
Note on linearized stability of Schwarzschild thin-shell wormholes
with variable equations of state

Victor Varela*

9616 Castle Ridge Circle, Highlands Ranch, Colorado 80129, USA
(Received 12 February 2014; published 3 August 2015)

We discuss how the assumption of variable equation of state (EoS) allows the elimination of the
instability at equilibrium throat radius a0 ¼ 3M featured by previous Schwarzschild thin-shell wormhole
models. Unobstructed stability regions are found for three choices of variable EoS. Two of these EoS entail
linear stability at every equilibrium radius. Particularly, the thin shell remains stable as a0 approaches the
Schwarzschild radius 2M. A perturbative analysis of the wormhole equation of motion is carried out in the
case of variable Chaplygin EoS. The squared proper angular frequency ω2

0 of small throat oscillations is
linked with the second derivative of the thin-shell potential. In various situations ω2

0 remains positive and
bounded in the limit a0 → 2M.
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I. INTRODUCTION

In 1966 Israel [1] presented a powerful formalism to
describe spacetime junctions. Continuity of the spacetime
metric is generally required on the hypersurfaces defined
by these junctions. Discontinuities of the extrinsic curva-
ture on these hypersurfaces lead to concentrations of energy
momentum called thin shells. The dynamical framework
for these zero-thickness objects follows from the Einstein
equations. These sources are modeled as two-dimensional
fluids characterized by surface energy density and surface
pressures. Spherically symmetric thin shells involve only
one surface pressure, and their dynamical description is
greatly simplified.
Thin shells are used in different ways within general

relativity. Kijowski et al. [2] as well as Krisch and Glass [3]
listed research lines in gravitational theory involving the use
of these objects. And the number of applications of Israel’s
thin-shell formalism keeps growing. (See, for example, the
very recent contributions by Mazharimousavi et al. [4] and
Pereira et al. [5].)
There is no clear-cut separation between thin-shell and

continuum models in all circumstances. In some cases the
dynamics of a continuous source naturally leads to con-
centrations of energy momentum that are best described
as thin shells. An example is the emergence of a thin shell
during the collapse of a massless scalar field reported by
Beauchesne and Edery [6].
The question arises whether gravitational source con-

struction based on thin shells rather than thick shells
provides physically meaningful results. Certainly, the
expected dynamical complexity of thick shells suggests

the insufficiency of thin-shell models. On the other hand,
recent research work indicates that these two approaches
complement each other in a number of ways.
Complementary aspects of thick shells and thin shells

appear in the sequential development of analytical gravastar
models. Mazur and Mottola [7] argued for the thermody-
namic stability of a gravastar model involving a (relatively
thin) finite-thickness shell bounded by two thin shells.
Visser and Wiltshire [8] considered the dynamical stability
of a thin-shell gravastar retaining most of the original
features of Mazur and Mottola’s model. Chirenti and
Rezzolla [9] studied the stability of a spherical thick-shell
gravastar model submitted to axial perturbations. The
analysis of nonradial gravastar perturbations was extended
by Pani et al. [10], who combined standard perturbation
theory with Israel’s formalism to describe polar perturba-
tions of nonrotating, thin-shell gravastar models.
The interplay of thick shells and thin shells emerges in

other dynamical contexts as well. Garfinkle and Gregory
[11] expanded the equations of a thick gravitating wall in
powers of the thickness of the wall. They found that the
zeroth-order equations reproduce the thin-wall approxima-
tion for domain walls provided by the Israel formalism.
Also, they used the first-order thick-wall equations to
modify thin-wall equations and discuss the motion of
domain walls. Khakshournia and Mansouri [12] deter-
mined that the zeroth-order approximation of the equations
of motion of a spherical dustlike thick shell coincides with
equations arising from the thin-shell formalism. They also
found that the effect of thickness is to speed up the collapse
of the shell. More recently, Drobov and Tegai [13] added
anisotropy to a thick wall of fluid and obtained the
appropriate thin-shell limit.
Garcia, Lobo, and Visser (GLV) [14] have summarized

the status of the energy conditions of standard general
relativity in connection with the theoretical construction
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of wormholes. These hypothetical tunnels in spacetime are
supported by “exotic matter” that violates all the pointwise
and all the averaged energy conditions. To minimize the
extent of this problem, researchers have considered trun-
cated Morris-Thorne models featuring a cutoff of the stress
energy, and a junction interface. (See, for example,
[15,16].) This junction constitutes a thin shell or a boundary
surface depending on the glued metrics. A more radical
approach is based on the cut-and-paste procedure proposed
by Visser [17], who joined two identical sections of
Schwarzschild’s spacetime excluding horizons and black
hole interiors. As a result, all the exotic matter concentrates
at the arising thin-shell throat.
An evolving, truncated wormhole model with boundary

surfaces separating the fluid-filled regions from vacuum,
which totally excludes thin shells, could be interpreted as a
pure thick shell. It would be interesting to implement
Garfinkle and Gregory’s approach in this context as well,
and expand the dynamical equations of this object in
powers of the thickness of the throat. The question arises
whether the zeroth-order equations would describe the
Schwarzschild thin-shell wormhole. Such a result would
provide a fresh justification of Visser’s construction.
The derivation of thin-shell wormhole dynamics as the

