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We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is
asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at
higher energies, and asymptotically approaches a finite constant value. The resulting phenomenology of
this “asymptotically safe DM” is quite distinct. One interesting effect of this is to partially offset the low-
energy constraints from direct detection experiments without affecting thermal freeze-out processes which
occur at higher energies. High-energy collider and indirect annihilation searches are the primary ways to
constrain or discover safe dark matter.
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I. RUNNING MATTERS

Significant theoretical and experimental effort is under-
way in an effort to unveil the fundamental nature of the
nonluminous component of matter. While very little is
known about this dark matter (DM), evidence for its
existence is overwhelming, coming from multiple strands
of inquiry. One of the few properties of DM that is very well
known is its cosmological abundance: ΩCDMh2 ¼
0.1199� 0.0027 [1]. One well-studied framework for
understanding the relic abundance of DM is thermal
freeze-out [2]. Number-changing interactions in the early
universe, X̄X↔ðSMÞSM, keep DM in thermal equilibrium
with the Standard Model (SM) bath, until the rate of these
annihilation processes drops below the rate of Hubble
expansion. After this point the abundance of DM is
essentially fixed, with a value scaling as ΩDM ∝ 1=
hσannvreli, where hσannvreli≃ 6 × 10−26 cm3 s−1 gives the
observed DM abundance. One of the most stringent
constraints on DM of this type comes from direct detection
(DD) experiments which search for the nuclear recoil
deposited in a detector from a DM scattering event,
XN → XN. Yet, the absence of any unambiguous DD
signal indicates that many of the simplest models for the
thermal relic abundance are already ruled out.
We must however be careful when applying these

experimental constraints to given particle physics models
and it is incumbent upon us to reexamine the assumptions of
their relevance for the thermal relic paradigm. For example,
importantly the process relevant for the relic abundance is
DM annihilation which probes energies 2mX while in DD
the energies probed areOðMeVÞ. Thus in models where the
DM mass is significantly heavier than an MeV there is a
natural separation of scales that are relevant for annihilation
and DD. In this present paper, we aim to exploit this fact in

models with significant running in order to ease the tension
between DD and the thermal relic hypothesis.
We know quite generally that couplings run when

quantum corrections have been taken into account. A
time-honored example is quantum chromodynamics
(QCD). Here the squared coupling decreases by a factor
of 5 when passing from a OðGeVÞ to Oð100 GeVÞ.
This is a convenient place to pause and reflect on the

kind of coupling structure we will consider in the follow-
ing. For simplicity, we imagine a dark sector connected to
the SM via the exchange of a messenger particle. We shall
take the messenger particle to be a vector, Vμ, but expect
similar results for scalars. The interactions between DM
and the visible sector will be parametrized by a Lagrangian

LV ¼ iX̄γμð∂μ − igXVμÞX
þ q̄γμð∂μ − igqVμÞqþm2

VVμVμ: ð1Þ

Here the interactions of the dark sector with the messenger
is given by the coupling gX while the coupling of the
messenger with the SM quarks is given by gq. They both
run with energy. We stress that this simplified model of
DM-SM interactions is adopted merely to illustrate the
phenomenological implications of asymptotically safe DM
(asDM) and more general constructions are possible.
Simplified models of this type have become quite common
in phenomenological studies since they contain the key
parametric dependencies encountered in a large class of
beyond Standard Model constructions (see e.g. [3]).
With this setup, the cross sections for interaction with

ordinary matter and DM annihilation are

σ ∝
αqαX
m4

V
μ2; hσannvi ∝

αqαX
m4

V
m2

X; ð2Þ

with mV the mass of the messenger and αi ¼ g2i =4π where
i ¼ q; X. For simplicity we have assumed the interaction
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with ordinary matter to be identified with the SM quarks,
and assumed the hierarchy mV > mX. The crucial point is
that, because of the running of the couplings (due to the
DM independent dynamics, and the dynamics of the
messenger sector with ordinary matter), these cross sections
can depend sensitively on the energy at which they are
employed. Crucially, the energies probed by direct detec-
tion and DM annihilation are typically different by many
orders of magnitude.
In contrast with QCD, we here take the underlying DM

theory to be asymptotically safe rather than asymptotically
free [4], and additionally assume that the couplings are
always in the perturbative regime. This means that the
couplings grow with energy towards the ultraviolet and
become constant above a certain energy threshold that we
call μS. A simple beta function parametrization, for a
generic coupling α, that in four dimensions captures the
essence of a nongravitational asymptotically safe theory is

