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We analyze the clustering of a cosmic large scale structure using a consistent modified gravity
perturbation theory, accounting for anisotropic effects along and transverse to the line of sight. The growth
factor has a particular scale dependence in fðRÞ gravity and we fit for the shape parameter fR0
simultaneously with the distance and the large scale (general relativity) limit of the growth function. Using
more than 690,000 galaxies in the baryon oscillation spectroscopy survey data release 11, we find no
evidence for extra scale dependence, with the 95% confidence upper limit jfR0j < 8 × 10−4. Future
clustering data, such as from the dark energy spectroscopic instrument, can use this consistent methodology
to impose tighter constraints.
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I. INTRODUCTION

The growth of large scale structure in the universe is a
multifaceted probe of cosmology. The galaxy clustering
pattern measures cosmic geometry through baryon acoustic
oscillations, giving angular distances transverse to the line
of sight and radial distance intervals, or the Hubble
parameter, along the line of sight, and the ratio of the
two known as the Alcock-Paczyński effect [1]. The
evolution of the clustering amplitude provides the growth
factor and the shape of the clustering correlation function or
power spectrum depends on early universe conditions and
later, scale dependent effects. In addition, redshift space
distortions (RSD) cause anisotropy in the clustering
between the transverse and radial directions, and this
probes the velocity field and the law of gravity [2–7].
General relativity (GR) predicts scale independent

growth in the linear perturbation regime and specific
redshift distortion patterns, and so probing for scale
dependence or distortion deviations can test the theory
of gravity. Our aim is to investigate the general relativity
cosmological framework by fitting the galaxy clustering

data while allowing for scale dependence, and constrain
such deviations. We are particularly motivated by scalar-
tensor theories and use a perturbation theory template
derived for fðRÞ gravity. Scale dependence arises at length
scales smaller than or of order the inverse of the scalaron
mass m ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
3fRR

p
, where a subscript R denotes a

derivative with respect to the Ricci scalar [8]. For GR, f ¼
R and so the scale dependence vanishes. This scale
dependence was tested using the combination of cosmic
microwave background (CMB) data and galaxy clustering
spectra in the following work [9].
By employing the perturbation theory of Taruya et al.

[10] that uses a resummed propagator to partially include
nonperturbative and screening effects of the modified
gravity, we can analyze the clustering correlation function
to smaller scales than linear theory or simple perturbation
calculations. We join this to our previous, substantially
model independent approach of treating the background
expansion in terms of the angular diameter distance and
Hubble parameter [11–13], rather than assuming a dark
energy model such as ΛCDM. Furthermore, we generalize
the previous scale independent growth factor to two
quantities: one scale independent (corresponding to the*ysong@kasi.re.kr
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large scale limit of the growth factor) and one scale
dependent (which can be thought of as characterizing
the scalar-tensor modification, e.g. m or fR0).
While we concentrate here on improving the RSD and

galaxy clustering analysis for testing GR, various other
methods have also been used. For example, the Planck
collaboration has put constraints on a wide of range of
modified gravity models using the Planck 2015 CMB data,
combined with large scale structure observations [14]; the
SDSS-III (BOSS) team has tested GR using the observed
structure growth patterns [15–17]; the Wiggle-z team has
tested modified gravity models [18,19]; and the CFHTLenS
team employs the complementarity between weak gravi-
tational lensing and RSD [20]. The abundance of clusters
[21,22] and the cluster profiles [23,24] have also been used
for gravity tests. For more recent observational tests of GR,
see [25–32] and [33] for a review.
To focus on exploring the scale dependence, we use

only the clustering data, from the Baryon Oscillation
Spectroscopic Survey (BOSS) Data Release 11 (DR11)
of the Sloan Digital Sky Survey 3 (SDSS3) [34,35]. This
consists of about 690,000 galaxies over an effective volume
of 6 Gpc3 with an effective redshift z ¼ 0.57. We measure
the two dimensional anisotropic correlation function as a
function of transverse and radial separation between
galaxies, and fit this to the redshift space distorted
resummed perturbation theory. This comparison then
imposes constraints on the cosmological and gravitational
quantities, allowing us to test general relativity.
Section II describes the modified gravity theoretical

approach, from the fðRÞ gravity model to the resummed
propagator and resulting perturbation theory to the pre-
diction for the clustering correlation function. We also lay
out our approach of splitting the growth function into scale

independent and dependent parts. In Sec. III A we discuss
measurement of the anisotropic correlation function from
the data and treatment of the covariance matrix. We verify
in Sec. III B that we recoverΛCDM from ΛCDM simulated
data. The comparison of the theory to the measurement is in
Sec. III C and III D, where we analyze the fits to the
cosmological quantities and their consistency with general
relativity and ΛCDM. We summarize and conclude
in Sec. IV.