zero-thickness limit of a pure thick-shell model is an open
problem. Its eventual solution would support the comple-
mentarity of thin-shell and thick-shell approaches to this
type of source. The construction of evolving, pure thick-
shell wormholes; the dynamical interpretation of their
zero-thickness limit; and their possible connections with
thin-shell models are beyond the scope of the present paper.
In the spherically symmetric case Visser’s original con-

struction provides objects with relatively simple dynamics
whose energy-momentum contents ultimately originate from
topological identification. This is a distinguished feature in
gravitational physics. The resulting thin-shell wormhole
models have only one degree of freedom (throat radius),
and are compatible with a variety of dynamics through
different choices of one equation of state (EoS) linking
surface pressurepwith surface energy density σ. The present
author believes that, despite the missing link with thick-shell
dynamics, the topological character of thin-shell wormholes,
their highly simplified equations of motion, and their
potential astrophysical and cosmological applications justify
further studies, with particular regard to linearized stability
analyses.
The exotic matter concentrated at the throat of a

Schwarzschild thin-shell wormhole is described as a
two-dimensional perfect fluid featuring negative definite
σ. The determination of EoS for surfaces is difficult even in
the case of conventional matter [5]. Poisson and Visser [18]
assumed the generic barotropic EoS p ¼ pðσÞ, and ana-
lyzed the linear stability of Schwarzschild thin-shell
wormholes under perturbations preserving the symmetry.
Two oddities of this model arise. First, the squared sound

speed in the throat fluid takes values out of the expected
range when linearly stable solutions are considered.
Poisson and Visser pointed out that discussions of sound
speed are problematic if a detailed microphysical model for
the thin-shell exotic matter is unavailable. Second, the
equilibrium throat radius a0 ¼ 3M, where M is the worm-
hole mass, is usually unstable. This feature restricts the size
and location of stability regions for common choices of
barotropic EoS. Interestingly, the throat radius a0 ¼ 3M is
also unstable in the thin-shell wormhole model with
nonzero cosmological constant proposed by Lobo and
Crawford [19]. More generally, throat radii with distin-
guished stability properties emerge in d-dimensional for-
mulations of thin-shell wormholes including cosmological
constant, charge, geometric-topological factor, and baro-
tropic EoS [20]. Certainly, the occurrence of instabilities
narrows the applicability of thin-shell wormhole models
with barotropic EoS.
The stability of thin-shell wormholes when a0 nears the

Schwarzschild radius 2M remains essentially unexplored.
GLV have applied their novel stability analysis to asym-
metrical Schwarzschild wormholes. This approach deals
with external forces acting on the throat, dispenses with the
use of EoS linking surface pressure with surface energy
density, and imposes constraints on the mass function

msðaÞ ¼ 4πσðaÞa2; ð1Þ

where a is the dynamical throat radius. For the sake of
concreteness, the reader is referred to the discussion of
Fig. 4 in [14], with regard to the particular situation
M−=Mþ ¼ 1; x → 1, i.e., symmetric Schwarzschild thin-
shell wormhole with equilibrium radius arbitrarily close
to the Schwarzschild radius. These authors observed that
the size of the stability regions decreases in this limit. The
present author interprets this as a warning, not a diagnosis
of instability. In fact, the possible occurrence of stability in
this limit for specific choices of msðaÞ was not ruled out
by GLV.
Khaybullina et al. [21] applied the cut-and-paste pro-

cedure to Schwarzschild black hole and Ellis wormhole
solutions. The gluing of these metrics led to highly asym-
metric wormhole models featuring thin-shell throats. The
stability of these throats was analyzed with the GLVmethod.
These authors showed the increasing difficulty to stabilize
their models as a0 nears the Schwarzschild radius, and
discussed the significance of the ratio of the two masses
involved. The possibility of constructing a particular
Schwarzschild-Ellis wormhole that satisfies GLV’s inequal-
ities in this limit remains open.
The issues of the Schwarzschild thin-shell wormhole go

beyond the instability at a0 ¼ 3M and the challenge to
stabilize the throat as a0 → 2M. Eiroa and Simeone [22]
introduced a thin-shell throat to simplify a truncated
Morris-Thorne wormhole model proposed by Lobo [15].
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Assuming that p and σ are related by the cosmologically
motivated Chaplygin EoS [23], and using methods of
dynamical systems, Eiroa and Simeone determined the
instability of this model at every equilibrium throat radius
under small perturbations that preserve the symmetry [24].
Also, Kuhfittig [25] solved the energy conservation equation
for spherically symmetric thin-shell wormholes with phan-
tomlike EoS, and considered slight perturbations of the thin-
shell potential. This model turned out to be unstable in the
whole interval ð2M;þ∞Þ.
Provided the fundamental importance of the

Schwarzschild thin-shell wormhole model, in this work
we propose the use of variable EoS to enhance its stability
properties. The viability of variable EoS of the type p ¼
pðσ; aÞ was discussed in [14]. We generalize Poisson and
Visser’s analysis to deal with variable EoS, and see how the
instability at a0 ¼ 3M can be removed. The question arises
whether variable EoS can be cosmologically motivated as
well. Variable EoS used in cosmology relate volumetric
pressure to volumetric energy density and cosmic scale
factor. (See, for example, [26–30].) However, the different
natures of Schwarzschild thin-shell wormholes and
Friedmann-Robertson-Walker cosmological models pre-
clude straightforward transitions from EoS depending on
cosmic scale factor to EoS depending on throat radius.
On the other hand, the present author is not aware of any
restriction on the possible forms of variable thin-shell EoS
imposed by cosmological models [31].
We discuss three types of variable, throat fluid EoS. Our

