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This is the first of two papers which study the behavior of the SU(2) holonomies of canonical quantum
gravity, when they are acted upon by a unidirectional, plane gravity wave. The present paper constructs a
model based on holonomies and fluxes having support on a lattice (LHF denotes lattice-holonomy flux,
rather than loop quantum gravity, since there are no loops). Initially, the flux-holonomy variables are treated
as classical, commuting functions rather than quantized operators, in a limit where variation from vertex to
vertex is small and fields are weak. We impose symmetries and fix gauges at the classical level. Despite the
weakness of the fields, the field equations are not linear. Also, the theory can be quantized, and the
expectation values of the quantum operators behave like their classical analogs. Exact LHF theories may be
either local or nonlocal. The present paper argues that a wide class of nonlocal theories share nonlocal
features which survive to the semiclassical limit, and these nonlocal features are included in the near-
classical limit studied here. An appendix computes the surface term required when the propagation
direction is the real line rather than S1. Paper II introduces coherent states, constructs a damped sine wave
solution to the model, and solves for the behavior of the holonomies in the presence of the wave.

DOI: 10.1103/PhysRevD.92.044005 PACS numbers: 04.60.Pp, 04.30.-w

I. INTRODUCTION

This and a succeeding paper [1] investigate the behavior
of quantum gravity fluxes and holonomies in the presence
of a gravitational plane wave. The behavior of traditional,
metric variables in the presence of a weak gravitational
wave is well known. Metric waves are discussed in most
classical textbooks; quantization of the theory is straight-
forward. However, no corresponding discussion has been
given for the flux-holonomy variables characteristic of
canonical quantum gravity.
Most calculations in this paper are classical. Constraints

may be imposed either at the classical level, or at the
quantum level, in the Dirac manner. However, the unidi-
rectional constraints are second-class and must be treated at
the classical level. Second class constraints require Dirac
brackets, which are messy. Computation of Dirac brackets
for the most general classical theory (two polarizations, no
gauges fixed) is especially complicated. We choose to fix
gauges and impose symmetries at the classical level, which
leads to the simplest possible Dirac brackets. Quantization
(early in paper II [1]) is then straightforward, requiring a
single paragraph: replace (Dirac) brackets by commutators;
choose factor orderings.
After that one-paragraph foray into the quantum theory,

the paper reverts to the classical side. The Hilbert space is
based on coherent states, and these states turn quantum
operators back into classical, commuting functions.
Consider a quantum constraint which is a product of
operators O1O2 � � �, acting on a coherent state jcohi:

ðO1O2 � � �Þjcohi ¼ ðO1ðclÞO2ðclÞ � � �Þjcohi þ SC: ð1Þ

SC denotes small correction states, down by order 1=
ffiffiffi
L

p
;

the coherent state is typically only an approximate eigen-
state of the Oi. Since coherent states are peaked at specific
values of flux and holonomy, the operators become
functions OiðclÞ evaluated at those peak values.
Paper II [1] constructs a sinusoidal solution to the

classical constraints. One then reads Eq. (1) right to left:
in a regime where coherent states are applicable, a classical
solution to the constraints implies the vanishing of the
quantum constraint. The classical results then carry over to
the quantum theory: the expectation value of a quantum
operator varies with the plane wave in the same way as the
corresponding classical variable.
We refer to the model as a LHF theory (latticr, holonomy,

flux) rather than LQG (loop quantum gravity), because there
are no loops (and perhaps because most calculations are
done at the classical level). Also, various authors define LQG
differently, and calling the model LHF allows the reader to
decide whether the present LHF equals his/her LQG.
The present LHF model possesses six features associated

with many LQG models. The basic variables are holono-
mies and fluxes; they have support only on a lattice;
variables are invariant under spatial diffeomorphisms; areas
and volumes are quantized; the field theory limit (the limit
where the lattice disappears) is correct; and the theory is
adequately regulated. (“Adequately”: 1/volume need not be
regulated. Since spins are large in the classical limit, the
volume does not vanish.)
Every exact theory should also possess the above six

features (excepting the comment about the volume).*dneville@temple.edu
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Two further assumptions are introduced to make the theory
easier to solve, as well as closer to the classical limit:
dynamical quantities vary slowly from vertex to vertex;
holonomies are small. Precise definitions of “slowly” and
“small” are given in Secs. II A and II B.
From the discussion just given, the model studied here is

not an exact LHF theory, but rather a near-classical limit of
an exact theory. When one proposes an exact theory, it is
important to check that the classical limit is correct.
However, the present paper does not have as its goal to
construct and test a specific, exact theory; rather, the paper
investigates the behavior of holonomies in a near classical
limit. For this goal, and in the present theoretical environ-
ment, where there is no universally agreed upon exact
theory, the six properties listed above become not just an
adequate starting point. They become a fundamental
starting point. They are fundamental in the sense that, if
the classical limit of an exact theory did not have one or
more of the six features, presumably one would reject that
exact theory as inadequate. Given our relatively modest
goals, as well as the (current) fundamental nature of the six
properties, we believe it is better to start from the six rather
than from an exact theory.
The term “classical” is slightly ambiguous. “Classical”

may refer to a theory using commuting flux-connection
variables, with support on a continuum. Or “classical” may
mean a theory using commuting flux-holonomy variables,
with support only on a lattice. The theory defined on the
continuum will be referred to as classical field theory, or
simply field theory (FT). A classical theory defined on a
lattice will be referred to as classical LHF.
For works which study the renormalization flows con-

necting exact to classical theories, see Han [2], and Giesel
and Thiemann [3]. Han uses a path integral/spin foam
approach, rather than the canonical approach used here.
Giesel and Thiemann take the semiclassical limit of the
master constraint, rather than the usual scalar and vector
constraints, S and V. However, the semiclassical master
constraint is essentially a sum of squares, S2 þ VaVa, so
that the solutions of the follow-up paper II [1] (which are
annihilated by S and V) should also be solutions to the
master constraint.
Both the above treatments are quite general; there is no

discussion of the planar case or gauge-fixing. Bannerjee
and Date [4] construct an exact theory which is specialized
to the planar case; see also Hinterleitner and Major [5].
Both papers use a Bohr quantization of the transverse
degrees of freedom. There are no holonomies along trans-
verse directions (x,y), only holonomies along the longi-
tudinal direction (direction of propagation, z). Transverse
degrees of freedom are represented by two scalars
(essentially, the magnitudes of the axes of the polarization
ellipse) plus an angle (nonzero, if the ellipse axes do not
coincide with the x and y axes). However, if the goal is a
study of the behavior of holonomies in the presence of a

gravitational wave, then the theory must use holonomies
along x and y, rather than Bohr quantization.
In addition, both those theories are local, meaning,

holonomic loops used to define the field strengths at the
nth vertex remain infinitesimally close to that vertex.
A nonlocal, “nearest neighbor,” theory uses finite loops
which include the nearest neighbor vertices at n� 1.
Motivation for including nonlocal features is given at the
beginning of Sec. III.
The present work has both a primary and a secondary

goal. The primary goal is to study the behavior of
holonomies in the presence of a gravitational wave. The
secondary goal is to assume the exact theory is nonlocal,
and study the effect of nonlocal features on the theory.
In deciding which nonlocal features to include, again one

should not start from one exact nonlocal theory. Rather, one
should identify nonlocal features which are common to a
large class of nonlocal theories and can survive to the
classical limit. Consider the class of theories which treat
both nearest neighbors on an equal footing. For example,
let the vertices along z be indexed by integers nz. If the
model includes a nonlocal holonomic loop starting at nz
and going to nz þ 1, then it must also include a loop
starting at nz and going to nz − 1, and with equal weight.
Since there is no reason to favor one nearest neighbor over
the other, this class of theories is likely to be large.
Given equal treatment of both nearest neighbors, which

nonlocal features survive? Section III studies a sample
nonlocal model which treats both nearest neighbors
equally. Let haðnzÞ be a holonomy along transverse edges
a ¼ x or y, located at vertex numbered nz. A local definition
for the derivative of ha would be

½haðnz þ ϵ=2Þ − haðnz − ϵ=2Þ�=ϵ:

ϵ is an infinitesimal regulator which cancels out at the end
of the calculation. The model of Sec. III, when taken to the
limit of small connections and slow variation, replaces the
above local definition by a nearest-neighbor, nonlocal
generalization,

½haðnz þ 1Þ − haðnz − 1Þ�=2Δz: ð2Þ

Δz, the distance between vertices, must be small, like ϵ, so
that the above ratio is a good approximation to the
derivative. Unlike ϵ, Δz is not taken to zero at the end
of the calculation. In a nonlocal approach the difference,
and not the derivative, is fundamental.
Similarly, the exact version of the model of Sec. III is

built from holonomies

hzða; bÞ ≔ exp

�
i
Z

b

a
AZ

z σZ=2

�
;

where hz is the holonomy along the propagation direction,
and a and b (b − a ¼ 1) are nearest neighbor vertices.
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In the slow variation limit, these are replaced by a
combination which treats the two nearest neighbors
symmetrically:

hzðnzÞ≔ ½hzðnz;nzþ1Þþhzðnz−1;nzÞ�=2 ðnonlocalÞ;
hzðlocalÞ¼ ½hzðnz;nzþϵÞþhzðnz−ϵ;nzÞ�=2: ð3Þ

(The local version is included for comparison.1)
The model considered in Sec. III is relatively simple.

Appendix A discusses a more complex nonlocal model,
which also treats nearest neighbors equally. This model
uses nonstandard grasps, as well as definitions of
differences and z holonomies which do not agree with
the nonlocal definitions given in Eqs. (2) and (3).
Nevertheless, in the semiclassical limit the nonlocal def-
initions in the exact model are replaced by the definitions at
(2) and (3). The two models offer strong support for the
idea that a nonlocal model which treats neighbors equally
will always possess a semiclassical limit with differences
and holonomies given by (2) and (3).
Note the above nonlocal modifications, (2) and (3), are

certainly plausible. Even before studying any exact non-
local model, if one wished to treat nearest neighbors
equally, then the above central difference and z holonomy
are certainly the simplest possibilities. Presumably the
reader could skip the detailed study of the nonlocal models
on a first reading.
The existence of a universal classical limit is another

reason why we do not start from an exact theory. The slow
variation assumption is a mini version of the coarse
graining assumption used to treat models in statistical
mechanics, because slow variation allows contributions
from several vertices to be averaged together. As in
statistical mechanics, the finer details of the exact theory
often are lost; what counts is the universal limit.
The present model is an effort to go beyond standard

approximations in two ways. As just discussed, the model
is nonlocal. Also, it is less nonlinear than exact theories, but
still nonlinear. The solution constructed in paper II [1] is an
expansion in a small amplitude a, and nonlinear effects
appear at order a2. (If only terms linear in a are kept, and if
differences are replaced by derivatives, then the model is
equivalent to weak field geometrodynamics.)
Section IV constructs the Euclidean Hamiltonian of the

model. Section V discusses the flux-holonomy algebra of
the model.. Section VI constructs extrinsic curvatures using
a technique proposed by Thiemann. Section VII constructs
the Gauss constraint and the Lorentzian Hamiltonian.
Sections VIII, IX, and XI discuss single polarization,
diffeomorphism, and unidirectional constraints respec-
tively. Section X discusses boundary conditions at infinity.

The term “planar” is a slight misnomer: the theory does
not have full planar symmetry in the xy plane. With a
suitable choice of coordinates, the Killing vectors become
∂=∂x; ∂=∂y, implying that all functions are independent of
x and y. However, this is translational invariance, not full
planar symmetry, which would require isotropy with
respect to rotations in the xy plane. Isotropy is inconsistent
with the presence of waves. Vibrations of the usual cloud of
test particles are described by an ellipse, which picks out
preferred directions. The translational invariance implies
the ellipse is the same everywhere in the xy plane.
For a quantization of plane waves using geometrody-

namics variables, see Mena Marugán and Montejo [6].

A. Conventions

Throughout, indices from the middle of the alphabet
i; j;… range over coordinates x, y, z on the manifold.
Indices from the beginning of the alphabet a; b;… range
over x, y only, where z is the direction of propagation.
Similarly, indices I, J, K range over coordinates X, Y, Z in
the local free-fall frame. Indices A;B… range over trans-
verse directions X, Y only.
When expanding 2 × 2 matrices, we use Hermitian

sigma matrices, rather than anti-Hermitian tau matrices.
A typical Lie group valued operator would be written

Oi ≔ OI
iσI: ð4Þ

The sigma matrices, and bold face for matrices, will be
suppressed except when it is necessary to emphasize the
matrix character of an equation. It should be clear from
the context which quantities are sigma valued. Usually the
operator in Eq. (4) will be written simply as Oi.
In LHF densitized cotriads are written as area two-forms,

Ei
IðnÞdxj ∧ dxkϵijk=2!;

and connections are written as one-forms, AJ
j dx

j. The area
and line integrals in the definitions of triad and connection
guarantee simpler transformation properties under spatial
diffeomorphisms; also, the [holonomy, triad] commutator
will contain enough integrations to kill the delta function.
Usually, the area and line integrals will be suppressed. For
example, Ei

I will be written as

Ei
Idx

j ∧ dxkϵijk=2! → Ei
I: ð5Þ

B. Initial gauge fixing

Because of the planar symmetry, Husain and Smolin are
able to choose gauges which simplify the ~E and connection
fields [7]. These choices reduce the general, 3þ 1 dimen-
sional case to the planar case; they therefore precede all the
gauge choices to be made in this paper.