II. THEORETICAL MODEL

A. f ðRÞ gravity model

We consider perturbations around the Friedman-
Robertson-Walker universe described by the metric

ds2 ¼ −ð1þ 2ΨÞdt2 þ aðtÞ2ð1 − 2ΦÞδijdxidxj: ð1Þ

We will investigate modified gravity models that can be
modeled by Brans-Dicke gravity on subhorizon scales. The
metric perturbations and the scalar field perturbation ϕ ¼
ϕ0 þ φ obey the following equations in Fourier space [36]

−k2Ψ ¼ 4πGa2ρδþ 1

2
k2φ; ð2Þ

ð3þ 2ωBDÞ
1

a2
k2φ ¼ 8πGρmδ − IðφÞ; ð3Þ

Φ −Ψ ¼ φ; ð4Þ

where I represents the self-interaction, which can be
expanded as [36]

IðφÞ ¼ M1ðkÞφðkÞ þ
1

2

Z
d3k1d3k2
ð2πÞ3 δDðk − k12ÞM2ðk1; k2Þφðk1Þφðk2Þ

þ 1

6

Z
d3k1d3k2d3k3

ð2πÞ6 δDðk − k123ÞM3ðk1; k2; k3Þφðk1Þφðk2Þφðk3Þ; ð5Þ

where kij ¼ ki þ kj and kijk ¼ ki þ kj þ kk. We treat the
matter fluctuations δ as a pressureless fluid flow, whose
evolution equation is given by

∂δ
∂t þ

1

a
∇ · ½ð1þ δÞv� ¼ 0; ð6Þ

∂v
∂t þHv þ 1

a
ðv ·∇Þ · v ¼ −

1

a
∇Ψ: ð7Þ

We will assume the irrotationality of fluid quantities and
express the velocity field in terms of the velocity divergence
Θ ¼ ∇ · v=ðaHÞ.

In order to develop the template for the redshift space
power spectrum, we need to specify the interaction term I .
We consider fðRÞ models as a representative class of
models where the linear growth function is scale dependent.
fðRÞ gravity models are described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm: ð8Þ

We consider the function fðRÞ given by the lowest order
expansion in the small quantity jfR0j ≪ 1,
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fðRÞ ¼ −2κ2ρΛ þ jfR0j
R̄2
0

R
; ð9Þ

general to many fðRÞ models that are observationally
viable. Here ρΛ is the constant energy density and R̄0 is
the background curvature at present time. For small jfR0j,
the background expansion in this Ansatz can be approxi-
mated as the one in the ΛCDM model.
The scalar field perturbation is given by

φ ¼ fR − f̄R; ð10Þ

where fR ¼ df=dR and the bar indicates that the quantity
is evaluated on the background. fðRÞ gravity models are
equivalent to Brans-Dicke gravity with ωBD ¼ 0 and the
interaction term I is given by

I ¼ δR≡ RðfRÞ − Rðf̄RÞ: ð11Þ

Thus the coupling functions Mn are

Mn ¼
dnR̄ðfRÞ
dfnR

; ð12Þ

so Eq. (9) gives

M1 ¼
1

2

1

jfR0j
R̄3

R̄2
0

: ð13Þ

By linearizing the evolution equations, the solution for
the gravitation potential is given by

k2Ψ ¼ −4πG
�
4þM1a2=k2

3þM1a2=k2

�
a2ρmδ: ð14Þ

On scales larger than the Compton wavelength of the scalar
field, m−1 ¼ ð3=M1Þ1=2 ¼

ffiffiffiffiffiffiffiffiffiffi
3fRR

p
, the scalar field does not

propagate and we recover ΛCDM. On the other hand, on
small scales, gravity is enhanced: Geff → ð4=3ÞG.
Combining this with the energy momentum conservation

equations, we obtain the equation that determines the linear
growth factor Dδþðk; tÞ,

LDδþ¼0; L¼ d2

dt2
þ2H

d
dt
−4πG

�
4þM1a2=k2

3þM1a2=k2

�
ρm:

ð15Þ

The growth function Dδþ and the growth rate DΘþ ≡
dDδþ=d log a are also scale dependent. We introduce the
following parametrization of the growth rates

Dδþðk; tÞ ¼ GδðtÞFδðk; t;M1Þ;
DΘþðk; tÞ ¼ GΘðtÞFΘðk; t;M1Þ; ð16Þ

where we defined Fδðk; t;M1Þ and FΘðk; t;M1Þ so that
Dδþðk; tÞ → GδðtÞ and DΘþðk; tÞ → GΘðtÞ in the limit of
k → 0. Since we recover ΛCDM in the k → 0 limit, Gδ and
GΘ are determined by the usual cosmological parameters
and they are independent of jfR0j. On the other hand, the
scale dependence is controlled by M1 in Eq. (14), which is
determined by jfR0j and the cosmological parameters.
We will find solutions for δ and θ by solving Eqs. (2),

(3), (6), (7) using perturbation theory. Once the nonlinearity
becomes important, the nonlinear self-interactions Mi>1

will suppress the scalar field interactions by the chameleon
mechanism. This effect is included perturbatively in our
approach.

B. RSD model for f ðRÞ gravity models

The anisotropy of galaxy clustering is now recognized as
a useful probe of gravity on cosmological scales. This is
because the anisotropic clustering signal contains informa-
tion on both the cosmic expansion and growth of structure,
through the Alcock-Paczynski effect and RSD. In principle,
these two effects are simply described by the mapping
formula from the statistically isotropic frame, however
modeling the RSD effect is rather complex because of the
nonlinear and stochastic nature of the mapping. As a result,
the applicable range of the linear theory prediction is quite
limited. Even at the largest scales accessible by future
galaxy surveys, a proper account of the nonlinearity is
crucial for a robust test of gravity.
Here, we will adopt an improved model of RSD by