choices are guided by simplicity. Extending Kuhfittig’s
approach to linearized stability, we employ these EoS to
illustrate the elimination of the instability at a0 ¼ 3M.
In one case we find unobstructed, semi-infinite stability
regions with movable boundary. In the other two cases the
Schwarzschild thin-shell wormhole is stabilized at every
a0 ∈ ð2M;þ∞Þ. Particularly, these results entail linear
stability in the limit a0 → 2M. The stabilization of one
of the models is also verified using GLV’s restriction on
m00

s ða0Þ. Moreover, we linearize the (second-order) equa-
tion of motion of the model with variable Chaplygin-like
EoS, and link the squared proper angular frequency of
radial throat oscillations with the second derivative of the
thin-shell potential. Notably, in some cases this quantity
remains positive and bounded when the equilibrium radius
gets arbitrarily close to the Schwarzschild radius.
To the best knowledge of the present author, the gener-

alization of Poisson and Visser’s formula to variable EoS, the
elimination of the instability at a0 ¼ 3M, the full linear
stabilization of the Schwarzschild thin-shell wormhole with
variable EoS, the confirmation of stability in the limit a0 →
2M using GLV’s approach, and the boundedness of the
throat oscillation frequency in the same limit have not been
previously reported in the literature of thin-shell wormholes.
In Sec. II we review Visser’s cut-and-paste method for

the construction of Schwarzschild thin-shell wormholes.

The generalization of Poisson and Visser’s linear stability
analysis to variable EoS, as well as the possible elimination
of the instability at a0 ¼ 3M are considered in Sec. III.
In Sec. IV we use Kuhfittig’s approach to discuss stability
properties of three thin-shell wormhole models featuring
variable EoS. Section V is devoted to the analysis of
small oscillations about the arbitrary equilibrium radius for
models with variable Chaplygin EoS. Finally, in Sec. VI we
summarize our results and suggest further approaches to
thin-shell wormhole models with variable EoS.

II. SCHWARZSCHILD THIN-SHELL
WORMHOLES

The basic ingredient for the construction of the thin-shell
wormhole is the Schwarzschild metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ ð2Þ

describing a black-hole spacetime. We take two copies ð�Þ
of this manifold and remove from each the corresponding
four-dimensional region Ω� ¼ fr ≤ aja > 2Mg. Next, we
identify the timelike hypersurfaces ∂Ω� ¼ fr ¼ aja >
2Mg and obtain the only one hypersurface ∂Ω. The arising
spacetime manifold is geodesically complete [17]. It
includes two asymptotically flat regions connected through
∂Ω, which constitutes the throat of the wormhole.
Israel’s thin-shell formalism requires the same induced

metric on each side of ∂Ω. Also, it relates the discontinuity
in the extrinsic curvature at the throat to its intrinsic energy-
momentum tensor, which describes a two-dimensional
perfect fluid.
The derivation of the equations of motion of spherically

symmetric, timelike thin shells with proper time τ, radius
aðτÞ, surface energy density σðτÞ, and surface pressure pðτÞ
is a standard application of Israel’s formalism. The reader is
referred to [32] for a pedagogical presentation. A general
discussion of thin-shell wormhole construction methods is
presented in [14].
We choose units G ¼ c ¼ 1. Einstein’s equations for the

wormhole take the form

σ ¼ −
1

2πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=aþ _a2

q
; ð3Þ

p ¼ 1

4πa
1 −M=aþ _a2 þ aäffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=aþ _a2
p ; ð4Þ

where overdots denote derivatives with respect to τ.
Equilibrium is defined by _a ¼ ä ¼ 0. The corresponding

surface energy density and surface pressure are given by
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σ0 ¼ −
1

2πa0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=a0

p
; ð5Þ

p0 ¼
1

4πa0

1 −M=a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=a0

p ; ð6Þ

where a0 is the throat’s equilibrium radius. We see that
σ0 → 0 and p0 → þ∞ as a0 → 2M. Physically meaningful
equilibrium radii satisfy a0 > 2M.
Equations (3)–(4) entail the energy conservation law

_σ þ 2

a
ðσ þ pÞ _a ¼ 0: ð7Þ

We seek solutions of the form σ ¼ σðaÞ for p ¼ pðσ; aÞ.
In this case we get

σ0 þ 2

a
½σ þ pðσ; aÞ� ¼ 0; ð8Þ

where prime denotes differentiation with respect to a.
Equation (3) can be recast as

_a2 þ VðaÞ ¼ 0; ð9Þ

where the thin-shell potential is given by

VðaÞ ¼ 1 − 2M=a − ½2πaσðaÞ�2: ð10Þ

Each solution of (8) determines a specific form of VðaÞ.

III. LINEARIZED STABILITY ANALYSIS

Equation (9) implies that VðaÞ is not the type of external
potential usually found in classical mechanics, the reason
being that the “total energy” vanishes identically.
Accordingly, every perturbation of the kinetic energy term
in (9) will be compensated with a perturbation of the
potential. Particularly, if the thin shell is in equilibrium at
a ¼ a0 when the perturbation occurs, the perturbed value
of Vða0Þ is necessarily negative.
Solutions of (8) depend on one integration constant.

