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We study the dominant effect of a long wavelength density perturbation δðλLÞ on short distance physics.
In the nonrelativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and
typically has no effect on statistical averages due to translational invariance. This same reasoning has been
formalized to obtain a “consistency condition” on the cosmological correlation functions. In the presence
of a feature, such as the acoustic peak at lBAO, this naive expectation breaks down for λL < lBAO.
We calculate a universal piece of the three-point correlation function in this regime. The same effect is
shown to underlie the spread of the acoustic peak, and is calculable to all orders in the long modes. This can
be used to improve the result of perturbative calculations—a technique known as “infra-red resumma-
tion”—and is explicitly applied to the one-loop calculation of the power spectrum. Finally, the success of
baryon acoustic oscillation reconstruction schemes is argued to be another empirical evidence for the
validity of the results.
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I. INTRODUCTION

Local experiments performed in a small laboratory
cannot reveal the existence of the uniform gravitational
field of a long-wavelength matter density perturbation, e.g.
δLðx; tÞ ¼ δqðtÞ cosðq · xÞ. By the equivalence principle,
the laboratory and all of its belongings fall with a uniform
acceleration −∇ΦLðxlab; tÞ, where ΦLðx; tÞ ¼ −4πGa2ρ̄ðtÞ
δLðx; tÞ=q2, and ρ̄ðtÞ is the mean matter density of the
Universe. However, two distant laboratories with separa-
tion larger than 1=q experience different accelerations. A
distant observer sees a clear correlation between the relative
motion of the two and the underlying density perturbation.
The motion in the field of a long-wavelength mode is

easiest to find from the fact that everything falls in the same
way as a dark matter particle does. Possible deviations are
suppressed by additional derivatives of the long mode.
For dark matter, the linearized continuity equation implies
v≃ − ∇

∇2
_δ. The total displacement since t ¼ 0 is then

Δx ¼ δqðtÞ sinðq · xÞq=q2: ð1Þ
The small laboratories of the cosmologist, like stars and

galaxies, are observed at a single point in their lifespan.
Hence, the relative motion of any given pair is impossible
to determine. What is possible is to see how the distribution
of pairs is correlated with δL. For pairs of any objects, say
galaxies, Eq. (1) implies

�
δg

�
x
2
; t

�
δg

�
−
x
2
; t

��
δL

≃ ξgðx; tÞ þ 2δqðtÞ sin
�
q · x
2

�

×
q
q2

· ∇ξgðx; tÞ; ð2Þ

where ξgðx; tÞ is an average two-point correlation function.
Not surprisingly, the distribution of pairs with separation
much less than the long wavelength, q · x ≪ 1, is hardly
affected by the long mode. The second line would in this
case correspond to the effect of living in an overdense
(underdense) Universe. An effect of order δLxj∇ξgj, which
for an approximately scale invariant spectrum, j∇ξgðx; tÞj∼
ξgðx; tÞ=x, is comparable to dynamical contributions of
order δLξg, which are neglected anyway on the right-hand
side (rhs). However, even if q · x ≫ 1, when we do expect
the long-wavelength mode to induce a large relative
motion, the second line of (2) is often negligibly small.
Scale invariance now implies that it is of order δLξg=qx.
The relative motion is noticeable only if the distribution

of pairs has a feature such that the derivative in the second
line of (2) becomes large. One such feature does exist in
the Universe at the baryon acoustic oscillation (BAO) peak.
For x ∼ lBAO,

j∇ξgj ∼ 1

σ
ξg ≫

1

lBAO
ξg; ð3Þ

where σ is the width of the peak. At this separation, the
effect of the long mode on the distribution of pairs is of
order δLlBAOξg=σ for q ≪ l−1

BAO, and δLξg=qσ for
l−1
BAO ≪ q ≪ σ−1, which are both dominant compared to

theOðδLξgÞ dynamical effects. In what follows, we explore
the implications of this simple observation for the shape
of the correlation functions around the BAO scale, and its
connection to broadening of the peak.1