1The nonlocal version actually transforms like a local operator
under gauge transformations, but only after a slow variation
assumption is invoked. See Sec. III B.
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Ea
Z ¼ Ez

A ¼ 0;

AZ
a ¼ AA

z ¼ 0: ð6Þ

a ¼ x; y; A ¼ X;Y. These choices fix the SU(2) rotations
around axes X,Y and the diffeomorphisms in transverse
directions x,y. Three constraints survive: the scalar con-
straint, the vector constraint for z diffeomorphisms, and the
Gauss constraint for rotations around Z: SUð2Þ → Uð1Þ.
Since the only AI

z which survives has I ¼ Z, holonomies
along the longitudinal z direction are quite simple, involv-
ing only the rotation generator SZ for rotations around Z.

exp
�
i
Z

AZ
z · SZ

�
:

Conversely, the transverse holonomies (those along the x
and y directions of the spin network) contain no SZ and
involve SX; SY only.

C. Topology of the spin network

As a convenience for readers not familiar with the usual
network used in the planar case, this section includes a
description of the topology.
In the z direction (direction of propagation of the wave)

the spin network has the topology of the real line. The line
includes a series of vertices, labeled by integers nz. The
vertices are connected by edges, which may be labeled by
their endpoints, as ðnz; nzþ1Þ.
In directions transverse to propagation, there are two

possible approaches. The first approach is easiest to
relate to the full, three-dimensional case. We give each
vertex on the original z axis three integer coordinates:
(nx ¼ 0;ny ¼ 0;nz). We then construct a three-dimensional
rectangular lattice by drawing a congruence of lines, all
parallel to the original z axis. All lines have the identical
arrangement of vertices, but differ in their x and y
coordinates, nx ¼�1;�2;…;ny ¼�1;�2;…. We connect
neighboring vertices having the same nz with edges
ðnx; nxþ1Þ; ðny; nyþ1Þ. In this way one fills out a full,
three-dimensional rectangular lattice.
Each member of the congruence is labeled by a pair of

indices ðnx; nyÞ, and each vertex by a triplet ðnx; ny; nzÞ.
Because of the translational invariance, physics will be
independent of ðnx; nyÞ. We will refer to this as the
“congruence” picture. [This is a slight abuse of notation,
since members of a traditional congruence are labeled by
continuously varying parameters, rather than discrete
integers (nx; ny).]
The second method for handling the transverse direc-

tions is simpler topologically, but a little harder to relate to
the three-dimensional case. We construct a small cubic box
surrounding each vertex and equip each face with an
outward normal. We call a face positive (negative) if its
normal points in the positive (negative) coordinate

direction. The holonomy with support on edge ðnx; nxþ1Þ
leaves a cube at position nx, passing through the positive x
face, then enters the nearest neighbor cube at nxþ1, passing
through a negative x face. Because of the translational
symmetry, the holonomy entering the negative x face of
cube nxþ1 must be identical to the holonomy entering the
negative x face of cube nx. Therefore one could give the
edge ðnx; nxþ1Þ the topology of a circle. The holonomy
leaves cube nx through the positive x face, travels along
ðnx; nxþ1Þ (now a circle, rather than a straight line) and
reenters nx through the negative x face.
The congruence has now disappeared. There is only a

real line R in the z direction, and two S1 edges leaving each
vertex in the x and y directions. We will refer to this as the
“S1 picture.” The R × S1 × S1 topology is simpler for
calculations; but for thinking, it is perhaps better to use
the congruence: one has more assurance the results will
generalize to three dimensions.
In the congruence picture, it is natural to refer to the

smallest rectangular area enclosed by x and y edges as an
“xy plane.” We use this terminology, even though in the S1
picture this area has the topology of a torus. Similarly, an
area bounded by two neighboring edges in the z direction
and two neighboring x edges will be called the “xz plane.”
In the S1 picture this area has the topology of a cylinder.

II. APPROXIMATIONS

This section proposes specific small field and slow
variation assumptions. These assumptions simplify calcu-
lations; they also bring the theory close to the limit where
quantum behavior goes over to classical behavior.

A. The small field (small sine) approximation

One can obtain the field theory limit of LHT
(lattice → continuum) by expanding the holonomy as

hi ¼ exp

�
i
Z

Ai · S

�
→ 1þ i

Z
Ai · S ðFTÞ: ð7Þ

This expansion is too drastic for present purposes. It
replaces a bounded expression by an unbounded one.
The following, small sine approximation is less drastic,
in that the bounded expression is replaced by another
bounded expression, because the connection remains inside
a holonomy. We expand the basic spin 1=2 holonomy in
sigma matrices:

hi ¼ expðiσ · n̂ðiÞθi=2Þ
¼ 1 cosðθi=2Þ þ i sinðθi=2Þn̂ðiÞ · σ: ð8Þ

hi is a rotation through θ around an axis given by n̂. We now
expand the expression in powers of sine, keeping out to
linear in sine.
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hi ¼ 1½1 − sin2ðθi=2Þ=2þ � � �� þ i sinðθi=2Þn̂i · σ
¼ 1þ i sinðθi=2Þn̂i · σ ðSSÞ: ð9Þ

SS denotes a relation which holds only in the small sine
limit, when terms of order sin2ðθi=2Þ are neglected. The
function on the right remains bounded.
When carrying out this expansion, it is a little simpler to

write each holonomy as

h ≔ h̄þ ĥ;

h̄ ¼ ðhþ h−1Þ=2 ¼ 1 cosðθi=2Þ;
ĥ ¼ ðh − h−1Þ=2 ¼ i sinðθi=2Þn̂ðiÞ · σ: ð10Þ

Then

h ¼ 1þ ĥ; ðSSÞ ð11Þ

which is a more compact notation not involving explicit
factors of sinðθ=2Þ. In this notation, the passage from small
sine to field theory is [compare (11) and (7)]

−2iĥi →
Z

Ai · σ ðFTÞ: ð12Þ

When expanding the Hamiltonian in sines, how many
terms should be kept? When taking LHF to the field theory
limit, one must keep terms out to order A2, in order to
recover the usual field theory Hamiltonian. Therefore, in
the small sine expansion of the constraints, one must keep
terms out to order ĥ2 ¼ order sin2. This will guarantee that
the small sine limit has the same FT limit as full LHF.
The small sine replacement is simply a recognition that

certain terms in the scalar constraint are negligible in the
weak field limit. SS need not be used everywhere in the
theory. If a given constraint or a Hilbert space state is
already tractable, in its exact form, there is no need to
simplify further. In particular, the follow-up paper [1]
constructs a Hilbert space of states. Those states are
products of exact spin 1=2 holonomies (no SS expansion).
The states are coherent, so that their behavior (when acted
upon by holonomy or flux operators) is already simple; a
SS expansion of states would be pointless.
Since the basic holonomy is just an SU(2) rotation

matrix, the products of holonomies at each vertex form
representations of SU(2). One might question the validity
of the SS approximation, because the kinematic dot product
based on SU(2) Haar measure integrates over all values of
θi; therefore over all values of sinðθi=2Þ, not just small
values.
Here the coherent states come to the rescue. Coherent

states are designed to be peaked simultaneously at both a
coordinate and a conjugate momentum (θa and typical spin
La, a ¼ x; y; or θz and typical z component of spin m). If
peak values of θi are chosen small, then matrix elements

will be dominated by small values of sinðθi=2Þ, and the
small sine approximation will be valid.
The wave functional can be peaked at small sinðθi=2Þ,

only if typical angular momenta La (and z components m)
are moderately large. As is typical for coherent states, the
standard deviations of θa and its conjugate momentum La
are inverses of each other. The standard deviations are order
1=

ffiffiffiffiffi
La

p
and

ffiffiffiffiffi
La

p
respectively. Sharp θa therefore requires

moderately large La, 1=
ffiffiffiffiffi
La

p
≪ π. The small sine approxi-

mation breaks down if the representations of the rotation
group occurring at a given vertex have too small values of
total angular momentum.
The small sine assumption, discussed above, does not

explicitly mention large quantum numbers. Nevertheless, it
is clear from the discussion of coherent states that the small
sine assumption will not work unless quantum numbers
are large.

B. The slow variation assumption

In the classical limit one expects slow variation of
dynamical quantities from one vertex to the next [8].
Slow variation implies that a plot of the quantity versus
vertex index nz looks like a smooth curve, rather than a
union of piecewise smooth segments.
To make this idea more precise, define central and

forward differences by

δcfðnÞ ¼ ðfðnþ 1Þ − fðn − 1ÞÞ=2; ð13Þ

δffðnÞ ¼ fðnþ 1Þ − fðnÞ: ð14Þ

The slow variation assumption is

ðδf=fÞ ≪ 1; ð15Þ

where δ may be either difference.
The slow variation assumption also applies to higher

differences. We define second differences by

δð2Þc fðnÞ ≔ ½δcfðnþ 1Þ − δcfðn − 1Þ�
¼ ½fðnþ 2Þ − 2fðnÞ þ fðn − 1Þ�=4;

δð2Þf fðn − 1Þ ≔ ½δffðnÞ − δffðn − 1Þ�
¼ ½fðnþ 1Þ − 2fðnÞ þ fðn − 1Þ�: ð16Þ

If δf=f is negligible, ðδf=fÞðδg=gÞ is more so. Let
g ¼ δf.

ðδf=fÞðδg=gÞ ¼ ðδf=fÞðδðδfÞ=ðδfÞ
¼ δð2Þf=f ≪ 1: ð17Þ

The second difference is of second order in small
differences.
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The slow variation assumption may be thought of as a
consequence of the small sine assumption. Sines contain
time derivatives ∂=∂ct, since, from Eq. (12),

2 sinðθi=2Þ ¼ −2iĥ →
Z

Ai · σ;

and A contains the extrinsic curvature K. The differences δf
correspond to space derivatives ∂=∂z. Since the excitations
are massless, time and space derivatives should be com-
parable: both are small if one is small. Since the two
assumptions are closely connected, for brevity sometimes
we will refer to small sine, slow variation simply as
small sine.
Since the space derivatives are of the same order as the

sines, and we are keeping out to order sin2 in the
Hamiltonian, we must keep differences out to order
ðδE=EÞ2. The spin connections ΓI

i are of order δE=E,
since they contain one derivative and are homogeneous of
degree zero in the triads. Therefore Γ terms must be kept
out to order Γ2.

III. LOCAL VS NONLOCAL

Initial formulations of LQG used local field strengths [9].
Smolin used the renormalization group to argue that a local
formulation does not allow propagation of information
from one vertex to the next [10,11]. Thiemann [12,13]
proposed his “master constraint” program, which allows
nonlocal field strengths, while preserving a constraint
algebra free of anomalies. (The two issues, anomalies
and nonlocality, are closely connected, because the origi-
nal, local formulation is anomaly free.)
A large quantum number calculation is not suited for

checking the master constraint program, or equivalently
checking for the presence of anomalies. In quantum geo-
metrodynamics, anomalies arise when a constraint com-
mutator produces a metric component to the right of a
constraint. The corresponding result in LHTwould be triad
components to the right of a constraint. Triads have matrix
elements of order the spin of the state, i.e. if a coherent state
has angular momentum peaked at L, the matrix element
will be order L. If the triad is moved to the left of a basic

spin 1=2 holonomy in the constraint, the holonomy will
change the spin of the state by order unity, and therefore
change the matrix element of the triad, in its new position,
by order unity. The fractional change in the matrix element,
on moving the triad to the left, is then order ΔL=L ∼ 1=L,
which is negligible in the limit of large quantum numbers.
(See also the further comments on anomalies in Sec. X.)

A. A nonlocal model

If a classical nonlocal model includes contributions from
both nearest neighbors, and includes them with equal
weights, then the weak field limit will involve central
differences and averaged z holonomies, as at (2) and (3).
The following, specific model shows how this happens.
The model employs holonomic loops, nearest neighbor

nonlocal.