Assuming that the throat is in equilibrium at a ¼ a0, this
constant is chosen such that σða0Þ equals the energy density
given by (5). As a consequence, each throat in equilibrium
is characterized by a specific solution σ ¼ σðaÞ that allows
the evaluation of V ¼ VðaÞ before perturbation [33].
The behavior of the potential in some neighborhood
of the equilibrium radius is described with the expansion

VðaÞ ¼ Vða0Þ þ V 0ða0Þða − a0Þ þ
1

2
V 00ða0Þða − a0Þ2

þO½ða − a0Þ3�: ð11Þ

Linearized stability analysis deals only with the first three
terms of this series.

As a consequence of (10) and (5) we find

Vða0Þ ¼ 0: ð12Þ

Differentiation of (10) and evaluation at equilibrium using
(8), (6), and (5) yield

V 0ða0Þ ¼ 0: ð13Þ

Further differentiation and use of

p0 ¼ ∂p
∂σ σ

0 þ ∂p
∂a ð14Þ

lead to the expression

V 00ðaÞ ¼ −
4M
a3

− 8π2
�
ðσ þ 2pÞ2 þ 2σ

�
1þ 2

∂p
∂σ

�
ðσ þ pÞ

�

þ 16π2aσ
∂p
∂a ; ð15Þ

which generalizes Eq. (26) of Poisson and Visser’s paper
to p ¼ pðσ; aÞ. Using (5)–(6) we particularize the above
expression to equilibrium and obtain

V 00ða0Þ ¼ −
2

a20

�
2M
a0

þ M2=a20
1 − 2M=a0

þð1þ 2β20Þ
�
1 −

3M
a0

��

þ 8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
a0

s
γ0; ð16Þ

where β20 ≡ ∂p
∂σ ja¼a0 and γ0 ≡ − ∂p

∂a ja¼a0 .
Equation (16) shows that the second derivative V 00ða0Þ is

generally nonzero and depends on the chosen EoS through
the parameters β20 and γ0.
The above discussion leads to the truncated expansion

VðaÞ ¼ 1

2
V 00ða0Þða − a0Þ2; ð17Þ

where V 00ða0Þ is given by (16). We are interested in
equilibrium configurations satisfying V 00ða0Þ > 0. In this
case VðaÞ is approximately described as a convex parabola
in a sufficiently small neighborhood of a ¼ a0.
We have seen that every spherically symmetric pertur-

bation of equilibrium leads to a negative value of the
perturbed potential at a ¼ a0. Assuming that the shape of
VðaÞ is slightly deformed when the perturbation is very
small, we expect the perturbed potential to be definite
negative in some neighborhood of a ¼ a0. Furthermore,
if the perturbation is sufficiently small, both the sign of
V 00ða0Þ and the approximately parabolic shape of the
potential remain unchanged after perturbation. Under these
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conditions, the deformed potential gets two separate zeros
within a sufficiently small neighborhood of a0. If these
zeros are located at a ¼ a1 and a ¼ a2 (a1 < a2), the
perturbed potential is negative definite in the interval
ða1; a2Þ. Therefore the assumption V 00ða0Þ > 0 entails
oscillations between the slightly separated turning points
a1 and a2 when the perturbation is sufficiently small. This
situation describes linearized thin-shell stability against
radial perturbations. On the contrary, the case V 00ða0Þ < 0
implies instability. The present analysis is not conclusive
when V 00ða0Þ ¼ 0 [34].
Let us consider the class of Schwarzschild thin-shell

wormhole models characterized by finite or zero β20 at
a0 ¼ 3M. Under this condition (16) yields

V 00ð3MÞ ¼ −
2

9M2
þ 8πffiffiffi

3
p γ0; ð18Þ

where γ0 is evaluated at this equilibrium radius. The
assumption of generic barotropic EoS implies γ0 ≡ 0,
which entails the negative value V 00ð3MÞ ¼ −2=9M2. On
the other hand, positive values of γ0 arising in models with
variable EoS could lead to stability at a0 ¼ 3M.
Lobo and Crawford [19] analyzed thin-shell wormholes

with a nonvanishing cosmological constant (Λ). These
authors used the generic, barotropic EoS, which led to
their equation (35) for V 00ða0Þ. Assuming the EoS is regular
at a0 ¼ 3M, so that η0 ≡ dp=dσja0 is finite or zero at that
point, and that 9ΛM2 ≠ 1, the result V 00ð3MÞ ¼ −2=9M2

follows. Hence the equilibrium radius a0 ¼ 3M is unstable
in this case as well. Lobo and Crawford’s paper does not
extend the calculation of V 00ða0Þ to variable EoS. We expect
that the derivation of a new formula for V 00ða0Þ based on
Λ ≠ 0 and variable EoS would allow the elimination of the
instability at a0 ¼ 3M.

IV. VARIABLE EOS

We are aware of the total instability of Schwarzschild
thin-shell wormhole models based on phantomlike or
Chaplygin EoS. In this section we explore two general-
izations of these EoS characterized by explicit, regular
dependence on throat radius a. Also, motivated by the
behavior of σ0 and p0 as a0 → 2M, we consider a variable
EoS with linear dependence on σ and singular dependence
on a.
The analyses presented in this section use Kuhfittig’s

approach to linearized stability, which involves the follow-
ing steps:
(1) Solution of (8) to obtain σ ¼ σðaÞ for a generic

equilibrium configuration.
(2) Use of (10) to get the explicit form of VðaÞ.
(3) Verification of condition (12).
(4) Use of condition (13) to constrain the EoS at

equilibrium radius a0.

(5) Evaluation of V 00ðaÞ at every a0 ∈ ð2M;þ∞Þ to
determine stability regions.