Ref. [37] for the theoretical template of the redshift-space
correlation function. While this model has been originally
proposed to characterize the matter power spectrum in GR,
the assumptions and propositions behind the model pre-
scription do not rely on any specific gravitational theory.
Thus it can apply to any model of modified gravity. Indeed,
the model has been tested against the dark matter simu-
lation of the fðRÞ gravity model, where a good agreement
with N-body results was found [38]. One important remark
is that the dynamics of density and velocity fields in
modified gravity can be different from GR, and each
building block in the RSD model needs to be carefully
computed, taking a proper account of the modification of
(non)linear gravitational growth, which we will describe
below (see also Appendix). This is what we refer to as a
consistent analysis of modified gravity.
Employing the linear bias prescription, the improved

model of RSD is given in Fourier space as function of wave
number k and directional cosine μ ¼ kz=k with kz being
line-of-sight component of k:

~Pðk; μÞ ¼ fb2PδδðkÞ þ 2μ2bGΘPδΘðkÞ þ μ4G2
ΘPΘΘðkÞ

þ Aðk; μ; b;GΘÞ þ Bðk; μ; b;GΘÞg
×DFoGðkμσpÞ; ð17Þ
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where b is the linear bias parameter. (See Sec. III C for a
more sophisticated treatment.) The GΘ is the parameter
characterizing the growth of structure introduced in
Eq. (16). The functions Pδδ, PΘΘ and PδΘ are, respectively,
the auto-power spectra of density and velocity-divergence
fields, and their cross-power spectrum. The function DFoG
characterizes the suppression of the power spectrum due to
the virialized random motion of galaxies [39–41], for
which we assume the Gaussian form:

DFoGðxÞ ¼ e−x
2

: ð18Þ

Since the suppression of the power spectrum basically
comes from the galaxies sitting in a halo, we shall treat σp
in the damping function DFoG as a free parameter.
In Eq. (17), the main characteristic is the Aðk; μÞ and

Bðk; μÞ terms, which represent the higher-order coupling
between density and velocity fields. These have been
derived on the basis of the low-k expansion from the exact
expression for the redshift-space power spectrum,
expressed as:

A ¼ b3
X3
n¼1

X2
a;b¼1

μ2n
�
GΘ

b

�
aþb−1 k3

ð2πÞ2
Z

∞

0

dr
Z

1

−1
dx

× fAn
abðr; xÞB2abðp; k − p;−kÞ

þ ~An
abðr; xÞB2abðk − p; p;−kÞg; ð19Þ

B ¼ b4
X4
n¼1

X2
a;b¼1

μ2n
�
−
GΘ

b

�
aþb k3

ð2πÞ2
Z

∞

0

dr
Z

1

−1
dx

× Bn
abðr; xÞ

Pa2ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
ÞPb2ðkrÞ

ð1þ r2 − 2rxÞa ; ð20Þ

where r ¼ p=k and x ¼ k · p=ðkpÞ. Here, the functions Pab
and Babc are the power spectrum and bispectrum of the
two-component multiplet Ψa ¼ ðδ;ΘÞ. The nonvanishing
coefficients, An

ab, ~An
ab, and Bn

ab, are those presented in
Sec. III-B2 of Ref. [42] and Appendix of Ref. [37],
respectively.
In calculation of the redshift-space power spectrum, we

need to properly take into account the effect of nonlinear
gravitational evolution in each term of Eq. (17). Since the
standard perturbation theory (PT) [43] is known to produce
an ill-behaved expansion leading to unwanted UV behav-
ior, we shall apply the resummed perturbation theory called
RegPT, which has been formulated in Ref. [44] and been
later extended in Ref. [10] to the modified gravity models.
Following the prescription described in [10], we compute
the power spectra PXYðkÞ as well as the A and B terms,
including consistently the nonlinear corrections up to the
one-loop order in the fðRÞ gravity model. The explicit
expressions for statistical quantities, necessary for a

consistent one-loop calculation of the redshift-space power
spectrum, are summarized in Appendix A.
In the cosmological analysis in Sec. III, we will consider

the following two cases, which can be thought of as fixing
the expansion and large scale growth histories, or allowing
them to vary. In the first case, we will fix all the
cosmological parameters in the template by a fiducial
cosmology and vary jfR0j, the linear bias b and the velocity
dispersion σp. This corresponds to fixing Gδ, GΘ and the
amplitude of the initial spectrum to those determined by the
fiducial cosmology.
In the second case, we allow GΘ to float by varying

ΩΛ ≡ ρΛ=3H2
0 whereH0 is the present day Hubble constant

in the flat universe. Note that with the variation of ΩΛ, the
amplitude of the growth function Dδþ (Gδ) as well as the
shape of the growth function (Fδ) and growth rate (FΘ) are
also changed through the mass parameter M1 [see
Eq. (15)]. In practice, however, we see from Fig. 1 that
the dependence of the shapes Fδ and FΘ on ΩΛ are very
weak. Further, the change of Gδ is degenerate with the
linear bias b in the linear regime. Although the one-loop
terms break the degeneracy, this effect is small in the
regime of our interest. Hence, in the second case, we vary
the scale independent growth rate GΘ and the linear bias in
the PT template, and introduce a new parameter

GbðtÞ≡ bGδðtÞ; ð21Þ

to represent the combined effect of the variation of b and
Gδ. Then Gδ and the initial amplitude of the power
spectrum are formally held fixed.