μ
dα
dμ

¼ β ¼ b0α2 − b1α3 ¼ b1α2ðα� − αÞ; ð3Þ

with positive b coefficients and μ the energy (renormaliza-
tion) scale. This beta function possesses two independent
zeros. A noninteracting one for α ¼ 0 and an interacting
one for

α� ¼ b0
b1

: ð4Þ

The coefficient b1 partially controls how fast, in renorm-
alization group time t ¼ lnðμ=μ0Þ, the fixed point α� is
reached. Here μ0 is a reference energy corresponding to a
given (theoretical or experimental) value of the coupling

αðμ0Þ ¼ α0. For illustration we show the beta function in
the left panel of Fig. 1 for the choice α� ¼ 0.4 and b1 ¼ 7.
Next, let us illustrate an interesting phenomenological

implication of the asDM. The solution of the differential
equation yielding the specific running for the coupling is
exhibited in the right panel of Fig. 1 with the further
assumption α0 ¼ 0.04, yielding α�=α0 ¼ 10.
It is phenomenologically relevant to investigate the

dependence of the intrinsic scaleμS abovewhich the coupling
has almost reached the ultraviolet fixed point. A simple
definition we adopt is the energy scale above which the
running coupling has reached 2=3 of its fixed point value α�.
Note that within a few orders of magnitude in energy, α

itself has changed by more than an order of magnitude. In
the following we set the particle/antiparticle asymmetry to
zero, but note that relaxing this assumption modifies
thermal freeze-out in important ways [5] (see also [6,7]).
This therefore underscores the importance when comparing
high- and low-energy DM processes. The scale μS allows,
de facto, a clean separation between two distinct physical
regimes for our DM theory.
In the following we will assume that either αX, αq or both

are asymptotically safe couplings. We shall refer to this
scenario as asymptotically safe DM (asDM).

II. PHENOMENOLOGY

Let us now investigate first the consequences of asDM
for the thermal relic abundance. In particular, we will focus
on the phenomenologically interesting case in which the
transition scale μS is smaller than the freeze-out temper-
ature but higher than the direct detection energy scale
which is of OðMeVÞ. In this case, freeze-out occurs when
the coupling is nearly maximal and the direct detection
experiments probe only very tiny asDM couplings. This
typically means

FIG. 1 (color online). Left panel: Asymptotically safe beta function given in Eq. (3) for α� ¼ 0.4 and b1 ¼ 7. Center panel:
Verification of standard freeze-out in asDM for annihilation cross sections near hσviWIMP ¼ 3 × 10−26 cm3 s−1. Right panel: Energy
dependence of the coupling αðEÞ. In this panel, we fix the mass and annihilation cross section to reproduce the best-fit point of the
gamma-ray Galactic Center excess and take the mediator mass to be much less than the DM mass. In addition, we display the LUX and
LHC monojet limits.
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MeV≲ μS ≲mX

20
; ð5Þ

and that direct detection constraints are weakened without
negatively impacting the requirements of a thermal relic.
We have confirmed numerically that this is an excellent
approximation (see the right panel of Fig. 1).
We now briefly consider the case in which the mediator

is instead much lighter than the DM in Eq. (1). An
interesting application in this case, is this possibility that
the first hints of asDM may already be seen in the Galactic
Center excess (GCE) [8–14]. Constructing a viable DM
model for the GCE has proven challenging given the strong
null observations in direct searches. Although we will
consider a DM interpretation, we urge caution in interpret-
ing the GCE and note that an astrophysical explanation may
yet account for the signal [15]. Some viable DM explan-
ations that have been explored include DM-SM interactions
via pseudoscalar exchange [16–20] or “flavored DM”
[21,22] which suppress direct detection rates by employing
spin- and momentum-dependent interactions or flavor-
dependent couplings respectively. Safe DM allows for a
new qualitatively distinct class of models to account for the
GCE in a viable way. We display one illustrative fit to
the GCE in the right panel of Fig. 1, where we have fixed
the DM mass to 26.7 GeV [23] which is the best-fit mass
assuming equal coupling to all quark flavors.
It is important to stress, however, that both high-energy

collider and indirect annihilation searches probe the large
couplings of asDM at high energies. Let us illustrate this
via a Maverick DM model [24]. In these models DM is a
Maverick in the sense of being the only light particle
associated with the dark sector feeling the SM fields. Thus,
the particle mediating the interactions between DM and the
SM are so heavy that their effects can be parametrized by an
effective operator. Next, we will illustrate the impact of
dark asymptotically safe couplings in the case of a heavy
vector exchange between DM and quarks:

OV ¼ 1

Λ2
ðX̄γμXÞðq̄γμqÞ; ð6Þ

where the scale of the operator can be matched onto a UV
description via Λ≡mV=

ffiffiffiffiffiffiffiffiffiffigXgq
p ≡ mV

ffiffiffiffi

4π
p ðαXαqÞ1=4, where mV is

the mass of the heavy vector and gX; gq are the couplings to
asDM and quarks respectively.
Next we determine the values of Λ that satisfy the relic

abundance by solving the Boltzmann equations,

dni
dt

þ 3Hni ¼ −hσannvreli½ninj − n2eq�; ð7Þ

where the indices run over i; j ¼ X; X̄. H is the Hubble
expansion rate, neq is the equilibrium number density, and
hσannvreli is the thermal average of the total annihilation
cross section. For the operator OV the annihilation cross
section is simply

hσannvreli ¼
3m2

X

2πΛ4�

X

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
m2

q

m2
X

s

�

2þ m2
q

m2
X

�

; ð8Þ

where we have neglected to include subleading Oðv2Þ
corrections, and the parameter Λ� indicates the interaction
scale when the couplings are near their fixed point
value α�Xα

�
q. Consistent with previous work, we find

that for DM masses ≳10 GeV the requisite annihilation
cross does not depend sensitively on its mass and is
approximately hσannvreli≃ 6 × 10−26 cm3 s−1 [25]. When
this is the case, the correct relic abundance requires
Λ� ≃ 980 GeVð mX

100 GeVÞ1=2, or equivalently at the level of
couplings

α�Xα
�
q ¼ 7 × 10−3

�

mV

1 TeV

�

4
�

100 GeV
mX

�

2

: ð9Þ

To determine the direct detection cross section we should
be able to run the couplings to lower energies. It could be
that one or both couplings run to a lower value with
decreasing energies. Introducing the effective direct detec-
tion interaction scale

ΛDD ¼ Λ�

�

α�Xα
�
q

αXαq

�1
4 ¼ Λ�ðRXRqÞ−1

4; ð10Þ

with RX;q ¼ αX;q=α�X;q and αX;q the couplings at the
relevant direct detection energies of order OðMeVÞ. We
can now proceed with writing down the associated direct
detection cross section

σp ¼ μ2p
πΛ4

DD
¼ μ2p

πΛ4�
R; ð11Þ

where μp is the proton-DM reduced mass and
R≡ RXRq. For illustration we set R ¼ 10−2 and 10−4

and display the resulting constraints in the right panel
of Fig. 2.
Now wewould like to roughly estimate the parameters of

interest that suppress direct detection constraints enough to
allow for viable thermal relics. Combining Eqs. (8)–(11)
we see that we need

ΛDD

Λ�
> 18

�

100 GeV
mX

�

1=2
�

1.3 × 10−45 cm2

σp

�

1=4

ð12Þ

where we have taken σp to be below the constraints
imposed by LUX [27] which implies

R < 10−5
�

mX

100 GeV

�

2
�

σp
1.3 × 10−45 cm2

�

: ð13Þ
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III. MODEL BUILDING AND CONCLUSIONS

To construct an as DM model we take inspiration from
and make use of, the exact results in [4]. Here it was proven
the existence of a gauge-Yukawa theory, structurally similar
to the SM, featuring a one-dimensional critical renormal-
ization group (RG) hypersurface in the four-dimensional
coupling space along which the physical theory runs from a
sensible IR noninteracting field theory to a quantum
interacting UV fixed point. The fact that the hypercritical
surface is unidimensional means that along the RG tra-
jectory connecting the IR and UV physics all the couplings
display asymptotically safe behavior and all the couplings
are driven by only one coupling, which is in this case the
gauge coupling. We will assume that an underlying theory
similar to this this is the dark sector driving the running of
asDM couplings to itself and to ordinary matter. A similar
construction was considered in [29], albeit in a different
context. The hidden theory is constituted by an SUðNhÞ
gauge theory featuring Fh hidden Dirac fermions ψh in the
fundamental representation and interacting among them-
selves via a complex matrix of Fh × Fh scalars. The ratio of
the number of hidden flavors to hidden colors is chosen in
such a way that asymptotic freedom is lost. The same ratio
is also the parameter used to control and insure the presence
of an exact interacting UV fixed point within perturbation
theory [4]. We will indicate the Lagrangian of this sector
collectively with Lhidden. We assume that our asDM state is
one extra heavy Dirac flavor X, with an exact unbroken
flavor symmetry. We furthermore assume that at energies
higher than the mass of X the full hidden symmetry gauge
group is SUðNh þ 1Þ. Similarly the non-Abelian hidden
global symmetry is SUðFh þ 1Þ × SUðFh þ 1Þ. Both, the