FxyðnzÞ ¼ 2ihxðnzÞ−1hyðnzÞ−1hxðnzÞhyðnzÞ=ΔxΔy;
Fzaðnz; nz þ 1Þ ¼ 2ihaðnzÞhzðnz; nz þ 1Þ−1haðnz þ 1Þ−1

× hzðnz; nz þ 1Þ=ΔxaΔz;
Fzaðnz; nz − 1Þ ¼ −2ihaðnzÞhzðnz − 1; nzÞhaðnz − 1Þ−1

× hzðnz − 1; nzÞ−1=ΔxaΔz: ð18Þ

On each line, add the Hermitian conjugate. The loop for
Fij is a finite rather than infinitesimal rectangle in plane ij.
The loops Fzaðn; n0Þ run from vertex n to nearest neighbor
vertex n0, then return to vertex n. The field strength FxyðnzÞ
traverses a loop in the xy plane, and hence remains entirely
at z value nz; there is no need for two arguments.
These field strengths may be taken to the small sine limit

by systematically replacing one or two h�1
i by �ĥi, then

replacing the remaining hi by unity. A ½ĥaðnzÞ; ĥaðnz þ 1Þ�
term in Fza cancels because the commutator of transverse
sigma matrices can give only unity or σz, and this vanishes
when Fza is traced with the triad-dependent factor in the
Hamiltonian, Σza. That factor contains no σZ

Σza ¼ ½Ez
ZσZ;E

a
AσA�=jej ∝ σB; A;B ≠ Z: ð19Þ

The small sine limits are then

FxyðnzÞ ¼ ½ĥx; ĥy�2i=ΔxΔy;
Fzaðnz; nz þ 1Þ ¼ ð−2iÞ½ĥaðnz þ 1Þ − ĥaðnzÞ�=ΔxaΔzþ ð2iÞ½ĥzðnz; nz þ 1Þ; ĥaðnz þ 1Þ�=ΔxaΔz;
Fzaðnz; nz − 1Þ ¼ ð−2iÞ½ĥaðnzÞ − ĥaðnz − 1Þ�=ΔxaΔzþ ð2iÞ½ĥzðnz − 1; nzÞ; ĥaðnz − 1Þ�=ΔxaΔz ðSSÞ: ð20Þ

The factors of ð−2iÞ lead to the correct FT limit;
cf. Eq. (12). (Another factor of 2i is generated by the
commutators of the sigma matrices.) There is only one
possible Fxy because only holonomies at nz are available for

its construction. There are two Fza because nz has two
nearest neighbors.
We now apply slow variation to the model. Both loops

Fzaðnz; nz � 1Þ start from the same vertex nz and are
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multiplied by the same triad factor ΣzaðnzÞ. Nearest
neighbor contributions from both nz − 1 and nz þ 1 are
included, and with equal weights, because there seems no
reason to favor one nearest neighbor over the other.
Treating the neighbors equally has significant conse-

quences. Consider first the forward difference terms.

He ¼ �� �þ ðTr=2Þ½Fzaðnz;nzþ 1ÞþFzaðnz;nz− 1Þ�ΣzaðnzÞ
¼ � � �þ ðTr=2Þ½ĥaðnzþ 1Þ− ĥaðnzÞþ ĥaðnzÞ
− ĥaðnz− 1Þþ order ĥ2�ΣzaðnzÞ

¼ � � �þ ðTr=2Þ½2δðcÞĥaðnzÞþ order ĥ2�ΣzaðnzÞ: ð21Þ

Tr=2 means take 1=2 the trace over the sigma matrices in
the expression to the right. The two forward differences in
Fzaðnx; nz � 1Þ have combined into one central differ-
ence, Eq. (13).
There are also consequences for the commutator terms

(order ĥ2 terms).

He ¼ � � � þ ð2iÞðTr=2Þf½ĥzðnz; nz þ 1Þ; ĥaðnz þ 1Þ�
þ ½ĥzðnz − 1; nzÞ; ĥaðnz − 1Þ�gΣzaðnzÞ: ð22Þ

Each operator may be split up into an average plus a
difference.

ĥzðnz; nz � 1Þ ¼ ½ĥzðnz; nz þ 1Þ þ ĥzðnz − 1; nzÞ�=2
� ½ĥzðnz; nz þ 1Þ − ĥzðnz − 1; nzÞ�=2

≔ ĥzðnzÞ � ~δĥzðnzÞ;
ĥaðnz � 1Þ ¼ ĥaðnzÞ � δfĥðnzÞ ðSVÞ: ð23Þ

The last line uses slow variation (SV). From Eq. (16), one
can work out an exact formula for ĥaðnz − 1Þ:

ĥaðnz − 1Þ ¼ ĥaðnzÞ − δfĥðnzÞ þ δð2Þf ĥaðn − 1Þ;

The slow variation assumption is used to drop the second
difference, leading to the expression given in Eq. (23).
These expansions may be inserted into Eq. (22) for the
commutator.

He ¼ � � � þ ðTr=2Þ
X
�
ð2iÞ½ĥzðnzÞ � ~δĥz=2; ĥaðnzÞ

� δfĥðnzÞ�ΣzaðnzÞ: ð24Þ

We now expand in the small differences. Because the sum
is even under (þ ↔ −), terms with an odd number of
differences vanish. The leading term involves the average,
ĥz times the local holonomy ĥaðnzÞ; the ĥaðnz � 1Þ have
disappeared. The term linear in differences vanishes. The
term quadratic in differences is down by ðδf=fÞ2 and may
be dropped.
We have now arrived at (2) and (3)—central, rather than

forward differences—and an averaged z holonomy. This
outcome is a consequence of the small sine, slow variation
assumptions and the decision to include both nearest
neighbor field strengths with equal weights. A nonlocal
model which weights nearest neighbors equally will yield a
limit with central differences, local xy holonomies, and
averaged z holonomies.
In this limit one could replace differences by derivatives,

because differences approach derivatives when variation
from vertex to vertex is small. However, if the nonlocal
approach has any validity, the future of LQG will involve
differences. It is therefore helpful to retain some nonlocal
features in the present calculation. It is reassuring that use
of differences and averaged holonomies causes no prob-
lems, at least at this SS, SV level.

B. Brackets involving ĥz
The ĥzðnzÞ defined at Eq. (3) is nonlocal: it does not

commute with Ez
Zðnz � 1Þ. Assuming the h have the same

Poisson brackets as exp½i R A · σ=2�, the nonlocality comes
from the basic bracket

fhzðnz; nz þ 1Þ;Ez
Zðnz or nz þ 1Þg

¼ iðκγ=2Þðσz=2Þhzðnz; nz þ 1Þ: ð25Þ

κ ¼ 8π G; γ is the Immirzi parameter.

AA
a ≔ γKA

a þ ΓA
a : ð26Þ

There is a factor of 1=2 on the right in Eq. (25) because the
grasps occur at endpoints of the integration ranges; there-
fore integrals are over only half a delta function.
Despite the nonlocality, in practice ĥzðnzÞ commutes like

a local variable. Once again slow variation comes to the
rescue. Typically, hzðnzÞ occurs in a sum or is commuted
with a sum. For example,

n
hzðnzÞ;

X
m

gðmÞEz
ZðmÞ

o
¼ iðκγ=2Þðσz=2Þfhzðnz; nz þ 1Þ½gðnz þ 1Þ þ gðnzÞ� þ hzðnz − 1; nzÞ½gðnz − 1Þ þ gðnzÞ�g=2;

gðnz þ 1Þ þ gðnzÞ ¼ 2gðnzÞ þ δfgðnzÞ;
gðnz − 1Þ þ gðnzÞ ¼ 2gðnzÞ − δfgðnzÞ þ δð2Þf gðnzÞ: ð27Þ
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After neglect of terms of order ðδf=fÞ2, the commutator
collapses to

iðκγ=2Þðσz=2ÞhzðnzÞgðnzÞ × 2 ðSVÞ;

which is just the local result.
The bracket, Eq. (27), involves the full holonomy h

rather than ĥ; but one can extend the proof to ĥ by using the
basic Eq. (25).

fĥðnz; nz � 1Þ;Ez
ZðnzÞg ¼ f½h − h−1;Ez

Zg=2
¼ iðκγ=2Þðσz=2Þ½½hþ h−1�=2
¼ iðκγ=2Þðσz=2Þh̄: ð28Þ

If this commutator occurs in a context where it is multiplied
by a term of order sine, one can approximate the final h̄
by unity.
We now discuss the gauge variance of ĥzðnzÞ. The gauge

transformation is a U(1) rotation around Z,

ΛðnÞ ¼ expðiχσz=2Þ;

characterized by an angle of rotation χðnÞ. Since rapidly
varying χ would lead to transformed fields which violate
slow variation, we assume sin χ is small, of the same order
as the small sines of holonomic angles.
We consider first the ĥðn; nþ 1Þ half of ĥzðnÞ. The small

sine Fza field strengths are linear in ĥzðn; nþ 1Þ.

He ¼ � � � þ 2iðTr=2Þ½ĥzðnÞ; ĥaðnÞ�ΣzaðnÞ ðSS; SVÞ:

However, the full Hamiltonian before the SS limit, Eq. (18),
contains one factor of hzðn; nþ 1Þ and one factor of
h−1z ðn; nþ 1Þ. The two transform differently:

hzðn; nþ 1Þ → Λðnþ 1Þ−1hzðn; nþ 1ÞΛðnÞ;
h−1z ðn; nþ 1Þ → ΛðnÞ−1h−1z ðn; nþ 1ÞΛðnþ 1Þ:

In the small sine limit both hzðn; nþ 1Þ and h−1z ðn; nþ 1Þ
reduce to ĥzðn; nþ 1Þ, but with different transformation
behavior:

hzðn; nþ 1Þ → Λðnþ 1Þ−1ĥzðn; nþ 1ÞΛðnÞ;
h−1z ðn; nþ 1Þ → ΛðnÞ−1ð−ĥzðn; nþ 1ÞÞΛðnþ 1Þ ðSSÞ:

It does not matter which of these transformation rules we
use for the ĥzðn; nþ 1Þ in the small sine limit. Either rule
can be related to a local transformation rule:

Λðnþ 1Þ−1ΛðnÞΛ−1ðnÞĥzðn; nþ 1ÞΛðnÞ
¼ exp½iχðnþ 1Þ − iχðnÞ�Λ−1ðnÞĥzðn; nþ 1ÞΛðnÞ;

ΛðnÞ−1ĥzðn; nþ 1ÞΛðnÞΛ−1ðnÞΛðnþ 1Þ
¼ ΛðnÞ−1ĥzðn; nþ 1ÞΛðnÞ exp½−iχðnþ 1Þ þ iχðnÞ�:

In both cases, the local transformation law is multiplied by
exponential factors. These factors are negligible in the
small sine limit, because they occur in a term in the
Hamiltonian which is already order sin2.
The ĥðn; n − 1Þ half of ĥzðnÞ is discussed similarly, with

nþ 1 replaced by n − 1. The remaining factors in the small
sine Hamiltonian, ĥaðnÞ and ΣðnÞ, also transform locally,
leaving the Hamiltonian invariant.

IV. A SMALL SINE, NONLOCAL He

We now propose the following small sine LHF Euclidean
Hamiltonian.

−NHe þ ST ¼
X
nz

NðnzÞfFZ
xyðnzÞEx

JE
y
KϵZJK

þ FA
zaE

z
ZE

a
BϵAZBg=κjejÞ þ ST;

FxyðnzÞ ¼ FZ
xyðnzÞσZ ¼ 2i½ĥxðnzÞ; ĥyðnzÞ�;

FzaðnzÞ ¼ FA
zaðnzÞσA ¼ 2i½ĥzðnzÞ; ĥaðnzÞ�

þ ð−2iÞδcĥaðnzÞ ðSS; SVÞ: ð29Þ

ST stands for “surface term,” required because the z axis
is the real line rather than S1 (as in the Gowdy model). The
surface term will allow us to calculate the energy of the
plane wave in the follow-up paper [1]. The surface term is
calculated in Appendix B.
The field strengths are given by the leading-order

(sinþ sin2) terms in the small sine approximation. The
exact theory is assumed to treat nearest neighbors symmet-
rically, and the Hamiltonian is modeled after the weak field
limits of the nearest neighbor models considered in Sec. III
and Appendix A. Consequently, the above Hamiltonian
involves central differences, rather than derivatives or for-
ward differences. Also, the exact Fza may contain
ĥaðnz � 1Þ, but the small sine limit contains only ĥaðnzÞ,
the nearest neighbor nonlocal average defined at Eq. (3).
The triads

ΣijK ≔ Ei
IE

j
Jϵ

IJK=jej ð30Þ

are moved to the right, a standard choice. The triads are
“double grasp.” For example, triad EzðnÞ has support on xy
areas on both the incoming and outgoing sides of vertex n,
so that EzðnÞ grasps both the incoming and the outgoing z
holonomy at vertex n. The model considered in Appendix A
employs triads which grasp only incoming or only outgoing
holonomies, but not both. However, in the small sine limit,
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these single grasp triads are replaced by double grasp triads.
The volume e need not be regulated in this limit, since it
does not vanish for large quantum numbers.