C. Correlation function ξðσ;πÞ in f ðRÞ gravity
The two-point correlation function of galaxy clustering

in the redshift space, ξ, is described by a function of σ and
π, where σ and π are the transverse and the radial directions
with respect to the observer. From the power spectrum
~Pðk; μÞ, we can compute the correlation function ξðσ; πÞ by
Fourier transformation. The correlation function is gener-
ally expanded as

ξðσ; πÞ ¼
Z

d3k
ð2πÞ3

~Pðk; μÞeik·s

¼
X
l∶even

ξlðsÞPlðνÞ; ð22Þ

with Pl being the Legendre polynomials. Here, we defined
ν ¼ π=s and s ¼ ðσ2 þ π2Þ1=2. The moments of the corre-
lation function, ξlðsÞ, are defined in [11]. The contributions
from moments higher than l ¼ 8 will be ignored in our
analysis because we are only interested in quasinonlinear
scales where perturbation theory is applicable.
We compute theoretical templates for the moments ξlðsÞ

using the power spectrum given by Eq. (17). The shape of

YONG-SEON SONG et al. PHYSICAL REVIEW D 92, 043522 (2015)

043522-4



the initial spectra and the growth functions, Gδ and GΘ, are
given by the best fit ΛCDM model from Planck 2013 [45].
We provide multiple templates with various jfR0j¼
ð0;10−6;3.2×10−6;10−5;3.2×10−5;10−4;3.2×10−4;10−3;
3.2×10−3Þ. For other values of jfR0j, we interpolate these
templates.
We now study the variation of ξðσ; πÞ due to the

change of the growth function and growth rate. This
variation was studied in the case of scale independent
growth functions in [11] by varying GδðtÞ and GΘðtÞ in the
RegPT template for ΛCDM. Following this approach, we
first study the impact of having a scale dependent growth
function or growth rate. For this purpose, we compute the
correlation function ξðσ; πÞ using a ΛCDM template
and replace the growth function Dδþ or growth rate DΘþ
by that in fðRÞ gravity with jfR0j ¼ 3.2 × 10−5 and
jfR0j ¼ 3.0 × 10−4.
For the scale dependent growth function Dδþ, the

variation of ξðσ; πÞ with a small jfR0j ¼ 3.2 × 10−5 is
similar to the case of a scale independent enhancement of
the growth function studied in [11]. Peak points on the
BAO ring represented by a thick black solid curve in Fig. 2
move coherently along the circle in an anticlockwise
direction. The blue dashed contours in the left panel of
Fig. 2 represent this variation. However, ξðσ; πÞ with a
larger jfR0j ¼ 3.0 × 10−4 varies differently from the scale
independent case. Peak points on the BAO ring remain the

same, while minima of BAO are deepened, shown as blue
dotted contours in the same panel.
Next, we consider the variation of ξðσ; πÞ due to the

scale dependent growth rate DΘþ. In the case of the
scale independent growth rate, ifGΘ increases or decreases,
the anisotropic effects from higher order moments are
visible in the plot of ξðσ; πÞ. The location of the
crossing points between the contour levels and the BAO
ring (thick solid) shifts clockwise or anticlockwise slightly.
The blue dashed contours in the right panel of Fig. 2
represent the variation of ξðσ; πÞ with ΔDΘþ for jfR0j ¼
3.2 × 10−5 and jfR0j ¼ 3.0 × 10−4. For jfR0j ¼ 3.0×
10−4, we can see that the peak positions are “squeezed”
along the BAO ring.
Having shown the individual effects of a scale dependent

growth function and growth rate on the correlation func-
tion, we now present the correlation function ξðσ; πÞ
in fðRÞ gravity models. In Fig. 3, the correlation function
with jfR0j ¼ 3.2 × 10−5 and jfR0j ¼ 3.0 × 10−4 are
plotted as black dashed and black dotted contours, respec-
tively. There is no variation of ξðσ; πÞ up to jfR0j≲ 10−6,
and the correlation function is effectively equivalent to that
of ΛCDM. When jfR0j increases to jfR0j ∼ 10−4, we
observe the deviation of ξðσ; πÞ from ΛCDM and this
deviation can be understood as the combined effect of the
scale dependent growth function and growth rate shown
in Fig. 2.

FIG. 1 (color online). (Left panel) The linear power spectra PδδðkÞ, PδΘðkÞ and PΘΘðkÞ from top to bottom. The power spectra of the
ΛCDM model are presented as black solid curves, and the power spectra of fðRÞ gravity models with jfR0j ¼ 3.2 × 10−5 and jfR0j ¼
3.0 × 10−4 are presented as blue dashed and dotted curves, respectively. The results are evaluated at redshift z ¼ 0.57. (Right panel) The
growth functions Dδþ and DΘþ have a scale independent amplitude, depending on ΩΛ (taking fixed primordial amplitude), and scale
dependent shape, depending on jfR0j. The results in each subpanel are shown at z ¼ 0.57 for jfR0j ¼ 3.2 × 10−5, and ΩΛ ¼ 0.68 (black
solid curves) and 0.71 (blue dashed curves).
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III. METHODOLOGY AND RESULTS

The observed clustering of galaxies in redshift space not
only probes the density and velocity fields, i.e. the growth
and gravity as discussed in the previous section, but also

provides a useful tool to determine both the transverse and
radial distances by exploiting the Alcock–Paczyński effect
and the BAO scale. In galaxy redshift surveys, each galaxy
is located by its angular coordinates and redshift. However,
the correlation function, ξðσ; πÞ, is measured in comoving
distances. Therefore a fiducial cosmological model is
required for conversion into comoving space. We use the
best fit ΛCDM universe to Planck 2013 data. The con-
version depends on the transverse and radial distances
involving DA and H−1. Instead of recreating the measured
correlation function in comoving distances for each
different model, we create the fiducial maps from the
theoretical correlation function by rescaling the transverse
and radial distances using DA and H−1 and fit them to the
observed correlation function. Therefore, when we fit the
measured ξðσ; πÞ, the two distance parameters of (DA,H−1)
are added to the structure formation parameter set of
fGδ; GΘ; σp; jfR0j; σpg discussed in Sec. II B.