hidden gauge and global symmetries, spontaneously break
at around the vector mass scale mV while we keep
mX < mV . At energies below and near mV the physics is
well described by Eq. (1). Here Vμ is an Abelian massive
vector field that is part of the larger gauge symmetry group
and we neglected its kinetic term. We further assume it to
couple universally also to the SM quarks. At some higher
energies we can imagine a unification also with the SM
fields, provided that it still leads to an asymptotically (near)
safe behavior for either or both asDM relevant couplings gX
and gq. With this setup at energy scales below mV the
hidden sector drives the running of, at least, gX. By
the findings in [4] the cartoon beta function responsible
for the running in Fig. 1 maps into in the beta function in
Fig. 5 of [4].
The running of gX above the X and Vμ mass thresholds

should be amended by enlarging the hidden color and
flavor group, which by construction is structurally identical
to the theory with one less hidden color and flavor and
therefore we expect the UV ultraviolet fixed point to
survive, at least within the energy range relevant for
asDM phenomenology.
Although the results in [4] are exact in the Veneziano

limit, for phenomenological reasons, we extend them to
finite number of hidden flavors and colors. Here the beta
function for αX, after having already zeroed the Yukawa
beta function, maps into Eq. (3) for

b1 ¼
�

Nc

4π

�

2
�

50

3
−
8

3

Nf

Nc
þ 6Nc

Nc þ Nf

�

ð14Þ

and the fixed point value of the gauge coupling:

FIG. 2 (color online). Here we illustrate the combined impact of various experimental probes on the relic abundance for the model
described by Eq. (5). The left panel illustrates the present status of “conventional DM” interacting with quarks without sizeable running,
as is typically assumed. The middle and right panels illustrate the impact of asymptotically safe couplings on easing the tension between
direct detection and thermal relic requirements. The parameter, R defined in Eq. (10), parametrizes the difference between the low- and
high-energy values of the couplings. The experiments depicted include LHC monojets [26], direct detection constraints from LUX [27],
and Fermi-LAT’s dwarf galaxy search [28]. The white space in each panel represents the remaining viable parameter space for a
thermal relic.
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α�X ≃ Nc

4π

4

3b1

�

Nf

Nc
−
11

2

�

: ð15Þ

With Nc ¼ Nh þ 1 and Nf ¼ Fh þ 1, with Nc and Nf

large and Nf=Nc − 11=2 < 1. Choosing, for example,
Nh ¼ 39 and Fh ¼ 34 we have α�X ∼ 0.76. One finds that
Λ� ≃ 1.75 GeV for αXð1 MeVÞ≃ 0.04. Larger values of
α�X are obtained by decreasing Nf=Nc towards 11=2. Note
that in this extreme case α�X=αXð1 MeVÞ≃ 19.
We have shown that the interaction strength of DM

interactions need not be constant with energy, and inves-
tigated the consequences of asymptotically safe couplings
for the thermal relic abundance. We have observed that the
running of the couplings can be very relevant when the
transition energy scale falls in between the low-energy
scale relevant for direct detection and the relatively high
scales relevant for thermal freeze-out. By suppressing
the otherwise extremely strong constraints from direct

detection, the constraints from collider and indirect
searches increase in importance. Although we have focused
on the consequences of asymptotically safe couplings for
symmetric thermal relics, it would be natural to extend this
analysis to asymmetric thermal relics by making use of the
indirect limits obtained in [30].
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Note added.—A related study recently appeared [31]. They
study the use of fixed target experiments for probing the
running of dark couplings. The model employed therein
can be viewed as a UV “un-safe” limit of the approach
adopted in the present paper.
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