifyÞ=
ffiffiffi
2

p
: ðC5Þ

The operators Ex
� reshuffle the components of h in the same

way that the familiar angular momentum operators L�
reshuffle the L ¼ 1 Legendre polynomials YM

1 . For exam-
ple, we write out the action of the anticommutator in
Eq. (C4), for index A ¼ þ.

½σþ=2; hð1=2Þ�þ
¼

ffiffiffiffiffiffiffiffi
1=2

p �
i expð−iϕÞðsin θ=2Þ 2 cosÞθ=2Þ

0 i expðþiϕÞ sinðθ=2Þ

�

ðC6Þ

When we compare this matrix to the original matrix,
Eq. (C2), we find Exþ has reshuffled the matrix elements as

ði=
ffiffiffi
2

p
Þ expð−iϕÞ sin θ=2 → cos θ=2;

cos θ=2 → ði
ffiffiffi
2

p
Þ expðþiϕÞ sin θ=2;

ði=
ffiffiffi
2

p
Þ expðþiϕÞ sin θ=2 → 0: ðC7Þ

This is isomorphic to the action of the operator Lþ on the
L ¼ 1 Legendre polynomials. The isomorphism is
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L� ↔ 2Ex
�=γκ;

L0 ↔ 2Ex
0=γκ;

Y�
1 ↔ ðN =

ffiffiffi
2

p
Þh∓;�

¼∓ N sinðθ=2Þ exp½�ðiϕ − iπ=2Þ�=
ffiffiffi
2

p

¼ Y�
1 ðθ=2;ϕ − π=2Þ;

Y0
1 ↔ N hþþ ¼ Nh−−

¼ N cosðθ=2Þ
¼ Y0

1ðθ=2;ϕ − π=2Þ: ðC8Þ

Because of the half angles, normalization of the Y’s
requires integrating θ from 0 to 2π. N ¼ ffiffiffiffiffiffiffiffiffiffi

4π=3
p

.
Because the YM

1 ðθ=2;ϕ − π=2Þ transform more simply
than matrix elements of hð1=2Þ under the action of ~E, one
obtains a more convenient basis by using O(3) 3J coef-
ficients and products of Y1 ’s, rather than SU(2) coefficients
and products of hð1=2Þ ’s. The resultant basis is just the set of
spherical harmonics YM

L ðθ=2;ϕ − π=2Þ for O(3).
One can take into account the y edges as well as the x

edges, by constructing two bases, YMx
Lx and YMy

Ly for
holonomies along the x and y directions, respectively.
These harmonics transform simply under the action of
the ~E:

ðγκ=2Þ−1Ex
PY

M
L ¼ ΣNYLNhL;N∣SP∣L;Mi; ðC9Þ

where YLM ¼ YLMðθ=2;ϕ − π=2Þ. The unconventional
half-angle reminds us of the origin of these objects in a
holonomy hð1=2Þ depending on half-angles.
The transverse coherent states constructed here do not

have unique values for Mx and My. These states are

superpositions of DðLaÞ
0Ma matrices (a ¼ x; y); and the super-

positions will contain a range of values Ma. (Similarly,
coherent states in the longitudinal direction will not have
definite mz.) The superpositions are sharply peaked at
central values of the M’s, however, so that M-values which
violate U(1) are suppressed.
The relation between h and the YM

1 is

Nhð1=2Þ ¼ 1Y0
1 þ iYþ

1 S− þ iY−
1Sþ; ðC10Þ

where boldface denotes a 2 × 2 matrix. Equation (C10)
demonstrates that the Y’s are as complete a set as the
elements of h1=2, since the three independent elements of
hð1=2Þ can be expressed in terms of the three
YM

1 ðθ=2;ϕ − π=2Þ.

APPENDIX D: CIRCULAR POLARIZATION

When both polarizations are present, we solve the
equations in weak field approximation. Equivalently, all
equations are solved only to order a in the small amplitude a.

We also take sgnðaÞ ¼ sgnðeÞ ¼ þ1 and neglect damping.
Working to order a means some ~E (LHF) must be evaluated
to order unity. For example, Ex

XðLHFÞ → ΔxΔz.
Intermediate formulas are then peppered with unhelpful
factors of Δxi. We suppress these factors but restore them
in final formulas. For a weak field treatment using both
connection fields and a loop representation, see Ashtekar,
Rovelli, and Smolin [22].
We use the following formula from paper I for the Γ; the

formula is correct for all polarizations.