A. Measured ξðσ;πÞ using DR11

Our measurements are based on those previously pre-
sented in [13] which follows a similar procedure to [12].
Briefly, in our analysis we utilize data release DR11 of

the Baryon Oscillation Spectroscopic Survey [BOSS;
[46–48]] which is part of the larger Sloan Digital Sky
Survey [SDSS; [49,50]] program. From DR11 we focus our
analysis on the Constant Stellar Mass Sample (CMASS)
[51], which contains 690,826 galaxies and covers
the redshift range z ¼ 0.43–0.7 over a sky area of
∼8; 500 square degrees with an effective volume of

FIG. 3 (color online). The best fit correlation function ξðσ; πÞ of
ΛCDM (black solid unfilled contours) and the correlation function
of fðRÞ gravity models with jfR0j ¼ 3.2 × 10−5 (black dashed
unfilled contours) and 3.0 × 10−4 (dotted unfilled contours). The
blue filled contours represent the measured ξðσ; πÞ from the DR11
CMASS data. The levels of contours are given by ð−0.001; 0.002;
0.005; 0.016; 0.05Þ from the outer to inner contours.

FIG. 2 (color online). (Left panel) The correlation function ξðσ; πÞ of the ΛCDMmodel is shown as black solid contours. Blue dashed
and dotted contours represent ξðσ; πÞ of the ΛCDM model in which Dδþ is replaced by that of fðRÞ gravity models with jfR0j ¼
3.2 × 10−5 and jfR0j ¼ 3.0 × 10−4, respectively. The thick solid circle represents the BAO ring. The levels of contours are given by
ð−0.005;−0.0025;−0.004; 0.003; 0.005; 0.016; 0.05Þ from outer to inner contours. (Right panel) Black solid contours represent ξðσ; πÞ
of the ΛCDMmodel, and blue dashed and dotted contours represent ξðσ; πÞ of the ΛCDMmodel in whichDΘþ is replaced by that of fðRÞ
gravity models of jfR0j ¼ 3.2 × 10−5 and jfR0j ¼ 3.0 × 10−4, respectively.
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Veff ∼ 6.0 Gpc3. The CMASS galaxy sample is composed
primarily of bright, central galaxies, resulting in a highly
biased (b ∼ 2) selection of mass tracers [52].
The redshift-space two-dimensional correlation function

ξðσ; πÞ of the BOSS DR11 galaxies was computed using
the standard Landy-Szalay estimator [53]. In the compu-
tation of this estimator we used a random point catalogue
that constitutes an unclustered but observationally repre-
sentative sample of the BOSS CMASS survey and contains
∼50 times as many randoms as we have galaxies.
The covariance matrix was obtained from 600 mock

catalogues based on second-order Lagrangian perturbation
theory (2LPT) [54,55]. The mocks reproduce the same
survey geometry and number density as the CMASS galaxy
sample. We obtain the covariance matrix using the same
treatment presented in our previous works [12,13].
We calculate the correlation function in 225 bins spaced

by 10 h−1Mpc in the range 0 < σ; π < 150h−1Mpc.
However, at small scales, if the nonperturbative effect of
FoG is underestimated, then the residual squeezing can be
misinterpreted as a variation inGθ or indeed fR0. We expect
the FoG effect to be increasingly important at smaller
scales, and so these measurements may be at risk of
misestimation. We therefore impose a conservative cut
on the measurements, excluding σcut < 40 h−1 Mpc and
scut < 50 h−1Mpc [12]. Indeed, [12] showed that cosmo-
logical parameter bias began to occur at smaller scales.

This reduces the number of measurement bins in σ and π
to Nbins ¼ 163.

B. Tests of theoretical templates

When the conservative cutoff scales of σcut ¼
40h−1Mpc and scut ¼ 50 h−1 Mpc are used for the analy-
sis, the effective range of scale in Fourier space becomes
k < 0.1Mpc−1. The power spectra of ΛCDM and fðRÞ
gravity models are presented in this range of scale in Fig. 1.
For the clustering scales considered in this likelihood
analysis, there are no deviations from ΛCDM. This implies
that fðRÞ gravity models with log jfR0j≲ −6 are effec-
tively equivalent to ΛCDM in this analysis. We take a
uniform prior on log jfR0j between −7 and −3.
We first test our pipeline of analysis by checking whether

it is possible to recover the ΛCDM limit log jfR0j≲ −6
using the mock catalogues based on ΛCDM. We use the
611 CMASS mock catalogues to measure central values of
ξðσ; πÞ and fit our theoretical fðRÞ templates to the
observed correlation function. The measured likelihood
function of log jfR0j is presented as a blue dotted curve in
the right panel of Fig. 4. The best fit log jfR0j indeed lies
within the ΛCDM limit of log jfR0j ≲ −6. There are no
mock galaxy catalogues based on fðRÞ gravity available so
we are not able to fully test our theoretical templates away
from the ΛCDM limit. The perturbation theory predictions
for the redshift space power spectrum in Fourier space

FIG. 4 (color online). The measured constraints on fR0, and their robustness to various tests, are presented. The measured likelihood
function appears in the top panels and the measured difference of χ2 is in the bottom panels. (Left panel) Results marginalizing over the
scale independent growth rate GΘ are shown by the black solid curve, while the constraints fixing GΘ ¼ 0.46, given by the Planck
concordance ΛCDM model, are blue dashed curves. The results for fR0 do not depend appreciably on the scale independent behavior.
(Right panel) The results also do not depend significantly on whether the initial power spectrum PðkÞ used matches the Planck (black
solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from analyzing galaxy clustering from ΛCDM
mock catalogues, verifying that jfR0j → 0 is recovered in this case.
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were, however, tested against N-body simulations for fðRÞ
gravity models and it was shown that the perturbation
theory based template was able to reproduce the input
value of log jfR0j of the simulation in an unbiased way for
k < 0.1 Mpc−1 [38].