1The initial time for this problem can be taken long after the
recombination, when the acoustic peak is already in place, but the
modes of interest, including those actually forming the peak, are
still linear and Gaussian.
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II. CORRELATION WITH THE
LONG MODE

A. Real space

An approximate three-point correlation function can be
obtained in this regime by correlating (2) with δðq; tÞ to get�

δðq; tÞδg
�
x
2
; t

�
δg

�
−
x
2
; t

��

≃ 2Plinðq; tÞ sin
�
q · x
2

�
q
q2

· ∇ξgðx; tÞ; ð4Þ

where Plinðq; tÞ is the linear matter power spectrum.2

Given that terms of order Plinξg have been neglected
from the rhs, one must ask how accurate is the above
approximation. Realistically, ξg contains also a smooth
background. Hence, the approximation is valid so long as

sin

�
q · x̂
2

lBAO

�
q · x̂
σq2

ξwg ≫ ξg; ð5Þ

where ξwg is the “wiggle” component. In our Universe,
ξwg =ξg ≈ 0.8, the peak location lBAO ≈ 100 h−1Mpc, and
the width σ ≈ 10 h−1 Mpc. Therefore, the corrections are of
order 10%–20%, but become larger at the nodes of the sine
and as q → 2πσ−1.
Note, however, that what is more essential in the above

derivation is the breakdown of scale invariance character-
ized by σ=lBAO ≪ 1, rather than the actual size of the
feature. Even for small ξwg =ξg, the contribution (4), with ξg
replaced by ξwg , is distinct though perhaps subleading.
We tested the above expectations by taking δg to be the

matter contrast itself, and using the tree-level expression

for the bispectrum in perturbation theory (Fig. 1).3 As seen,
subtracting the smooth contribution of the background
results in a much better agreement.

FIG. 1 (color online). Upper panel: The mixed real-momentum
space three-point function of Eq. (4) (solid line) and the
perturbation theory result (dot-dashed line) as a function of r.
Both curves are obtained for q ¼ 0.03 hMpc−1, and are nor-
malized by PlinðkeqÞξð2π=keqÞ. Lower panel: The comparison
between the two results when the background (calculated from
the featureless power spectrum) is subtracted.

3The tree-level bispectrum is given by

Bðk1; k2; k3Þ ¼ 2½F2ðk1; k2ÞPðk1ÞPðk2Þ þ 2 permutations�; ð6Þ
where Fn are the usual standard perturbation theory (SPT) kernels [1]:

F2ðk1; k2Þ ¼
5

7
þ 2

7

ðk1 · k2Þ2
k21k

2
2

þ 1

2
ðk1 · k2Þ

�
1

k21
þ 1

k22

�
: ð7Þ

For simplicity, the plots are made using the Bardeen-Bond-Kaiser-Szalay (BBKS) power spectrum [2] modified to account for BAO
wiggles

PðkÞ ¼ PBBKSðkÞð1þ Twðk=keqÞÞ; ð8Þ
where keq ¼ 0.01 hMpc−1 is the equality scale, and the transfer function TwðxÞ is given by

TwðxÞ ¼ a sinðfxÞWðx; xmaxÞð1 −Wðx; xminÞÞ;
where Wðx; x0Þ ¼ expð−x2=x20Þ. The parameters are chosen to reproduce the observed BAO peak: a ¼ 0.05, f ¼ 1, xmax ¼ 30,
and xmin ¼ 3.