2ΓI
jE

j
I ¼ −sgnðeÞðδðcÞΣmzMÞΣni

Mϵmni=2! ≔ 2Γ · E;

ΓI
jE

j
M ¼ sgnðeÞðδðcÞΣmz

M ÞΣniIϵmni=2!

þ Γ · EδIM:

The off-diagonal fields Ex
Y and Ey

X, and the on-diagonal
ΓX
x ;ΓY

y are now nonzero. Dropping all corrections of
order a2,

ΓX
x ¼ δðcÞEx

Y; ΓY
y ¼ −δðcÞE

y
X;

ΓX
y ¼ δðcÞ½−Ez

Z − Ex
X þ Ey

Y�=2;
ΓY
x ¼ δðcÞ½þEz

Z − Ex
X þ Ey

Y�=2;
ΓZ
z ¼ Γ · E ¼ 0: ðD1Þ

The unidirectional constraints are the (linearized) single
polarization constraints from paper I [see also Eq. (71)],
plus one additional constraint.

0 ¼ KX
x þ KY

y þ δðcÞEz
Z;

0 ¼ 2KZ
z þ KY

y þ KX
x þ δðcÞEx

X þ δðcÞE
y
Y þ 2δðcÞN=N;

0 ¼ KY
y − KX

x − δðcÞE
y
Y þ δðcÞEx

X;

0 ¼ KX
y þ KY

x − KZ
z ðEx

Y þ Ey
XÞ − δðcÞEx

Y − δðcÞE
y
X: ðD2Þ

The U(1) gauge is fixed by making the cotriad matrix
symmetric.

Ex
Y − Ey

X ¼ 0;

Kx
Y − Ky

X ¼ 0: ðD3Þ

The second line is also the linearized Gauss constraint.
To quadratic order, the scalar constraint is now

~H ¼ ½δðcÞEx
X − δðcÞE

y
Y�2=2 − δðcÞEz

ZδðcÞðEx
XE

y
YÞ=2

þ δðcÞδðcÞEz
Z þ ½δðcÞEx

Y þ δðcÞE
y
X�2=2: ðD4Þ

We adopt the same diffeomorphism gauge (linearized) as
for the single polarization case:
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δðcÞEz
Z ¼ δðcÞEx

X þ δðcÞE
y
Y;

KZ
z ¼ 0: ðD5Þ

This choice removes the first three terms in the scalar
constraint, leaving us with

~H ¼ δðcÞδðcÞEx
X þ δðcÞδðcÞE

y
Y þ ½δðcÞEx

Y þ δðcÞE
y
X�2=2: ðD6Þ

We would have to modify the diffeomorphism gauge to
remove the last term, and we do not know how to do this.
This is why we work only to order a and drop the last,
order a2 term in Eq. (D6). As in the single polarization
case, ~H ¼ −Hz.
We focus on circular polarization, which is simpler than

elliptical polarization but nevertheless instructive, because
quite different from the single polarization case. In a
circular polarized wave, the two physical degrees of free-
dom are coherent and equally weighted.

Ex
X ¼ ½1 − a cosðknÞ=2�ΔxΔz;

Ey
Y ¼ ½1þ a cosðknÞ=2�ΔxΔz;

Ex
Y ¼ Ey

X ¼ ½�a sinðknÞ=2�ΔxΔz; ðD7Þ

to order a. This ansatz satisfies the scalar constraint,
Eq. (D6), and the first U(1) constraint, Eq. (D3). From
the first diffeomorphism constraint, Eq. (D5), plus
Eq. (D7),

δðcÞEz
Z ¼ δðcÞEx

X þ δðcÞE
y
Y ¼ O a2:

Terms involving these quantities may be dropped from
the unidirectional constraints.
The longitudinal sector is now identical to the longi-

tudinal sector of the single polarization case. The second
diffeomorphism constraint, KZ

z ¼ 0, implies all longi-
tudinal holonomic angles hθzi vanish. The arguments of
Sec. VII E go through unchanged: incoming and outgoing z
components of angular momentum are equal, and are
constant to order a2.

mf ¼ mi ¼ ðκγÞ−1ðΔxÞ2ð1þ O a2Þ:

We now have four equations involving K’s: the three
unidirectional constraints, Eq. (D2), plus the second U(1)
constraint Eq. (D3). One may eliminate the K’s, as at
Eq. (68). After this step, the new unidirectional constraint
(for example) becomes

0 ¼ 2½cos βy sinðαy=2Þ þ sin βx sinðαx=2Þ� þ ak sinðknÞ
∓ akγ cosðknÞ:

The four equations involving K’s can be solved for the four
unknowns tan βa and sinðαa=2Þ.

tan βxð0Þ ¼ tanðβy þ π=2Þ;
sin βxð0Þ ¼ �sgnðn̂xÞ cosðkn� λÞ;
cos βxð0Þ ¼ sgnðn̂xÞ sinðkn� λÞ;
sin βyð0Þ ¼∓ sgnðn̂yÞ sinðkn� λÞ;
cos βyð0Þ ¼ sgnðn̂yÞ cosðkn� λÞ;

cos λ ≔ γ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
; sin λ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
;

sinðαx=2Þ ¼ ka sgnðn̂xÞγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
=4;

sinðαy=2Þ ¼ �ka sgnðn̂yÞγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
=4: ðD8Þ

The (0) indicates a result valid to zeroth order in a; there
may be linear in a corrections.
In some respects the results of Eq. (D8) resemble the

results for single polarization. Each axis of rotation βa and
angle of rotation αa=2 are defined only up to sign. One
can reflect the axis of rotation through the origin, while
simultaneously changing the sign of the angle of rotation,
and obtain the same physical rotation. Also, (first line) the
two axes of rotation remain perpendicular.
However, in other respects circular polarization is

dramatically different. The single polarization constraint
forces each axis to remain fixed. If one imagines a unit
vector initially along Z, then the oscillations of (αa) cause
this vector to oscillate along a fixed arc perpendicular to n̂a.
In the circular case, the axes n̂a are not fixed, but rotate
through a circle in the xy plane, at constant angular
velocity. It is the angles αa which now remain fixed.
The imaginary unit vector perpendicular to n̂a makes a
fixed angle αa=2 with the Ẑ axis and precesses with
constant angular velocity, on a cone of half angle αa=2.
Equation (65) yields four equations which determine

the μa. They may be written in matrix form as

�
Ea
X=ΔyΔz

Ea
Y=ΔyΔz

�
¼ ðhLaðnÞi=L0Þ

�
cosβa − sinβa
sinβa cosβa

��
cosμa
sinμa

�
;

ðD9Þ

where a ¼ x; y and L0 ¼ ð2=γκÞΔxΔz. We insert Eq. (D7)
on the left in Eq. (D9), and use Eq. (D8) on the right.

ðhLxi=L0Þcosμx¼ sgnðn̂xÞ½sinðkn�λÞ−ða=2Þsinð�λÞ�;
ðhLxi=L0Þsinμx¼∓ sgnðn̂xÞ½cosðkn�λÞ−ða=2Þcosð�λÞ�;
ðhLyi=L0Þcosμy¼∓ sgnðn̂yÞ½sinðkn�λÞþða=2Þsinð�λÞ�;
ðhLyi=L0Þsinμy¼ sgnðn̂yÞ½cosðkn�λÞþða=2Þcosð�λÞ�;

hLxðnÞi=L0¼1−ða=2Þcoskn;
hLyðnÞi=L0¼1þða=2Þcoskn: ðD10Þ
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The hLaðnÞi=L0 follow from the requirement that
ðcos βaÞ2 þ ðsin βaÞ2 ¼ 1.
The vector p̂a makes an angle μþ β with the X axis, and

both angles vary sinusoidally. Nevertheless, p̂a does not
rotate. Neglecting the order a correction terms, we have

tan βx ¼ − tan μx;

tan βy ¼ 1= tan μy ¼ − tanðμy þ π=2Þ;

which implies

βx ¼ −μx þ O aðmod πÞ;
βy ¼ −ðμy þ π=2Þ þ O aðmod πÞ:

Since βa þ μa is the angle p̂a makes with the X axis, p̂x lies
along X, while p̂y lies along Y. (This is also true for single
polarization.) The two vectors p̂a and n̂a counterrotate; to
lowest order their angular velocities cancel rather than add.
Since p̂a is nonrotating to zeroth order in a, the rotated

version, P̂a, will also be nonrotating to zeroth order. If we
insert the formulas for μ and β into Eq. (74) for P̂a and
include the terms of order a, we get angular momenta (basis
vectors now ½X̂; Ŷ; Ẑ�Þ