We begin with the EoS

p ¼ A
an

σ; ð19Þ

where A, n are constants. The case n ¼ 0 corresponds to the
phantomlike EoS discussed in [25].
Plugging (19) into (8) we obtain

d
da

ðσ2Þ þ 4

a

�
1þ A

an

�
σ2 ¼ 0: ð20Þ

This equation admits the solution

σðaÞ2 ¼ σ20

�
a0
a

�
4

exp

�
4A
n

�
1

an
−

1

a0n

��
; ð21Þ

which satisfies the condition σða0Þ2 ¼ σ20.
Using (21) and (10) we obtain

VðaÞ ¼ 1 − 2M=a

− 4π2a2σ20

�
a0
a

�
4

exp

�
4A
n

�
1

an
−

1

a0n

��
; ð22Þ

which, combined with (5), features the required property
Vða0Þ ¼ 0.
Differentiating VðaÞ with respect to a, evaluating the

resulting expression at a ¼ a0, and using (5) we find that
V 0ða0Þ ¼ 0 if and only if

A ¼ 1

2

an0M − anþ1
0

a0 − 2M
: ð23Þ

Further differentiation of VðaÞ, use of the above expres-
sion for A, and evaluation at a ¼ a0 lead to the result

V 00ða0Þ ¼
4nM2 − ð6nþ 2ÞMa0 þ 2na02

a30ða0 − 2MÞ ð24Þ

that we use to determine stability properties at every
equilibrium radius a0 > 2M.
When a0 gets close to 2M we find the behavior

V 00ða0Þ ≈ −
1

2Mða0 − 2MÞ ð25Þ

that indicates instability for arbitrary n. We are interested in
situations where V 00ða0Þ turns positive at some a0 > 2M.
The roots of V 00ða0Þ ¼ 0 are given by

a01 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 6nþ 1

p
− 3n − 1

2n
M; ð26Þ
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a02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 6nþ 1

p
þ 3nþ 1

2n
M: ð27Þ

Evaluating these expressions for real n we find that a02
takes values in the range ð2M;þ∞Þ only if n > 0, while
a01 takes values out of the same interval for every n.
Therefore Eq. (27) determines the only one zero of V 00ða0Þ
for each n > 0.
Each value of a02 ∈ ð2M;þ∞Þ defines the boundary of

a semi-infinite stability region satisfying a0 > a02. This is
compatible with the behavior of V 00ða0Þ for a0 ≫ 2M,
namely

V 00ða0Þ ≈
2n
a02

; ð28Þ

which is positive for n > 0. On the other hand, equilibrium
radii a0 < a02 are necessarily unstable.
Now we consider the dependence of a02 on n.

For sufficiently small, positive values of n (27) implies

a02 ≈
M
n
; ð29Þ

while very large, positive values of n lead to

a02 ≈
�
1þ 1

4n

�
2M: ð30Þ

Hence the boundary of the stability region moves away
indefinitely from the Schwarzschild radius as n → 0þ, and
approaches the would-be horizon as n → þ∞. Further
analysis of (27) shows that a02=2M decreases monotoni-
cally when n increases.
We highlight that the equilibrium throat radius a0 ¼ 3M

becomes linearly stable for some n values. In fact,
evaluating (24) at this radius we get

V 00ð3MÞ ¼ 4n − 6

27M2
; ð31Þ

which is positive for n > 3=2.
The present analysis shows that the stabilization of the

Schwarzschild thin-shell model characterized by (19) is
partially achieved. The model is necessarily unstable for a0
in the immediate vicinity of 2M for every finite, positive
value of n.
Now we turn our attention to the EoS

p ¼ 1

an
B
σ
; ð32Þ

where B and n are constants. It reduces to the Chaplygin
EoS studied in [22] when n ¼ 0.
Following Kuhfittig’s approach, we combine (32) with

(8), and integrate the arising differential equation for the

squared surface energy density. Assuming n ≠ 4 we
obtain

σðaÞ2 ¼ 4ðan0a4 − a40a
nÞBþ ðn − 4Þanþ4

0 σ20a
n

ðn − 4Þan0anþ4
; ð33Þ

which satisfies the condition σða0Þ2 ¼ σ20. Plugging this
result into (10) we get the corresponding expression for
VðaÞ, which, combined with (5), satisfies (12). Next we
impose condition (13) and obtain the form of B, namely

B ¼ a0n−3M − a0n−2

8π2
: ð34Þ

We use this result to derive, after some algebra, an
expression for the second derivative of VðaÞ at a ¼ a0:

V 00ða0Þ ¼
2n − 4

a02
−
ð2n − 6ÞM

a03
: ð35Þ

Repeating the above procedure for n ¼ 4 we get a form
of σðaÞ2 involving logarithms. However, using the corre-
sponding results for B and VðaÞ we are led to an expression
for V 00ða0Þ identical to the case n ¼ 4 of (35). Therefore
no separate linear stability analysis is required for this
particular choice of n.
The thin-shell potential given by (35) admits the power

series representation

V 00ða0Þ ¼
n − 1

4M2
−
nþ 1

8M3
ða0 − 2MÞ þ 3

8M4
ða0 − 2MÞ2

þ � � � ð36Þ
when a0 > 2M is in the immediate vicinity of 2M.
From (35) we determine that V 00ða0Þ vanishes only at