2We use finite volume Fourier transformation where the cosine mode is related to Fourier modes according to δqðtÞ ¼
½δðq; tÞ þ δð−q; tÞ�=V. However, for convenience, the discrete momentum sums are approximated by integrals V

R
d3q=ð2πÞ3. Thus,

hδðq; tÞδðq0; tÞi ¼ PðqÞð2πÞ3δ3ðqþ q0Þ;
with δ3ð0Þ≡ V=ð2πÞ3. In what follows, momentum conservation is always explicitly imposed on momentum-space correlation
functions, but the factor ð2πÞ3δ3ðP qiÞ is dropped. Note also that the sine modes do not contribute to the relative displacement of pairs
located at � x

2
.
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B. Squeezed limit bispectrum

Taking the Fourier transform of (4) with respect to x,
we obtain the squeezed limit (q ≪ k) momentum space
bispectrum:

hδðq; tÞδgðk−; tÞδgð−kþ; tÞi

≃ q · k
q2

Plinðq; tÞ½Pgðk−; tÞ − Pgðkþ; tÞ�; ð9Þ

where k� ≡ k� q=2. The above derivation can be gener-
alized to the case where the fields have different time
arguments. The result, often called the squeezed limit
consistency condition (see e.g. [3–5]), reads

hδðq; tÞδgðk−; t1Þδgð−kþ; t2Þi

≃ q · k
q2

Plinðq; tÞ

×

�
Dðt1Þ
DðtÞ Pgðk−; t1Þ −

Dðt2Þ
DðtÞ Pgðkþ; t2Þ

�
; ð10Þ

where DðtÞ is the linear growth factor. The k� in the
arguments of Pg are normally approximated by k, which is
valid in the q → 0 limit: the difference

Pgðk�; tÞ − Pgðk; tÞ ¼ � 1

2
q ·∇kPgðk; tÞ ð11Þ

results in an Oðq0Þ term in (10) that is comparable to other
dynamical effects of the long mode. This has led to the
conclusion that the 1=q contribution to the squeezed limit
bispectrum vanishes at equal times. (The 1=q piece
survives in unequal time correlations. Measuring unequal
time correlations is equivalent to watching the galaxies as
they fall in the long wavelength gravitational field.
Unfortunately, this is practically impossible.)
However, the above reasoning does not necessarily hold

when considering squeezed triangles with small but finite
q. In the presence of the acoustic feature, Pgðk; tÞ has an
oscillatory component with period 2πl−1

BAO, which can be
smaller than q. In this regime, the approximation (11) is
invalid and the difference is proportional to the power
Pw
g ðk; tÞ in the acoustic peak—the Fourier transform of ξg

after the subtraction of a smooth background. The rhs of (9)
now reads

2Plinðq; tÞ sin
�
q · k̂
2

lBAO

�
q · ∇k̂

lBAOq2
Pw
g ðk; tÞ; ð12Þ

where ∇k̂ ≡ k∇k. To derive this expression, we have used
the fact that the Fourier transform of a sharp feature is
generically a fast oscillating piece times a smooth envelope;

Eq. (8) is an example. For qlBAO ≫ 1 the result is
enhanced by a factor of k=q.4

Nevertheless, compared to other dynamical contributions,
expression (12) is suppressed by Pw

g ðkÞ=PgðkÞ. In the case of
the initial matter power spectrum this ratio has support for
klBAO < 100 and reaches a maximum of approximately 0.05
at klBAO ∼ 10. The overall result turns out to be a subdomi-
nant component of the full momentum space bispectrum,
essentially because most of the power at high k comes from
short distance correlations ξgðx ∼ 2π=kÞ rather than the
acoustic feature. A comparison with the tree-level matter
bispectrum is shown in Fig. 2. As seen, once the smooth
background is subtracted, what remains is well approximated,
in the squeezed limit, by the universal result (12).

III. BAO SPREAD AND RECONSTRUCTION

Intuitively, the above result describes how galaxy pairs,
which are more likely to be found at distance lBAO, are
moved to larger or smaller separations in the presence of a
mode of wavelength longer than σ. When averaged over the

FIG. 2 (color online). Upper panel: The bispectrum calculated
using Eq. (12) (solid line) and the tree-level perturbation theory
result (dot-dashed line) as a function of k, for q ¼ 0.03 hMpc−1.
Both curves are normalized by P2

linðkeqÞ. Lower panel: The same
as above with the smooth background subtracted.