V. FLUX-HOLONOMY ALGEBRA

The flux-holonomy algebra for these quantities is
determined by the assumption that the ~E grasp both
incoming and outgoing holonomies at a given vertex. In
the transverse case, the double area grasp produces an
anticommutator.

fEa
A; hag ¼ iðγκ=2Þ½σA=2; ha�þ;

fEz
Z; hzg ¼ iðγκ=2Þ½σZ=2; hz�þ: ð31Þ

The area integrations in the E’s (suppressed) combine with
the line integration in the holonomy to cancel the delta
functions. For comparison, second line of Eq. (31) exhibits
the grasp of the longitudinal holonomy. That result agrees
with Eq. (27), because

½σZ=2; hz�þ ¼ ðσZ=2Þhz × 2:

The algebra for the ĥ was derived at Eq. (28).

fEa
A; ĥg ¼ iðγκ=2Þ½σA=2; h̄�þ

¼ iðγκ=2ÞσA ðSSÞ: ð32Þ

VI. SMALL SINE EXPRESSION FOR THE
EXTRINSIC CURVATURE

Thiemann [9] has proposed a two-step process for
constructing a regulated extrinsic curvature. His procedure
uses the Poisson brackets

fjej; Heg ∝ K · E ≔ KI
iE

i
I;

hifh−1i ; K · Eg ∝ Ki;

jej ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðeÞ detE

p
: ð33Þ

sgn(e) is the sign of e and det E. If one inserts the SS
Hamiltonian Eq. (29) on line one above, the result for
extrinsic curvatures and spin connections is

γKi ¼ −2iĥi − Γi;

2ΓI
jE

j
I ¼ −sgnðeÞðδðcÞΣmzMÞΣni

Mϵmni=2! ≔ 2Γ · E;

ΓI
jE

j
M ¼ sgnðeÞðδðcÞΣmz

M ÞΣniIϵmni=2!

þ Γ · EδIM: ð34Þ

The Ej
J are left in place because the Γj in the Hamiltonian

typically occur contracted with a triad.
The functions Γ ¼ Γ½ ~E� in Eq. (34) are identical to the

classical ones, except z derivatives of the ~E are replaced by

central differences. To understand how this happens, we
start from the SS He, Eq. (29). It has terms linear and
quadratic in the ĥ. The fjej;Heg bracket removes one ĥ
[compare Eq. (32)]. K · E then contains terms linear in the ĥ
and terms independent of ĥ. Since the subsequent bracket
with h does not remove an ĥ, the Γ come from the terms in
K · E independent of ĥ; equivalently, they come from the
terms in He linear in ĥ.
The terms in He linear in ĥ are the central difference

terms.

−He þ ST ¼ þ � � � δðcÞĥaΣza þ � � � þ ST

¼ −ĥaδðcÞΣza þ � � � þ no ST: ð35Þ

The last line, the difference analog of an integration by
parts, produces a surface term which is canceled by the
surface term ST. It also produces the δðcÞΣ terms present in
Eq. (34). The additional Σ factor (the factor with no δðcÞ)
comes from the bracket of jej with the ĥa in Eq. (35). □
Proof that an “integration by parts” maneuver is possible

when dealing with differences rather than derivatives: we
start from the following formula, which is exactly true:

δðcÞðAΣÞðnÞ ¼ δðcÞAðnÞð1=2Þ½Σðnþ 1Þ þ Σðn − 1Þ�
þ ð1=2Þ½Aðnþ 1Þ þ Aðn − 1Þ�δðcÞΣðnÞ:

ð36Þ

Equation (36) contains averages such as ð1=2Þ½Aðnþ 1Þ þ
Aðn − 1Þ�, whereas the distributive law for derivatives has
just A(n). From Eq. (16) the sum Aðnþ 1Þ þ Aðn − 1Þ
equals 2 A(n) plus a forward second derivative. The slow
variation assumption, Eq. (17), can be used to drop the
second derivative. Then

δðcÞðAΣÞðnÞ¼ δðcÞAðnÞΣðnÞþAðnÞδðcÞΣðnÞ ðSVÞ: ð37Þ

This formula more closely resembles the corresponding
relation for derivatives. If the AðnÞδðcÞΣðnÞ term is moved
to the left-hand side of the equation, the result is an
integration by parts identity for the central difference. □

A number of FT brackets have closely similar LHF
analogs. The following example is given without proof (FT
bracket first; then analogous SV LHT bracket).

fKEðzÞ; ∂ 0
zEðz0Þ=Eðz0Þg ¼ ½∂ 0

zδðz − z0Þ�EðzÞ=Eðz0Þ
− δðz − z0Þ∂ 0

zEðz0Þ=Eðz0Þ
¼ ∂ 0

zδðz − z0Þ ðFTÞ;
fKEðqÞ; δðcÞEðmÞ=EðmÞg ¼ δðcÞðmÞδðq;mÞEðqÞ=EðmÞ

− δðq;mÞδðcÞEðmÞ=EðmÞ
¼ δðcÞðmÞδðq;mÞ ðSVÞ: ð38Þ
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K and E stand for any KI
j and its conjugate E

j
I . The quantity

δðcÞðmÞδðq;mÞ ≔ ½δðq;mþ 1Þ − δðq;m − 1Þ�=2

is the difference of a Kronecker delta δðq;mÞ. This
difference is the discrete analog of the derivative of a
Dirac delta function.

VII. CONSTRAINTS IN THE SMALL
SINE LIMIT

A. The Gauss constraint

In classical or quantum field theory, the Gauss identity

0 ¼ ∂iEi
I þ ϵIJKAJ

mEm
K ð39Þ

can be broken into two parts:

0 ¼ ∂iEi
I þ ϵIJKΓJ

mEm
K ;

0 ¼ ϵIJKKJ
mEm

K: ð40Þ

The breakup is possible because the first line vanishes by
itself: the covariant divergence of a density one triad
vanishes, and involves no Christoffel symbols.
In the plane wave case only U(1) gauge rotations

corresponding to rotations around the Z axis survive.
Line one above becomes

0 ¼ δðcÞEz
Z þ ϵZABΓA

mEm
B : ð41Þ

The derivative has been replaced by a central difference.
Equation (41) may be derived from the SS Γ, Eq. (34).
Main steps in a direct proof: relabel M; I → J;K on the last
line of Eq. (34), and replace the Σ by triads, using

ΣijK ≔ Ei
IE

j
Jϵ

IJK=jej
¼ eiIe

j
Jjej

¼ sgnðeÞeKk ϵijk: ð42Þ

Then use the antisymmetry of the Levi-Civita tensors to
replace

ϵzmrδðcÞeJreIm → ðϵzmr=2Þ½ðδðcÞeJrÞeIm þ ðδðcÞeImÞeJr �
¼ ðϵzmr=2ÞδðcÞðeJreImÞ ðSVÞ
¼ ð1=2ÞsgnðeÞδðcÞEz

Z: □ ð43Þ

The second line of Eq. (40) must be imposed as a constraint
on the Hilbert space of coherent states.

B. The Lorentzian Hamiltonian

The Lorentzian Hamiltonian H equals minus the
Euclidean Hamiltonian, plus terms quadratic in the extrin-
sic curvature.

H ¼
X
n

½−ð1þ γ2Þ=2κ�ðKI
iK

J
jϵIJKe

ijKNÞðnÞ − He ðFTÞ:

ð44Þ

The Hamiltonian of Eq. (44) contains three variables:
Ki; ĥi, and ΣijK . They are not independent, and one must
decide which variable to eliminate. From Eq. (34), one can
eliminate either Ki or ĥi. Either choice introduces a new,
and complicated field, the Γi.
There is no way of avoiding the Γi. However, the

unidirectional constraints will allow K to be replaced by
a function of the Σ. Anticipating this, we eliminate the ĥi.

Hþ ST ¼
X
n

½1=κ�f−KI
xKJ

yϵIJKϵ
KMNEx

ME
y
NNðnÞ=jej

− KZ
zKA

aEa
AE

z
ZNðnÞ=jej

þ ΓI
xΓJ

yϵIJKEx
ME

y
Nϵ

MNKNðnÞ=jej
þ ΓZ

z ΓA
aEa

AE
z
ZNðnÞ=jej

− ΓA
aϵBAδðcÞ½NEz

ZE
a
BðnÞ=jej�g: ð45Þ

C. Identities obeyed by the Γ

In Eq. (45), terms linear in K have canceled out, because
of Gauss, second line of Eq. (40), plus an identity obeyed
by the Γ,

0 ¼ δðcÞΣmzI þ ϵIJKΓJ
i ΣmiK: ð46Þ

This is the LHF analog of a FT identity: with δðcÞ replaced
by ∂z, Eq. (46) states that the covariant divergence of a
function of triads must vanish. The relation involves no
Christoffel symbols because of the antisymmetry in indices
z, a. The FT version of this identity guarantees that the FT
Hamiltonian contains no linear in K terms; the LHF version
functions similarly.
Equation (46) can be used to define the Γ, since it can be

solved for the Γ. The Γ obtained in this manner are the same
as the Γ obtained from Thiemann’s procedure, Eq. (34).
Main steps in the proof: multiply the above equation by the
triad eMm . In the second, ΓΣ term, the ΣmiKeMm gives an ~E. In
the first, δðcÞΣ term, replace eMm by a Σ, by inverting the
relation between Σ and triad:

ΣimM ≔ Ei
IE

m
Nϵ

INM=jej
¼ eMr ϵrimsgnðeÞ;

eMm ¼ sgnðeÞΣinMϵmin=2!: □

The following relations are also useful for simplifying
the Hamiltonian.

ΓA
z ¼ ΓZ

a ¼ 0; ð47Þ
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ΓA
aEa

A ¼ 0; a;A transeverse: ð48Þ

For example, Γ, like ~E, is block diagonal, with ΓZ
z in the

1 × 1 block, and the transverse trace vanishes. Both these
results follow from Eq. (34) by taking M ¼ Z, A and I ¼ Z,
A in turn.
The Γ obey various relationships in FT, andmost of these

remain valid in SS LHT, despite replacement of derivatives
by differences. This is so, because the relationships are
proved using only algebra. The proofs do not involve
calculus or the properties of the derivative.

D. The vector constraint Hz

Since the wave functional to be constructed is not based
on closed loops, the diffeomorphism constraint is not
satisfied automatically. It must be treated as an additional
constraint.
The classical field theory constraint is

NzHz ¼ ð1=κγÞ
Z

d3xNzFAzaEa
A ðFTÞ: ð49Þ

We introduce the lattice and make the same assumptions
as for the Hamiltonian: the nonlocal version includes both
nearest neighbors with equal weight; small sine and slow
variation approximations apply. The outcome is as for the
Hamiltonian: the ĥzðnz; nz � 1Þ are replaced by an average;
the ĥaðnz � 1Þ are replaced by ĥaðnzÞ; derivatives are
replaced by central differences.

κγNzHz ¼
X
n

NzðTr=2Þfð−2iÞδðcÞĥaðnÞEaðnÞ

þ 2i½ĥz; ĥaðnÞ�EaðnÞg ðSS; SVÞ: ð50Þ

As in the FT case, one must add in a term proportional to
the Gauss constraint to make Hz into the generator of z
diffeomorphisms. The second line of Eq. (50) equals

ð−2iÞ2ĥZz ϵABĥAaðnÞEa
BðnÞ: ð51Þ

One can replace ð−2iÞĥ → γKþ Γ. From Gauss, Eq. (40),
the term involving K vanishes, and the term involving Γ
equals one half of the Gauss constraint, Eq. (40).
Equation (50) becomes

κγNzHz ¼
X
n

Nzfð−2iÞδðcÞĥAaðnÞEa
AðnÞ

− ð−2iÞĥzðnÞδðcÞEz
Zg ðSS; SVÞ: ð52Þ

The next few sections simplify the Hamiltonian by choos-
ing gauges and imposing constraints.

VIII. SINGLE POLARIZATION CONSTRAINTS

The single polarization constraints are

Ex
Y ¼ Ey

X ¼ 0: ð53Þ

These constraints must obey the consistency conditions

fHþ ST;Ex
Yg ¼ fHþ ST;Ey

Xg ¼ 0;

which of course just require the vanishing of the conjugate
coordinates.

Kx
Y ¼ Ky

X ¼ 0: ð54Þ

For brevity these conditions will be denoted simply as
“single polarization” constraints; but they not only spe-
cialize to a single polarization; they also fix the U(1) gauge.
If one wishes to specialize to single polarization without
fixing the U(1) gauge, one may impose Ex

I Ey
I ¼ 0.

The triad and ~E matrices are now diagonal. Additionally,
from Eq. (42), all three indices of ΣijK must be unequal. For
example,

ΣmzZ ¼ ΣxyX ¼ 0 ðsingle polÞ;

while ΣxyZ is finite. This follows from Eq. (42) and the
diagonal nature of the triads. Also, from Eq. (34), the only
surviving Γ are the two off-diagonal ΓX

y ;ΓY
x .