a0r ¼
n − 3

n − 2
M; ð37Þ

for each real value of n. This root takes values in the range
ð2M;þ∞Þ only if n ∈ ð1; 2Þ.
Two situations emerge if we assume n ∈ ð1; 2Þ. First,

the zeroth-order truncation of (36) assigns finite, positive
values to V 00ða0Þ as a0 gets arbitrarily close to 2M. Second,
(35) implies negative values of the same parameter for
arbitrarily large a0 (a0 ≫ 2M). Hence the only root a0r
of V 00ða0Þ, given by (37), separates the stability region
a0 < a0r from the instability region a0 > a0r. Also, a0r
increases monotonically and becomes unbounded as
n → 2−, so the model gets fully stabilized in this limit.
In the case n ≤ 1 negative values of V 00ða0Þ arise in the

limits a0 → 2M and a0 → þ∞, as consequences of (36)
and (35), respectively. Also, these two expressions lead
to bounded, positive values of V 00ða0Þ in the same limits
for n ≥ 2. Taking into account the absence of roots
a0r ∈ ð2M;þ∞Þ for n ≤ 1 or n ≥ 2, we conclude that
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the thin-shell wormhole model based on (32) is totally
unstable in the first case (which includes the choice n ¼ 0,
i.e., the Chaplygin EoS) and fully stable in the second case.
Interestingly, the evaluation of (35) at a0 ¼ 3M provides

an expression for V 00ð3MÞ that exactly reproduces (31).
Therefore this particular equilibrium radius also becomes
linearly stable for n > 3=2 in models based on (32).
Our choices (19) and (32) have been guided by sim-

plicity. Particularly, these EoS feature regular dependence
on (dynamic) throat radius a. On the other hand, when we
assume a linear relationship between the equilibrium values
p0 and σ0, respectively given by (6) and (5), we determine a
factor of proportionality that becomes unbounded as
a0 → 2M. The appearance of a0 − 2M in the denominator
of (23) is related to this fact. In the case of (19) the singular
dependence on a0 is totally contained in A. And the explicit
dependence of this EoS on a is regular in the same limit.
The unbounded behavior of the ratio p0=σ0 as a0 → 2M

can also be accounted for by an EoS featuring singular
dependence on a. In this case the constant factor included
in the EoS can be a regular function of a0. More
importantly, an EoS featuring explicit, singular dependence
on a could have a strong impact on the dynamics of the
associated thin-shell wormhole model.
Now we consider the variable, singular EoS

p ¼ Ca
a − 2M

σ; ð38Þ

where C is a constant to be evaluated at the equilibrium
radius a0. This EoS takes the approximate form p ≈ Cσ
for a ≫ 2M. Its relationship with the case n ¼ 0 of (19)
analyzed in [25] is misleading, since the variability of (38)
entails substantially different stability properties.
Applying Kuhfittig’s method we obtain

C ¼ M − a0
2a0

; ð39Þ

σðaÞ ¼ −2a0
�
a0 − 2M
a − 2M

�M−a0
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
a0

s
; ð40Þ

V 00ða0Þ ¼
2M
a03

: ð41Þ

Restricting the equilibrium radius to the relevant interval
ð2M;þ∞Þ, we see that C is a regular function of a0 that
approaches the value −1=2 as a0 → þ∞. Also, V 00ða0Þ is
definite positive in the same interval. For this reason, the
thin-shell wormhole model based on (38) is linearly stable.
We check our assessments of stability with variable EoS

against GLV’s stability criterion in the absence of external
forces. In the case of symmetric Schwarzschild wormholes
inequality (83) of [14] reduces to

a0m00
s ða0Þ ≥

2M2

a20ð1 − 2M=a0Þ3=2
; ð42Þ

wheremsðaÞ is defined in (1). Provided that the right side of
this expression diverges as a0 approaches 2M,m00

s ða0Þmust
diverge as well to guarantee stability in this limit.
For the sake of brevity, we focus our attention only on

the model with singular EoS. Plugging (40) into (1), and
evaluating m00

s ða0Þ we obtain

a0m00
s ða0Þ ¼

�
a0
M

− 1

��
2M2

a20ð1 − 2M=a0Þ3=2
�
: ð43Þ

Since a0 > 2M, this result implies that (42) is fulfilled at
every equilibrium radius. Particularly, the wormhole
remains stable when a0 gets arbitrarily close to the
Schwarzschild radius.

V. SMALL OSCILLATIONS

The above discussions relate linear stability to the
positivity of V 00ða0Þ. Apart from its sign, the magnitude
of this parameter is usually irrelevant to thin-shell worm-
hole stability analysis. We have examined two variable EoS
that imply bounded values for this second derivative in the
whole interval ð2M;þ∞Þ. It would be interesting to have a
physical interpretation of the magnitude of V 00ða0Þ as well.
The study of oscillations in classical mechanics links

the second derivative of the potential energy with squared
angular frequency in the case of (exact or approximate)
harmonic motion about an equilibrium point. The question
arises whether a similar interpretation of V 00ða0Þ could be
elaborated, despite the noted differences between thin-shell
potentials and classical potential energy functions.
To explore this possible similarity we rewrite (9) in the

standard form

1

2
_a2 þ UðaÞ ¼ 0; ð44Þ

where the redefined thin-shell potential UðaÞ ¼ VðaÞ=2 is
reminiscent of classical potential energy.
The perturbed values of UðaÞ are necessarily negative

in a sufficiently small neighborhood of equilibrium radius
a0 due to the positivity of _a2=2. AssumingUðaÞ ≈Uða0Þþ
U00ða0Þða − a0Þ2=2, where Uða0Þ < 0, we see that, after a
slight symmetry-preserving perturbation, (44) is replaced
with the approximate equality