4In the case of higher point correlation functions (9) general-
izes to

hδðq; tÞδgðk1; tÞ � � � δgðkn; tÞi

≃ Plinðq; tÞ
X
i

q · ki
q2

hδgðk1; tÞ � � � δgðjkþ qj; tÞ � � � δgðkn; tÞi;

which again scales as 1=q for q > 2πl−1
BAO.
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long modes, these motions lead to the well-known spread of
the acoustic peak, as will be discussed in the rest of the paper.
For this purpose, it is necessary to keep higher order terms

in the expansion (2). At second order in relative displace-
ment, now caused by the modes q1 and q2, the rhs reads

2δq1δq2 sin
�
q1 · x
2

�
sin

�
q2 · x
2

�
qi1q

j
2

q21q
2
2

∂i∂jξgðx; tÞ: ð13Þ

As before, this is the leading effect of the long mode if
x ≈ lBAO, and ξg is the correlation function in the absence of
the q modes. By correlating (13) with two long modes one
can obtain the double-squeezed four-point correlation func-
tion. Alternatively, averaging over the long modes with q <
Λ ≪ 2πσ−1 gives the first correction to the observed two-
point correlation around the peak:

~ξgðr; tÞ ≈ ξg;Lðr; tÞ þ ξg;Sðr; tÞ þ Σ2
Λξ

00
g;Sðr; tÞ; ð14Þ

where r≡ jxj, prime denotes ∂=∂r, and terms suppressed by
σ=lBAO are neglected. ξg;Lðx; tÞ, the direct contribution of
the long modes to the correlation function, and ξg;Sðx; tÞ, that
of the short modes in the absence of the long modes, are
assumed to be isotropic. Note that while ξg;S contains the full
short scale nonlinearities, only the leading effect of the long
modes on the short modes has been kept in (14). For each q
mode, this scales as PlinðqÞðlBAO=σÞ2 for q ≪ l−1

BAO, and
PlinðqÞ=ðqσÞ2 for q > lBAO. The corrections are suppressed
by one or more powers of σ=lBAO and qσ, respectively.
Hence, due to the bulk motions, ~ξg has a broader peak with
Σ2
Λ given by

Σ2
Λ ≈

1

6π2

Z
Λ

0

dqPlinðqÞ½1 − j0ðqlBAOÞ þ 2j2ðqlBAOÞ�;
ð15Þ

where jn is the nth order spherical Bessel function.
It is easy to perturbatively confirm the above result when

ξg is taken to be the dark matter correlation: The leading
contribution of the long wavelength modes to the one-loop
power spectrum of the peak reads5

Pw
1-loopðk > ΛÞ

¼ 1

2

Z
Λ d3q
ð2πÞ3

ðq · kÞ2
q4

PlinðqÞ

× ½Pw
linðjkþ qjÞ þ Pw

linðjk − qjÞ − 2Pw
linðkÞ�: ð17Þ

For q ≪ k the expression in the square brackets simplifies
to −4Pw

linðkÞsin2ðq · k̂lBAO=2Þ, giving

Pw
1-loopðk > ΛÞ ¼ Σ2

Λk
2Pw

linðkÞ; ð18Þ

and taking the Fourier transform with respect to k
reproduces (14).
Note that for any k, our approximation is valid for all

q ≪ k while the above expressions are based on a rigid
separation of scales above and below Λ. Of course, in
reality Pw

g ðkÞ has support in a large range of momenta,
roughly ð0.05 − 1Þ hMpc−1. Even if a q-mode falls in this
range, it is still true that its leading effect on higher kmodes
is the mere bulk motion. Therefore, it contributes to the
peak power through ξg;L, and at the same time, broadens it
by dispersing the shorter modes. A better estimate of the
width can be obtained by including for each k the broad-
ening effect of all smaller q modes, i.e. by taking Λ to
increase with k. Below, we will implement this idea by
taking Λ ¼ ϵk, with ϵ ≪ 1.
Taking ϵ ¼ 1=2, the above expression (18) predicts an