ΓX
x ¼ ΓY

y ¼ ΓZ
z ¼ 0 ðsingle polÞ: ð55Þ

IX. THE DIFFEOMORPHISM CONSTRAINT

In FT, LHF, and LQG the usual gauge choice which
fixes the Lorentz boosts, reducing the full Lorentz group to
SU(2), is

etX;Y;Z ¼ 0 ¼ ex;y;zT : ð56Þ

This gauge still allows transformations

t0 ¼ t0ðtÞ; z0 ¼ z0ðz; tÞ: ð57Þ

The transverse triads vary with this change in the z
coordinate, despite their lack of an explicit z index, because
e, the volume factor, contains an implicit z subscript.
Conversely, the longitudinal triad (has an explicit z index
but) does not change with change in z coordinate.

Ea
A ∝ jej ¼ sgnðeÞeZð2Þz e;

Ez
Z ¼ jejezZ ¼ sgnðeÞðð2ÞeÞ; ð58Þ

ð2Þe is the determinant of the 2 × 2 transverse triad matrix,
an invariant. Therefore Ez

Z is a scalar, while the Ea
A are rank
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one covariant tensors. Therefore a gauge fixing constraint
must involve at least some transverse triads. We use a gauge
fixing function constructed from the two simplest triad
functions which are U(1) scalars, ð2Þ ~E and Ez

Z.

0 ¼ ln½ð2Þ ~E=ðCEz
ZÞpþ1=2� ≔ D1;

0 ¼ 2KzEz þ KaEa=2 − pKaEa ≔ D2: ð59Þ

C is a constant. ð2Þ ~E is the determinant of the 2 × 2
transverse cotriad matrix. The single polarization con-
straints imply

ð2Þ ~E ¼ Ex
XE

y
Y:

Equation (59) is a family of gauge choices, depending on a
parameter p. D1 depends on pþ 1=2, rather than p, because
at a later point the value p ¼ 0will prove to be special. The
second line is the consistency condition, the result of
demanding fH;D1g ¼ 0.
The first line proposes a gauge choice involving a

logarithm, rather than a simpler choice

ð2Þ ~E − ðCEz
ZÞpþ1=2 ¼ 0: ð60Þ

To see the reason for this, recall fixing the diffeomorphism
gauge is equivalent to first transforming to new canonical
coordinates (π; q), then discarding one pair of (π; q)’s.
Write

Ei
IðdKI

i =dtÞ ¼ −dEi
I=dtK

I
i þ total derivative;

then expand:

−Ki
IdE

i
I=dt¼ −KiEidðlnEiÞ=dt

¼ −KzEzdðlnEzÞ=dt− ð1=2ÞKaEadðln ð2Þ ~EÞ=dt
− ð1=2ÞðKyEy −KxExÞd½lnðEy=ExÞ�=dt

¼þfð2KzEz þKaEa=2−pKaEaÞ
×d½ln ð2Þ ~E− ðlnEzÞ=2−p lnEz�=dt
− ðp→ −pÞgð1=4pÞ
− ð1=2ÞðKyEy −KxExÞd½lnðEy=ExÞ�=dt:

ð61Þ

The fourth and fifth lines are D2 times the derivative of D1.
One can drop this (π; q) pair completely from the theory,
without altering the canonical brackets of the other (π; q)
pairs. The constant C of Eq. (60) arises as a constant of
integration. Note the special case p ¼ 0 has a singularity.
In practice the gauge choice Eq. (59) does not introduce

logarithms into the constraints; only Eq. (60) and its first
difference are needed when simplifying the Hamiltonian.

The popular choice for C and p, in the classical literature,
is C ¼ sgnðeÞ, p ¼ 1=2, which implies gzz ¼ 1. C and p
will be determined in the succeeding paper.
The case p ¼ 0 clearly requires a special discussion.

Because the classical literature favors the gauge choice
p ¼ 1=2, presumably the p ¼ 0 case will not be needed.
This paper does not discuss it.

X. THE SWITCH FROM N TO N

A. Boundary conditions at infinity

In Newtonian static planar gravity the gravitational
potential at infinity does not die off as some power of z,
but rather grows linearly. Attempts to generalize the
Newtonian static result to full general relativity have not
been successful [14]. Reasonable restrictions on the stress-
energy of the planar matter source presumably lead to
instability.
If the source is a time-varying wave packet, it should be

safe to assume flatness at infinity, because of causality: the
packet has not yet reached infinity. (Note the Newtonian
static plane result does not rule out flat space at infinity,
because an observer in a large free-fall elevator would
detect the same force at the top and bottom of the elevator.)
However, for now there is no loss of generality if one makes
the more conservative assumption, conformal flatness at
infinity. The (z,t) portion of the metric at infinity is assumed
to take the conformal form

½−N2 þ ðNzÞ2gzz�dt2 þ 2Nzgzzdzdtþ gzzdz2

¼ gzzð−dt2 þ dz2Þ; ð62Þ

where N and Nz are the ADM lapse and shift. This requires
the boundary conditions

Limitðjzj → ∞ÞNz ¼ 0;

N2 ≔ N2=gzz;

Limitðjzj → ∞ÞN2 ¼ 1: ð63Þ

N, rather than N, goes to �1. The underlining is needed
because N is density weight −1. We have not used tildes or
overbars to indicate the density weight of the triads. They
are familiar to most readers, and it is understood the triads
are weight 1. N, however, is an unfamiliar quantity, and its
density weight will play a role in Sec. XI, when the
unidirectional constraints are imposed.
For plane waves, the boundary conditions require a shift

from N to N. In cotriad notation,

NðnÞ ¼ ðNEz
Z=jejÞðnÞ: ð64Þ

The lapse N is a scalar under spatial diffeomorphisms.
Therefore from Eq. (64) N is a rank one contravariant
tensor. N has no factors of Δxi, but N has a factor 1=Δz.
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This shift in lapse generates a shift in the Hamiltonian.

NH ≔ N ~H;

~H ¼ Hjej=Ez
Z:

When the Σ are expressed in terms of the ~E, and N is
replaced by N, the 1=jej singularities disappear, but some
terms acquire a 1=EZ

z singularity.

NHe ¼ N ~He

¼
X
n

NfFZxyϵZABEx
AE

y
B=E

z
Z þ FAzaϵAZBEa

Bg=κ þ ST:

ð65Þ

The Lorentzian Hamiltonian, Eq. (45), becomes

N ~Hþ ST ¼
X
n

ð1=κÞf−ðKA
aEa

AÞ2NðnÞ=ð4Ez
ZÞ

þ ðKY
yE

y
Y − KX

x Ex
XÞ2NðnÞ=ð4Ez

ZÞ
− KZ

z ðnÞEz
ZK

A
aðnÞEa

ANðnÞ=Ez
Z

− ðΓY
xEx

X þ ΓX
y E

y
YÞ2ðnÞNðnÞ=ð4Ez

ZÞ
þ ðΓY

xEx
X − ΓX

y E
y
YÞ2ðnÞNðnÞ=ð4Ez

ZÞ
− ΓA

aðnÞϵBAδðcÞðNEa
BÞg: ð66Þ

This equation incorporates the single polarization con-
straints (K and E entirely diagonal, Γ entirely off diagonal),
but not the diffeomorphism constraints. However, the
equation anticipates those constraints and pairs each K
with an E. (The reshuffled E’s are still to the right of their
conjugate K’s.)
Equation (66) also switches to combinations of Γ and E

which are relatively simple to express in terms of ~E.

ΓY
xEx

X þ ΓX
y E

y
Y ¼ ½δðcÞEy

Y=E
y
Y − δðcÞEx

X=E
x
X�eXx eYy sgn

¼ ½δðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
X�Ez

Z;

−ΓX
y E

y
Y þ ΓY

xEx
X ¼ δðcÞEz

Z: ð67Þ

Proof of Eq. (67): from (34) and (42),

ΓX
y E

y
Y ¼ sgnðeÞδðcÞeYnϵmzneXm ðsingle polÞ;

plus an additional formula with X ↔ Y.
If the equation eYy Ey

Y ¼ jej is differenced, then divided
by eYy Ey

Y, one gets

δðcÞeYy =eYy þ δðcÞE
y
Y=E

y
Y ¼ δðcÞjej=jej;

plus a similar equation for x → y. These equations imply
the first line of Eq. (67). The last line is one half of
Gauss, Eq. (41).

In quantum geometrodynamics for the plane wave case,
the shift from N to N modifies the constraint algebra,
making it anomaly free. Usually, a commutator of con-
straints produces a metric component to the right of a
constraint, causing an anomaly. When N is replaced by N,
the dangerous metric component is absorbed into N and
disappears from the commutator.2

XI. THE UNIDIRECTIONAL CONSTRAINTS

A. Are Dirac brackets necessary?

Since unidirectional constraints typically are second
class, it is necessary to replace Poisson by Dirac brackets.
Dirac brackets often are not pretty. Are there ways of
avoiding the introduction of Dirac brackets?
To develop some intuition, we consider the simplest

case: a real, scalar, free field ϕ. One can expand this field in
plane waves, with coefficients the usual creation and
destruction operators. There are now two ways to impose
a unidirectional constraint. (Either) strip out all terms in the
expansion depending on zþ ct; (or) construct Dirac
brackets, starting from the unidirectional constraint U ¼
π þ δðcÞϕ ¼ 0 (time derivative plus z derivative vanishes).
We consider first the expansion approach. With half the

degrees of freedom now missing, it is obvious that ½π;ϕ�
and the other commutators can no longer be canonical.
Similarly, the Dirac bracket approach starts by comput-

ing the commutator of the constraint with itself.

½Uðz1Þ;Uðz2Þ� ¼ ½π þ ∂z1qðz1Þ; π þ ∂z2qðz2Þ�
¼ ð−iℏÞ½þ∂z2δðz1 − z2Þ − ∂z1δðz1 − z2Þ�
¼ −2iℏ∂z2δðz1 − z2Þ: ð68Þ

The calculation is done in FT for the convenience of the
reader, but the result in the presence of a lattice is similar:
replace ðz1; z2Þ by ðn1; n2Þ, and replace ∂z2δðz1 − z2Þ by

δðcÞðn2Þδðn1;n2Þ≔ ½δðn1;n2þ1Þ−δðn1;n2−1Þ�=2: ð69Þ

The derivative of a Dirac delta is replaced by the difference
of a Kronecker delta. The commutator of a unidirectional
constraint with itself does not vanish. The constraint is
second class, and one must construct Dirac brackets.
The Dirac approach is rather formal, but the expansion

approach gives the intuitive explanation for the unorthodox
brackets: one cannot strip out half the degrees of freedom,
and expect commutators to remain invariant. It is not
possible to avoid Dirac brackets.

2The author would appreciate help from readers in locating the
original source of this result: no anomalies in the planar case.
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B. The unidirectional operator

In conventional wave theory a solution is unidirectional
if all fields depend only on z-ct. In general relativity those
coordinates are arbitrary, and one must use local free-fall
coordinates Z-cT instead.
In terms of derivatives

ffiffiffi
2

p ∂U ¼ ∂Z − ∂T ;ffiffiffi
2

p ∂V ¼ ∂Z þ ∂T:

The constraint (no V dependence) is ð∂Z þ ∂TÞ ¼ 0.
This constraint can be rewritten in terms of (z,t)

derivatives.

0 ¼ ð∂Z þ ∂TÞfðZ − cTÞ
¼ ðezZ∂z þ etZ∂t þ ezT∂z þ etT∂tÞf
¼ ðezZ∂z þ 0þ ð−Nz=NÞ∂z þ ð1=NÞ∂tÞf: ð70Þ

This equation invokes the usual gauge which fixes the
Lorentz boosts and reduces the full Lorentz group to
SU(2): etX;Y;Z ¼ 0.
One can replace the derivatives ∂z and ∂t in Eq. (70)

by Poisson brackets with Hz and N ~HðzÞ þ STþ NzHz
respectively.

0 ¼ ½ezZ − Nz=NðzÞ�ff;HzðzÞg
þ ð1=NÞff; ðN ~HðzÞ þ STÞ þ NzHzðzÞg
∝ ðNEz

Z=jejÞff;HzðzÞg þ ff; ðN ~HðzÞ þ STÞg
¼ ff;NHzðzÞ þ ðN ~HðzÞ þ STÞg: ð71Þ

The third line is multiplied by N. this anticipates a later
result: given the unidirectional constraints and the diffeo-
morphism gauge choice, N cannot vanish.
Strictly speaking Hz is not the z derivative operator

unless its Lagrange multiplier N is a constant. If N is not a
constant, ff;Hzg does take the z derivative of f; but it also
generates gauge transformations proportional to ∂zN. In the
present case this is not a problem; once unidirectional and
diffeomorphism constraints are imposed, N will turn out to
be a constant.
The constraint Eq. (71) may be written out explicitly,

using (52) and (87) for Hz and ~H.