L0½1 − ða=2Þ cos kn�P̂x

¼ L0½1 − ða=2Þ cos kn;�ða=2Þ sin kn;

∓
	
kaγ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q 

cosðkn� λÞ�;

L0½1þ ða=2Þ cos kn�P̂y

¼ L0½�ða=2Þ sin kn; 1þ ða=2Þ cos kn;

�
	
kaγ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q 

cosðkn� λÞ�: ðD11Þ

The counterrotating μ and β produce leading terms which
are stationary. The X and Y components are the original
ansatz for Ea. The Z components cancel to order a, as they
do in the single polarization case.
The effect on test particles is given by

Δx ¼ exXΔX þ eyYΔY

¼ Ex
XΔX þ Ey

YΔY þ O a2

¼ ΔX þ ða=2Þ½− cos knΔX � sin knΔY�
¼ ΔX þ ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔXÞ2 þ ðΔYÞ2

q

× ½− cos kn cosΦ� sin kn sinΦ�
¼ ΔX þ ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔXÞ2 þ ðΔYÞ2

q
½− cosðkn� ΦÞ�

¼ ΔX þ ða=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔXÞ2 þ ðΔYÞ2

q
½− cosðωt ∓ ΦÞ�:

ðD12Þ

On the second line we have used

∣e∣ ¼ 1þ O a2:

On succeeding lines we shift to polar coordinates (R;Φ) in
the inertial frame, then replace kn → ðkn − ωtÞ and evalu-
ate at n ¼ 0. A similar treatment for the y coordinate gives

ðΔx;ΔyÞ ¼ ðΔX;ΔYÞ þ ða=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔXÞ2 þ ðΔYÞ2

q

× ½− cosðωt ∓ ΦÞ;∓ sinðωt ∓ ΦÞ�: ðD13Þ

As seen from the positive Z axis, a test particle at the origin
rotates in a counterclockwise (clockwise) circle when we
use the upper (lower) signs.
One may also form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔX2 þ ΔY2

p
½1 − ða=2Þ cosðωt ∓ 2ΦÞ� þ O a2:

ðD14Þ
At t ¼ 0 a circle of test particles becomes a circle, plus a
small standing wave wrapped around the circle (two
wavelengths long, four nodes). For t > 0 the standing
wave rotates counterclockwise (clockwise) when we use
the upper (lower) sign.

APPENDIX E: RENORMALIZATION

This section is intended for readers familiar with a
coarse-graining recipe developed by a number of authors
[4–7]. Readers who are not familiar but would like to learn
more probably should start with Ref. [7].
The present treatment is hardly coarse-grained. The

number of vertices per cycle, Nλ, is assumed to be quite
large:Nλ times order 100 Planck lengths is the macroscopic
wavelength. In this appendix we “coarse-grain”: N vertices
are replaced by a single vertex. N may be taken very large,
but should be much less than Nλ, so that after the coarse-
graining there are still a large number of vertices per cycle.
The coarse-graining method of the references starts by

choosing a “maximal tree.” This is a tree which contains no
loops and passes through each of the N vertices once and
only once. For a general, three-dimensional lattice, the
maximal tree is not unique, and one is forced to discuss
dependence on choice of tree. In the present case, the
maximal tree is unique; it is just the z axis.
After the tree is chosen, one must SU(2) gauge transform

each holonomy along the tree to the unit holonomy. This
allows the collapse of the N vertices to a single vertex. In
the planar case the holonomies along the maximal tree are z
holonomies peaked at θz ¼ 0. The holonomies are already
unit holonomies, and no gauge transformations are needed.
(If the holonomies are nontrivial, further transformations
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are needed after the N vertices collapse to one vertex.
Those additional transformations are not needed in the
planar case.)
Each of the N initial vertices is the endpoint for two

transverse loops, one in the x direction and one in the y
direction. After collapse the final vertex has 2N loops
beginning and ending at that vertex. (In the literature this is
described picturesquely as a flower diagram having 2N
petals.)
The wave function at the surviving vertex is quite

complex. It is a product of N “x” SU(2) coherent states
formerly at vertices 1; 2;…; N; and N “y” SU(2) coherent
states. To estimate the new peak angular momentum, we
repeat the calculation given at Eq. (63). The x coherent state
(for example) now contains an exponential which is a sum
over the N loops.