effective broadening of Σϵk� ≈ 5.5 h−1 Mpc, where k� is
defined by Σϵk�k� ¼ 1. This turns out to be a sizable
fraction of the actual width of the observed matter corre-
lation function. We compare the theoretical prediction with
the result of an N-body simulation6 in Fig. 3. It is seen that
the perturbative treatment has completely deformed the
shape of the peak. A more accurate description should,
therefore, treat the relative motions nonperturbatively.

A. Infrared resummation

We can obtain a formula which is valid to all orders in the
relative displacement δq=q, by rewriting (2) as (see e.g. [6])

�
δg

�
x
2
; t

�
δg

�
−
x
2
; t

��
δL

≃
Z

d3k
ð2πÞ3 e

ik·x exp

�
2iδqðtÞ sin

�
q · x
2

�
q · k
q2

�

× hδgðk; tÞδgð−k; tÞi: ð19Þ

5The full one-loop power spectrum is given byZ
d3q
ð2πÞ3 ½6F3ðq;−q; kÞPlinðkÞ

þ 2F2
2ðq; k − qÞPlinðjk − qjÞ�PlinðqÞ: ð16Þ

For q ≪ k it reduces to (17). Incidentally, this coincides with

1

2

Z
q≪k

d3q
ð2πÞ3 P

−1
lin ðqÞhδqδ−qδkδ−ki;

as expected from the remark after (13).

6We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h−3 Mpc3.
The matter density parameter is Ωm ¼ 0.272, the tilt ns ¼ 0.967
and the normalization σ8 ¼ 0.81. The leading cosmic variance
has been divided out, such that the error bars reflect the
subleading cosmic variance.
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As before, this is only relevant in the presence of a feature.
Taking the expectation value over the realizations of the q
modes, approximating them, as we did so far, as being
Gaussian, and using hexpðiφÞi ¼ expð−hφ2i=2Þ for
Gaussian variables, we obtain our final expression for
the dressed two-point correlation function around r ≈ lBAO

~ξgðxÞ≃
Z

d3k
ð2πÞ3 e

ik·xe−Σ
2
ϵkk

2hδgðk; tÞδgð−k; tÞiϵ: ð20Þ

To write the exponent in the above form, we have used the
fact that ∇2 ≈ ∂2

r [and therefore k2 ≈ ðx̂ · kÞ2] up to cor-
rections of order σ=lBAO. In principle, the exponential
factor should only multiply the peak power Pw

g ðkÞ, though
in practice the smooth background at r ≈ lBAO is insensi-
tive to the presence of this factor since Σ ≪ lBAO. The
subscript ϵ on the momentum space expectation value on
the rhs indicates that it should be evaluated in the absence
of modes with momentum q smaller than ϵk, though it
contains all short scale nonlinearities. Within a perturbative
framework, it is possible to include dynamical effects of the
long modes, as well as their non-Gaussianity by writing
more complicated expressions (see below).
To get an idea of how well (20) performs, we set δg ¼ δ

and approximate the exclusive expectation value in the
integral first by the linear matter power spectrum, and then
by the one-loop perturbation theory result. The first
approximation underestimates the broadening by neglect-
ing short scale nonlinearities and therefore predicts a
slightly sharper peak.