NHzðzÞ þ N ~HðzÞ þ ST

¼ ð1=κÞ
X
n

Nfð−2iÞδðcÞĥAaðnÞEa
AðnÞ − ð−2iÞĥzðnÞδðcÞEz

Zg

þ
X
n

ð1=κÞf−KX
xKY

yEx
XE

y
YNðnÞ=Ez

Z

− KZ
z ðnÞKA

aðnÞEa
AðnÞNðnÞ − ðΓY

xΓX
y ÞðnÞNðnÞð2Þ ~EðnÞ=Ez

Z

− ΓA
aðnÞezaAðnÞδðcÞNg: ð72Þ

C. The unidirectional constraints

In a unidirectional theory, Eq. (72) commutes with every
dynamical variable. Therefore one can construct unidirec-
tional constraints by commuting Eq. (72) with any set of
independent functions fi, then setting the commutators
equal to zero. We choose the fi to be three independent
functions of the three triads: Ez

Z,
ð2Þ ~E, and ln½Ey

Y=E
x
X�.

Commutation of these three yields the constraints

0¼fKA
aEa

AþδðcÞEz
Zg=

ffiffiffiffiffiffi
Ez
Z

p
≔U1;

0¼fKA
aEa

Aþ2KZ
z E

z
ZþEz

ZδðcÞ
ð2Þ ~E=ð2Þ ~Eþ2Ez

ZδðcÞN=Ng=
ffiffiffiffiffiffi
Ez
Z

p
≔U2;

0¼fKY
yE

y
Y−KX

x Ex
X−Ez

Z½δðcÞEy
Y=E

y
Y−δðcÞEx

X=E
x
X�g=

ffiffiffiffiffiffi
Ez
Z

p
≔U3: ð73Þ

The appearance of δðcÞN in the second constraint may be a
bit surprising. This comes from a bracket

fNð−2iÞδðcÞĥE; ð2Þ ~Eg

¼
�X

n

Nfð−2iÞδðcÞĥAaðnÞEa
AðnÞ; ð2Þ ~EðmÞ

�

¼ −δðcÞðNEy
YÞEx

X þ ðx ↔ y; X ↔ YÞ;

followed by multiplication by
ffiffiffiffiffiffi
Ez
Z

p
=Nð2Þ ~E. In effect, the

δðcÞ has been integrated by parts off the holonomy and onto

the N and ~E. Similarly, an integration by parts produces the
δðcÞ ~E= ~E terms in the third constraint; in that case a δðcÞN
term cancels out.
The usual lapse N is a scalar, but the new lapse N is a

contravariant tensor. Both differences, δðcÞ
ð2Þ ~E=ð2Þ ~E and

δðcÞN=N in Eq. (73), therefore have inhomogeneous terms
in their diffeomorphism transformation laws. However, the
inhomogeneous terms cancel out in the sum. The combi-
nation which occurs in the unidirectional constraint,

δðcÞ
ð2Þ ~E=ð2Þ ~Eþ 2δðcÞN=N;

transforms like a tensor.
The factors of 1=

ffiffiffiffiffiffi
Ez
Z

p
have been added to split up the

1=Ez
Z singularity into two parts. (The Hamiltonian is of the

form
P

UiUj, with
ffiffiffiffiffiffiffiffiffiffiffi
1=Ez

Z

p
absorbed into each Ui.)

These constraints have the right form. The K dependent
terms represent time derivatives; the δðcÞ terms the corre-
sponding space derivatives.

D. Eliminating one unidirectional constraint

Because of the diffeomorphism gauge fixing, the unidi-
rectional constraints U1;U2 are not independent. For p ≠ 0,
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one can solve Eq. (59) or Eq. (60) to eliminate a (π; q) pair.
The surviving (π; q) pair is

Π ≔ ð2KzEz þ KaEa=2þ pKaEaÞ=4p;
Q ≔ ln ð2Þ ~Eþ ðp − 1=2Þ lnðCEz

ZÞ: ð74Þ

This is the pair indicated schematically by (p → −p) in
Eq. (61). The factor 1=4p of that equation is absorbed into
the Π (an arbitrary choice); this gives bracket fΠ;Qg the
correct norm.
Several quantities simplify when the diffeomorphism

constraints Di are dropped from the Hamiltonian. In
particular,

KA
aEa

A ¼ ð4pΠ − D2Þ=2p → 2Π;

2KZ
z E

z
Z þ Ka

AE
a
A=2 ¼ ð4pΠþ D2Þ=2 → 2pΠ;

2KZ
z E

z
Z → ð2p − 1ÞΠ: ð75Þ

Similarly for the triads,

ln ð2Þ ~E ¼ Qðpþ 1=2Þ=2pþ D1ðp − 1=2Þ=2p
→ Qðpþ 1=2Þ=2p;

lnðCEz
ZÞ ¼ ðQ − D1Þ=2p → Q=2p;

lnðð2Þ ~E=CEz
ZÞ → Qðp − 1=2Þ=2p: ð76Þ

When (75) and (76) are inserted into the unidirectional
constraints, the two constraints U1;U2 in Eq. (73) collapse
to the same constraint, except U2 has an extra term

proportional to ðδðcÞNÞ=N. Therefore that expression must
vanish. In place of Eq. (73) one gets [15]

0¼ ðδðcÞNÞ=N;
0¼ fKA

aEa
A þ δðcÞEz

Zg=
ffiffiffiffiffiffi
Ez
Z

p ¼ f2Πþ δðcÞEz
Zg=

ffiffiffiffiffiffi
Ez
Z

p ¼U1;

0¼ fKY
yE

y
Y −KX

x Ex
X

− ½δðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
X�Ez

Zg=
ffiffiffiffiffiffi
Ez
Z

p ¼U3: ð77Þ

Because of the conformal boundary conditions, N must
equal unity. Note the unidirectional constraints force us to
choose a specific lapse. The scalar constraint is now fixed.

E. Dirac brackets

The two surviving unidirectional constraints are still
second class. The Dirac bracket matrix is (rows and
columns in order U1;U3)

fUiðmÞ;UjðnÞg ¼
�−ð2=pÞA C

−C −4A

�

A ¼ δðcÞðnÞδðm;nÞ
≔ ðδðm;nþ 1Þ− δðm;n− 1ÞÞ=2;

C ¼ ð1=2pÞ½δðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
X�δðm;nÞ:

ð78Þ

The inverse bracket matrix is

fUjðnÞ;UkðrÞg−1 ¼
�

K−1 K−1CA−1=4

−A−1CK−1=4; −A−1=4 −A−1CK−1CA−1=16

�
;

K ¼ −ð2=pÞA − CA−1C=4;

A−1ðn; rÞ ¼ −Θðn − rÞ: ð79Þ

The theta function is a discrete analog of the usual step
function.

Θðn − rÞ ¼
8<
:

0 for n − r even; including 0

þ1 for n − r odd > 0;

−1 for n − r odd < 0.

ð80Þ

δðcÞðnÞΘðn − rÞ ≔ ½Θðnþ 1 − rÞ − Θðn − 1 − rÞ�=2
¼ δðn; rÞ: ð81Þ

The last line is reminiscent of Eq. (69), where the derivative
of a Dirac delta is shown to have a discrete analog, the
difference of a Kronecker delta. Similarly here, the con-
tinuous formula

∂2Θðz1 − z2Þ ¼ δðz1 − z2Þ

has a discrete analog, Eq. (81).
The solution for Θ, Eq. (80), is determined only up to a

solution to the homogeneous version of Eq. (81).

Θðn − rÞh ¼
�
a for n − r even; including 0

b for n − r odd;
ð82Þ

a and b are constants. In a scalar free field theory, if one
drops all the k < 0 Fourier components from the field ϕ,
the resulting commutator ½ϕðxÞ;ϕðyÞ� is a step function
which changes sign at x ¼ y. We have chosen Θh so that
the function Θðn − rÞ also changes sign at n − r ¼ 0.
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Ez
Z and KZ

z have disappeared at this point, replaced by Q
and Π. However, it is perhaps better to retain the more
compact and familiar Ez

Z, rather than Q. The fEz
ZΠg bracket

is [recall ðEz
Z ∝ exp½Q=2p�Þ]

fEz
Z;Πg ¼ ð1=2pÞEz

Z: ð83Þ

Again, the case p ¼ 0 requires separate discussion.
The matrix of constraints contains a field-dependent

quantity

C ¼ ð1=2pÞ½δðcÞEy
Y=E

y
Y − δðcÞEx

X=E
x
X�δð1; 2Þ:

This is very unusual. In most field theories brackets
between unidirectional constraints are field independent.
In a weak field limit, C disappears from the Dirac brackets
because Ez

Z → 1, and the off-diagonal bracket

fU1;U3g ∝ fΠ;
ffiffiffiffiffi
Ez

p
g

vanishes. The presence of C is therefore a consequence of
the nonlinearity of the theory, as represented by the area
factors Ez

Z.
The field dependence prohibits an exact solution forK−1.

However, an integral equation for K−1 has a power series
solution.

δð1; 3Þ ¼
X
2

Kð1; 2ÞK−1ð2; 3Þ

¼ þð2=pÞδðcÞð1ÞK−1ð1; 3Þ
−
X
2

Cð1ÞðA−1=4Þð1; 2ÞCð2ÞK−1ð2; 3Þ: ð84Þ

F. Determining lapse and shift

Since the diffeomorphism constraints are a (π; q) pair,
further commutation of these constraints produces (almost)
nothing new. However, the bracket of D2 with H gives a
Laplace-like equation for N.

0¼ 2ðEz
ZÞδðcÞðδðcÞNÞþNf2ϵABKA

xKB
y
ð2Þ ~E

þ2KZ
z ðnÞEz

ZK
A
aðnÞEa

AðnÞ
þð1=2ÞðδðcÞEy

Y=E
y
Y −δðcÞEx

X=E
x
XÞ2

− ðδðcÞð2Þ ~E=ð2Þ ~EÞðδðcÞEz
ZÞþð1=2ÞðδðcÞEz

ZÞ2g=Ez
Z: ð85Þ

The unidirectional constraints, Eq. (73), force every term
in this equation to cancel, except δðcÞN terms. We have
rederived δðcÞN ¼ 0, the first of the unidirectional plus
diffeomorphism constraints, Eq. (77).

Also, the bracket of D1 with Hz gives

δðcÞNz ¼ 0: ð86Þ

XII. FINAL FORM OF THE HAMILTONIAN

Using the unidirectional constraints, one may eliminate
KE products from the Hamiltonian, Eq. (66). The Γ may be
replaced by functions of ~E, using Eq. (67).

N ~HþST ¼
X
n

ð1=κÞfðN=2ÞEz
ZðδðcÞEy

Y=E
y
Y − δðcÞEx

X=E
x
XÞ2

þ δðcÞEz
Z½−NðδðcÞð2Þ ~EÞ=2ð2Þ ~E − δðcÞN�g: ð87Þ

On the last line of Eq. (66) if the Σ are replaced by their
values in terms of ~E, then

last line¼½−ΓA
aðnÞϵZBAδðcÞ½Ea

BðnÞN�
¼−ΓA

aðnÞEa
Bϵ

ZBAN½δðcÞEa
BðnÞ�=Ea

B

−ΓA
aðnÞϵZBAEa

BðnÞδðcÞN
¼ðN=2Þf½ΓY

xEx
XþΓX

y E
y
Y �½−δðcÞEx

X=E
x
XþδðcÞE

y
Y=E

y
Y �

− ½ΓY
xEx

X−ΓX
y E

y
Y �½þδðcÞEx

X=E
x
XþδðcÞE

y
Y=E

y
Y �g

−δðcÞEz
ZδðcÞN: ð88Þ

The final line uses Gauss, Eq. (40). The Γ × E products
may be simplified using Eq. (67).
The above calculations use the original three unidirec-

tional constraints, Eq. (73), rather than the constraints
which survive diffeomorphism gauge fixing, Eq. (77).
Consequently the diffeomorphism gauge is not yet
imposed. (This will be done in the following paper.)
In Eq. (87) there is a ST (surface term) on the left, but

no ST on the right. The δðcÞĥΣ term in the Euclidean
Hamiltonian has been integrated by parts, and the surface
term from that integration by parts cancels the ST.
A fine point: ~Hþ ST is not a constraint; it is the true

Hamiltonian. To get the constraint ( ~H only; no ST) one
must undo the integration by parts, which restores the ST,
then discard the ST. Undoing the integration by parts
changes only the δðcÞN term in Eq. (87):

−δðcÞEz
ZδðcÞN → þNδðcÞðδðcÞEZ

z Þ: ð89Þ

One can also simplify Hz, again using the unidirectional
constraints to eliminate K. Then the scalar and vector
constraints are the same, except for a sign.

Hz ¼ − ~H:

The minus sign is reasonable, since ∂=∂Z ¼ −∂=∂T.
The number of surviving equations now equals

the number of surviving unknowns. After the single
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polarization constraints are introduced and the triad matrix
becomes diagonal, three diagonal triads remain, plus their
associated momenta, plus lapse and shift. The (π; q) pair

ðKY
yE

y
Y − KX

x Ex
X; lnðEy

Y=E
X
x ÞÞ

represents the physical degree of freedom and must be fixed
using initial conditions.
One of the remaining (π; q) pairs was fixed by the

diffeomorphism gauge conditions Di. Requiring consis-
tency of those constraints fixes lapse and shift.
The two constraints, Hz ¼ − ~H ¼ 0, have collapsed to a

single constraint; nevertheless, this single constraint plus a
unidirectional constraint are enough to determine the
remaining nondynamical pair. This pair is the (Π;Q)
introduced in Sec. XI D. H ¼ 0 determines Q, which is
essentially EZ

z ; and Π is related to Q by a unidirectional
constraint.