exp½� � �� ¼ exp

�
−t
X
i

LiðLiþ 1Þ=2þ
X
i

piLi

�

¼ exp

�
−ðt=2Þ

XN
i¼1

½Liþ 1=2− ðpi=tÞ�2þfðpi; tÞ
�
:

ðE1Þ

The exponent is a sum of squares, and can be minimized
only by minimizing each square. From Eqs. (63) and (109)

pi=t ¼ hLi þ 1=2i ¼ L0ð1þ O aÞ
¼ ð2=γκÞΔxΔzð1þ O aÞ: ðE2Þ

Meaning, pi=t is the peak value of Li þ 1=2 before coarse-
graining; and the exponent in Eq. (E1) can be minimized by
retaining those peak values after coarse-graining.
Since Li is a constant independent of i (apart from order

a oscillations which are not important here), one can
replace L on the first line of Eq. (E1) by an average.
Neglecting terms independent of L, we get

½� � �� ¼ −ðNt=2Þ½ðLþ 1=2Þrms −
X
i

ðpi=tNÞ�2;

ðLþ 1=2Þrms ¼
�X

i

ðLi þ 1=2Þ2=N
�
1=2

: ðE3Þ

The rms value is peaked; and the peak value is an average
over the pi.
One can also compute the new curvature, which goes as

Ë=E, double dot denoting a second difference. Now
numerator and denominator of Ë=E become a sum of
terms, one from each vertex. For simplicity we suppress the

index x or y, and write EðkÞ
i for the order ak contribution

from vertex i.

Ë=E ¼
XN
i¼1

½Ëð1Þ
i þ Ëð2Þ

i �=
XN
i¼1

ð1þ Eð1ÞÞ

¼
XN
i¼1

½Ëð1Þ
i ð1þ Eð1ÞÞ=

XN
i¼1

ð1þ Eð1ÞÞ

¼ ¯Ëþ
XN
j¼1

ðËj − ¯ËÞðEj − ĒÞ=Nð1þ ĒÞ

¼ ¯Ëþ ð−k2Þ
XN
j¼1

ðEj − ĒÞ2=Nð1þ ĒÞ; ðE4Þ

where the bar denotes an average over N,

f̄ ≔
XN
i¼1

fi=N: ðE5Þ

Superscripts (1), (2) have been dropped; all fields are
now Eð1Þ fields, order unity in a.
The averages may be estimated by replacing sums by

integrals, for example

Ē ¼ ð1=NÞ
XN
j¼1

EjΔn

≅ ð1=NÞ
Z

n

n0

ð−a=2Þ sinðknÞdn

¼ ð1=NÞða=2kÞ½cosðknÞ − cosðkn0Þ�
¼ ð1=NÞð−a=kÞ sin½kðnþ n0Þ=2� sin½kðn − n0Þ=2�;

ðE6Þ

where n ¼ n0 þ N. For simplicity we have ignored the
damping factor.
Note we are averaging only over part of one cycle

(N ≪ Nλ) so that the averages over sinusoids are order
unity, not negligible (as they would be if we were averaging
over several cycles). In particular,

Ē ¼ O ða=ðkÞð1=NÞ ¼ O ðNλ=NÞða=2πÞ:

Nevertheless we may drop the final sum in Eq. (E4). It is
order k2a2 whereas the ¯Ë term is order k2a.
For the curvature we expect

Ë=E ¼ −ðk2aζ=2Þ sin½kðnþ n0Þ=2�: ðE7Þ

I.e., the sine is evaluated in the middle of the interval
(n; n0); and the factor ζ takes into account the possibility
of a renormalization of the amplitude a. Comparing
equations (E6) and (E7), we have

ð1=NÞð−kaÞ sin½kðn − n0Þ=2� ¼ −ðk2aζ=2Þ:
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With ðn − n0Þ ¼ N, k ¼ 2π=Nλ, this gives

ζ ¼ sinðπN=NλÞ=ðπN=NλÞ: ðE8Þ
For N → 1 (the smallest possible value of N) N=Nλ ≅ 0,
and ζ has the correct limit ζ → 1.