Let us discuss the one-loop approximation in more detail
to see how (20) can be used to improve perturbative results.
Two points have to be kept in mind: (i) The broadening is
only relevant for the acoustic peak; hence the exponential
broadening in (20) multiplies Pw

ϵ ðkÞ. (ii) Replacing Pw
ϵ ðkÞ

with the one-loop power spectrum double-counts the effect
of the long modes since the one-loop result already contains
Σ2
ϵkk

2Pw
linðkÞ [cf. (18)]. Hence in this context the infrared

resummed version of the one-loop power spectrum pre-
sented in [7] can be simplified and written as

~PðkÞ ¼ Pnw
lin ðkÞ þ Pnw

1-loopðkÞ þ e−Σ
2
ϵkk

2ð1þ Σ2
ϵkk

2ÞPw
linðkÞ

þ e−Σ
2
ϵkk

2

Pw
1-loopðkÞ; ð21Þ

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possibility
of higher derivative corrections to the dark matter equations
of motion in an effective field theory (EFT) framework [8].
These corrections compensate for the error made in treating
the short scale modes as a perfect fluid. Therefore, the EFT
one-loop power spectrum differs from (16) by one such
correction:

P1-loopðkÞ ¼ P13ðkÞ þ P22ðkÞ − 2R2k2PlinðkÞ; ð22Þ
where R (also known as speed of sound) is chosen to be
1.8 h−2 Mpc2 in order to obtain 1% agreement with the
simulation results up to kmax ¼ 0.3 hMpc−1 (see Fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1 hMpc−1. The exact value
of R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory and
to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the leading
dynamical effect of the long modes on short modes is
also taken into account. The comparison between the
IR-improved power spectrum (21) and the original one-
loop result (22) can be seen in Fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT prediction
and can thus increase the range over which the theory
agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic peak

resulting from the IR-resummed linear and one-loop power
spectra is shown together with the initial peak in Fig. 5.
Although the first approximation does not fully capture the
smoothing of the peak seen in the data, it shows that indeed
most of the spread is caused by the bulk motions.
Without resummation the one-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the

FIG. 3 (color online). The acoustic peak in the matter corre-
lation function in linear theory (solid), one-loop perturbation
theory (dashed), and simulation.

7In practice, Pnw
1-loop can be obtained by substituting PlinðkÞ

with its no-wiggle part in the loop integrals (16) since Pw
lin=

Pnw
lin ≪ 1.
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BAO scale similar to the one shown in Fig. 3. This is
because they only include Σ2

ϵkξ
00ðrÞ while higher derivative

terms 1=n!Σ2n
ϵkξ

ð2nÞðrÞ that partially cancel this feature are
not absent. The presence of this feature is the cause for the
common wisdom that SPT does not work for the correlation
function. As the good performance of the IR-resummed
EFT proves, the failure is not related to the high-k behavior
of the perturbation theory but to the missing nonperturba-
tive treatment of motions. One can indeed see that the
IR-resummed EFT provides a good description of the
correlation function down to 10 h−1Mpc separations [7].
Another feature of Fig. 5 that is worth emphasizing is the

shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ~ξg of order Σ2ξ0g=lBAO, which are smaller than the
broadening effects by a factor of σ=lBAO [9]. They are not
entirely fixed by symmetries since the cross correlation
between a displacement and other nonuniversal effects—
e.g. arising from living in an overdense region—caused by
a long wavelength mode contributes at the same level.
Nevertheless, they can be calculated in perturbation theory
and are included, to leading order, in the one-loop result,
which predicts the position of the peak reasonably well.
On the other hand, the BAO reconstruction schemes, to be
discussed below, reproduce the original peak by virtue of
undoing the displacements caused by the long modes which
also eliminates the above-mentioned cross-correlations.
For comparison, we have also plotted in Fig. 5 the

Zel’dovich correlation function, which is known to give a
relatively accurate description of the BAO spread. We will
next argue that the success of the Zel’dovich approximation
is because it can be formulated as (20).