_a2 þU00ða0Þða − a0Þ2 ¼ 2jUða0Þj: ð45Þ
The equation of motion of a Schwarzschild thin-shell

wormhole model emerges when we combine a particular
EoS p ¼ pðσ; aÞ with (4) and (3). Let us assume that the
equation of motion of a certain thin-shell wormhole admits
approximate solutions aðτÞ with harmonic τ-dependence,

NOTE ON LINEARIZED STABILITY OF SCHWARZSCHILD … PHYSICAL REVIEW D 92, 044002 (2015)

044002-7



proper angular frequency ω0, and amplitude α. In this case
(45) entails

ω2
0α

2 ¼ 2jUða0Þj; ð46Þ

U00ða0Þα2 ¼ 2jUða0Þj; ð47Þ

which together imply

ω2
0 ¼ U00ða0Þ; ð48Þ

where U00ða0Þ is necessarily positive.
In virtue of (48) the stability criterion U00ða0Þ > 0 is

equivalent to ω2
0 > 0 in the case of approximate harmonic

oscillations. Also, the wormhole throat oscillates in the
immediate vicinity of a ¼ a0 with proper frequency
ν0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ða0Þ

p
=2π. These results provide physical mean-

ing to the numerical value of U00ða0Þ in the case of
approximate harmonic motion about equilibrium.
To broaden our scope of the link between U00ða0Þ and

thin-shell throat dynamics, we deal with approximate
solutions of the equation of motion associated with the
variable Chaplygin EoS, and discuss ω2

0 values in all
possible cases. From (32), (4), and (3) we get

1 −
M
a
þ _a2 þ aä ¼ −

8π2B
an−2

: ð49Þ

An equivalent system of two first-order differential equations
was linearized by Eiroa and Simeone [22] in the particular
case n ¼ 0. These authors discussed stability properties
based on the eigenvalue structure of the associated 2 × 2
matrix. Instead, we analyze the second-order equation (49)
directly and find the squared proper angular frequency of the
small oscillations for arbitrary real values of n.
The dynamical throat radius a ¼ aðτÞ can be written as a

perturbation of the equilibrium radius, namely

aðτÞ ¼ a0½1þ ϵðτÞ�: ð50Þ
Inserting this expression in (49) we obtain

1

a20ð1þ ϵÞ −
M

a30ð1þ ϵÞ2 þ
_ϵ2

1þ ϵ
þ ̈ϵ ¼ −

8π2B
an0ð1þ ϵÞn−1 :

ð51Þ
Assuming jϵj ≪ 1, using the binomial approximation, and
dropping terms containing _ϵ2 we obtain

̈ϵþ ω2
0ϵþ μ ¼ 0; ð52Þ

where

ω2
0 ¼

2M
a30

−
1

a20
−
8π2ðn − 1ÞB

an0
; ð53Þ

μ ¼ 1

a20
−
M
a30

þ 8π2B
an0

: ð54Þ

Plugging (34) into these expressions we find

ω2
0 ¼

n − 2

a20
−
ðn − 3ÞM

a30
; ð55Þ

μ ¼ 0: ð56Þ

We end up with the linearized equation of motion

̈ϵþ ω2
0ϵ ¼ 0 ð57Þ

leading to harmonic oscillations only if ω2
0 > 0. Besides,

ω2
0 < 0 implies instability. In the case ω2

0 ¼ 0 a higher
order approximation of (49) is required to determine
stability properties.
Comparing (55) with (35), and using the definition of

UðaÞ we arrive at (48) again. Thus the validity of this
identity is extended to cases with negative or zero U00ða0Þ.
We see that stability criteria based on the sign ofU00ða0Þ [or
V 00ða0Þ] or the sign of ω2

0 are equivalent. So there is no need
to repeat the analysis of (32) for different values of n based
on the sign of ω2

0.
We emphasize that, as a consequence of (55) and (48),

bothω2
0 andU

00ða0Þ tend to ðn − 1Þ=8M2 as a0 → 2M. This
expression is bounded for finite n, and positive whenever
n > 1. Bounded proper angular frequencies are potentially
measurable. The above limit provides a link between proper
angular frequency, wormhole mass, and adjustable EoS
parameter that could play a role in the eventual differ-
entiation of thin-shell wormholes from black holes of the
same mass [35].
The small oscillations associated with (38) should

also be investigated. There are marked differences between
the thin-shell potentials derived from (32) or (38), particu-
larly with regard to the behavior of the third and higher
derivatives of VðaÞ evaluated at a0 in the limit a0 → 2M.
Subtleties may arise in the perturbative analysis of the
equation of motion in the case of singular EoS. We leave
the corresponding calculation for future research.