XIII. DISCUSSION

The theory constructed here includes nonlocal features.
The good news is that the nonlocal features which survive
in small sine (SS) limit cause no difficulties. If the nonlocal
exact theory treats nearest neighbors symmetrically, then
the Euclidean Hamiltonian will contain the central differ-
ence of a holonomy. If terms linear in extrinsic curvature
are required to vanish from the LHF Hamitonian, as they
do from the FT Hamiltonian, then every derivative in the
spin connection must be replaced by a central difference,
leading to a theory with central differences everywhere.
Similarly, the other nonlocal feature, the z holonomies,
conceivably could cause problems with commutators, but
(see Sec. III B) the commutators are reasonable because of
the slow variation assumption.
The bad news is that other nonlocal features disappear in

this limit. Small sine calculations are not a good way to
distinguish between various nonlocal versions, since they
tend to possess the same, universal, small sine limit. The
nonlocal example discussed in Sec. III A uses forward
differences and unaveraged z holonomies, whereas the SS
limit contains central differences and the averaged holon-
omies ĥzðnzÞ defined at Eq. (23). Similarly, the nonlocal
theory constructed in Appendix A starts from single grasp
~E operators, i.e. operators which grasp only ingoing
holonomies at the vertex, or only outgoing holonomies.
In the SS limit, the single grasp ~E disappear, replaced by ~E
which grasp both holonomies.
The calculation required various identities involving

the spin connection Γ. Those identities hold in classical
continuum field theory (FT), as well as nearest neighbor,
nonlocal LHF. The proofs use algebra, rather than calculus
or properties of the derivative. The identities therefore
continue to hold even after derivatives are replaced by
differences.

In the small sine limit, it is easy to separate extrinsic
curvature from spin connection. Although the Thiemann
procedure generates only the combination γK ¼ A − Γ,
rather than Γ, the symmetries force off-diagonal AA

b and on-
diagonal ΓA

a to vanish. This circumstance allows us to
separate out the Γ: on-diagonal Thiemann K’s are pure
extrinsic curvature; off-diagonal Thiemann K’s are pure Γ.
It may be possible to separate out the Γ, even when

higher powers of sine are included. The Γ are odd under
nþ 1 ↔ n − 1 (because they contain a central difference),
while the K’s are even under this interchange, and contain
one higher power of sine. If this pattern persists to higher
orders in sine, it should be possible to split off the spin
connection (odd) part of the K tensor, and check whether
the SS identities continue to hold in higher order.
Readers who are familiar with the relation between

geometrodynamical variables, Szekeres variables, and
(K; ~E) variables, will recognize numerous points where
the theory shifts to combinations of the K and ~E which
equal Szekeres or geometrodynamical variables [16]. For
example, the ADM πij are linear combinations of K × ~E
products. The triad combinations involving logarithms are
Szekeres variables. Whatever the superiority of K and ~E at
short distances, the traditional combinations hold the edge
in the SS limit.
Of course K · E is not really a geometrodynamical

variable, because the K is a holonomy, not a field. This
is the fundamental change which leads to quantization of
areas and volumes. Nevertheless, the combination holon-
omy times triad seems to be more appropriate than
holonomy alone.
In this paper, the small sine approximation was used to

simplify the Hamiltonian. Suppose, however, one retains
the small sine assumption, even near e ¼ 0. (Near e ¼ 0
one must abandon slow variation, of course, and regulate
the cotriads.) Then one has a model which retains the most
desirable features of full LQG: geometrical quantities are
quantized, connections and triads are bounded, and the
model has a simpler Hamiltonian.
The small sine model is especially convenient in the

plane wave case. Given the shift from N to N,

NEj
JE

k
Kϵ

IJK=jej ¼ NEj
JE

k
Kϵ

IJK=Ez
Z;

one needs to regulate only 1=Ez
Z. Bannerjee and Date [4]

replace the 1=Ez
Z by two factors of

ð8=κγÞhz
h
hzðnÞ−1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðzÞEz

ZðnÞ
q i

ðLQGÞ

→ sgnðzÞσZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðzÞEz

Z

q
: ðQFTÞ ð90Þ

sign(z) is the sign of Ez
Z. For a similar maneuver in a

cosmological context, see Bojowald [17]. Because Ez
Z is

already diagonal, its operator square root is immediate.
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In a SS model, the spin connections also need to be
regulated. From FT formulas for Γ · E, Eq. (34), with
derivatives replaced by differences, plus FT formulas for
the cotriads, we get

ΓX
y E

y
Y þΓY

xEx
X ¼ sgnðeÞ½−ðδðcÞeYy ÞeXx þeYy δðcÞeXx �
¼ sgnðeÞðEz

Z=jejÞ2½ðδðcÞEy
YÞEx

X−Ey
YðδðcÞEx

XÞ�:
ð91Þ

The dangerous overall factor of ðEz
Z=jejÞ2 can be removed

by an appropriate choice of gauge. For p ¼ 1=2, that factor
becomes a constant. The other linear combination follows
from Gauss and is free of singularities.

δðcÞEz
Z ¼ −ΓX

y E
y
Y þ ΓY

xEx
X:

One could argue the small sine model should always be
the first model tried, when testing LQG. Small sine keeps
the order (sinþ sin2) terms in the constraints. These are the
only terms we are sure of, because they supply the correct
FT limit.

APPENDIX A: A NONLOCAL MODEL

This appendix constructs an exact LHF Euclidean
Hamiltonian. It starts from field strengths which are nearest
neighbor nonlocal, and z holonomies integrated from
vertex to vertex, like the nonlocal model discussed in
the main body of the paper. However, the ~E are single
grasp: they grasp at only one of the six surfaces of the cube
surrounding each vertex. The main result of this appendix
is, in the semiclassical limit, single grasp ~E are replaced by
double grasp, i.e., ~E which grasp both the incoming and
outgoing holonomy at each vertex.
This appendix uses the “congruence” rather than S1

picture for the topology of the spin network. (Topology is
discussed at the beginning of Sec. II.) The congruence
picture is better for determining the number of loops which
contribute to each exact field strength.
Recall the quantum field theory expression for the

Euclidean Hamiltonian.

−NHe þ ST ¼
Z

d3xNðFI
jkE

j
JE

k
KϵIJK=2κjejÞ þ ST;

ST ¼ −ðNAI
aE

z
ZE

a
KϵIZK=κjejÞjþ∞

z¼−∞;

κ ¼ 8πG;

jej ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det EsgnðeÞ

p
: ðA1Þ

The LHF formula for field strengths in Eq. (A1) general-
izes the classical formula

Fij ¼ limΔA→0

	Y
h

.

ΔAðijÞ; ðA2Þ

where
Q

h is the product of holonomies around the edges
of infinitesimal area Δ A(ij). A local treatment of the
Hamiltonian would construct each F using small areas at a
single vertex nz, plus triads at that vertex; then sum over
vertices. For example, the basic modular unit would be the
vertex.
However, for a nonlocal Hamiltonian, one must use

nonlocal modular units. Since Eq. (A2) contains an area,
the appropriate basic modular units should be areas. The
areas are bounded by nearest neighbor vertices: i.e.
holonomies along each edge of the area run from one
vertex to the next, nearest neighbor vertex. For example,
the LHF contribution to Fxy from the area bounded by
vertices ðnx; ny; nzÞ, ðnx; ny þ 1; nzÞ, ðnx þ 1; ny þ 1; nzÞ,
ðnx þ 1; ny; nzÞ is

Fxy ¼ i const h−1y h−1x hxhy þ H:c: ðLHFÞ: ðA3Þ

Each hi traverses edge i from ni to ni þ 1; the h−1 traverse
in the reverse direction. Reading from right to left, the
explicitly written term circulates the xy area in a counter-
clockwise direction. The Hermitian conjugate (H.c.) term
circulates in the clockwise direction.
The above two terms are not the only possibilities, even

though we restrict ourselves to circuits starting from
ðnx; ny; nzÞ and continuing in the xy plane to nearest
neighbors only. In fact there are eight such terms. The
eight correspond to the four vertices in the xy plane which
are nearest neighbors to the vertex ðnx; ny; nzÞ, times two
for clockwise or counterclockwise circuit. The eight may
be grouped into four sets of two terms each, after we
impose the requirement that the field strength is Hermitian.
The full LHF expression for Fxy therefore contains four
adjustable constants analogous to the “const” in Eq. (A3).
One could determine them by carrying out a small sine
expansion, and demanding that the expansion have the
minimum number of powers of sine beyond those needed to
recover the quadratic limit. The discussion would be
straightforward but lengthy, and will be omitted in order
to focus on the semiclassical limit.
One can small-sine expand the contribution Eq. (A3),

using Eq. (11). Keeping up to order ðsinÞ2, one gets

FxyðnzÞ ¼ 2i½ĥxðnzÞ; ĥyðnzÞ� ðSSÞ: ðA4Þ

All eight loops give the same small sine limit. The ĥa need
only a single argument nz, since the loop remains in an xy
plane where every holonomy has the same nz, and all
variables are independent of x and y.
Equation (A4) has no linear-in-sine terms. These would

spoil the FT limit

Fij → ð∂iAI
j − ∂jAI

i þ AI
iA

J
jϵIJKÞσIΔxiΔxj ðFTÞ: ðA5Þ
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For ij ¼ xy, the linear in A terms are absent, because all
fields are independent of x and y.
The remaining two field strengths, Fza with a ¼ x; ymay

be constructed in a similar fashion. For Fzx, for example,
the relevant plane is zx rather than xy; but there are still
eight loops, corresponding to four vertices which are
nearest neighbors to the vertex ðnx; ny; nzÞ, times two,
for clockwise or anticlockwise. Four of the holonomy loops
travel forward to nz þ 1; the remaining four travel back-
ward to nz − 1. The four forward loops are

Fzaðnz; nz þ 1Þ ¼ i const½hzðnz; nz;þ1Þ−1h−1a ðnz þ 1Þ
× hzðnz; nz;þ1ÞhaðnzÞ
− ðha ↔ h−1a Þ þ H:c:� ðA6Þ

The ðha ↔ h−1a Þ term is the second forward loop; “H.c.”
includes the remaining two loops, which have
clockwise ↔ anticlockwise. Since the hz link two vertices,
Fza requires two nz arguments.
In the xy case all four areas had the same small sine limit.

In the za case, forward and rearward loops have different
SS limits and cannot be combined, because they involve
different x holonomies hxðnz � 1Þ on different x edges.
The first two forward loops in Eq. (A6) each contain

unwanted hxðnzÞhxðnz þ 1Þ quadratic terms in the SS limit;
the minus sign between these two loops ensures that the
unwanted terms cancel. Explicitly, the small sine limits are

2Fzaðnz; nz þ 1Þ ¼ ð−2iÞf−½ĥzðnz; nz þ 1Þ; ĥaðnz þ 1Þ�
þ ĥaðnz þ 1Þ − ĥaðnzÞ
þ ½ĥaðnz þ 1Þ; ĥaðnzÞ�g
− ðĥa ↔ −ĥaÞ ðSSÞ;

2Fzaðnz; nz − 1Þ → ð−2iÞf−½ĥzðnz − 1; nzÞ; ĥaðnz − 1Þ�
þ ĥaðnzÞ − ĥaðnz − 1Þ
þ ½ĥaðnz − 1Þ; ĥaðnzÞ�g
− ðĥa ↔ −ĥaÞ ðSSÞ: ðA7Þ

The ĥ ↔ −ĥ terms represent the second loop; the
unwanted ðĥaÞ2 terms cancel out when the two loops are
summed.
The classical xy field strength distorts a spherical cloud

of test particles into an ellipsoid. This distortion mimics the
behavior of the sphere under free fall in a static gravita-
tional field. The za field strengths produce the distortions
typical of time-varying waves. It is not surprising, there-
fore, that the za field strengths possess all the nonlocality.
We now consider the triads. Since triads are associated

with areas and volumes, which are local, we assume the
LHF triads are local, with support at the vertices. More
precisely: we draw a small cube around each vertex, and the

triads live on the six faces of the cube. The triads are
associated with area two-forms via

Ea
Aϵabcdx

b ∧ dxc;

When defining the volume operator, typically one
assumes each Ea

A grasps at both faces having outward
normals in the a direction, the positive face (with normal
pointing in the positive a direction) and the negative face.
This is natural; the volume operator is not directional, and
one would expect contributions from all six faces. The
volume operator therefore involves the product of three
operators, each grasping at two faces:

Ei
I ≔ Ei

IðþÞ þ Ei
Ið−Þ; ðA8Þ

where �, the sign of the normal, indicates the area where
the ~E grasps. However, if one considers ~E other than those
involved in the volume operator, the double grasp ~E is not
especially natural.
For example, in the operator expression for Gauss’s law,

one needs the difference between the þ and − operators,
Ez
ZðþÞ-Ez

Zð−Þ, because Gauss’s law involves the difference
between the ingoing and outgoing Z component of spin. It
is not enough, therefore, to specify the vertex nz where the
triad has its support; one must also supply an argument �
specifying which face is grasped.
In Eq. (A1) there are two triads and a volume e

associated with each field strength. A given field strength
is a holonomy loop passing through four vertices, but at
each vertex the holonomies do not pass through all six
faces. One holonomy enters at one face, and a different
holonomy leaves at another face. Therefore one can
associate a face with each holonomy as follows. If a
holonomy hi at nz passes through a face having sign þ
(−), then the triad Ei

A multiplying hi in the Hamiltonian is
given the sign þ (−).
For example, consider the xy holonomy loop beginning

at vertex (nx; ny; nz) and passing through the þ x
face to (nx þ 1; ny; nz). The loop then continues to
ðnx þ 1; ny þ 1; nzÞ;…, finally returning down the y axis
through the þ y face. Both holonomies pass through þ
faces; the triads multiplying this contribution would be
Ex
AðþÞ and Ey

AðþÞ. The same triads occur in the H.c. loop.
The remaining three pairs of loops involve the remaining

three sign pairs: (�;∓) and (−;−). The Fxy contribution
remains a sum of four terms. (We continue to group each
term and its H.c. together as a single contribution.) Now
each term contains a different sign pair.
A z triad Ez

Z also contributes to each Fxy term in He. The
z triad is contained in the factor of volume, e. It is not
obvious what sign to assign to the z triad, since no xy
holonomy passes through a z face. However, a given xy
area bounds two volumes, each containing a different z line
(nz � 1; nz). One can get either sign,�1, accordingly as the
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xy area is interpreted as bounding the volume containing
(nz; nz þ 1), or (nz − 1; nz). There is no reason to favor one
interpretation over the other, and we therefore make the z
triad the sum of the two z signs: Ez

Z ¼ Ez
ZðþÞ þ Ez

Zð−Þ.
In the small sine, slow variation limit, the triad functions

in He lose their dependence on the individual Ei
Ið�Þ and

depend only on the sums Ei
I ≔ Ei

IðþÞ þ Ei
Ið−Þ. Proof:

begin with the four loops contributing to Fxy. All field
strengths have the same small sine limit, Eq. (A4). One can
factor this out, leaving a sum over four triad functions.

HeðxyÞ ¼ FxyðSSÞ
X
η

f½ExðηxÞ;EyðηyÞ; eðηx; ηyÞ�

where ηa ¼ �1 indicate the areas grasped by the ~E; and the
Ez
Z, not indicated explicitly, are already in the desired form.
Now expand each transverse ~E:

Eað�Þ ¼ ½ðEðþÞ þ Eð−Þ�a=2� ½ðEðþÞ − Eð−Þ�a=2
¼ Ea=2� ~δEa=2

¼ ðEa=2Þ½1� ~δEa=Ea�:
~δEaðnÞ ≔ ½ðEaðþÞ − Eað−Þ�: ðA9Þ

The usual difference δf denotes the difference between
values of f evaluated at two different vertices. The tilde
difference denotes the difference between two values of f
located at the same vertex, but on opposite faces of the
vertex. I insert the expansions of Eq. (A9) into Eq. (A9),
and power series expand around ~δE ¼ 0, assuming the
tilde differences are small because of the slow variation
assumption.
The expansion contains no terms having an odd number

of tilde differences, since the sum in Eq. (A9) is even
under (þ ↔ −). The expansion of an arbitrary symmetric
function of the Ea

Að�Þ begins with the terms

f½EðþÞ� þ f½Eð−Þ� ¼ 2fðE=2Þ þ ð1=2!Þð∂2f=∂E2Þð~δEÞ2:

The leading term in the expansion contains two more
factors of E than the second order term, and is therefore
larger than the second order term by a factor

ð~δEÞ2=ðEaÞ2 ¼ orderðδf=fÞ2:

The second order term can be neglected. Tilde differences
have disappeared from the Fxy terms.
Now consider the Fza terms, for example the forward

areas involving z holonomies on edge ðnz; nz þ 1Þ, and
za ¼ zx. At Eq. (A7) the sign between two terms was
adjusted so as to cancel an unwanted commutator term.
This cancelation must be reconsidered; the two terms are
now multiplied by different triads Exð�Þ. The unwanted
brackets now have a contribution of the form

½ĥxðnzþ 1Þ; ĥxðnzÞ�× ðf½ExðþÞ;EzðþÞ�−f½Exð−Þ;EzðþÞ�Þ
¼ ½δfĥxðnzÞ; ĥðnzÞ�2ð∂f=∂ExÞ~δEx ðSVÞ: ðA10Þ

This term is second order in differences and can be
dropped.
The remaining terms, those without the unwanted

commutators, give the correct QFT limit and are even
under EaðþÞ ↔ Eað−Þ. By the same argument as for the
Fxy terms, the expansion in powers of ~Ea may be terminated

at the leading term which is independent of ~Ex. Similarly
for the rearward loops.
At this point the Fza loops have the desired Ea depend-

ence, but forward loops are multiplied by a function of
EzðþÞ, while the rearward loops depend on Ezð−Þ. From
the SS limits, Eq. (A7), both loops contain forward
difference terms δfĥa and commutator terms ½ĥz; ĥa�.
Consider first the difference terms. As in Eq. (A9),

expand in sums plus differences and drop the term linear in
differences.

δfhaðnzÞf½EzðþÞ�þδfhaðnz−1Þf½Ezð−Þ�
½δfhaðnzÞþδfhaðnz−1Þ�f½Ez�
þ ½δfhaðnzÞ−δfhaðnz−1Þ�ð∂f=∂EzÞ~δEz ðSVÞ: ðA11Þ

The bracket on the middle line is twice hzðnzÞ, from
definitions (14) and (16), and slow variation. The last line
is down by two factors of δf=f and may be dropped: the
square bracket on the last line is the second forward
difference of h.
For the commutator terms one must expand, not only

f½EzðþÞ�, but also ĥz and ĥa.

ĥzðnz; nz � 1Þ ¼ ½ĥzðnz; nz þ 1Þ þ ĥzðnz − 1; nzÞ�=2
� ~δĥzðnz − 1; nzÞ=2

≔ ĥzðnzÞ � ~δĥzðnz − 1; nzÞ=2;
ĥaðnz � 1Þ ¼ ĥaðnzÞ � δfĥaðnz � 1Þ: ðA12Þ

The commutator terms are then

X
�
½ĥzðnz; nz � 1Þ; ĥaðnz � 1Þ�f½Ezð�Þ�

¼ ½ĥzðnzÞ; ĥaðnzÞ�2fðEzÞ þ orderðδðcÞf=fÞ2: ðA13Þ

The two terms linear in ~δĥzðnz − 1; nzÞ and ~δEz have
opposite signs and cancel. The two terms linear in δfĥa
have the form

½ĥzðnzÞ; δfĥaðnzÞ − δfĥaðnz − 1Þ�f½Ez�:

This difference of differences is a second forward differ-
ence, which is order ðδf=fÞ2.
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All four Fza loops now depend only on Ei ¼
EiðþÞ þ Eið−Þ. Dependence on the Eið�Þ has
disappeared. □

APPENDIX B: THE SURFACE TERM

The δðcÞðĥaÞeza terms in He contain a second derivative,
since ĥa, when expressed in terms of tetrads, contains a
time derivative. The δðcÞ must be integrated by parts (IBP)
onto the cotriad. The IBP brings the Hamiltonian (and
Lagrangian) into a standard form with only first derivatives.
The IBP generates a total derivative, which becomes a
surface term ĥaeza. This term must be canceled, which
means a ST must be added to perform the cancelation: If

He ¼ ðδðcÞĥaÞeza þ � � � ¼ δðcÞðĥaezaÞ − ĥaδðcÞeza þ � � �
≔ −ST − ĥaδðcÞeza þ � � � ;

then

He þ ST ¼ −ĥaδðcÞeza þ � � � plus no ST:

The � � � denote terms which are derivative free and do not
contribute to the ST. The integration by parts shifts the
difference onto the triads and changes the sign of a term in
the Hamiltonian.
Although the surface term produces only a rather simple

change in He, the ST must be calculated in detail, because
ST is the physical Hamiltonian. He is a constraint, and
vanishes when acting on physical states. The ST does not
vanish. In the follow-on paper, the ST is used to compute
the total energy of the solution constructed in that paper.
From the preceding discussion, the surface term comes

entirely from the δðcÞĥ terms in Fza. Insert Eq. (29) for Fza
into Eq. (65) for ~He:

−N ~He þ ST ¼ ð1=2κÞ
X
n

f� � � þ ð−2iÞðδcĥCa ÞEa
Bϵ

ZBCNðnÞg

þ ST

¼ ð1=2κÞ
X
n

f� � � − ð−2iÞĥCa δc½Ea
Bϵ

ZBCNðnÞ�

þ ð−2iÞδc½ĥCaEa
Bϵ

ZBCNðnÞ�g þ ST: ðB1Þ

Equation (37) was used to carry out the difference analog of
integration by parts.
This is a good point to describe the labeling of the

vertices at the surface. The
P

n in the Hamiltonian ranges
from n ¼ min to n ¼ max; min ≤ n ≤ max. However,
the spin network itself extends to values n < min and
n > max. This is analogous to the situation in classical field
theory, where one integrates the Lagrangian or Hamiltonian
from min z to max z, but the space extends beyond these
limits.

In principle, the limits (min, max) can be chosen any-
where. In practice, the limits are chosen to lie in an
asymptotic region, so that surface terms generated by
integration by parts can be evaluated using boundary
conditions. Similarly here, the only restriction on min
and max is that the system is asymptotic at those values
of n; but the spin network does not vanish beyond those
limits.
In particular, the Thiemann construction of the extrinsic

curvatures, Sec. VI, predicts that the spin connection
depends on central differences of the transverse ~E,

½ ~Eðnþ 1Þ − ~Eðn − 1Þ�=2:

At n ¼ max, ~E (nþ 1) is ~E (maxþ1). This quantity is not
assumed to vanish.
Since the δðcÞ connects every other vertex, the total

derivative on the last line, Eq. (B1), gives rise to two surface
terms, one from even n terms and one from odd n. ~He
becomes

−κðN ~He þ STÞ ¼
X
n

f� � � − ð−2iÞĥCa δc½Ea
Bϵ

ZBCN�ðnÞg

þ ½NðnÞð−2iÞĥCaEa
Bϵ

ZBC�ðnÞ
× ½jmax

n¼min þ jmaxþ1
n¼min−1�ð1=2Þ þ ST: ðB2Þ

The ST is now chosen so that the last line vanishes.
The 1=2 in the surface term comes from the 1=2 in

the central difference. For example, use the definition
of the central difference, Eq. (13), to expand each term
in the sum

Xþ1

−1
δðcÞfðnÞ ¼ ð1=2Þ½fðþ2Þ − fð−2Þ þ fðþ1Þ − fð−1Þ�:

It is possible to eliminate the holonomy from the surface
term. One can replace the ð−2iÞĥCa by ðγKþ ΓÞCa
[Eq. (VI)]. The term involving K,

KC
aEa

Bϵ
ZBC;

is (one half of) the Gauss constraint, Eq. (40), and may be
dropped. The term involving Γ may be simplified by using
the other half of the constraint,

ΓC
aEa

Bϵ
BC ¼ δðcÞEz

Z:

The surface term is then

ST ¼ −NδðcÞEz
ZðnÞ½jmax

n¼min þ jmaxþ1
n¼min−1�ð1=2κÞ: ðB3Þ
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APPENDIX C: NUMBER OF VERTICES

This calculation uses a lattice with a fixed number of
vertices. Where does the number of vertices enter into the
calculation? To obtain the classical limit, we must assume
the fields vary slowly from vertex to vertex, so that the
discrete structure of the spin network is not obvious. The
precise value of the number of vertices is not important,
provided the number of vertices is large enough to
guarantee slow variation. One could replace the fixed
number of vertices with a distribution in the number of
vertices and nothing would change, provided the distribu-
tion were peaked at a large number.

The restriction to a fixed number of vertices may be more
apparent than real, because the classical limit uses coherent
states. In a coherent state, at each vertex n, the values
of SU(2) angular momentum L are Gaussian distributed.
This distribution includes angular momentum zero. In that
sense a coherent state already includes the possibility of no
vertex at n.
Since the distribution is Gaussian, the probability of no

vertex is very small. Presumably spin networks with small
numbers of vertices do not contribute significantly in the
classical limit.
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