B. Zel’dovich approximation

The matter correlation function can be related to the
correlation function of the relative displacement ΔsðzÞ of
two points with initial (Lagrangian) separation z:

1þ ξðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·x

Z
d3ze−ik·zhe−k·ΔsðzÞi: ð23Þ

In the Zel’dovich approximation, Δs is replaced by its
linear expression, and the above expectation value is
trivially expressed in terms of the variance

AijðzÞ ¼ hΔsiðzÞΔsjðzÞi

¼
Z

d3q
qiqj

q4
PlinðqÞsin2

�
q · z
2

�
: ð24Þ

Let us define the Zel’dovich power spectrum as the result of
the inner integral in (23) at k ≠ 0:

PzðkÞ ¼
Z

d3ze−ik·ze−
1
2
AijðzÞkikj ; ð25Þ

FIG. 4 (color online). The ratio of various theoretical approx-
imations to the power spectrum to the simulation result: IR-
resummed (21) (solid line), one-parameter one-loop EFT (22)
(short-dashed line), zero-parameter one-loop EFT (22) with
R ¼ 0 (dot-dashed line), and linear (long-dashed line). The gray
shaded region on the IR-resummed EFT curve gives the statistical
error.

FIG. 5 (color online). Various theoretical approximations to the
acoustic peak in the correlation function as well as simulation
measurements: linear (solid), IR-resummed linear (dashed), IR-
resummed one-loop (dot-dashed), and Zel’dovich (dotted).
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which in the presence of the BAO feature contains an
oscillating component Pw

z ðkÞ. This can be approximated by
the product of a nonsmoothed piece times a broadening
factor, as in (20): Define Aij

S ðz;ΛÞ, and Aij
Lðz;ΛÞ by the

same integral as in (24), but taken, respectively, over short
modes q > Λ, and long modes q < Λ. So we have

AijðzÞ ¼ Aij
S ðz;ΛÞ þ Aij

Lðz;ΛÞ: ð26Þ
A Zel’dovich power spectrum in the absence of the long
modes Pz;Sðk;ΛÞ, where Λ ≪ k, can now be defined by
replacing Aij → Aij

S in (25). This is the analog of the last
factor in (20): it contains the full nonlinear effect of the
short modes in the Zel’dovich approximation, but no long
modes whatsoever.
Consider now the full PzðkÞ. The integral in (25) is

dominated by z ¼ Oð1=kÞ, and, if k is in the support of
Pw
z ðkÞ, by z ¼ �lBAOk̂þOð1=kÞ. The second contribution

is what we called Pw
z ðkÞ. Here, Aij

LðzÞ is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z ¼ lBAOk̂ to yield

Pw
z ðkÞ ≈ e−

1
2
Aij
L ðlBAOk̂;ΛÞkikjPw

z;Sðk;ΛÞ
≈ e−Σ

2
Λk

2

Pw
z;Sðk;ΛÞ: ð27Þ

The second equality holds up to terms suppressed by σ=lBAO.
Replacing Λ → ϵk results in the desired analog of (20).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account the
leading displacement caused by all longer wavelength
modes on any given scale k.8

C. BAO reconstruction

This naturally leads us to the discussion of BAO
reconstruction, and its connection to the long-short

correlations (4) and (12). The BAO reconstruction is a
method to reproduce a sharper acoustic peak by undoing
the bulk motion induced by the long wavelength modes,
and hence, it is based on the same underlying idea that led
to our results [12,13]. Given that the leading effect of the
long mode is a uniform acceleration, this procedure rolls
back part of the time evolution, which as we saw leads to
the broadening of the BAO peak.
Operationally, the reconstruction method consists of

three steps: (i) choosing a rigid separation Λ between long
and short modes, and solving for the linear displacement
field produced by the long modes; (ii) moving back all
points according to this linear displacement field (as one
would do in the Zel’dovich approximation); and (iii) adding
back the original smooth field that is largely erased by step
(ii). In this procedure, the only effect of the long modes on
the short modes that has been reliably taken into account
is the linear displacement. Hence, the effectiveness of the
method seems to be a strong indication of the validity of
(4). But, there are two caveats. First, the reconstruction
method does not significantly affect the smooth part of the
correlation function; hence it only verifies (4) after back-
ground subtraction.
Second, the threshold Λ is practically chosen within the

support of Pw
g , where as mentioned above, the modes both

contribute to the peak, and cause it to spread. It is natural to
suspect Eq. (4) of becoming a poor approximation for these
qmodes, due to their dynamical self-coupling. On the other
hand, the reconstruction method would primarily deal with

FIG. 6 (color online). The same as Fig. 1 with q ¼ 0.1 hMpc−1.
All curves are normalized by PlinðkeqÞξð2π=keqÞ. Upper panel:
Without high-pass filter. Lower panel: With high-pass filter. In both
cases the smooth background is subtracted.