APPENDIX F: THE U(N) FORMALISM

A number of authors have developed a formalism which
avoids explicit SU(2) rotation matrices and uses a repre-
sentation of SU(2) based on holomorphic functions
(Bargmann representation) [5,6,23,24]. The approach
involves a number of operators which together form a
representation of U(N); we will refer to this approach as the
U(N) approach. In this appendix we assume the reader is
already somewhat familiar with the U(N) formalism;
readers who desire an introduction might try Ref. [5].
The U(N) approach shifts the focus from holonomy on

edge e to spinors located at the two ends of edge e. In
particular the holonomy on the transverse x edge is
replaced by two spinors, a source spinor at the beginning
of the edge, and a target spinor at the end:

�
sþ
s−

�
;

�
tþ
t−

�
:

The U(N) formalism works with spinor operators as well as
spinor peak values, when a coherent state basis is used. To
be clear, the above spinors are the peak values. We suppress
edge labels (x, y, or z) on the spinors. Until further notice
we consider only x spinors.
In order to express the peak spinors in terms of the

parameters used in the present paper, we associate each
spinor with a vector according to the following theorem.
The spinor χ,

χðξ; pzÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ pz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pz

p
exp iξ

�
;

generates a unit vector via

χ†ð~σ=2Þχ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
z

q
cos ξ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

z

q
sin ξ; pz



: ðF1Þ

The σ are the usual Pauli matrices. Conversely, the unit
vector determines the spinor, up to an overall arbi-
trary phase.
We determine the spinors by demanding that they

reproduce the correct direction for the angular momentum
vector at each vertex. Normally the source and target
spinors live at different vertices; here they live at the same
vertex because of the S1 topology in the transverse
directions. However, angular momentum experiences no
change when traveling along the z axis from vertex n − 1 to
vertex n, since the z holonomy is a unit matrix. Further,

vertex n will need information about spinors at vertex
n − 1, parallel transported to vertex n, in order to construct
covariant differences. We therefore take the source spinor
to correspond to angular momentum at vertex n − 1.

s ¼ uð−β þ π=2; αðn − 1Þ=2;þβ − π=2Þsð0Þ
≔ uðn − 1Þsð0; n − 1Þ ðF2Þ

This equation is the spinor analog of Eq. (65),

P̂a
AðαÞ ≔ p̂a

BD
ð1ÞðuaÞBA:

sð0; n − 1Þ corresponds to the vector p̂; s corresponds to
the rotated vector P̂, which is along the angular momentum.
u, a spin 1=2 rotation through α=2, corresponds to Dð1Þ, an
L ¼ 1 rotation through α=2. The vector

p̂ ¼ ðcosðμþ βÞ; sinðμþ βÞ; 0Þ

happens to be independent of n (neglecting terms of order
a2 in the small amplitude a); therefore we can drop the
n − 1 index in sð0; n − 1Þ. From Eq. (F1)

sð0Þ ¼
�

1

exp iðβ þ μÞ
�
: ðF3Þ

The target spinor at the other end of the transverse
holonomy can be written similarly

t ¼ uð−β þ π=2; αðnÞ=2;þβ − π=2Þsð0Þ ≔ uðnÞsð0Þ:
ðF4Þ

The spinor of Eq. (F4) gives the correct direction for
angular momentum at n.

t†ðσA=2Þt ¼ sð0Þ†uðnÞ†ðσA=2ÞuðnÞsð0Þ
¼ sð0Þ†ðσB=2Þsð0ÞDð1Þ

BA

¼ p̂BD
ð1Þ
BA ¼ P̂: ðF5Þ

For simplicity we have been computing with unit spinors,
but strictly speaking s and t should be multiplied byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ4

p
to give the angular momentum vectors the

correct length.
The spinor t in full detail is

t ¼
�

cosðα=4Þ þ i sinðα=4Þ expðiμÞ
cosðα=4Þ exp½iðβ þ μÞ� þ i sinðα=4Þ expðiβÞ

�
;

which shows that the key U(N) variables (spinors now, not
holonomies) vary sinusoidally with n. In the general case
the spinors produce an SU(2) result. In the planar case, the
spinors must generate an O(3) symmetry; hence the half-of-
half-angle cosines and sines in the j ¼ 1=2 case.
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The U(N) formalism contains a fundamental holonomy
operator which is not simply related to the x and y
holonomies used in the present paper. The U(N) operator
contains a holomorphic part, one which depends only on
unstarred spinors, and therefore has a peak value depending
only on unstarred spinors s and t. The holonomies used in
the present paper must be constructed using both starred
and unstarred spinors. For example, the eigenspinors and
eigenvectors expð�iα=4Þ of u can be used to construct u.