C. Constraints on f ðRÞ gravity
We now present the results for constraints on jfR0j,

summarized in Table I. The Markov Chain Monte
Carlo (MCMC) method is used to sample a probability
distribution. The normalized distribution function of
L=Lmax of the chain is given in terms of log jfR0j in the
top panel of Fig. 4, and the Δχ2 is shown in the
bottom panel.
We begin by analyzing our results while fixing GΘ to the

Planck ΛCDM model prediction of GΘ ¼ 0.46. The mea-
sured log jfR0j is then log jfR0j < −3.87 and log jfR0j <
−3.6 at 68% and 95% confidence upper limits, respectively.
The lower index denotes the prior is hit—recall the ΛCDM
limit of log jfR0j≲ −6, and the upper indices denote 68%
and 95% confidence levels of log jfR0j represented by
unbracketed and bracketed numbers, respectively. The
distribution function and Δχ2 are presented by blue dashed
curve in the left panel of Fig. 4.
The measured log fR0 after marginalizing GΘ and all

other parameters is −4.5þ0.96ð1.4Þ
½prior� as presented in Table I.

The best fit jfR0j is 3.2 × 10−5, and the upper bounds are
jfR0j ¼ 3.0 × 10−4 and 8.0 × 10−4 at 68% and 95% con-
fidence levels, respectively. The observed ξðσ; πÞ is pre-
sented as blue filled contours in Fig 3, and ξðσ; πÞ of the
best fit fðRÞ gravity model is represented as black dashed
contours, which show a slightly better fit than ξðσ; πÞ of
ΛCDM represented as black solid contours. The black solid
curves in the left panel of Fig. 4 represent the distribution
function (upper) andΔχ2 (lower). Note that log jfR0j < −6,
i.e. ΛCDM, is within Δχ2 < 1 of our best fit value and so is
wholly allowed by the current data. When jfR0j is larger
than 10−4, ξðσ; πÞ becomes significantly different from the

ΛCDM prediction. The black dotted contours in Fig. 3
represent ξðσ; πÞ with jfR0j ¼ 3.0 × 10−4 at 68% confi-
dence bound. The difference from the measured ξðσ; πÞ can
be observed.
In order to check the validity of our constraints, we test

the effect of a different initial broadband shape of power
spectra by using the WMAP9 best fit model as fiducial
instead of Planck 2013. Although there is no significant
difference within statistical allowances, the predicted initial
broadband shape is slightly different in both cases. We
would like to test whether this can cause a shift in the
apparent fR0. The black dashed curve in the right panel of
Fig. 4 represents the likelihood function and Δχ2. The
measured log jfR0j using WMAP9 prior is −4.6þ0.81ð1.2Þ

½prior� ,

which is consistent with the result using Planck 2013 prior.
Thus our results do not appear to be biased by the CMB
priors.
Finally, since we measure fR0 through its scale depen-

dent effects, we consider a nontrivial scale dependent bias
on our measurement. We model the bias as

bðkÞ ¼ b0
1þ A2k2

1þ A1k
: ð23Þ

This simple bias model, when implemented in the formula
in Eq. (17), can nicely fit the N-body data of the halo power
spectrum and extract correctly the linear growth rate on
scales very relevant to the current analysis [56,57]. We find
that the scale dependent bias parameters are determined as
A2 ¼ −0.8� 4 and A1 ¼ −0.2� 1.2. Given the range of
errors on these parameters and the range of wave numbers
k≲ 0.1 Mpc−1, the scale dependence of the bias is poorly
determined. Since our established cutoff on small scales
removes where scale dependent bias is expected to be most
significant, all other measurements, including fR0, remain
similar to the results with scale independent bias. Thus the
measurements shown in Table I are not modified much by a
possible existence of this scale dependent galaxy bias.

TABLE I. The Planck best-fit ΛCDM predictions and the measured values with their 1-σ confidence level errors
are shown for the parameters DA;H−1; Gb; GΘ; σp; log jfR0j. The Planck ΛCDM data does not predict the
phenomenological parametersGb and σp. The last two columns show the measured values in the test cases whenGΘ
is fixed to the Planck prediction 0.46, or fR0 ¼ 0, respectively.