8Two alternative approximations have been proposed in the
literature (e.g. [10,11]) to model the broadening effects:

PwðkÞ ≈ e−Σ
2
∞k2Pw

linðkÞ; ð28Þ
and

PwðkÞ ≈ e−σ
2
vk2Pw

linðkÞ; ð29Þ
where the velocity dispersion σ2v is given by the same integral as in
(15) with Λ ¼ ∞, but without the last square brackets. The two
expressions happen to give similar results for thematter correlation
function, and to be in good agreementwith the result of simulations.
However,we think the agreement in ourUniverse is accidental. The
velocity dispersion ismissing the factor sin2ðq · x=2Þ in the relative
displacement, which suppresses the contribution of the superlong
modes. Had there been more power at large scales, or if
keqlBAO ≪ 1, (29) and (28) would have differed significantly.
On the other hand, Eq. (28) approximates the short-long effects by
the same expression as that of the long-short effects. This is not
justified by any symmetry argument, and is an overestimation in the
real Universe. Equation (28) would predict too much spreading if
there were more power in small scales.
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the effect of the q modes on higher k modes. Therefore, the
effectiveness of reconstruction implies that even for these
relatively larger values of q, once the contribution of modes
below the thresholdΛ is removed from δg, Eq. (4) should be
a good approximation.
To test this expectation in perturbation theory, we insert a

high-pass filtered power spectrum PgðkÞ ¼ ð1 −Wðk; qÞÞ
PlinðkÞ into the tree-level matter bispectrum, while keeping
PlinðqÞ unfiltered. The inverse Fourier transform with
respect to k is then to be compared to the rhs of (4), with
ξg obtained from the same high-pass filtered PgðkÞ. The
results are shown in Fig. 6, and seem to be in moderate
agreement. The high-pass filter effectively picks small
laboratories, free-falling in the background of the long
wavelength mode.

IV. CONCLUSIONS

We used the leading Newtonian effect of a long wave-
length matter perturbation δL to derive approximate for-
mulas for its correlation with the distribution of pairs (4), as
well as the squeezed limit bispectrum (12), in the presence
of the BAO feature. The derivation is based only on two
underlying assumptions: first, the equivalence principle, by
which we imply that no additional (fifth) force is univer-
sally sourced by material objects, and second, local for-
mation of tracers which forbids nontrivial bias with respect
to locally unobservable quantities such as velocity and
gravitational potential. This requires absence, or rather
smallness, of primordial local non-Gaussianity. Therefore,
the result holds beyond the standard perturbation theory,

and applies equally well to biased tracers. In the real
Universe, it gives the dominant component of the real space
correlation at x ∼ lBAO, but a subdominant—though still
unique and distinguishable—piece in momentum space.
Next, we explored the connection with the broadening of

the acoustic peak, where the same universal effect but
averaged over the long modes is known to account for most
of the spread in the observed Universe. We derived a
formula for the observed correlation function (20), which
resums the induced motion by the long modes to all orders.
A simpler way to implement this IR-resummation in
perturbation theory was proposed, and the result was
shown to be in good agreement with the numerical results
from an N-body simulation, and with the Zel’dovich
approximation. It was shown that the Zel’dovich approxi-
mation to the correlation function can be recast into the
form of our IR-resummed formula (20), which we take as
the explanation for its success in predicting the BAO
spread. Finally, we discussed the BAO reconstruction
method as a practical application of the same under-
lying idea.
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