uðnÞ ¼ χ expðiα=4Þχ† þ Cχ� expð−iα=4ÞðCχ�Þ†;
χ ¼ χð0; βÞ: ðF6Þ

χ is given by Eq. (F1). C is the usual charge conjugation
matrix −iσY ; χ and Cχ� form a complete set. In the U(N)
formalism, thematrix Eq. (F6) cannot qualify as fundamental,
because both terms on the right contain starred spinors.
The following is an example of a variable which is

holonomic, and therefore plays a fundamental role in the
U(N) formalism. This variable is especially simple to
compute, because in the planar case every transverse x
holonomy has the same axis of rotation (and similarly for
the y holonomies).

F½t; s� ≔ ½Ct��†s
¼ ½Cu�ðnÞsð0Þ��†uðn − 1Þsð0Þ
¼ sð0ÞtrC†uð−β þ π=2; ½αðn − 1Þ
− αðnÞ�=2;þβ − π=2Þsð0Þ

¼ 2 exp½iðβ þ μÞ�½sinðΔÞ sinðμÞ�;
Δ ¼ ½αðnÞ − αðn − 1Þ�=4: ðF7Þ

The overall phase can be removed by changing the arbitrary
overall phases of the basic spinors.

Note all boosts have been fixed when SL(2, C) is reduced
to SU(2) in the canonical approach. Ordinarily one would
construct the intertwiners at each vertex from F½i; j�
variables, because those are SL(2, C) invariant as well
as SU(2) invariant. However, when boosts are fixed, one
may use also E½i; j� variables, which are only SU(2)
invariant.

E½t; s� ≔ t†s

¼ 2 cosðΔÞ þ 2i sinðΔÞ cosðμÞ: ðF8Þ

In the z direction one must use E, since all z angles are zero
and the corresponding F[t, s] vanishes.
The formalism developed in this paper uses a matrix H

which lies in the complex extension of SU(2). The columns
of this matrix also occur in the U(N) formalism. The spin

1=2 representation of H ¼ exp½~p · ~S� is

Hð1=2Þ ¼ ½expðp=2Þ=2�
�

1 exp½−iðβ þ μÞ�
exp½iðβ þ μÞ� 1

�
;

in the limit of moderately large p ∼ 5. The two columns of
H are essentially the spinor s(0).
The U(N) formalism is slightly less intuitive than the

usual formalism, because the spinor is less intuitive than the
associated vector. However, the usual formalism works
directly with the vector, and is not particularly intuitive
either. (A major motivation for the present paper was to
build some intuition.)
Turning from intuition to computation: when one

considers states of spin higher than 1=2, the U(N)
expressions are easier to manipulate. One encounters fac-
torials which are actually explicit expressions for Clebsch-
Gordan coefficients. Given these expressions, usually it is
easy to recouple without consulting a table of 3J symbols.

[1] D. E. Neville, A semiclassical Hamiltonian for plane waves
in loop quantum gravity. I. A model, preceding article, Phys.
Rev. D 92, 044005 (2015).

[2] D. E. Neville, Spin network coherent states for planar
gravitational waves. I, arXiv:0807.1026.

[3] D. Neville, Volume operator for spin networks with planar
or cylindrical symmetry, Phys. Rev. D 73, 124004 (2006);
77, 129901(E) (2008).

[4] J. Friedel and S. Speziale, Twisted geometries: A geometric
parameterization of SU(2) phase space, Phys. Rev. D 82,
084040 (2010).

[5] E. F. Borya, L. Friedel, I. Garay, and E. R. Livine, U(N)
tools for loop quantum gravity: The return of the spinor,
Classical Quantum Gravity 28, 055005 (2011).

[6] E. R. Livine and J. Tambornino, Spinor representation for loop
quantum gravity, J. Math. Phys. (N.Y.) 53, 012503 (2012).

[7] E. R. Livine, Deformation operators of spin networks and
coarse-graining, Classical Quantum Gravity 31, 075004
(2014).

[8] O. R. Baldwin and G. B. Jeffery, The relativity theory of
plane waves, Proc. R. Soc. A 111, 95 (1926).