Parameters Planck Measurements Fixed GΘ ¼ 0.46 Fixed jfR0j ¼ 0

DAðMpcÞ 1397.5 1428.0þ30.1
−28.1 1424.3þ30.0

−27.8 1422.6þ27.3
−31.7

H−1ðMpcÞ 3240.1 3157.5þ190.6
−176.1 3179.3þ198.1

−185.6 3218.3þ200.3
−173.3

Gb – 1.13þ0.09
−0.08 1.10þ0.06

−0.06 1.15þ0.09
−0.08

GΘ 0.46 0.39þ0.09
−0.09 0.46 (fixed) 0.41þ0.09

−0.09

σp ðMpcÞ – 10.6þ4.5
−4.6 11.7þ3.9

−4.1 9.3þ5.3
−5.6

log jfR0j – −4.5þ0.96ð1.4Þ
½prior� −4.5þ0.63ð0.90Þ

½prior� –
χ2min – 126.9 127.6 127.7
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D. Tests of ΛCDM model

Considering the constraints on the other fitting param-
eters, we can see if there is any evidence of deviations from
ΛCDM model. Information on the late-time cosmological
expansion is encoded in the distances along and transverse
to the line of sight. The distance measurements are not
affected by the scale dependent growth functions in fðRÞ
gravity models. In Sec. III, we varied the scale dependent
growth function Dþ

δ and the growth rate Dþ
Θ and found

that the BAO ring is invariant (see Fig. 2). As a conse-
quence, there is little change in the measured DA and H−1

from our previous result where scale independent
growth functions are assumed [13]. The measured DA

is DA ¼ 1428.0þ30.1
−28.1 Mpc, and the measured H−1 is

H−1 ¼ 3157.5þ190.6
−176.1 Mpc. The prediction of the ΛCDM

model is indicated by the x in Fig. 5, and the measured
values, with uncertainties, are presented as filled contours
in the top-left panel. The ΛCDM prediction is within the
1-σ confidence level. The measured distances are consistent
with the results using ΛCDM templates presented in the
fifth column of Table I.
Although we vary galaxy bias b in the fitting procedure,

it is degenerate with the variation of Gδ on quasilinear
scales. Thus as previously stated we can regard the
combined measurement of b and Gδ as a probe of Gb,
whose measured value is 1.13þ0.09

−0.08 . Again there is little
difference from the previous result of Gb using ΛCDM
templates presented in the fifth column of Table I.

FIG. 5. The 2D joint likelihood contours at 68% and 95% CL measured for DA, H−1, Gb and GΘ are shown, using scut ¼ 50 hMpc−1

and σcut ¼ 40 hMpc−1. The x denotes the Planck best-fit ΛCDM predictions (with Gb taking the value from fixing fR0 ¼ 0).
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When we fit the measured ξðσ; πÞ, the amplitudes of the
growth function and growth rate are determined at an
effective scale k� ∼ 0.07 hMpc−1 in our analysis. In fðRÞ
gravity the growth functions are enhanced in a scale
dependent manner. Therefore if the amplitude of the growth
function and growth rate at k� are tuned to be nearly the
same as the ΛCDM model (e.g. to agree with data), then
the measured Gb and GΘ must be smaller to offset the
enhancement. So for appreciable log jfR0j we expect an
anticorrelation between log jfR0j and GΘ. This is visible in
the left panel of Fig. 6 for the larger values of log jfR0j.
Since the best fit log jfR0j is slightly larger than the LCDM
bound, this may contribute to why the measured GΘ ¼
0.39þ0.09

−0.09 is smaller than the ΛCDM result. However, the
prediction of ΛCDM presented by the x in Fig. 5 is still
within the 68% CL measured GΘ contours.
Finally, we show the measured FoG effect in terms of σp

in the right panel of Fig. 6. Again we do not find any
significant change from the previous result using ΛCDM
templates.

IV. CONCLUSION

We have investigated the effect of fðRÞ gravity on the
redshift space correlation function ξðσ; πÞ using a consis-
tent modified gravity perturbation theory template that also
includes some nonlinear and chameleon screening effects.
The scale dependent growth functions Dþ

δ and Dþ
Θ alter at

late times the initial broadband shape probed by the CMB
experiments, but the comoving scale of the sound horizon
is not affected, and we find the measured BAO ring remains
the same as in ΛCDM and so the distances DA and H−1 do
also. The effect of modified gravity would be most evident
in the redshift space distortions and hence anisotropy of the
clustering.

We demonstrated how ξðσ; πÞ alters with increments of
Dþ

δ and Dþ
Θ for small and large fR0 values in Fig. 2. This

shifts the correlation amplitude at the BAO scale and other
scales compared with the scale independent growth func-
tions case. At small jfR0j ¼ 3.2 × 10−5, there is no sig-
nificant anisotropic variation with ΔDþ

Θ ; the peak locations
move nearly coherently anticlockwise along the BAO ring.
But when jfR0j increases and it becomes larger than
jfR0j ¼ 10−4, the effect of anisotropic amplification domi-
nates and ξðσ; πÞ departs from ΛCDM.
Using the BOSS DR11 data we measure the anisotropic

ξðσ; πÞ, presented as blue filled contours in Fig. 3, and find
a best fit jfR0j ¼ 3.2 × 10−5, with an upper bound jfR0j <
3.0 × 10−4 at the 68% confidence level; the lower 68%
confidence level is consistent with ΛCDM. We also note an
anticorrelation between fR0 and the scale independent
growth rate GΘ that could reduce the measured value of
GΘ despite the enhancement of growth due to fðRÞ gravity.
We tested our data analysis pipeline by applying it to

ΛCDM mock catalogues, and we reproduced the ΛCDM
bound of jfR0j≲ 10−6. We also tested the robustness of our
results against the change of the CMB prior. There is a
slight difference in the measured early broadband shape of
spectra between WMAP9 and Planck 2013, but the
measured jfR0j is independent of this difference. In
addition, we tested the effect of the scale dependent bias
on the measured jfR0j. Again our results were shown to be
insensitive to a possible scale dependent galaxy bias.
Although the best fit value of jfR0j is away from ΛCDM

bound, the deviation is insignificant with Δχ2 ≲ 1, and it is
indistinguishable from ΛCDM model. The comparison of
the measured minimum χ2min when marginalizing or fixing
log jfR0j to zero, and marginalizing or fixing the scale
independent growth rate to the Planck best fit, are presented