VI. CONCLUSION

Most of the previous approaches to thin-shell wormhole
stability have assumed barotropic EoS for the throat
fluid. As a result the equilibrium throat radius a0 ¼ 3M
is usually unstable. The phantomlike EoS as well as
the Chaplygin EoS lead to totally unstable models. The
modified Chaplygin EoS entails stability regions, but
leaves the instability at a0 ¼ 3M untouched due to its
barotropic character.
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The fundamental role and relative simplicity of the
Schwarzschild thin-shell wormhole solution have motivated
our linear stabilization procedures based on variable EoS.
Specific choices of variable EoS are less obvious than the

usual, cosmologically motivated selection of phantomlike,
Chaplygin, or modified Chaplygin (barotropic) EoS.
Although some examples of variable cosmological EoS
are available, their implications on the choice of variable,
thin-shell wormhole EoS depending on throat radius are
uncertain.
We have extended Poisson and Visser’s formula for

V 00ða0Þ to determine effects of variable EoS on linear
stability. The procedure is quite general. It does not require
specific choices of variable EoS, or involves the integration
of the energy conservation equation. And it shows the
possible elimination of the instability at a0 ¼ 3M for
suitable choices of variable EoS.
Our modifications of the phantomlike and Chaplygin

EoS have been implemented through the introduction of
variable coefficients in these equations. In two cases the
coefficients are powers of dynamical throat radius a, where
the exponents are free parameters. In another case the
coefficient is a fixed function of a that becomes unbounded
as a approaches the Schwarzschild radius.
We have employed Kuhfittig’s approach to linear

stability analysis, which involves the solution of the
(first-order) energy conservation equation for surface
energy density, and the determination of the second
derivative of the thin-shell potential at every equilibrium
radius a0 > 2M.
The generalized form of the phantomlike EoS considered

here leads to a sequence of semi-infinite stability regions
with boundaries approaching the Schwarzschild radius
as the (positive) free parameter of the EoS becomes
unbounded. For each finite, positive value of this parameter
the thin-shell throat is unstable in the immediate vicinity of
the would-be horizon. The proposed generalization of the
Chaplygin EoS entails models that are totally unstable,
partially stable, or fully stable depending on the value of the
free parameter. The second modification of the phantom-
like EoS, characterized by singular a-dependence, entails
fully stabilized models.
Using the variable Chaplygin EoS, as well as the singular

form of the phantomlike EoS, we have determined linear
stability with bounded V00ða0Þ at every a0 > 2M. The full
linear stabilization of the model with singular EoS has also
been confirmed using GLV’s condition on m00

s ða0Þ.
Complementarily, we have studied the small oscillations

of thin-shell throats satisfying the variable Chaplygin EoS.
This approach is based on the linearization of the corre-
sponding (second-order) equation of motion. We have
found that the squared proper angular frequency ω2

0 equates
the second derivative of the (redefined) thin-shell potential
U00ða0Þ. This result shows the equivalence of the small
oscillations analysis and Kuhfittig’s method when applied

to this EoS. It also indicates that ω2
0 remains positive and

bounded in the limit a0 → 2M for various choices of the
free EoS parameter n.
To the best knowledge of the present author the exten-

sion of Poisson and Visser’s approach to variable EoS;
the application of Kuhfittig’s stability analysis to
Schwarzschild thin-shell wormholes with variable forms
of the phantomlike EoS (with regular or singular
a-dependence) or variable Chaplygin EoS; the proof of
stability in the limit a0 → 2M based on GLV’s inequality;
the direct perturbative analysis of the (second-order)
equation of motion for the variable Chaplygin EoS showing
full compatibility with Kuhfittig’s method; and the pos-
sibility of (approximate) harmonic throat oscillations with
bounded proper angular frequency in the limit a0 → 2M
are new results in the peer-reviewed literature of these
solutions. It should be emphasized that the discussion of
thin-shell wormhole oscillations—beyond stability assess-
ments—has received relatively little attention by research-
ers so far.
We have not calculated the speed of sound in exotic

throat fluids with variable EoS. The use of variable EoS
could mitigate the sound speed inconformity within a
macroscopic treatment. An immediate challenge is the
derivation of a sound speed formula applicable to throat
fluids with variable EoS.
The three types of variable EoS examined in this paper

could also be used in stability analyses of thin-shell
wormholes constructed with nonvacuum metrics. The
existence of local solutions for the energy conservation
equation around the equilibrium radius is guaranteed for
external force terms depending exclusively on surface
energy density and throat radius [14]. Thin-shell gravastar
models can incorporate variable EoS as well. Local stability
analyses will be available for these sources whenever the
external force term in the energy conservation equation
satisfies the same requirement as above [36]. The use of
singular EoS in this context could be interesting for another
reason [37].
We expect that the eventual extension of Dias and

Lemos’work to variable EoS will lead to enhanced stability
properties for thin-shell wormholes in d-dimensional gen-
eral relativity.
Interestingly, the connection between Born-Infeld scalar

fields and variable Chaplygin EoS has been explored in
cosmology [28]. Specific scalar field models of thin shells
have been analyzed in the literature [38]. The question
arises whether a prospective Born-Infeld model for throat
fluids would entail (32).
The use of variable EoS could boost the stability of thin-

shell models of intragalactic wormholes based on the
Mannheim-Kazanas-de Sitter solution [39]. Also, it could
improve the stability of truncated Morris-Thorne wormhole
models involving dynamical thin-shell boundary [16].
Future developments in these directions could offer
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perspectives on the stability analysis of other types of
galactic wormhole models [40] and their differentiation
from black holes [41].
We stress that the present approach to stability concerns

only the spherically symmetric sector of Schwarzschild
thin-shell wormholes. Radial stability is a necessary but
not sufficient condition for the full stabilization of the
models. Prospective studies of thin-shell wormholes with
variable EoS incorporating the more general perturbation
analysis of Pani et al. [10] could lead to a wider under-
standing of the stability properties of these self-gravitating
sources.
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