[9] A. Peres, Some Gravitational Waves, Phys. Rev. Lett. 3, 571
(1959).

[10] J. B. Griffiths, Colliding Plane Waves in General Relativity
(Clarendon Press, Oxford, 1991).

[11] T. Thiemann and O. Winkler, Gauge field coherent states III
(GCS): Ehrenfest theorems, Classical Quantum Gravity, 18,
4629 (2001).

PLANE WAVE …. II. A SINE WAVE SOLUTION PHYSICAL REVIEW D 92, 044006 (2015)

044006-27

http://arXiv.org/abs/0807.1026
http://dx.doi.org/10.1103/PhysRevD.73.124004
http://dx.doi.org/10.1103/PhysRevD.77.129901
http://dx.doi.org/10.1103/PhysRevD.82.084040
http://dx.doi.org/10.1103/PhysRevD.82.084040
http://dx.doi.org/10.1088/0264-9381/28/5/055005
http://dx.doi.org/10.1063/1.3675465
http://dx.doi.org/10.1088/0264-9381/31/7/075004
http://dx.doi.org/10.1088/0264-9381/31/7/075004
http://dx.doi.org/10.1098/rspa.1926.0051
http://dx.doi.org/10.1103/PhysRevLett.3.571
http://dx.doi.org/10.1103/PhysRevLett.3.571
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/18/21/315


[12] V. Husain and L. Smolin, Exactly solvable quantum
cosmologies from two Killing field reductions of general
relativity, Nucl. Phys. B327, 205 (1989).

[13] T. Thiemann, Gauge field coherent states (GCS):
I. General properties, Classical Quantum Gravity 18,
2025 (2001).

[14] T. Thiemann and O. Winkler, Gauge field coherent states II
(GCS): Peakedness properties, Classical Quantum Gravity
18, 2561 (2001).

[15] Constructing a new basis involves work; but there is no
way to avoid some work. Had we adopted the full SU(2)
approach based on Eq. (51), we would have had to compute
outcomes when the D(h) are double grasped.

[16] B. G. Hall, Lie Groups, Lie Algebras, and Representations:
An Elementary Introduction (Springer-Verlag, New York,
2003).

[17] D. E. Neville, Total intrinsic spin for plane gravity waves,
Phys. Rev. D 56, 3485 (1997).

[18] The expression for helicity is a volume sum, rather than the
usual surface term. For a full discussion see Ref. [17]; but
note that the transverse sector resembles special relativity

more than general relativity: the variables (K, ~E) in the
transverse sector are gauge fixed.

[19] D. E. Neville, Planar spin network coherent states II. Small
corrections, arXiv:0807.1035.

[20] The absence of spreading was noted by Schrodinger in the
1920s. For a treatment in the modern literature, see R.
Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[21] M.M. Nieto, in Group Theoretical Methods in Physics,
Proceedings of International Seminar at Zvenigorod, 1982,
edited by M. A. Markov (Nauka, Moscow, 1983), Vol II.
Reprinted in J. R. Klauder and B. Skagerstam, Coherent
States: Applications in Physics and Mathematical Physics
(World Scientific, Singapore and Philadelphia, 1985).

[22] A. Ashtekar, C. Rovelli, and L. Smolin, Gravitons and
loops, Phys. Rev. D 44, 1740 (1991).

[23] F. Girolli and E. R. Livine, Reconstructing quantum geom-
etries from quantum information: Spin networks as harmonic
oscillators, Classical Quantum Gravity 22, 3295 (2005).

[24] L. Freidel and E. T. Livine, U(N) coherent states for loop
quantum gravity, J. Math. Phys. (N.Y.) 52, 052502 (2011).

DONALD E. NEVILLE PHYSICAL REVIEW D 92, 044006 (2015)

044006-28

http://dx.doi.org/10.1016/0550-3213(89)90292-7
http://dx.doi.org/10.1088/0264-9381/18/11/304
http://dx.doi.org/10.1088/0264-9381/18/11/304
http://dx.doi.org/10.1088/0264-9381/18/14/301
http://dx.doi.org/10.1088/0264-9381/18/14/301
http://dx.doi.org/10.1103/PhysRevD.56.3485
http://arXiv.org/abs/0807.1035
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRevD.44.1740
http://dx.doi.org/10.1088/0264-9381/22/16/011
http://dx.doi.org/10.1063/1.3587121