FIG. 6. The 2D joint likelihood contours at 68% and 95% CL measured for log jfR0j and GΘ are shown in the left panel, and for
log jfR0j and σp are shown in the right panel, using scut ¼ 50 h−1 Mpc and σcut ¼ 40 h−1 Mpc.
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in last row of Table I. With future wide, deep spectroscopy
experiments such as Dark Energy Spectroscopy Instrument
(DESI) we will be able to use the redshift space correlation
function ξðσ; πÞ to probe fðRÞ gravity below
jfR0j < 10−4—and other scale dependent modified
gravity—and test general relativity more stringently.
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APPENDIX: POWER SPECTRUM AND
BISPECTRUM CALCULATIONS IN RegPT

In this appendix, based on the RegPT treatment, we
summarize the expressions for the basic ingredients needed
to compute the redshift-space power spectrum in fðRÞ
gravity model [Eq. (17)]. The RegPT scheme is based on a
multipoint propagator expansion, and with this scheme any
statistical quantities consisting of density and velocity

fields are built up with multipoint propagators, in which
nonperturbative properties of gravitational growth are
wholly encapsulated [58]. Making use of the analytic
properties of the propagators, a novel regularized treatment
is constructed with the help of the standard PT kernels [59],
showing that the proposed scheme can be used to give a
percent-level prediction of the power spectrum and corre-
lation function in the weakly nonlinear regime in both real
and redshift spaces [42,44].
Let us define a two-component multiplet, Ψaðk; tÞ≡

ðδðk; tÞ;Θðk; tÞÞ. Then, the power spectra of Ψa valid at
one-loop order are expressed as

Pabðk; tÞ ¼ Γð1Þ
a ðk; tÞΓð1Þ

b ðk; tÞP0ðkÞ

þ 2

Z
d3q
ð2πÞ3 Γ

ð2Þ
a ðq; k − q; tÞΓð2Þ

b ðq; k − q; tÞ

× P0ðqÞP0ðjk − qjÞ; ðA1Þ

where P0 is the power spectrum of initial density field δ0.

The functions ΓðnÞ
a are the multipoint propagators. For

the one-loop calculation, the relevant expressions for the
regularized propagators, which reproduce both the
resummed behavior at high-k and standard PT results at
low-k, are given by

Γð1Þ
a ðk; tÞ ¼

�
Fð1Þ
a ðk; tÞ

�
1þ k2σ2d

2

�

þ 3

Z
d3q
ð2πÞ3 F

ð3Þ
a ðk; q;−q; tÞP0ðqÞ

�
e−k

2σ2d=2

ðA2Þ

Γð2Þ
a ðq; k − q; tÞ ¼ Fð2Þ

a ðq; k − q; tÞe−k2σ2d=2; ðA3Þ

where the functions FðnÞ
a are the standard PT kernels,

sometimes written as FðnÞ
a ¼ ðFn;GnÞ [43]. Note that the

leading-order kernel Fð1Þ
a is related to the linear growth

factor through Fð1Þ
a ¼ ðDδþ; DΘþÞ. The quantity σd is the

dispersion of the linear displacement field given by

σ2d ¼
Z

dq
6π2

P0ðqÞfDδþðq; tÞg2: ðA4Þ

The above expressions are used to compute the power
spectra Pδδ, PδΘ, and PΘΘ that explicitly appear in Eq. (17).
We also need to evaluate the A and B terms, which
implicitly depend on the power spectrum and bispectrum
[see Eqs. (19) and (20)]. Since these terms are regarded as
next-to-leading order, the tree-level calculation is sufficient
for a consistent one-loop calculation of Eq. (17). Thus, the
power spectrum and bispectrum in the A and B terms are
evaluated with
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Pab;treeðkÞ ¼ Γð1Þ
a ðkÞΓð1Þ

b ðkÞP0ðkÞ; ðA5Þ

Babc;treeðk1; k2; k3Þ ¼ 2Γð2Þ
a ðk2; k3ÞΓð1Þ

b ðk2ÞΓð1Þ
c ðk3Þ

× P0ðk2ÞP0ðk3Þ þ ðcyc:permÞ: ðA6Þ

The propagators Γð1Þ
a and Γð2Þ

a in the above are also
evaluated with the tree-level expressions:

ΓðnÞ
a;treeðk1;…; kn; tÞ ¼ FðnÞ

a ðk1;…; kn; tÞe−k2σ2d=2; ðA7Þ

where k ¼ jk1���nj.
Note finally thatwhile the power spectrum and bispectrum

given above are quite general and valid in any model of
modified gravity, the expressions for the propagators in

RegPT might receive some corrections. This issue has been
discussed in detail in Ref. [10]. However, it has been found
that within the fðRÞ gravitymodel, any corrections due to the
modification of gravity arevery small and can be neglected at
the large scales of our interest. Hence, all the expressions
given above are basically the same as those in GR, except for

the standard PT kernels, FðnÞ
a . Unlike the GR case, the time

and scale dependence of FðnÞ
a are not separately treated in

fðRÞ gravity model. The functional form of FðnÞ
a is thus

nontrivial, even if the deviation of gravity from GR is small.
In this paper, on the basis of Eqs. (2), (3), (6) and (7), we
derive the equations that govern the standard PT kernels.
Solving these equations numerically, we construct the
kernels that are tabulated as function of wave vectors [60].
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